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Abstract

We propose a new perspective on representation learning in reinforcement learning
based on geometric properties of the space of value functions. We leverage this
perspective to provide formal evidence regarding the usefulness of value functions
as auxiliary tasks. Our formulation considers adapting the representation to mini-
mize the (linear) approximation of the value function of all stationary policies for
a given environment. We show that this optimization reduces to making accurate
predictions regarding a special class of value functions which we call adversarial
value functions (AVFs). We demonstrate that using value functions as auxiliary
tasks corresponds to an expected-error relaxation of our formulation, with AVFs
a natural candidate, and identify a close relationship with proto-value functions
(Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as
auxiliary tasks in a series of experiments on the four-room domain.

1 Introduction

A good representation of state is key to practical success in reinforcement learning. While early
applications used hand-engineered features (Samuel, |1959), these have proven onerous to generate
and difficult to scale. As a result, methods in representation learning have flourished, ranging from
basis adaptation (Menache et al., 2005} Keller et al.| | 2006), gradient-based learning (Yu and Bertsekas|
2009), proto-value functions (Mahadevan and Maggioni, [2007)), feature generation schemes such as
tile coding (Sutton, |1996) and the domain-independent features used in some Atari 2600 game-playing
agents (Bellemare et al., 2013} |Liang et al.,|2016), and nonparametric methods (Ernst et al., 2005}
Farahmand et al.| 2016} Tosatto et al.,|2017). Today, the method of choice is deep learning. Deep
learning has made its mark by showing it can learn complex representations of relatively unprocessed
inputs using gradient-based optimization (Tesauro, |1995; Mnih et al.| 2015; Silver et al.l 2016).

Most current deep reinforcement learning methods augment their main objective with additional
losses called auxiliary tasks, typically with the aim of facilitating and regularizing the representation
learning process. The UNREAL algorithm, for example, makes predictions about future pixel
values (Jaderberg et al., |2017); recent work approximates a one-step transition model to achieve a
similar effect (Francois-Lavet et al., 2018} |Gelada et al.,[2019). The good empirical performance of
distributional reinforcement learning (Bellemare et al.,|2017) has also been attributed to representation
learning effects, with recent visualizations supporting this claim (Such et al.,[2019). However, while
there is now conclusive empirical evidence of the usefulness of auxiliary tasks, their design and
justification remain on the whole ad-hoc. One of our main contributions is to provides a formal
framework in which to reason about auxiliary tasks in reinforcement learning.

We begin by formulating an optimization problem whose solution is a form of optimal representation.
Specifically, we seek a state representation from which we can best approximate the value function of
any stationary policy for a given Markov Decision Process. Simultaneously, the largest approximation
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error in that class serves as a measure of the quality of the representation. While our approach
may appear naive — in real settings, most policies are uninteresting and hence may distract the
representation learning process — we show that our representation learning problem can in fact be
restricted to a special subset of value functions which we call adversarial value functions (AVFs).
We then characterize these adversarial value functions and show they correspond to deterministic
policies that either minimize or maximize the expected return at each state, based on the solution of a
network-flow optimization derived from an interest function 4.

A consequence of our work is to formalize why predicting value function-like objects is helpful
in learning representations, as has been argued in the past (Sutton et al., 2011, 2016). We show
how using these predictions as auxiliary tasks can be interpreted as a relaxation of our optimization
problem. From our analysis, we hypothesize that auxiliary tasks that resemble adversarial value
functions should give rise to good representations in practice. We complement our theoretical results
with an empirical study in a simple grid world environment, focusing on the use of deep learning
techniques to learn representations. We find that predicting adversarial value functions as auxiliary
tasks leads to rich representations.

2 Setting

We consider an environment described by a Markov Decision Process (X, A, r, P,~) (Puterman)
1994); X’ and A are finite state and action spaces, P : X x A — (X)) is the transition function,
~y the discount factor, and r : X — R the reward function. For a finite set S, write &?(S) for the
probability simplex over S. A (stationary) policy 7 is a mapping X — Z(A), also denoted 7(a | x).
We denote the set of policies by P = Z?(A)*. We combine a policy 7 with the transition function P
to obtain the state-to-state transition function P™ (2’ |z) := > .y m(a|x)P(x" |z, a). The value
Junction V™ describes the expected discounted sum of rewards obtained by following :

V™(z) =E [i’ytr(xt) |20 = @, 2001 ~ P(-] xt)]
t=0

The value function satisfies Bellman’s equation (Bellman, [1957): V™ (z) = r(x) + yEp- V™ (2').
We will find it convenient to use vector notation: Assuming there are n = |X| states, we view r and
V™ as vectors in R™ and P™ € R™"*", yielding

VT =r+yP"V" =1 —~yP")"'r.

A d-dimensional representation is a mapping ¢ : X — R%; ¢(x) is the feature vector for state z. We
write ® € R™*? to denote the matrix whose rows are ¢(X’), and with some abuse of notation denote
the set of d-dimensional representations by % = R"™*<. For a given representation and weight vector
6 € R?, the linear approximation for a value function is

% T

Vg,o(z) == ¢(x) ' 0.
We consider the approximation minimizing the uniformly weighted squared error

Voo = V|5 = (6(a) 70— V()%

reX

We denote by qu the projection of V™ onto the linear subspace H = {®6 : § € R¢}.

2.1 Two-Part Approximation

We view Vdf as a two-part approximation arising from the composition of an adjustable representation

¢ and a weight vector 6; we use the term “two-part” to emphasize that the mapping ¢(x) — V(;T (x)is
linear, while ¢ itself may not be. This separation into two parts gives us a simple framework in which
to study the behaviour of representation learning, in particular deep networks applied to reinforcement
learning. We will further consider the use of ¢(x) to make additional predictions, called auxiliary
tasks following common usage, and whose purpose is to improve or stabilize the representation.

We study two-part approximations in an idealized setting where the length d of ¢(x) is fixed and
smaller than n, but the mapping is otherwise unconstrained. Even this idealized design offers
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Figure 1: Left. A deep reinforcement learning architecture viewed as a two-part approximation.
Right. The optimal representation ¢* is a linear subspace that cuts through the value polytope.

interesting problems to study. We might be interested in sharing a representation across problems, as
is often done in transfer or continual learning. In this context, auxiliary tasks may inform how the
value function should generalize to these new problems. In many problems of interest, the weights
6 can also be optimized more efficiently than the representation itself, warranting the view that the
representation should be adapted using a different process (Levine et al.,|2017;|Chung et al.| 2019).

Note that a trivial “value-as-feature” representation exists for the single-policy optimization problem

win [[V7 — V5

this approximation sets ¢(x) = V7 (x),0 = 1. In this paper we take the stance that this is not a
satisfying representation, and that a good representation should be in the service of a broader goal
(e.g. control, transfer, or fairness).

3 Representation Learning by Approximating Value Functions

We measure the quality of a representation ¢ in terms of how well it can approximate all possible
value functions, formalized as the representation error

L(¢) := max L(¢im), L(¢sm):= IVE = v

We consider the problem of finding the representation ¢ € & minimizing L(¢):

- 2
min max ||V — VT|[.. 1
min | V7 — V| <>

In the context of our work, we call this the representation learning problem (RLP) and say that a

representation ¢* is optimal when it minimizes the error in . Note that L(¢) (and hence ¢*)

depends on characteristics of the environment, in particular on both reward and transition functions.

We consider the RLP from a geometric perspective (Figure[I] right). Dadashi et al.|(2019) showed
that the set of value functions achieved by the set of policies P, denoted

V:={VeR":V =V~ forsome w € P},

forms a (possibly nonconvex) polytope. As previously noted, a given representation ¢ defines a linear
subspace H of possible value approximations. The maximal error is achieved by the value function

in V which is furthest along the subspace normal to H, since Vg is the orthogonal projection of V™.

We say that V' € V is an extremal vertex if it is a vertex of the convex hull of V. Our first result shows
that for any direction § € R"™, the furthest point in )V along ¢ is an extremal vertex, and is in general
unique for this § (proof in the appendix).

Lemma 1. Let § € R" and define the functional f5(V) := 6"V, with domain V. Then fs is
maximized by an extremal vertex U € V, and there is a deterministic policy w for which V™ = U.
Furthermore, the set of directions 6 € R™ for which the maximum of fs is achieved by multiple
extremal vertices has Lebesgue measure zero in R"™.

Denote by P, the set of policies corresponding to extremal vertices of V. We next derive an
equivalence between the RLP and an optimization problem which only considers policies in P,,.



Theorem 1. For any representation ¢ € X, the maximal approximation error measured over all
value functions is the same as the error measured over the set of extremal vertices:

v

max Hf/(;r — V’THZ = max

TEP TEPy
Theorem [l indicates that we can find an optimal representation by considering a finite (albeit
exponential) number of value functions, since each extremal vertex corresponds to the value function
of some deterministic policy, of which there are at most an exponential number. We will call these
adversarial value functions (AVFs), because of the minimax flavour of the RLP.

Solving the RLP allows us to provide quantifiable guarantees on the performance of certain value-based
learning algorithms. For example, in the context of least-squares policy iteration (LSPI; Lagoudakis
and Parr| [2003)), minimizing the representation error L directly improves the performance bound. By
contrast, we cannot have the same guarantee if ¢ is learned by minimizing the approximation error
for a single value function.

Corollary 1. Let ¢* be an optimal representation in the RLP. Consider the sequence of policies
Ty, T1, - - . derived from LSPI using ¢* to approximate V™° V™ ... under a uniform sampling of
the state-space. Then there exists an MDP-dependent constant C' € R such that

limsup [|[V* = V™2 < CL(¢").
k—o0

This result is a direct application of the quadratic norm bounds given by Munos| (2003), in whose
work the constant is made explicit. We emphasize that the result is illustrative; our approach should
enable similar guarantees in other contexts (e.g./Munos, 2007} |Petrik and Zilberstein, 2011).

3.1 The Structure of Adversarial Value Functions

The RLP suggests that an agent trained to predict various value functions should develop a good state
representation. Intuitively, one may worry that there are simply too many “uninteresting” policies, and
that a representation learned from their value functions emphasizes the wrong quantities. However,
the search for an optimal representation ¢ is closely tied to the much smaller set of adversarial value
functions (AVFs). The aim of this section is to characterize the structure of AVFs and show that they
form an inferesting subset of all value functions. From this, we argue that their use as auxiliary tasks
should also produce structured representations.

From LemmalI] recall that an AVF is geometrically defined using a vector § € R™ and the functional
f5(V) := 6TV, which the AVF maximizes. Since f5 is restricted to the value polytope, we can
consider the equivalent policy-space functional gs : 7 — § T V™. Observe that

Ty, m ™
max gs(m) = rgleagé VT = max Z (z)V™ (x). (2)
reX

In this optimization problem, the vector § defines a weighting over the state space X’; for this reason,
we call § an interest function in the context of AVFs. Whenever 6 > 0 componentwise, we recover
the optimal value function, irrespective of the exact magnitude of ¢ (Bertsekas, [2012). If §(z) < 0
for some z, however, the maximization becomes a minimization. As the next result shows, the policy
maximizing fs(7) depends on a network flow d derived from ¢ and the transition function P.

Theorem 2. Maximizing the functional gs is equivalent to finding a network flow d that satisfies a
reverse Bellman equation:
maxd ' V™ = max d;rn dr =0+ 'yP”TdTr.
TeP TeP
For a policy ™ maximizing the above we have
AN maxge A Borap VE(2')  dz(x) >0,
VF(2) = r(e) + { pevacafp ) Oy

Corollary 2. There are at most 2™ distinct adversarial value functions.

The vector d,; corresponds to the sum of discounted interest weights flowing through a state x, similar
to the dual variables in the theory of linear programming for MDPs (Puterman, [1994). Theorem [2] by
way of the corollary, implies that there are fewer AVFs (< 2™) than deterministic policies (= |.A|™).
It also implies that AVFs relate to a reward-driven purpose, similar to how the optimal value function
describes the goal of maximizing return. We will illustrate this point empirically in Section



3.2 Relationship to Auxiliary Tasks

So far we have argued that solving the RLP leads to a representation which is optimal in a meaningful
sense. However, solving the RLP seems computationally intractable: there are an exponential number
of deterministic policies to consider (Prop. [I]in the appendix gives a quadratic formulation with
quadratic constraints). Using interest functions does not mitigate this difficulty: the computational
problem of finding the AVF for a single interest function is NP-hard, even when restricted to
deterministic MDPs (Prop. [2|in the appendix).

Instead, in this section we consider a relaxation of the RLP and show that this relaxation describes
existing representation learning methods, in particular those that use auxiliary tasks. Let £ be some
distribution over R™. We begin by replacing the maximum in (1) by an expectation:
- 2

min E (Vg —V|,. 3

win E [V, - V] ®
The use of the expectation offers three practical advantages over the use of the maximum. First, this
leads to a differentiable objective which can be minimized using deep learning techniques. Second,
the choice of £ gives us an additional degree of freedom; in particular, £ needs not be restricted to the
value polytope. Third, the minimizer in (3) is easily characterized, as the following theorem shows.

Theorem 3. Let ui, ..., u; € R" be the principal components of the distribution &, in the sense that

ul :=argmax E (u'V)?, where By := {u € R": ||lu||3 = 1,uTu;7 =0Vj <i}.
ueB; V~¢

Equivalently, uy, ..., u} are the eigenvectors of F¢ VV'T € R™ ™ with the d largest eigenvalues.

Then the matrix [u,...,u}] € R"% viewed as a map X — R, is a solution to . When

the principal components are uniquely defined, any minimizer of (3) spans the same subspace as

uy, ..U

One may expect the quality of the learned representation to depend on how closely the distribution &
relates to the RLP. From an auxiliary tasks perspective, this corresponds to choosing tasks that are in
some sense useful. For example, generating value functions from the uniform distribution over the set
of policies P, while a natural choice, may put too much weight on “uninteresting” value functions.

In practice, we may further restrict £ to a finite set V. Under a uniform weighting, this leads to a
representation loss

L V)= > Vo=V @

vev

which corresponds to the typical formulation of an auxiliary-task loss (e.g.Jaderberg et al., 2017). In
a deep reinforcement learning setting, one typically minimizes (@) using stochastic gradient descent
methods, which scale better than batch methods such as singular value decomposition (but see Wu
et al.| (2019) for further discussion).

Our analysis leads us to conclude that, in many cases of interest, the use of auxiliary tasks produces
representations that are close to the principal components of the set of tasks under consideration. If
V is well-aligned with the RLP, minimizing L(¢; V') should give rise to a reasonable representation.
To demonstrate the power of this approach, in Section 4| we will study the case when the set V' is
constructed by sampling AVFs — emphasizing the policies that support the solution to the RLP.

3.3 Relationship to Proto-Value Functions

Proto-value functions (Mahadevan and Maggionil 2007, PVF) are a family of representations which
vary smoothly across the state space. Although the original formulation defines this representation as
the largest-eigenvalue eigenvectors of the Laplacian of the transition function’s graphical structure,
recent formulations use the top singular vectors of (I — vP™)~!, where 7 is the uniformly random
policy (Stachenfeld et al.| 2014} Machado et al.| | 2017; Behzadian and Petrik} 2018]).

In line with the analysis of the previous section, proto-value functions can also be interpreted as
defining a set of value-based auxiliary tasks. Specifically, if we define an indicator reward function
ry(z) := Iju—y) and a set of value functions V' = {(I — vP™)"'r,},cx with 7 the uniformly
random policy, then any d-dimensional representation that minimizes (4) spans the same basis as the
d-dimensional PVF (up to the bias term). This suggests a connection with hindsight experience replay
(Andrychowicz et al.,|2017)), whose auxiliary tasks consists in reaching previously experienced states.



4 Empirical Studies

In this section we complement our theoretical analysis with an experimental study. In turn, we take
a closer look at 1) the structure of adversarial value functions, 2) the shape of representations
learned using AVFs, and 3) the performance profile of these representations in a control setting.

Our eventual goal is to demonstrate that the representation learning problem (T)), which is based on
approximating value functions, gives rise to representations that are both interesting and comparable
to previously proposed schemes. Our concrete instantiation (Algorithm [T) uses the representation
loss (). As-is, this algorithm is of limited practical relevance (our AVFs are learned using a tabular
representation) but we believe provides an inspirational basis for further developments.

Algorithm 1 Representation learning using AVFs

input £ — desired number of AVFs, d — desired number of features.
Sample 6y, ...,0, ~ [—1,1]"
Compute j1; = arg max,. 6, V™ using a policy gradient method
Find ¢* = argmin,, L(¢; {VH1,... Vi) (EquationEI)

We perform all of our experiments within the four-room domain (Sutton et al.,[1999; [Solway et al.

2014} [Machado et al |, 2017, Figure[2] see also Appendix [H.T).

Interest function & Network flow d - Adversarial value function Policy ™

4

Figure 2: Leftmost. The four-room domain. Other panels. An interest function ¢, the network flow
d, the corresponding adversarial value function (blue/red = low/high value) and its policy.

We consider a two-part approximation where we pretrain ¢ end-to-end to predict a set of value
functions. Our aim here is to compare the effects of using different sets of value functions, including
AVFs, on the learned representation. As our focus is on the efficient use of a d-dimensional represen-
tation (with d < n, the number of states), we encode individual states as one-hot vectors and map
them into ¢(x) without capacity constraints. Additional details may be found in Appendix@

4.1 Adversarial Value Functions

Our first set of results studies the structure of adversarial value functions in the four-room domain.
We generated interest functions by assigning a value 6(x) € {—1,0, 1} uniformly at random to each
state z (Figure 2] left). We restricted § to these discrete choices for illustrative purposes.

We then used model-based policy gradient (Sutton et al, 2000) to find the policy maximizing
> zex 0(x)V7(x). We observed some local minima or accumulation points but as a whole reasonable
solutions were found. The resulting network flow and AVF for a particular sample are shown in Figure
For most states, the signs of § and d,. agree; however, this is not true of all states (larger version
and more examples in appendix, Figures [6] [7). As expected, states for which d. > 0 (respectively,
dr < 0) correspond to states maximizing (resp. minimizing) the value function. Finally, we remark
on the “flow” nature of d: trajectories over minimizing states accumulate in corners or loops, while
those over maximizing states flow to the goal. We conclude that AVFs exhibit interesting structure,
and are generated by policies that are not random (Figure 2] right). As we will see next, this is a key
differentiator in making AVFs good auxiliary tasks.

4.2 Representation Learning with AVFs

We next consider the representations that arise from training a deep network to predict AVFs (denoted
AVF from here on). We sample k& = 1000 interest functions and use Algorithm|[I|to generate k& AVFs.



We combine these AVFs into the representation loss (@) and adapt the parameters of the deep network
using Rmsprop (Tieleman and Hinton) 2012).

We contrast the AVF-driven representation with one learned by predicting the value function of
random deterministic policies (RP). Specifically, these policies are generated by assigning an action
uniformly at random to each state. We also consider the value function of the uniformly random
policy (VALUE). While we make these choices here for concreteness, other experiments yielded
similar results (e.g. predicting the value of the optimal policy; appendix, Figure[§). In all cases, we
learn a d = 16 dimensional representation, not including the bias unit.
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Figure 3: 16-dimensional representations learned by predicting a single value function, the value
functions of 1000 random policies, or 1000 AVFs sampled using Algorithm|[I] Each panel element
depicts the activation of a given feature across states, with blue/red indicating low/high activation.

Figure 3] shows the representations learned by the three methods. The features learned by VALUE
resemble the value function itself (top left feature) or its negated image (bottom left feature). Coarsely
speaking, these features capture the general distance to the goal but little else. The features learned
by RP are of even worse quality. This is because almost all random deterministic policies cause
the agent to avoid the goal (appendix, Figure[I2Z). The representation learned by AVF, on the other
hand, captures the structure of the domain, including paths between distal states and focal points
corresponding to rooms or parts of rooms.

Although our focus is on the use of AVFs as auxiliary tasks to a deep network, we observe the
same results when discovering a representation using singular value decomposition (Section3.2)), as
described in Appendixm All in all, our results illustrate that, among all value functions, AVFs are
particularly useful auxiliary tasks for representation learning.

4.3 Learning the Optimal Policy

In a final set of experiments, we consider learn-
ing a reward-maximizing policy using a pre-
trained representation and a model-based ver- 0.8-

sion of the SARSA algorithm (Rummery and g 0.64 Y
Niranjan| [1994} [Sutton and Barto, [1998)). We L VY
compare the value-based and AVF-based rep- & ™ I /\/
resentations from the previous section (VALUE g 02- V o
and AVF), and also proto-value functions (PVF; < oK g AVF (10)
details in Appendix [H:3). — AvF (100)

We report the quality of the learned policies after 0o 1 NZSmb;?- of :gatufgs 0070
training, as a function of d, the size of the rep-
resentation. Our quality measures is the average
return from the designated start state (bottom
left). Results are provided in Figure @ and Fig-
ure [I3] (appendix). We observe a failure of the
VALUE representation to provide a useful basis
for learning a good policy, even as d increases;

while the representation is not rank-deficient, the features do not help reduce the approximation error.

Figure 4: Average discounted return achieved by
policies learned using a representation produced by
VALUE, AVF, or PVF. Average is over 20 random
seeds and shading gives standard deviation.



In comparison, our AVF representations perform similarly to PVFs. Increasing the number of auxiliary
tasks also leads to better representations; recall that PVF implicitly uses n = 104 auxiliary tasks.

5 Related Work

Our work takes inspiration from earlier research in basis or feature construction for reinforcement
learning. Ratitch and Precup| (2004)), [Foster and Dayan| (2002), Menache et al.| (2005), [Yu and
Bertsekas| (2009), Bhatnagar et al.| (2013)), and |Song et al.| (2016)) consider methods for adapting
parametrized basis functions using iterative schemes. Including Mahadevan and Maggioni (2007)’s
proto-value functions, a number of works (we note |Dayan) |1993; [Petrikl 2007; Mahadevan and Liul,
2010; |[Ruan et al., 2015 Barreto et al., [2017) have used characteristics of the transition structure of
the MDP to generate representations; these are the closest in spirit to our approach, although none
use the reward or consider the geometry of the space of value functions. [Parr et al.|(2007)) proposed
constructing a representation from successive Bellman errors, [Keller et al.| (2006) used dimensionality
reduction methods; finally |[Hutter| (2009) proposes a universal scheme for selecting representations.

Deep reinforcement learning algorithms have made extensive use of auxiliary tasks to improve
agent performance, beginning perhaps with universal value function approximators (Schaul et al.,
2015) and the UNREAL architecture (Jaderberg et al.| 2017); see also |Dosovitskiy and Koltun
(2017), |[Francois-Lavet et al.| (2018) and, more tangentially, [van den Oord et al.| (2018)). |Levine
et al.|(2017) and |Chung et al.| (2019) make explicit use of two-part approximations to derive more
sample efficient deep reinforcement learning algorithms. The notion of augmenting an agent with
side predictions regarding the world is not new, with roots in TD models (Sutton, |1995), predictive
state representations (Littman et al.,|2002) and the Horde architecture (Sutton et al.,[2011)), which
itself is based on Selfridge| (1959)’s Pandemonium architecture.

In passing, we remark on a number of works which aim to quantify or explain the usefulness of a
representation. [Parr et al.| (2008) studies the particular case of linear representations, while |Li et al.
(2006); |Abel et al.| (2016) consider the approximation error that arises from state abstraction. More
recently, [Nachum et al.| (2019) provide some interesting guarantees in the context of hierarchical
reinforcement learning, while |Such et al.| (2019) visualizes the representations learned by Atari-
playing agents. Finally, Bertsekas| (2018) remarks on the two-part approximation we study here.

6 Conclusion

In this paper we studied the notion of an adversarial value function, derived from a geometric
perspective on representation learning in RL. Our work shows that adversarial value functions exhibit
interesting structure, and are good auxiliary tasks when learning a representation of an environment.
We believe our work to be the first to provide formal evidence as to the usefulness of predicting value
functions for shaping an agent’s representation.

Our work opens up the possibility of automatically generating auxiliary tasks in deep reinforcement
learning, analogous to how deep learning itself enabled a move away from hand-crafted features.
A number of practical considerations remain to be addressed. First, our sampling procedure is
clearly inefficient, and may be improved by encouraging diversity within AVFs. Second, practical
implementations require learning the AVFs concurrently with the main task. Doing results in off-
policy learning, whose negative effects are well-documented even in recent applications. (e.g.|[van
Hasselt et al.,|2018). Third, interest functions in large domains should incorporate some degree of
smoothness, rather than vary rapidly from state to state.

From a mathematical perspective, our formulation of the representation learning problem () was
made with both convenience and geometry in mind. Conceptually, it may be interesting to consider
our approach in other norms, including the weighted norms used in approximation results.
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A Proof of Lemmal(l

Consider the value polytope V. We have using Corollary 1 of Dadashi et al.[(2019) that

Y C Conv(V) = CoNv(V™ ... VT, 5
where 71, ..., T, is a finite collection of deterministic policies. We assume that this set of policies is
of minimal cardinality e.g. the value functions V™, ... V™ are distinct.

The optimization problem maxd 'V is equivalent to the linear program  max &'V, and the
vevy VeCoNv(V)

maximum is reached at a vertex U of the convex hull of V (Boyd and Vandenberghel [2004). By
(3], U is the value function of a deterministic policy. Now consider 6 € R such that f; attains its
maximum over multiple elements of the convex hull. By hypothesis, there must be two policies 7;,
m; such that V™ # V™ and

maxd 'V =4§"V" =TV,

vev
and thus

ST(V™ — V™) =0. (6)

Write A for the ensemble of such 6. We have from (6):

AcC |J {0eR"[6" (Ve — Vi) =0}
1<i<j<m

As V7™ ... V7™ are distinct, A is included in a finite union of hyperplanes (recall that hyperplanes
of R™ are vector spaces of dimension n — 1). The Lebesgue measure of a hyperplane is 0 (in R™),
hence a finite union of hyperplanes also has Lebesgue measure 0. Hence A itself has Lebesgue
measure of 0 in R™.

B Proof of Corollary 2]

Similarly to the proof of Lemma 1, we introduce V™, ... V™= which are the distinct vertices of the
convex hull of the value polytope V. Note that 7y, .. ., 7, are deterministic policies. We shall show
that there are at most 2" such vertices.

Recall the definition of a cone in R™: C'is a cone in R™ if Vv € C,Va > 0, av € C. For each vertex
V™ |Rockafellar and Wets| (2009, Theorem 6.12) states that there is an associated cone C'; of nonzero
Lebesgue measure in R™ such that

Vo € C;, argmaxd 'V = V™.
Vey

Now using Theorem 2] we have

maxd' V = maxd] r, where d, = (I —yP™ )14
Vey TEP

For all § € C; the corresponding policy 7; is the same (by hypothesis). For such a §, define
dy, 5 = (I —~yP™ ")~1§, such that

STV =d] sr.
Because C; is a cone of nonzero Lebesgue measure in R", we have span(C;) = R™. Combined

with the fact that (I — 'le’”T)*1 is full rank, this implies we can find a direction ¢; in C; for which
dr,5,(x) # 0 forall z € X. For this §;, using Theorem 2] we have:

i - maxge A Eprop VTi(2')  dy, s, (x) >0,
v (:L') B r(x) * { minaE.A Ez’NP Vv (l‘/) dm,&i (Z‘) < 07 (7)

and each state is “strictly” a maximizer or minimizer (the purpose of our cone argument was to avoid
the undefined case where d, 5, () = 0). Now define 0; € {—1,1}", 0;(x) = sign(dx, s, (z)). We
have:

VTi(x) = r(z) + voi(x) max oi(x) mEPV ‘(2
=To. V™ (2)
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where 7,V (z) = r(z) + vyo(z) maxgea 0(2) Eyop V(2') for o € {—1,1}". We show that 7, is
a contraction mapping: forany x € X and o € {—1,1}",

TeVi(@) = ToVa(@)| = |r(z) +7o(z) maxa(e) E Vi(a) —r(z) —qo(z)maxo(r) E Vi)

a'~P
= lmaxo(s) E, Vile) - maxo(s) B Vo(&)
<ymaxlo(e) E Vi(e) —o(z) E_Va(a')
< ymax max V1 (') — Va(a')]
=7y max|Vi(a') = Va(a')].
Therefore, || 75V1 — T Valloo < ¥]|V1 — V2||oo and T is a y-contraction in the supremum norm. By

Banach'’s fixed point theorem V™ is its a unique fixed point.

We showed that each vertex V™ of the value function polytope V is the fixed point of an operator
T, Since there are 2" such operators, there are at most 2™ vertices.

C Proof of Theorem

We will show that the maximization over P is the same as the maximization over P,,.
Let II, be the projection matrix onto the hyperplane /7 spanned by the basis induced by ¢. We write
Vg = vl = ey — v

= 1, = nyvel;

=V (I, —I)T(Il, — V™

=VT (I —TI,)V™
because Il is idempotent. The eigenvalues of A = I — Il are 1 and 0, and the eigenvectors
corresponding to eigenvalue 1 are normal to /1. Because we are otherwise free to choose any basis
spanning the subspace normal to H, there is a unit vector § normal to H for which

max [V = V75 = max V7 -V

= max V™85 V™.
Vrey

Denote the value function maximizing this quantity by V;7, . This & can be chosen so that § ' V[T, > 0
(if not, take &’ = —&). Then VT, , is also the maximizer of f(V) := §TV over V, and Lemma |l|tells
us that V|7, 1s an extremal vertex.

D Proof of Theorem

To begin, note that
STV =6"(I —yP™)"'r
=(I—~yP ") Ty
=dr,
as required.
Now, we choose an indexing for states in S and will refer to states by their index.

Let 7 be the policy maximizing 6 ' V™ and consider some z* € S. We assume without loss of
generality that z* is the first state in the previous ordering. Recall that n = |S|.

The theorem states that policy 7 chooses the highest-valued action at z* if d.(z*) > 0, and the
lowest-valued action if d (z*) < 0. Writing PT. := P™(- | z*) for conciseness, this is equivalent to
r(@) + an V(@) = maxr(z*) + E V7(z'),

’
x NP;*
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for d.(z*) > 0, and conversely with a min,/ for d.(z*) < 0 (equivalently, T"V™(x*)
T V™ (x*) forall 7’ € P or TV (x*) < T™ V™ (x*) in operator notation).

‘We write the transition matrix P™ as follows

v

LT
PT = :
Ly

Where LT = (P™(zq | 2;),- -, P™(@y, | %;)) is P™’s i-th row.

Then we express the transition matrix as P™ = A™ + B™, with A™ and B™ given by

0 LT

L3 0

Aﬂ' = . BTI' = .
L 0

We can then write
VT =r+~yP"V"
=r+yA"+BMV"
= VT =(I—-~A")" (r++B"V7).
This is an application of matrix splitting (e.g [Puterman, (1994). The invertibility of (I — yA™) is
guaranteed because A™ is a substochastic matrix. The first term of the r.h.s corresponds to the

expected sum of discounted rewards when following 7 until reaching =*, while the second term is
the expected sum of discounted rewards received after leaving from x* and following policy 7.

Note that (I — yA™)~! does not depend on 7(- | *) and that
Ewlwp;r* VT (JJ/)

0
BTV =

Write O™ = (I — yA™ ")~15. We have
STV =6T(I —yA™) Y (r +yB™V™)
=C" ' (r+yB"VT)
=C"lr 4 CT@) E V().

Now by assumption,
sTvT >ty ®)

for any other policy 7/ € P. Take «’ such that 7/ (- | 2) = (- | ) everywhere but z*; then C™ = O™’
and (8) implies that
C™(z*) E V™@')>C"(z*) E V7™(a').

’ ™ ’
x'~PF, z'~PT,

Hence 7 must pick the maximizing action in z* if C™(2*) > 0, and the minimizing action if
C™(z*) < 0.

To conclude the proof, we show that d(x*) and C™(2*) have the same sign. We write

de =6+~(A™" + B™"")d,.
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Then
(I —~yA™dy =6 +~B™ " d,
= dy=C"+~(I—~A"")"'B""d,

o0

> (I —7A" ) BT T

=
Il
<]

,yk(Dﬂ'T)k)Cﬂ'.

M

=
i
o

Where D™ = B™(I — yA™)~! is a matrix with non-negative components. Because B™ is sparse
every row of (D™)* is null except for the first one. We can write

d¥ 0
(D™ T = : Vi, d¥; >0
dln

= ( Zde]fl) C7(x").
k=0

Hence C™ (x*) and d, («*) have the same sign.

And

E Proof of Theorem

We first transform (3) in a equivalent problem. Let V € R™, and denote by V, := IT,V the orthogonal
projection of V' onto the subspace spanned by the columns of ®. From Pythagoras’ theorem we have,
forany V € R"

e R
Then
2 . 2 2
min B [[Vy =V, =min E _[[|V], - [TV,
= max £ _[|0,V]3
Let u7,...,u} the principal components defined in Theorem @ These form an orthonormal basis.
Hence u7, ..., u} is equivalently a solution of
d
- mlz};(eRn VIQE(UZTV)% = mf}deR” Z E HuTVuZH2
orthonormal ~ #=1 orthonormal i=1
i .. H)]ZLdERn Ve E H Z UTVU1H2
orthonormal

= max E |ea”V|
P=[u1,...,uq) V~§E
T =1

2
=max B [TV,

Which gives the desired result. The equivalence with the eigenvectors of E, VV'T follows from
writing
E(u'V)i=FE v VViu
Vet Ve

=u' E [VV']u
Vg

and appealing to a Rayleigh quotient argument, since we require v to be of unit norm.
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F The Optimization Problem (I)) as a Quadratic Program

Proposition 1. The optimization problem (|l is equivalent to a quadratic program with quadratic
constraints.

Proof. For completeness, let n, d be the number of states and features, respectively. We consider
representations ® € R™*¢, Recall that 1T, is the projection operator onto the subspace spanned by @,
that is )

I,=2(0'®) &'
We will also write P, for the space of deterministic policies. We write (1) in epigraph form (Boyd
and Vandenberghel [2004):

. 2
min. max Hl_L;gVTr — V’TH2 &
. x a2
min. 712271))2 HH¢V -V H2 =3
min. ¢ s.t.||H¢V7T — V”H; <tVme Py

The first equivalence comes from the fact that the extremal vertices of our polytope are achieved by
deterministic policies. The norm in the constraint can be written as

v = vy =l = nve;
=V (I — )T (Il — V™
=V (g - 1) (y — V™
Wy T2 - 2, 4 DV
Qv -1,V
where (a) and (b) follow from the idempotency of I14. This is
LV v =ve T (I-a@ a) laT)V™.

To make the constraint quadratic, we further require that the representation be left-orthogonal:
®T® = I. Hence the optimization problem (1)) is equivalent to

minimize ¢  s.t.
VITI-®d")V™ <t VYrePy
'O =1.
From inspection, these constraints are quadratic. O

However, there are an exponential number of deterministic policies and hence, an exponential number
of constraints in our optimization problem.

G NP-hardness of Finding AVFs

Proposition 2. Finding max,cp, ' V™ is NP-hard, where the input is a deterministic MDP with
binary-valued reward function, discount rate v =1/2 and 6 : X — {—1/4,0,1}.

We use a reduction from the optimization version of minimum set cover, which is known to be
NP-hard (Bernhard and Vygen, [2008, Corollary 15.24). Let n and m be natural numbers. An instance
of set cover is a collection of sets C = {C1, ..., Cy,} where C; C [n] = {1,2,...,n} foralli € [m].
The minimum set cover problem is

min JI|: C,=[n
a1 U 6=t
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Given a Markov decision process (X, A, r, P,~) and function § : X — [—1, 1] define
R(m) = Z S(z)V™(x).
reX
We are interested in the optimization problem

max R(r). )

When é(x) > 0 for all 2 this corresponds to finding the usual optimal policy, which can be found
efficiently using dynamic programming. The propositions claims that more generally the problem is
NP-hard.

Consider an instance of set cover C = {C4,...,C),} over universe [n| with m > 1. Define a
deterministic MDP (X, A, r, P,~) with v = 1/2 and n + m + 2 states and at most m actions. The
state space is X = A U Ay U X3 where

Xlz{ul,...,un} XQZ{’Ul,...,’Um} X3:{g,b}

The reward function is 7(z) = Ij,—g. The transition function in a deterministic MDP is characterized
by a function mapping states to the set of possible next states:

N(z)= |J{2': P(2'|2,a) = 1}.
acA

We use C to choose P as a deterministic transition function for which

{z} ifee s

N(z)=<1g,b} ifzx e X

{’Uji’iGCj} ifr=u; € X;y.
This means the states in X5 are self transitioning and states in x> have transitions leading to either
state in X’3. States in X transition to states in X5 in a way that depends on the set cover instance.
The situation is illustrated in Figure[5] Since both policies and the MDP are deterministic, we can

represent a policy as a function 7 : X — A for which w(x) € N(x) for all z € X. To see the
connection to set cover, notice that

U Cj = [n], (10)
viEm(X1)
where 7(X;) = {m(x) : € X1 }. Define
1 ifrxe
()= -1/4 ifze X,
0 ifrxe Xs.

Using the definition of the value function and MDP,

R(m) = Z §(z)V™ (x)

reX
T 1 T
=D Vi@ -5 Vi@
reX] TEXy
. 1
=D V@) =7 D lirtw=d
TEX] TEX2
1 1
=5 D Untr@n=a = 7 D Un(ar=al-
rEX] TEX2

The decomposition shows that any policy maximizing (9) must satisfy 7(7 (X)) = {g} and 7 (X5 \
m(X1)) = {b} and for such policies

Rim) = 5 (0= 3
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In other words, a policy maximizing (9) minimizes |7 (X} )|, which by corresponds to finding a
minimum set cover. Rearranging shows that

min Tl C:=1n] ) =2n — 4 max R(x).
EACAIVCAE max R(n)

The result follows by noting this reduction is clearly polynomial time.
X3

é/Yz

Figure 5: The challenging MDP given set cover problem {{1,2,3},{1,4},{4}}. State g gives a
reward of 1 and all other states give reward 0. The optimal policy is to find the smallest subset of the
middle layer such that for every state in the bottom layer there exists a transition to the subset.

H Empirical Studies: Methodology

H.1 Four-room Domain

The four-room domain consists of 104 discrete states arranged into four “rooms”. There are four
actions available to the agent, transitioning deterministically from one square to the next; when
attempting to move into a wall, the agent remains in place. In our experiments, the top right state is a
goal state, yielding a reward of 1 and terminating the episode; all other transitions have 0 reward.

H.2 Learning ¢

Our representation ¢ consists of a single hidden layer of 512 rectified linear units (ReLUs) followed
by a layer of d ReLUs which form our learned features. The use of ReLUs has an interesting
side effect that all features are nonnegative, but other experiments with linear transforms yielded
qualitatively similar results. The input is a one-hot encoding of the state (a 104-dimensional vector).
All layers (and generally speaking, experiments) also included a bias unit.

The representation was learned using standard deep reinforcement learning tools taken from the
Dopamine framework (Castro et al., 2018)). Our loss function is the mean squared loss w.r.t. the
targets, i.e. the AVFs or the usual value function. The losses were then trained using RMSProp with a
step size of 0.00025 (the default optimizer from Dopamine), for 200,000 training updates each over a
minibatch of size 32; empirically, we found our results robust to small changes in step sizes.

In our experiments we optimize both parts of the two-part approximation defined by ¢ and 6
simultaneously, with each prediction made as a linear combination of features ¢(x) " 6; and replacing

f)(gb; w) from with a sample-based estimate. This leads to a slightly different optimization
procedure but with similar representational characteristics.

H.3 Implementation Details: Proto-Value Functions
Our PVF representation consists in the top k left-singular vectors of the successor representation

(I —~P™)~* for 7 the uniformly random policy, as suggested by Machado et al.[(2018)); Behzadian
and Petrik| (2018)). See Figure E] for an illustration.
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H.4 Learning AVFs

The AVFs were learned from 1000 policy gradient steps, which were in general sufficient for
convergence to an almost-deterministic policy. This policy gradient scheme was defined by directly
writing the matrix (I — yP™)~! as a Tensorflow op (Abadi et al., 2016) and minimizing —§ " (I —
vP™)~1r w.r.t. 7. We did not use an entropy penalty. In this case, there is no approximation: the
AVF policies are directly represented as matrices of parameters of softmax policies.

H.5 SARSA

In early experiments we found LSPI and fitted value iteration to be somewhat unstable and eventually
converged on a relatively robust, model-based variant of SARSA.

In all cases, we define the following dynamics. We maintain an occupancy vector d over the
state space. At each time step we update this occupancy vector by applying one transition in the
environment according to the current policy 7, but also mix in a probability of resetting to a state
uniformly at random in the environment:

d = 0.99dP™ + 0.01Unif(X)
The policy itself is an e-greedy policy according to the current ()-function, with € = 0.1.

We update the QQ-function using a semi-gradient update rule based on expected SARSA (Sutton
and Barto, [1998), but where we simultaneously compute updates across all states and weight them
according to the occupancy d. We use a common step size of 0.01 but premultiplied the updates by
the pseudoinverse of ® " ® to deal with variable feature shapes across methods. This process was
applied for 50,000 training steps, after which we report performance as the average value and/or
number of steps to goal for the 10 last recorded policies (at intervals of 100 steps each).

Overall, we found this learning scheme to reduce experimental variance and to be robust to off-
policy divergence, which we otherwise observed in a number of experiments involving value-only
representations.

I Representations as Principal Components of Sets of Value Functions

In the main text we focused on the use of value functions as auxiliary tasks, which are combined
into the representation loss (). However, Section [3.2] shows that doing so is equivalent (in intent)
to computing the principal components of a particular set of value functions, where each “column”
corresponds to a particular auxiliary task.

In Figure [I0] we show the representations generated from this process, using different sets of value
functions. For completeness, we consider:

e 1000 AVFs,

e 1000 random deterministic policies (RDPs),

e 1000 random stochastic policies (RSPs), and

e The 104 rows of the successor matrix (corresponding to proto-value functions).
As with principal component analysis, the per-state feature activations are determined up to a signed
scalar; we pick the vector which has more positive components than negative. In all but the PVF case,

we sample a subset of the many possible value functions within a particular set. Figure|l 1|shows that
the AVF approach is relatively robust to the sample size.

The AVFs are sampled using Algorithm i.e. by sampling a random interest function ¢ € [—1,1]"
and using policy gradient on a softmax policy to find the corresponding value function. The random
policies were generated by randomly initializing the same softmax policy and using them as-is (RSPs)
or multiplying the logits by 1e6 (RDPs).
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Figure 6: Figure 2] enlarged. Red arrows highlight states where ¢ and d. have opposite signs.
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Figure 7: Four interest functions sampled from {—1,1}", along with their corresponding flow d.,
adversarial value function, and corresponding policy. The top example was chosen to illustrate
a scenario where d,(x) < 0 but V™(z) > 0; the other three were selected at random. In our
experiments, sampling from [—1, 1]™ yielded qualitatively similar results.
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Figure 8: 16-dimensional representations learned by training a deep network to predict the value
function of a single policy, namely: the uniformly random policy, the optimal policy, and a convex
combination of the two in equal proportions.



Figure 9: 16-dimensional representation generated by the proto-value function method
and Maggionil, 2007)) applied to left-singular vectors of the transition function corresponding to the
uniformly random policy. The top-left feature, labelled *1°, corresponds to the second largest singular
value. Notice the asymmetries arising from the absorbing goal state and the walls.
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Figure 10: 16-dimensional representations generated from the principal components of different
sets of value functions. Beginning in the top-left corner, in clockwise order: from k£ = 1000 AVFs
sampled according as in [T} proto-value functions (9); from £ = 1000 random deterministic policies
(RDPs); and finally from & = 1000 random stochastic policies. Of the four, only PVFs and AVFs
capture the long-range structure of the four-room domain.
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Figure 11: 16-dimensional representations generated from the principal components of sets of AVFs
of varying sizes (k = 20, 100,400, 1000). To minimize visualization variance, each set of AVFs
contains the previous one. The accompanying video at https://www.youtube.com/watch?v=q_|
XG7GhImQQ shows the full progress from k = 16 to k = 1024.
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Figure 12: A sample of random deterministic policies, together with their corresponding value func-
tions. These policies are generated by assigning a random action to each state. Under this sampling
scheme, it is unlikely for a long chain of actions to reach the goal, leading to the corresponding value
functions being zero almost everywhere.
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Figure 13: Average return (left) and average steps to goal (right), achieved by policies learned using a
representation, with given number of features, produced by VALUE, AVF, or PVF. Average is over all
states and 20 random seeds, and shading gives standard deviation.
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