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Abstract

We study high-confidence behavior-agnostic off-policy evaluation in reinforcement
learning, where the goal is to estimate a confidence interval on a target policy’s
value, given only access to a static experience dataset collected by unknown be-
havior policies. Starting from a function space embedding of the linear program
formulation of the Q-function, we obtain an optimization problem with generalized
estimating equation constraints. By applying the generalized empirical likelihood
method to the resulting Lagrangian, we propose CoinDICE, a novel and efficient
algorithm for computing confidence intervals. Theoretically, we prove the obtained
confidence intervals are valid, in both asymptotic and finite-sample regimes. Em-
pirically, we show in a variety of benchmarks that the confidence interval estimates
are tighter and more accurate than existing methods.2

1 Introduction

One of the major barriers that hinders the application of reinforcement learning (RL) is the abil-
ity to evaluate new policies reliably before deployment, a problem generally known as off-policy
evaluation (OPE). In many real-world domains, e.g., healthcare (Murphy et al., 2001; Gottesman
et al., 2018), recommendation (Li et al., 2011; Chen et al., 2019), and education (Mandel et al.,
2014), deploying a new policy can be expensive, risky or unsafe. Accordingly, OPE has seen a recent
resurgence of research interest, with many methods proposed to estimate the value of a policy (Precup
et al., 2000; Dudík et al., 2011; Bottou et al., 2013; Jiang and Li, 2016; Thomas and Brunskill, 2016;
Liu et al., 2018; Nachum et al., 2019a; Kallus and Uehara, 2019a,b; Zhang et al., 2020b).

However, the very settings where OPE is necessary usually entail limited data access. In these cases,
obtaining knowledge of the uncertainty of the estimate is as important as having a consistent estimator.
That is, rather than a point estimate, many applications would benefit significantly from having
confidence intervals on the value of a policy. The problem of estimating these confidence intervals,
known as high-confidence off-policy evaluation (HCOPE) (Thomas et al., 2015b), is imperative in
real-world decision making, where deploying a policy without high-probability safety guarantees can
have catastrophic consequences (Thomas, 2015). Most existing high-confidence off-policy evaluation
algorithms in RL (Bottou et al., 2013; Thomas et al., 2015a,b; Hanna et al., 2017) construct such
intervals using statistical techniques such as concentration inequalities and the bootstrap applied to
importance corrected estimates of policy value. The primary challenge with these correction-based
approaches is the high variance resulting from multiplying per-step importance ratios in long-horizon
problems. Moreover, they typically require full knowledge (or a good estimate) of the behavior policy,
which is not easily available in behavior-agnostic OPE settings (Nachum et al., 2019a).

In this work, we propose an algorithm for behavior-agnostic HCOPE. We start from a linear pro-
gramming formulation of the state-action value function. We show that the value of the policy
may be obtained from a Lagrangian optimization problem for generalized estimating equations
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over data sampled from off-policy distributions. This observation inspires a generalized empirical
likelihood approach (Owen, 2001; Broniatowski and Keziou, 2012; Duchi et al., 2016) to confidence
interval estimation. These derivations enable us to express high-confidence lower and upper bounds
for the policy value as results of minimax optimizations over an arbitrary offline dataset, with the
appropriate distribution corrections being implicitly estimated during the optimization. We translate
this understanding into a practical estimator, Confidence Interval DIstribution Correction Estimation
(CoinDICE), and design an efficient algorithm for implementing it. We then justify the asymptotic
coverage of these bounds and present non-asymptotic guarantees to characterize finite-sample effects.
Notably, CoinDICE is behavior-agnostic and its objective function does not involve any per-step
importance ratios, and so the estimator is less susceptible to high-variance gradient updates. We
evaluate CoinDICE in a number of settings and show that it provides both tighter confidence interval
estimates and more correctly matches the desired statistical coverage compared to existing methods.

2 Preliminaries

For a set W , the set of probability measures over W is denoted by P (W ).3 We consider a Markov
Decision Process (MDP) (Puterman, 2014), M = (S,A, T,R, γ, µ0), where S denotes the state
space, A denotes the action space, T : S × A → P (S) is the transition probability kernel, R :
S ×A→ P ([0, Rmax]) is a bounded reward kernel, γ ∈ (0, 1] is the discount factor, and µ0 is the
initial state distribution.

A policy, π : S → P (A), can be used to generate a random trajectory by starting from s0 ∼ µ0 (s),
then following at ∼ π (st), rt ∼ R (st, at) and st+1 ∼ T (st, at) for t > 0. The state- and
action-value functions of π are denoted V π and Qπ, respectively. The policy also induces an
occupancy measure, dπ(s, a) := (1−γ)Eπ

[∑
t>0 γ

t1 {st = s, at = a}
]
, the normalized discounted

probability of visiting (s, a) in a trajectory generated by π, where 1 {·} is the indicator function.
Finally, the policy value is defined as the normalized expected reward accumulated along a trajectory:

ρπ := (1− γ)E

[ ∞∑
t=0

γtrt|s0 ∼ µ0, at ∼ π (st) , rt ∼ R (st, at) , st+1 ∼ T (st, at)

]
. (1)

We are interested in estimating the policy value and its confidence interval (CI) in the behavior
agnostic off-policy setting (Nachum et al., 2019a; Zhang et al., 2020a), where interaction with the
environment is limited to a static dataset of experience D := {(s, a, s′, r)i}

n
i=1

. Each tuple in D
is generated according to (s, a) ∼ dD, r ∼ R (s, a) and s′ ∼ T (s, a) , where dD is an unknown
distribution over S × A, perhaps induced by one or more unknown behavior policies. The initial
distribution µ0 (s) is assumed to be easy to sample from, as is typical in practice. Abusing notation,
we denote by dD both the distribution over (s, a, s′, r) and its marginal on (s, a). We use Ed [·] for
the expectation over a given distribution d, and ED [·] for its empirical approximation using D.

Following previous work (Sutton et al., 2012; Uehara et al., 2019; Zhang et al., 2020a), for ease
of exposition we assume the transitions in D are i.i.d.. However, our results may be extended to
fast-mixing, ergodic MDPs, where the the empirical distribution of states along a long trajectory is
close to being i.i.d. (Antos et al., 2008; Lazaric et al., 2012; Dai et al., 2017; Duchi et al., 2016).

Under mild regularity assumptions, the OPE problem may be formulated as a linear program –
referred to as the Q-LP (Nachum et al., 2019b; Nachum and Dai, 2020) – with the following primal
and dual forms:

min
Q:S×A→R

(1− γ)Eµ0π [Q (s0, a0)] (2)

s.t. Q (s, a) > R (s, a) + γ · PπQ (s, a) ,

∀ (s, a) ∈ S ×A,

and
max

d:S×A→R+

Ed [r (s, a)] (3)

s.t. d (s, a) = (1− γ)µ0π (s, a) + γ · Pπ∗ d (s, a) ,

∀ (s, a) ∈ S ×A,
where the operator Pπ and its adjoint, Pπ∗ , are defined as

PπQ (s, a) := Es′∼T (·|s,a),a′∼π(·|s′) [Q (s′, a′)] ,

Pπ∗ d (s, a) := π (a|s)
∑
s̃,ã

T (s|s̃, ã) d (s̃, ã) .

3All sets and maps are assumed to satisfy appropriate measurability conditions; which we will omit from
below for the sake of reducing clutter.
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The optimal solutions of (2) and (3) are the Q-function, Qπ, and stationary state-action occupancy,
dπ, respectively, for policy π; see Nachum et al. (2019b, Theorems 3 & 5) for details as well as
extensions to the undiscounted case.

Using the Lagrangian of (2) or (3), we have
ρπ = minQ maxτ>0 (1− γ)Eµ0π [Q (s0, a0)] + EdD [τ (s, a) (R (s, a) + γQ (s′, a′)−Q (s, a))] , (4)

where τ (s, a) := d(s,a)
dD(s,a)

is the stationary distribution corrector. One of the key benefits of the
minimax optimization (4) is that both expectations can be immediately approximated by sample
averages.4 In fact, this formulation allows the derivation of several recent behavior-agnostic OPE
estimators in a unified manner (Nachum et al., 2019a; Uehara et al., 2019; Zhang et al., 2020a;
Nachum and Dai, 2020).

3 CoinDICE

We now develop a new approach to obtaining confidence intervals for OPE. The algorithm, COnfi-
dence INterval stationary DIstribution Correction Estimation (CoinDICE), is derived by combining
function space embedding and the previously described Q-LP.

3.1 Function Space Embedding of Constraints

Both the primal and dual forms of the Q-LP contain |S| |A| constraints that involve expectations
over state transition probabilities. Working directly with these constraints quickly becomes com-
putationally and statistically prohibitive when |S| |A| is large or infinite, as with standard LP ap-
proaches (De Farias and Van Roy, 2003). Instead, we consider a relaxation that embeds the constraints
in a function space:

ρ̃π := max
d:S×A→R+

Ed [r (s, a)] s.t. 〈φ, d〉 = 〈φ, (1− γ)µ0π + γ · Pπ∗ d〉 , (5)

where φ : S ×A→ Ωp ⊂ Rp is a feature map, and 〈φ, d〉 :=
∫
φ (s, a) d (s, a) dsda. By projecting

the constraints onto a function space with feature mapping φ, we can reduce the number of constraints
from |S| |A| to p. Note that p may still be infinite. The constraint in (5) can be written as generalized
estimating equations (Qin and Lawless, 1994; Lam and Zhou, 2017) for the correction ratio τ (s, a)
over augmented samples x := (s0, a0, s, a, r, s

′, a′) with (s0, a0) ∼ µ0π, (s, a, r, s′) ∼ dD, and
a′ ∼ π(·|s′),

〈φ, d〉 = 〈φ, (1− γ)µ0π + γ · Pπ∗ d〉 ⇔ Ex [∆ (x; τ, φ)] = 0, (6)
where ∆ (x; τ, φ) := (1− γ)φ (s0, a0) + τ (s, a) (γφ (s′, a′)− φ (s, a)). The corresponding La-
grangian is

ρ̃π = max
τ :S×A→R+

min
β∈Rp

EdD [τ · r (s, a)] + 〈β,EdD [∆ (x; τ, φ)]〉 . (7)

This embedding approach for the dual Q-LP is closely related to approximation methods for the
standard state-value LP (De Farias and Van Roy, 2003; Pazis and Parr, 2011; Lakshminarayanan
et al., 2017). The gap between the solutions to (5) and the original dual LP (3) depends on the
expressiveness of the feature mapping φ. Before stating a theorem that quantifies the error, we first
offer a few examples to provide intuition for the role played by φ.

Example (Indicator functions): Suppose p = |S| |A| is finite and φ = [δs,a](s,a)∈S×A, where
δs,a ∈ {0, 1}p with δs,a = 1 at position (s, a) and 0 otherwise. Plugging this feature mapping
into (5), we recover the original dual Q-LP (3).

Example (Full-rank basis): Suppose Φ ∈ Rp×p is a full-rank matrix with p = |S| |A|; furthermore,
φ(s, a) = Φ((s, a), ·)>. Although the constraints in (5) and (3) are different, their solutions are
identical. This can be verified by the Lagrangian in Appendix A.

Example (RKHS function mappings): Suppose φ (s, a) := k ((s, a) , ·) ∈ Rp with p = ∞,
which forms a reproducing kernel Hilbert space (RKHS)Hk. The LHS and RHS in the constraint
of (5) are the kernel embeddings of d (s, a) and (1− γ)µ0π (s, a) + γ · Pπ∗ d (s, a) respectively.
The constraint in (5) can then be understood as as a form of distribution matching by comparing

4We assume one can sample initial states from µ0, an assumption that often holds in practice. Then, the data
in D can be treated as being augmented as (s0, a0, s, a, r, s

′, a′) with a0 ∼ π (a|s0) , a′ ∼ π (a|s′).
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kernel embeddings, rather than element-wise matching as in (3). If the kernel function k (·, ·) is
characteristic, the embeddings of two distributions will match if and only if the distributions are
identical almost surely (Sriperumbudur et al., 2011).

Theorem 1 (Approximation error) Suppose the constant function 1 ∈ Fφ := span {φ}. Then,
0 6 ρ̃π − ρπ 6 2 min

β
‖Qπ − 〈β, φ〉‖∞ ,

where Qπ is the fixed-point solution to the Bellman equation Q (s, a) = R (s, a) + γPπQ (s, a).

Please refer to Appendix A for the proof. The condition 1 ∈ Fφ is standard and is trivial to satisfy.
Although the approximation error relies on ‖·‖∞, a sharper bound that relies on a norm taking the
state-action distribution into account can also be obtained (De Farias and Van Roy, 2003). We focus
on characterizing the uncertainty due to sampling in this paper, so for ease of exposition we will
consider a setting where φ is sufficiently expressive to make the approximation error zero. If desired,
the approximation error in Theorem 1 can be included in the analysis.

Note that, compared to using a characteristic kernel to ensure injectivity for the RKHS embeddings
over all distributions (and thus guaranteeing arbitrarily small approximation error), Theorem 1 only
requires that Qπ be represented in Fφ, which is a much weaker condition. In practice, one may also
learn the feature mapping φ for the projection jointly.

3.2 Off-policy Confidence Interval Estimation

By introducing the function space embedding of the constraints in (5), we have transformed the
original point-wise constraints in the Q-LP to generalized estimating equations. This paves the way
to applying the generalized empirical likelihood (EL) (Owen, 2001; Broniatowski and Keziou, 2012;
Bertail et al., 2014; Duchi et al., 2016) method to estimate a confidence interval on policy value.

Recall that, given a convex, lower-semicontinuous function f : R+ → R satisfying f (1) = 0, the
f -divergence between densities p and q on R is defined as Df (P ||Q) :=

∫
Q (dx) f

(
dP (x)
dQ(x)

)
dx.

Given an f -divergence, we propose our main confidence interval estimate based on the following
confidence set Cfn,ξ ⊂ R:

Cfn,ξ :=

{
ρ̃π(w)=max

τ>0
Ew[τ · r]

∣∣∣∣w∈Kf ,Ew [∆ (x; τ, φ)]=0

}
with Kf :=

{
w ∈ Pn−1 (p̂n) ,

Df (w||p̂n) 6 ξ
n

}
,

(8)
where Pn−1 (p̂n) denotes the n-simplex on the support of p̂n, the empirical distribution over D. It
is easy to verify that this set Cfn,ξ ⊂ R is convex, since ρ̃π (w) is a convex function over a convex
feasible set. Thus, Cfn,ξ is an interval. In fact, Cfn,ξ is the image of the policy value ρ̃π on a bounded
(in f -divergence) perturbation to w in the neighborhood of the empirical distribution p̂n.

Intuitively, the confidence interval Cfn,ξ possesses a close relationship to bootstrap estimators. In
vanilla bootstrap, one constructs a set of empirical distributions

{
wi
}m
i=1

by resampling from the
dataset D. Such subsamples are used to form the empirical distribution on

{
ρ̃
(
wi
)}m
i=1

, which
provides population statistics for confidence interval estimation. However, this procedure is computa-
tionally very expensive, involving m separate optimizations. By contrast, our proposed estimator
Cfn,ξ exploits the asymptotic properties of the statistic ρ̃π (w) to derive a target confidence interval by
solving only two optimization problems (Section 3.3), a dramatic savings in computational cost.

Before introducing the algorithm for computing Cfn,ξ, we establish the first key result that, by
choosing ξ = χ2,1−α

(1) , Cfn,ξ is asymptotically a (1− α)-confidence interval on the policy value,

where χ2,1−α
(1) is the (1− α)-quantile of the χ2-distribution with 1 degree of freedom.

Theorem 2 (Informal asymptotic coverage) Under some mild conditions, if D contains i.i.d. sam-
ples and the optimal solution to the Lagrangian of (5) is unique, we have

lim
n→∞

P
(
ρπ ∈ Cfn,ξ

)
= P

(
χ2
(1) 6 ξ

)
. (9)
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Thus, Cf
n,χ2,1−α

(1)

is an asymptotic (1− α)-confidence interval of the value of the policy π.

Please refer to Appendix E.1 for the precise statement and proof of Theorem 2.

Theorem 2 generalizes the result in Duchi et al. (2016) to statistics with generalized estimating
equations, maintaining the 1 degree of freedom in the asymptotic χ2

(1)-distribution. One may also
apply existing results for EL with generalized estimating equations (e.g., Lam and Zhou, 2017), but
these would lead to a limiting distribution of χ2

(m) with m� 1 degrees of freedom, resulting in a
much looser confidence interval estimate than Theorem 2.

Note that Theorem 2 can also be specialized to multi-armed contextual bandits to achieve a tighter
confidence interval estimate in this special case. In particular, for contextual bandits, the stationary
distribution constraint in (5), Ew [∆ (x; τ, φ)] = 0, is no longer needed, and can be replaced by
Ew [τ − 1] = 0. Then by the same technique used for MDPs, we can obtain a confidence interval
estimate for offline contextual bandits; see details in Appendix C. Interestingly, the resulting confi-
dence interval estimate not only has the same asymptotic coverage as previous work (Karampatziakis
et al., 2019), but is also simpler and computationally more efficient.

3.3 Computing the Confidence Interval

Now we provide a distributional robust optimization view of the upper and lower bounds of Cfn,ξ.

Theorem 3 (Upper and lower confidence bounds) Denote the upper and lower confidence bounds
of Cfn,ξ by un and ln, respectively:

[ln, un] =

[
min
w∈Kf

min
β∈Rp

max
τ>0

Ew [` (x; τ, β)] , max
w∈Kf

max
τ>0

min
β∈Rp

Ew [` (x; τ, β)]

]
, (10)

=

[
min
β∈Rp

max
τ>0

min
w∈Kf

Ew [` (x; τ, β)] , max
τ>0

min
β∈Rp

max
w∈Kf

Ew [` (x; τ, β)]

]
, (11)

where ` (x; τ, β) := τ · r + β>∆ (x; τ, φ). For any (τ, β, λ, η) that satisfies the constraints in (11),
the optimal weights for the upper and lower confidence bounds are

wl = f ′∗

(
η − ` (x; τ, β)

λ

)
and wu = f ′∗

(
` (x; τ, β)− η

λ

)
. (12)

respectively. Therefore, the confidence bounds can be simplified as:[
ln
un

]
=

minβ maxτ>0,λ>0,η ED
[
−λf∗

(
η−`(x;τ,β)

λ

)
+ η − λ ξn

]
maxτ>0 minβ,λ>0,η ED

[
λf∗

(
`(x;τ,β)−η

λ

)
+ η + λ ξn

]  . (13)

The proof of this result relies on Lagrangian duality and the convexity and concavity of the optimiza-
tion; it may be found in full detail in Appendix D.1.

As we can see in Theorem 3, by exploiting strong duality properties to move w into the inner most
optimizations in (11), the obtained optimization (11) is the distributional robust optimization extenion
of the saddle-point problem. The closed-form reweighting scheme is demonstrated in (12). For
particular f -divergences, such as the KL- and 2-power divergences, for a fixed (β, τ), the optimal
η can be easily computed and the weights w recovered in closed-form. For example, by using
KL (w||p̂n), (12) can be used to obtain the updates

wl (x) = exp

(
ηl − ` (x; τ, β)

λ

)
, wu (x) = exp

(
` (x; τ, β)− ηu

λ

)
, (14)

where ηl and ηu provide the normalizing constants. (For closed-form updates of w w.r.t. other
f -divergences, please refer to Appendix D.2.) Plug the closed-form of optimal weights into (11),
this greatly simplifies the optimization over the data perturbations yielding (13), and estabilishes
the connection to the prioritized experiences replay (Schaul et al., 2016), where both reweight the
experience data according to their loss, but with different reweighting schemes.

Note that it is straightforward to check that the estimator for un in (13) is nonconvex-concave and the
estimator for ln in (13) is nonconcave-convex. Therefore, one could alternatively apply stochastic
gradient descent-ascent (SGDA) for to solve (13) and benefit from attractive finite-step convergence
guarantees (Lin et al., 2019).
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Remark (Practical considerations): As also observed in Namkoong and Duchi (2016), SGDA
for (13) could potentially suffer from high variance in both the objective and gradients when λ
approaches 0. In Appendix D.3, we exploit several properties of (11), which leads to a computational
efficient algorithm, to overcome the numerical issue. Please refer to Appendix D.3 for the details
of Algorithm 1 and the practical considerations.

Remark (Joint learning for feature embeddings): The proposed framework also allows for the
possibility to learn the features for constraint projection. In particular, consider ζ (·, ·) := β>φ (·, ·) :
S×A→ R. Note that we could treat the combination β>φ (s, a) together as the Lagrange multiplier
function for the original Q-LP with infinitely many constraints, hence both β and φ (·, ·) could be
updated jointly. Although the conditions for asymptotic coverage no longer hold, the finite-sample
correction results of the next section are still applicable. This might offer an interesting way to reduce
the approximation error introduced by inappropriate feature embeddings of the constraints, while still
maintaining calibrated confidence intervals.

4 Finite-sample Analysis

Theorem 2 establishes the asymptotic (1− α)-coverage of the confidence interval estimates produced
by CoinDICE, ignoring higher-order error terms that vanish as sample size n → ∞. In practice,
however, n is always finite, so it is important to quantify these higher-order terms. This section
addresses this problem, and presents a finite-sample bound for the estimate of CoinDICE. In the
following, we let Fτ and Fβ be the function classes of τ and β used by CoinDICE.
Theorem 4 (Informal finite-sample correction) Denote by dFτ and dFβ the finite VC-dimension
of Fτ and Fβ , respectively. Under some mild conditions, when Df is χ2-divergence, we have

P (ρπ ∈ [ln − κn, un + κn]) > 1− 12 exp

(
c1 + 2

(
dFτ + dFβ − 1

)
log n− ξ

18

)
,

where c1 = 2c+ log dFτ + log dFβ +
(
dFτ + dFβ − 1

)
, κn = 11Mξ

6n + 2C`Mn

(
1 + 2

√
ξ
9n

)
, and

(c,M,C`) are univeral constants.
The precise statement and detailed proof of Theorem 4 can be found in Appendix E.2. The proof
relies on empirical Bernstein bounds with a careful analysis of the variance term. Compared to the
vanilla sample complexity of O

(
1√
n

)
, we achieve a faster rate of O

(
1
n

)
without any additional

assumptions on the noise or curvature conditions. The tight sample complexity in Theorem 4 implies
that one can construct the (1− α)-finite sample confidence interval by optimizing (11) with ξ =
18
(
log α

12 − c1 − 2
(
dFτ + dFβ − 1

)
log n

)
, and composing with κn. However, we observe that this

bound can be conservative compared to the asymptotic confidence interval in Theorem 2. Therefore,
we will evaluate the asymptotic version of CoinDICE based on Theorem 2 in the experiment.

The conservativeness arises from the use of a union bound. However, we conjecture that the rate is
optimal up to a constant. We exploit the VC dimension due to its generality. In fact, the bound can
be improved by considering a data-dependent measure, e.g., Rademacher complexity, or by some
function class dependent measure, e.g., function norm in RKHS, for specific function approximators.

5 Optimism vs. Pessimism Principle

CoinDICE provide both upper and lower bounds of the target policy’s estimated value, which paves the
path for applying the principle of optimism (Lattimore and Szepesvári, 2020) or pessimism (Swami-
nathan and Joachims, 2015) in the face of uncertainty for policy optimization in different learning
settings.

Optimism in the face of uncertainty. Optimism in the face of uncertainty leads to risk-seeking
algorithms, which can be used to balance the exploration/exploitation trade-off. Conceptually, they
always treat the environment as the best plausibly possible. This principle has been successfully
applied to stochastic bandit problems, leading to many instantiations of UCB algorithms (Lattimore
and Szepesvári, 2020). In each round, an action is selected according to the upper confidence bound,
and the obtained reward will be used to refine the confidence bound iteratively. When applied to
MDPs, this principle inspires many optimistic model-based (Bartlett and Mendelson, 2002; Auer
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et al., 2009; Strehl et al., 2009; Szita and Szepesvari, 2010; Dann et al., 2017), value-based (Jin et al.,
2018), and policy-based algorithms (Cai et al., 2019). Most of these algorithms are not compatible
with function approximators.

We can also implement the optimism principle by optimizing the upper bound in CoinDICE iteratively,
i.e., maxπ uD (π). In t-th iteration, we calculate the gradient of uD (πt), i.e., ∇πuD (πt), based on
the existing dataset Dt, then, the policy πt will be updated by (natural) policy gradient and samples
will be collected through the updated policy πt+1. Please refer to Appendix F for the gradient
computation and algorithm details.

Pessimism in the face of uncertainty. In offline reinforcement learning (Lange et al., 2012;
Fujimoto et al., 2019; Wu et al., 2019; Nachum et al., 2019b), only a fixed set of data from behavior
policies is given, a safe optimization criterion is to maximize the worst-case performance among a
set of statistically plausible models (Laroche et al., 2019; Kumar et al., 2019; Yu et al., 2020). In
contrast to the previous case of online exploration, this is a pessimism principle (Cohen and Hutter,
2020; Buckman et al., 2020) or counterfactual risk minimization (Swaminathan and Joachims, 2015),
and highly related to robust MDP (Iyengar, 2005; Nilim and El Ghaoui, 2005; Tamar et al., 2013;
Chow et al., 2015).

Different from most of the existing methods where the worst-case performance is characterized by
model-based perturbation or ensemble, the proposed CoinDICE provides a lower bound to implement
the pessimism principle, i.e., maxπ lD (π). Conceptually, we apply the (natural) policy gradient w.r.t.
lD (πt) to update the policy iteratively. Since we are dealing with policy optimization in the offline
setting, the dataset D keeps unchanged. Please refer to Appendix F for the algorithm details.

6 Related Work

Off-policy estimation has been extensively studied in the literature, given its practical importance.
Most existing methods are based on the core idea of mportance reweighting to correct for distribution
mismatches between the target policy and the off-policy data (Precup et al., 2000; Bottou et al., 2013;
Li et al., 2015; Xie et al., 2019). Unfortunately, when applied naively, importance reweighting can
result in an excessively high variance, which is known as the “curse of horizon” (Liu et al., 2018). To
avoid this drawback, there has been rapidly growing interest in estimating the correction ratio of the
stationary distribution (e.g., Liu et al., 2018; Nachum et al., 2019a; Uehara et al., 2019; Liu et al.,
2019; Zhang et al., 2020a,b). This work is along the same line and thus applicable in long-horizon
problems. Other off-policy approaches are also possible, notably model-based (e.g., Fonteneau et al.,
2013) and doubly robust methods (Jiang and Li, 2016; Thomas and Brunskill, 2016; Tang et al., 2020;
Uehara et al., 2019). These techniques can potentially be combined with our algorithm, which we
leave for future investigation.

While most OPE works focus on obtaining accurate point estimates, several authors provide ways to
quantify the amount of uncertainty in the OPE estimates. In particular, confidence bounds have been
developed using the central limit theorem (Bottou et al., 2013), concentration inequalities (Thomas
et al., 2015b; Kuzborskij et al., 2020), and nonparametric methods such as the bootstrap (Thomas
et al., 2015a; Hanna et al., 2017). In contrast to these works, the CoinDICE is asymptotically pivotal,
meaning that there are no hidden quantities we need to estimate, which is based on correcting for
the stationary distribution in the behavior-agnostic setting, thus avoiding the curse of horizon and
broadening the application of the uncertainty estimator. Recently, Jiang and Huang (2020) provide
confidence intervals for OPE, but focus on the intervals determined by the approximation error
induced by a function approximator, while our confidence intervals quantify statistical error.

Empirical likelihood (Owen, 2001) is a powerful tool with many applications in statistical inference
like econometrics (Chen et al., 2018), and more recently in distributionally robust optimization (Duchi
et al., 2016; Lam and Zhou, 2017). EL-based confidence intervals can be used to guide exploration in
multiarmed bandits (Honda and Takemura, 2010; Cappé et al., 2013), and for OPE for bandit (Faury
et al., 2020; Karampatziakis et al., 2019) and RL (Kallus and Uehara, 2019b). While the work of
Kallus and Uehara (2019b) is also based on EL, it differs from the present work in two important ways.
First, their focus is on developing an asymptotically efficient OPE point estimate, not confidence
intervals. Second, they solve for timestep-dependent weights, whereas we only need to solve for
timestep-independent weights from a system of moment matching equations induced by an underlying
ergodic Markov chain.
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7 Experiments

We now evaluate the empirical performance of CoinDICE, comparing it to a number of existing
confidence interval estimators for OPE based on concentration inequalities. Specifically, given a
dataset of logged trajectories, we first use weighted step-wise importance sampling (Precup et al.,
2000) to calculate a separate estimate of the target policy value for each trajectory. Then given such a
finite sample of estimates, we then use the empirical Bernstein inequality (Thomas et al., 2015b) to
derive high-confidence lower and upper bounds for the true value. Alternatively, one may also use
Student’s t-test or Efron’s bias corrected and accelerated bootstrap (Thomas et al., 2015a).
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Figure 1: Results of CoinDICE and baseline methods on
a simple two-armed bandit. We plot empirical coverage
and median log-width (y-axes) of intervals evaluated at a
number of desired confidence levels (x-axis), as measured
over 200 random trials. We find that CoinDICE achieves
more accurate coverage and narrower intervals compared to
the baseline confidence interval estimation methods.

We begin with a simple bandit setting,
devising a two-armed bandit problem
with stochastic payoffs. We define the
target policy as a near-optimal pol-
icy, which chooses the optimal arm
with probability 0.95. We collect off-
policy data using a behavior policy
which chooses the optimal arm with
probability of only 0.55. Our results
are presented in Figure 1. We plot
the empirical coverage and width of
the estimated intervals across differ-
ent confidence levels. More specifi-
cally, each data point in Figure 1 is
the result of 200 experiments. In each
experiment, we randomly sample a
dataset and then compute a confidence
interval. The interval coverage is then
computed as the proportion of inter-
vals out of 200 that contain the true
value of the target policy. The interval
log-width is the median of the log of
the width of the 200 computed inter-
vals. Figure 1 shows that the intervals
produced by CoinDICE achieve an empirical coverage close to the intended coverage. In this simple
bandit setting, the coverages of Student’s t and bootstrapping are also close to correct, although they
suffer more in the low-data regime. Notably, the width of the intervals produced by CoinDICE are
especially narrow while maintaining accurate coverage.

FrozenLake Taxi
# trajectories = 50 # trajectories = 100 # trajectories = 20 # trajectories = 50
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Figure 2: Results of CoinDICE and baseline methods on an infinite-horizon version of FrozenLake
and Taxi. In FrozenLake, each dataset consists of trajectories of length 100; in Taxi, each dataset
consists of trajectories of length 500.
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We now turn to more complicated MDP environments. We use FrozenLake (Brockman et al., 2016), a
highly stochastic gridworld environment, and Taxi (Dietterich, 1998), an environment with a moderate
state space of 2 000 elements. As in (Liu et al., 2018), we modify these environments to be infinite
horizon by randomly resetting the state upon termination. The discount factor is γ = 0.99. The
target policy is taken to be a near-optimal one, while the behavior policy is highly suboptimal. The
behavior policy in FrozenLake is the optimal policy with 0.2 white noise, which reduces the policy
value dramatically, from 0.74 to 0.24. For the behavior policies in Taxi and Reacher, we follow the
same experiment setting for constructing the behavior policies to collect data as in (Nachum et al.,
2019a; Liu et al., 2018).
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Figure 3: Results of CoinDICE and baseline meth-
ods on Reacher (Brockman et al., 2016; Todorov
et al., 2012), using 25 trajectories of length 100.
Colors and markers are as defined in the legends
of previous figures.

We follow the same evaluation protocol as in the
bandit setting, measuring empirical interval cov-
erage and log-width over 200 experimental trials
for various dataset sizes and confidence levels.
Results are shown in Figure 2. We find a similar
conclusion that CoinDICE consistently achieves
more accurate coverage and smaller widths than
baselines. Notably, the baseline methods’ accu-
racy suffers more significantly compared to the
simpler bandit setting described earlier.

Lastly, we evaluate CoinDICE on
Reacher (Brockman et al., 2016; Todorov
et al., 2012), a continuous control environment.
In this setting, we use a one-hidden-layer neural
network with ReLU activations. Results are shown in Figure 3. To account for the approximation
error of the used neural network, we measure the coverage of CoinDICE with respect to a true
value computed as the median of a large ensemble of neural networks trained on the off-policy data.
To keep the comparison fair, we measure the coverage of the IS-based baselines with respect to
a true value computed as the median of a large number of IS-based point estimates. The results
show similar conclusions as before: CoinDICE achieves more accurate coverage than the IS-based
methods. Still, we see that CoinDICE coverage suffers in this regime, likely due to optimization
difficulties. If the optimum of the Lagrangian is only approximately found, the empirical coverage
will inevitably be inexact.

8 Conclusion

In this paper, we have developed CoinDICE, a novel and efficient confidence interval estimator
applicable to the behavior-agnostic offline setting. The algorithm builds on a few technical compo-
nents, including a new feature embedded Q-LP, and a generalized empirical likelihood approach to
confidence interval estimation. We analyzed the asymptotic coverage of CoinDICE’s estimate, and
provided an inite-sample bound. On a variety of off-policy benchmarks we empirically compared the
new algorithm with several strong baselines and found it to be superior to them.

Broader Impact

This research is fundamental and targets a broad question in reinforcement learning. The ability to
reliably assess uncertainty in off-policy evaluation would have significant positive benefits for safety-
critical applications of reinforcement learning. Inaccurate uncertainty estimates create the danger
of misleading decision makers and could lead to detrimental consequences. However, our primary
goal is to improve these estimators and reduce the ultimate risk of deploying reinforcement-learned
systems. The techniques are general and do not otherwise target any specific application area.
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Appendix

A Approximation Error Analysis

In this section, we provide a complete proof of Theorem 1, quantifying the effect of function
embedding of constraints in dual Q-LP. The proof is an adaptation from the standard LP for state-
value functions to the case of Q-LP (De Farias and Van Roy, 2003).

We first provide an equivalent reformulation of the primal of the feature embedded LP,

Lemma 5 The solution defined by
β∗ = argmin

β∈Rp

{
(1− γ)Eµ0π

[
β>φ (s0, a0)

]
|β>φ (s, a) > Bπ

(
β>φ

)
(s, a) , ∀ (s, a) ∈ S ×A

}
,

with (BπQ) (s, a) := R (s, a) + γ · PπQ (s, a) is also the solution to
min
β∈Rp

∥∥Qπ − β>φ∥∥
1,µ0π

(15)

s.t. β>φ (s, a) > Bπ
(
β>φ

)
(s, a) , ∀ (s, a) ∈ S ×A,

where ‖f‖1,µ0π
:=
∫
|f (s, a)|µ0 (s)π (a|s) dsda.

Proof Recall the fact that Bπ is monotonic: given two bounded functions, ν1 > ν2 implies
Bπν1 > Bπν2. Therefore, for any feasible ν, we have ν > Bπν > B2πν > . . . > B∞π ν = Qπ , where
the convergence to Qπ is due to the contraction property of Bπ .

Consider a feasible β, we have∥∥Qπ − β>φ∥∥
1,µ0π

=

∫ (
β>φ (s, a)−Qπ (s, a)

)
µ0 (s)π (a|s) dsda, (16)

which implies minimizing Eµ0π

[
β>φ

]
is equivalent to minimizing

∥∥Qπ − β>φ∥∥
1,µ0π

.

Theorem 1 Suppose the constant function 1 ∈ Fφ := span {φ}. Then,
0 6 ρ̃π − ρπ 6 2 min

β
‖Qπ − 〈β, φ〉‖∞ ,

where Qπ is the fixed-point solution to the Bellman equation Q (s, a) = R (s, a) + γPπQ (s, a).

Proof We first show the equivalence between function space embedding of dual Q-LP and the linear
approximation of primal Q-LP, which can be easily derived by checking their Lagrangians. Denote

l (d, β) := Ed [r (s, a)] + β> 〈φ, (1− γ)µ0π + γ · Pπ∗ d− d〉 (17)
= (1− γ)Eµ0π

[
β>φ (s, a)

]
+ Ed

[
r (s, a) + γ · Pπβ>φ (s, a)− β>φ (s, a)

]
= (1− γ)Eµ0π [Qβ (s, a)] + Ed [r (s, a) + γ · PπQβ (s, a)−Qβ (s, a)] ,

where β ∈ Rp and Qβ (s, a) := β>φ (s, a). Since the l (d, β) is convex-concave w.r.t. (β, d), it is
also the Lagrangian of primal Q-LP with linear parametrization, i.e.,

min
β∈Rp

(1− γ)Eµ0π

[
β>φ (s0, a0)

]
(18)

s.t. β>φ (s, a) > R (s, a) + γ · Pπβ>φ (s, a) , ∀ (s, a) ∈ S ×A.
By Lemma 5, it is equivalent to solving

min
β∈Rp

∥∥Qπ − β>φ∥∥
1,µ0π

(19)

s.t. β>φ (s, a) > Bπ
(
β>φ

)
(s, a) , ∀ (s, a) ∈ S ×A.

We now define
(d∗, β∗) := argmax

d>0
argmin

β
l (d, β) ,

β̃ := argmin
β

∥∥Qπ − β>φ∥∥∞ ,

ε :=
∥∥∥Qπ − β̃>φ∥∥∥

∞
,
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and obtain from strong duality that

Ed∗ [r (s, a)] = (1− γ)Eµ0π

[
(β∗)

>
φ
]
.

Recall the fact Bπ is a γ-contraction operator with the norm ‖·‖∞, and we have∥∥∥Bπ (β̃>φ)−Qπ∥∥∥
∞

6 γ
∥∥∥β̃>φ−Qπ∥∥∥

∞
,

which implies

Bπ
(
β̃>φ

)
6 Qπ + γε1.

Now consider a new solution
(
β̃>φ− c1

)
, which must be in span {φ} as 1 ∈ span {φ}. Then,

Bπ
(
β̃>φ− c1

)
= Bπ

(
β̃>φ

)
− γc1

6 Qπ + γε1− γc1
6 β̃>φ+ (1 + γ) ε1− γc1
= β̃>φ− c1 + ((1− γ) c+ (1 + γ) ε)1.

Choose c = − (1 + γ) ε/ (1− γ), and the above implies Bπ
(
β̃>φ− c1

)
6 β̃>φ− c1. Therefore,

there exists some β̄ such that

β̄>φ = β̃>φ+
1 + γ

1− γ
ε1.

Then, we can bound the approximation error
Ed∗ [r (s, a)]− ρπ = Ed∗ [r (s, a)]− (1− γ)Eµ0π [Qπ]

= (1− γ)Eµ0π

[
(β∗)

>
φ
]
− (1− γ)Eµ0π [Qπ] > 0,

where the last inequality comes from the fact (1− γ)Eµ0π

[
(β∗)

>
φ
]

is the optimal value of a
restricted feasible set within linearly representable Qβ .

On the other hand, we bound

(1− γ)Eµ0π

[
(β∗)

>
φ
]
− (1− γ)Eµ0π [Qπ] = (1− γ)

∥∥∥(β∗)
>
φ−Qβ

∥∥∥
1,µ0π

6 (1− γ)
∥∥β̄>φ−Qβ∥∥1,µ0π

6 (1− γ)
∥∥β̄>φ−Qβ∥∥∞

6 (1− γ)
(∥∥∥β̄>φ− β̃>φ∥∥∥

∞
+
∥∥∥Qπ − β̃>φ∥∥∥

∞

)
6 (1− γ)

(
1 +

1 + γ

1− γ

)
ε = 2ε.

where the third inequality comes from the optimality of (19).

Justification of full-rank basis embedding. The effect of full-rank basis embedding in the example
in Section 3.1 can be justified straightforwardly. We consider the Lagrangian (17). If the φ ∈
R|S||A|×|S||A| is full-rank, φ−1 exists. For arbitrary Q ∈ R|S||A|×1, there exists β =

(
Qφ−1

)>
,

which means there is an one-to-one correspondence between Q and β in Lagrangian. Therefore,
in finite state and action MDP, the Lagrangian is not affected by full-rank basis embedding, and
therefore, the solution of full-rank basis embedding will be the same as the original LP.

B CoinDICE for Undiscounted and finite-horizon MDPs

In the main text, we consider the CoinDICE for infinite-horizon MDPs with discounted factor γ < 1.
The algorithm can be generalized to undiscounted MDPs with γ = 1 and finite-horizon MDPs.
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Undiscounted MDP. We have the dual form of the Q-LP as

ρ̃π :=

{
max

d:S×A→R+

Ed[r (s, a)]

∣∣∣∣ ∫
d (s, a) dsda = 1

d (s, a) = Pπ∗ d (s, a) ,∀ (s, a) ∈ S ×A

}
. (20)

Comparing with the (3), we have an extra normalization constraint. Specifically, if d(s, a) is feasible,
without the normalization constraint, c · d (s, a) will also be feasible for any c > 0. Therefore, the
optimization could be unbounded.

By change-of-variable τ (s, a) = dπ(s,a)
dD(s,a)

and feature embeddings of the stationary constraint in (20),
we obtain

ρ̃π :=

{
max

τ :S×A→R+

EdD [τ · r (s, a)]

∣∣∣∣ EdD [τ (s, a)] = 1
EdD [φ (s′, a′) (τ (s′, a′)− τ (s, a))] = 0

}
. (21)

Then, the CoinDICE confidence interval is achieved by applying the generalized empirical likelihood
to (21), i.e.,

Cfn,ξ :=

ρ̃π(w) = max
τ>0

Ew [τ · r]

∣∣∣∣∣ w ∈ Kf
Ew [τ − 1] = 0

Ew
[
∆̄ (x; τ, φ)

]
= 0

 , with Kf :=

{
w ∈ Pn−1 (p̂n) ,

Df (w||p̂n) 6 ξ
n

}
,

(22)
where ∆̄ (x; τ, φ) := φ (s′, a′) (τ (s′, a′)− τ (s, a)).

A similar argument of Section 3.3 for discounted MDPs can be applied to (22), resulting in the
following confidence interval:

Cfn,ξ = [ln, un]

with

[ln, un] =

[
min
β∈Rp,ν

max
τ>0

min
w∈Kf

Ew [` (x; τ, β, ν)] , max
τ>0

min
β∈Rp,ν

max
w∈Kf

Ew [` (x; τ, β, ν)]

]
, (23)

where ` (x; τ, β, ν) := τ · r + β>∆ (x; τ, φ) + ν − ν · τ .

Remark (Normalization constraint): Although in the discounted MDPs, there is no scaling issue,
and thus the normalizaiton constraint is redudant, we still prefer to add the constraint in practice. It
does not only bring the benefits in optimization, but also enforce the normalization explicitly and
reduce the feasible set, leading to better statistical property.

Finite-horizon MDP. While we mainly focus on infinite-horizon MDPs with a discounted factor,
the dual method can be adapted to finite-horizon settings straightforwardly. For example, we have the
finite-horizon d-LP as

max
dh(s,a):S×A→R+

H∑
h=1

Edh [rh (s, a)] (24)

s.t. d0 (s, a) = µ0 (s)π (a|s) , (25)
dh+1 (s, a) = Pπ∗ dh (s, a) , ∀h ∈ {1, . . . ,H} . (26)

Upon this finite-horizon formulation, we can derive the finite-horizon CoinDICE following the same
technique, i.e..
[ln, un] =[

min
w∈Kf

min
βHh=1∈Rp

max
τHh=1>0

Ew
[
`H
(
x; τHh=1, β

H
h=1

)]
, max
w∈Kf

max
τHh=1>0

min
βHh=1∈Rp

Ew
[
`H
(
x; τHh=1, β

H
h=1

)]]
,

where x :=
{

(s, a, r, s′, a′, h)
H
h=1

}
, `H

(
x; τHh=1, β

H
h=1

)
:=
∑H
h=1 τhrh +

∑H
h=1 β

>
h ∆h (x; τh, φ),

and ∆h (x; τh, φ) := τh (s, a)φ (s′, a′)− τh+1 (s′, a′)φ (s′, a′).

C CoinBandit

MDPs are strictly more general than multi-armed and contextual bandits. Therefore, our estimator
can also be specialized accordingly for confidence interval estimation in bandit problems with slight
modifications. Without loss of generality, we consider the contextual bandit setting, while the
multi-armed bandits can be further reduced from contextual bandit.
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Specifically, in the behavior-agnostic contextual bandit setting, the stationary distribution constraint
in (5) is no long applicable in bandit setting. We rewrite the policy value as

ρ̃π := Es∼µD,a∼π(a|s) [r (s, a)]

=

{
max

τ :S×A→R+

EdD [τ · r (s, a)]
∣∣∣ dD·τ = µDπ,EdD [τ ] = 1

}
, (27)

where we reload the µD as the contextual distribution, which is unchanged for all policies, dD (s, a) =

µD (s)πb (a|s), τ (s, a) := µD(s)π(a|s)
µD(s)πb(a|s) , and φ (s, a) denotes the feature mappings. We keep the

normalization constraint to ensure the validation of density ratio empirically.

We apply the same technique to (27), leading to the CoinBandit confidence interval estimator

Cfn,ξ :=

{
ρ̃π(w) = max

τ>0
Ew [τ · r]

∣∣∣∣w ∈ Kf ,Ew [τ − 1] = 0
Ew [N (x; τ, φ)] = 0

}
, with Kf :=

{
w ∈ Pn−1 (p̂n) ,

Df (w||p̂n) 6 ξ
n

}
,

(28)
where the x := (s, a, s′, a′) is constructed by s ∼ µD (s) , a ∼ π (a|s) and (s′, a′) ∼ dD, and
N (x; τ, φ) := φ (s, a)− φ (s′, a′) · τ (s′, a′).

Similarly, the interval estimator in CoinBandit (28) can be calculated by solving a minimax optimiza-
tion.

Remark (Behavior-known contextual bandit): When the behavior policy πb (a|s) is known, the
solution to (27) can be computed in closed-form as τ (s, a) = π(a|s)

πb(a|s) . Then, the CoinBandit reduces
to

Cfn,ξ :=

{
ρ̃π(w) = Ew [τ · r]

∣∣∣∣ w ∈ Kf ,
Ew [τ − 1] = 0

}
, with Kf :=

{
w ∈ Pn−1 (p̂n) ,

Df (w||p̂n) 6 ξ
n

}
. (29)

Remark (Multi-armed bandit): Furthermore, these estimators (28) and (29) can be further reduced
for multi-armed bandit. Specifically, we set all s equivalent, then, the s becomes the dummy
variable. The CoinBandit estimators (28) and (29) reduces for the off-policy evaluation in multi-
armed bandit. If the action number is finite, we can use tabular representation for τ (a), eliminating
the approximation error.

Remark (Comparison to Karampatziakis et al. (2019)): Karampatziakis et al. (2019) considers
the off-policy contextual bandit confidence interval estimation. Although both CoinBandit and the
estimator in Karampatziakis et al. (2019) share the same asymptotic coverage, there are significant
differences:

• The estimator in Karampatziakis et al. (2019) is derived from empirical likelihood with reverse
KL-divergence, while our CoinBandit is based on generalized empirical likelihood with arbitrary
f -divergence.

• More importantly, compared to our CoinBandit, which is applicable for both behavior-agnostic
and behavior-known off-policy setting, the estimator in Karampatziakis et al. (2019) is only valid
for behavior-known setting.

• Computationally, the estimator in Karampatziakis et al. (2019) requires an extra statistics, i.e.,{
max
w

n∑
i=1

log (nwi)
∣∣Ew [τ − 1] = 0, w ∈ K−2 log(·)

}
,

while such quantity is not required in CoinBandit, and thus saving the computational cost.

• Statistically, we provide finite sample complexity for CoinBandit in Theorem 4, while such sample
complexity is not clear for Karampatziakis et al. (2019).

D Stochastic Confidence Interval Estimation

We analyze the properties of the optimization for the upper and lower bounds and derive the practical
algorithm in this section.
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D.1 Upper and Lower Confidence Bounds

We first establish the distribution robust optimization representation of the confidence region:

Lemma 6 Let ρ̂π (w) = maxτ>0 minβ∈Rp Ew
[
τ · r + β>∆ (x; τ, φ)

]
. The confidence region Cfn,ξ

can be represented equivalently as
Cfn,ξ =

{
ρ̂π (w)

∣∣w ∈ Kf} . (30)

Proof For any w ∈ Kf , we rewrite the optimization (8) by its Lagrangian, which will be an estimate
of the policy value,

ρ̂π (w) = max
τ>0

min
β∈Rp

Ew
[
τ · r + β>∆ (x; τ, φ)

]
. (31)

Based on Lemma 6, we can formulate the upper and lower bounds:

Theorem 3 Denote the upper and lower confidence bounds of Cfn,ξ by un and ln, respectively:

[ln, un] =

[
min
w∈Kf

min
β∈Rp

max
τ>0

Ew [` (x; τ, β)] , max
w∈Kf

max
τ>0

min
β∈Rp

Ew [` (x; τ, β)]

]
,

=

[
min
β∈Rp

max
τ>0

min
w∈Kf

Ew [` (x; τ, β)] , max
τ>0

min
β∈Rp

max
w∈Kf

Ew [` (x; τ, β)]

]
,

where ` (x; τ, β) := τ · r + β>∆ (x; τ, φ). For any (τ, β, λ, η) that satisfies the constraints in (11),
the optimal weights for upper and lower confidence bounds are

wl = f ′∗

(
η − ` (x; τ, β)

λ

)
and wu = f ′∗

(
` (x; τ, β)− η

λ

)
,

respectively. Therefore, the confidence bounds can be simplified as:[
ln
un

]
=

minβ maxτ>0,λ>0,η ED
[
−λf∗

(
η−`(x;τ,β)

λ

)
+ η − λ ξn

]
maxτ>0 minβ,λ>0,η ED

[
λf∗

(
`(x;τ,β)−η

λ

)
+ η + λ ξn

]  .
Proof We first calculate the upper bound un using Lemma 6:

un = max
w∈Kf

ρπ (w) = max
w∈Kf

max
τ>0

min
β∈Rp

Ew
[
τ · r + β>∆ (x; τ, φ)

]
= max

τ>0
max
w∈Kf

min
β∈Rp

Ew
[
τ · r + β>∆ (x; τ, φ)

]
(32)

= max
τ>0

min
β∈Rp

max
w∈Kf

Ew
[
τ · r + β>∆ (x; τ, φ)

]
, (33)

where the switch between maxw∈Kf and maxτ>0 in (32) is immediate, (33) is due to the fact that
the objective is concave w.r.t. β and convex w.r.t. w and τ , separately.

We apply Lagrangian to the inner constrained optimization over w, leading to

un = max
τ

min
β,λ>0,η

max
w>0

Ew
[
τ · r + β>∆ (x; τ, φ)

]
− λ

(
Df (w||p̂n)− ξ

n

)
+ η

(
1− w>1

)
= max

τ>0
min

β,λ>0,η
ED
[
λf∗

(
τ · r + β>∆ (x; τ, φ)− η

λ

)
+ η +

λξ

n

]
, (34)

where the last equation comes from the conjugate of f , and for any given (τ, β, λ, η), the optimal w∗
will be

w∗u = f ′∗

(
τ · r + β>∆ (x; τ, φ)− η

λ

)
.
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The lower bound ln may be obtained in a similar fashion:
ln = min

w∈Kf
ρ (w;π) = min

w∈Kf
max
τ>0

min
β∈Rp

Ew
[
τ · r + β>∆ (x; τ, φ)

]
= min

w∈Kf
min
β∈Rp

max
τ>0

Ew
[
τ · r + β>∆ (x; τ, φ)

]
= min

β∈Rp
min
w∈Kf

max
τ>0

Ew
[
τ · r + β>∆ (x; τ, φ)

]
= min

β∈Rp
max
τ>0

min
w∈Kf

Ew
[
τ · r + β>∆ (x; τ, φ)

]
.

Again, we consider the Lagrangian

ln = min
β∈Rp

max
τ>0,λ>0,η

min
w>0

Ew
[
τ · r + β>∆ (x; τ, φ)

]
+ λ

(
Df (w||p̂n)− ξ

n

)
+ η

(
1− w>1

)
= min

β
max

τ>0,λ>0,η
ED

[
−λf∗

(
η −

(
τ · r + β>∆ (x; τ, φ)

)
λ

)
+ η − λξ

n

]
,

and the optimal weight is

w∗l = f ′∗

(
η −

(
τ · r + β>∆ (x; τ, φ)

)
λ

)
.

D.2 Closed-form Solution for Reweighting

We consider a few examples of f -divergences in Theorem 3, and show how the weights can be
efficiently computed, for a given τ and β.

• KL-divergence. To satisfy the conditions in Assumption 1, we select f (x) = 2x log x. Recall the
property that for any convex function f and any α > 0, the conjugate function of g(x) = αf(x)
is equal to g∗(y) = αf∗(y/α). Let f be the standard f -divergence function of KL-divergence
KL (w||p̂n), i.e., f (x) = 2x log x. With g′∗(y) = f ′∗(y/α), equation (12) implies that the following
upper and lower bounds:

wl (x) = exp

(
ηl − ` (x; τ, β)

2λ

)
, ηl = − log

n∑
i=1

exp

(
−` (x; τ, β)

2λ

)
wu (x) = exp

(
` (x; τ, β)− ηu

2λ

)
, ηu = log

n∑
i=1

exp

(
` (x; τ, β)

2λ

)
.

This can also be verified by plugging the f (x) = 2x log x into (12) and considering w>1 = 1.

• Reverse KL-divergence. With the f-divergence function f (x) = − log x for the reverse-KL
divergence, one has the following upper and lower bounds:

wl (x) = λδ (` (x; τ, β) > ηl) (` (x; τ, β)− ηl)−1 ,
n∑
i=1

δ (` (x; τ, β) > ηl) (` (x; τ, β)− ηl)−1 =
1

λ
,

wu (x) = λδ (ηu > ` (x; τ, β)) (ηu − ` (x; τ, β))
−1
,

n∑
i=1

δ (ηu > ` (x; τ, β)) (ηu − ` (x; τ, β))
−1

=
1

λ
,

where δ (a > b) =

{
1 if a > b

0 otherwise
. This is obtained by plugging the f (x) = − log x into (12)

and considering w>1 = 1, w > 0 and KKT conditions on the dual variables for w > 0. Unfortu-
nately the reverse KL-divergence does not satisfy the conditions in Assumption 1. Note that this is
the standard f-divergence function for empirical likelihood maximization problem, we therefore
also include it here for the sake of completeness.
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• χ2-divergence. Notice that the standard f-divergence function, i.e., f (x) = (x − 1)2, of χ2-

divergence χ2 (w||p̂n) := Ep̂n
[(

w
p̂n
− 1
)2]

satisfies the conditions in Assumption 1. Consider

the lower bound calculation. Leveraging the closed-form solution of the following `2 projection
problem onto the simplex space w>1 = 1 and w > 0 (Wang and Carreira-Perpinán, 2013):

arg min
w:w>1=1,w>0

n∑
i=1

wi
` (xi; τ, β)

λ
+

n∑
i=1

1

p̂n,i
(wi − p̂n,i)2

=
√
p̂n,i · arg min

v:v>
√
p̂n=1,v>0

n∑
i=1

(
vi − (1− ` (xi; τ, β)

2λ
) ·
√
p̂n,i

)2

, (here we let vi =
wi√
p̂n,i

)

the lower bound w`(x) is given by (for any i ∈ {1, 2, . . . , n})
w`(xi) =

√
p̂n,i · w∗(xi)

=
√
p̂n,i ·

(
(1− ` (xi; τ, β)

2λ
) ·
√
p̂n,i + Gp̂n

(
(1− ` (x; τ, β)

2λ
) ·
√
p̂n,i

))
+

,

where Gp̂n(y) =
1−

∑|Sp̂n |
i=1 yi·

√
p̂n,i∑|Sp̂n |

i=1 p̂n,i
, Sp̂n is the set of indices in {1, . . . , n} in which any element

j satisfies y(j) + 1∑j
i=1 p̂n,i

(1−
∑j
i=1 y(i) ·

√
p̂n,i) > 0. Here y(i) indicates the samples with the

i-th largest element of y. Using analogous arguments, by replacing ` with −` one can also define a
similar solution for the upper bound wu(x). Now suppose p̂n,i = 1

n , ∀i. Then, we have

wl(xi) =

√
1

n
·

(
(1− ` (xi; τ, β)

2λ
) ·
√

1

n
+ G 1

n

(
(1− ` (x; τ, β)

2λ
) ·
√

1

n

))
+

,

wu(xi) =

√
1

n
·

(
(1 +

` (xi; τ, β)

2λ
) ·
√

1

n
+ G 1

n

(
(1 +

` (x; τ, β)

2λ
) ·
√

1

n

))
+

,

where G 1
n

(y) =
n−

∑|S1/n|
i=1 yi·

√
n

|S1/n|
, S 1

n
is the set of indices in {1, . . . , n} in which any element j

satisfies y(j) + 1
j (n −

√
n
∑j
i=1 y(i)) > 0. Here y(i) indicates the samples with the i-th largest

element of y. This can also be verified by plugging the f (x) = (x− 1)2 into (12) and considering
w>1 = 1 and w > 0. In fact, the above can be generalized to the Cressie-Read family with
f (x) = (x−1)k−k(x−1)+k−1

k(k−1) .

• Reverse KL-divergence. With the f -divergence function f (x) = − log x for the reverse KL-
divergence, one has the following upper and lower bounds:

wl (x) = λδ (` (x; τ, β) > ηl) (` (x; τ, β)− ηl)−1 ,
n∑
i=1

δ (` (x; τ, β) > ηl) (` (x; τ, β)− ηl)−1 =
1

λ
,

wu (x) = λδ (ηu > ` (x; τ, β)) (ηu − ` (x; τ, β))
−1
,

n∑
i=1

δ (ηu > ` (x; τ, β)) (ηu − ` (x; τ, β))
−1

=
1

λ
,

where δ (a > b) =

{
1 if a > b

0 otherwise
. This is obtained by plugging the f (x) = − log x into (12)

and considering w>1 = 1, w > 0 and KKT conditions on the dual variables for w > 0. Unfortu-
nately the reverse KL-divergence does not satisfy the conditions in Assumption 1. Note that this is
the standard f -divergence used in the vanilla empirical likelihood, we therefore also include it here
for the sake of completeness.

D.3 Practical Algorithm

In (13), we eliminate one level optimization, thus reduce the computational difficulty. Meanwhile,
SGDA for (13) could benefit from the attractive finite-step convergence. However, as observed
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Algorithm 1 CoinDICE: estimating upper confidence bound using KL-divergence and function
approximation.

Inputs: A target policy π, a desired confidence 1 − α, a finite sample dataset D :=

{(s(j)0 , a
(j)
0 , s(j), a(j), r(j), s′(j))}nj=1, optimizers OPT θ, number of iterations K,T .

Set divergence limit ξ := 1
2χ

2,1−α
1 .

Initialize λ ∈ R, Qθ1 : S ×A→ R, ζθ2 : S ×A→ R.
for k = 1, . . . ,K do

for t = 1, . . . , T do
Sample from target policy a(j)0 ∼ π(s

(j)
0 ), a(j)′ ∼ π(s(j)′) for j = 1, . . . , n.

Compute loss terms:
`(j) := (1−γ)Qθ1(s

(j)
0 , a

(j)
0 )+ζθ2(s(j), a(j)) ·(−Qθ1(s(j), a(j))+r(j) +γQθ1(s(j)′, a(j)′))

Compute loss L :=
∑n
j=1 w

(j) · `(j).
Update (θ1, θ2)← OPT θ(L, θ1, θ2).

end for
Update (w, λ) by (35) or (36)

end for

Return L.

in Namkoong and Duchi (2016), when λ approaches 0, SGDA for (13) may suffer from high variance.
In this section, we consider two strategies to bypass such difficulty. We take the upper bound as an
example, and the lower bound can be handled similarly:

• Instead of using the optimal weights (12), Namkoong and Duchi (2016) suggests to keep
(w, λ) in optimization to be updated simultaneously via gradients, i.e., targeting on solving
the Lagrangian (33) with SGDA directly. For example, with KL-divergence, this leads to
the update of wu in the t-th iteration as

w̃(j) = exp
(
ηt`

(j)
)(

w(j)
)1−ηtλ( 1

n

)ηtλ
and wu =

w̃(j)∑
j w̃

(j)
, (35)

with stepsize ηt.
• The instability and high variance of solving (13) comes from unboundness of w induced by

arbitarry λ during the optimization procedure. In other words, given a fixed (τ, β), if we
can keep w ∈ Kf satisfied, i.e.,

wu = argmax
KL(w||p̂n)6 ξ

n

〈w, `〉

⇒ (wu, λ
∗) = argmax

w>1=1,w>0

argmin
λ>0

〈w, `〉 − λ
(
KL (w||p̂n)− ξ

n

)

⇒ (wu, λ
∗) =

w̃(j)
λ∗ := exp{`

(j)

λ∗
}; w

(j)
λ∗ :=

w̃
(j)
λ∗∑
w̃

(j)
λ∗

with
n∑
j=1

w
(j)
λ∗ logw

(j)
λ∗ =

ξ

n

 ,

(36)
the optimization will be stable.

Moreover, the major computation cost of optimization is updating the w, which is anO (n) operation.
Therefore, we update w less frequently, which corresponds to optimizing the equivalent form (10).
Incorporating these techniques into SGDA, we obtain the algorithm in Algorithm 1.

Remark (More regularization for stability): Directly solving a Lagrangian for LP may in-
duce instability, due to lack of curvature. To overcome such difficulty, the augmented Lagrangian
method (ALM) (Rockafellar, 1974) is the natural choice. Directly applying the ALM will introduce
the regularization h (Ep̂n [∆ (x; τ, φ)]) where h denotes some convex function with minimum at zero.
Such regularization will not change the optimal solution (τ, β) in (11) and the value [ln, un].

The ALM introduces extra computational cost in optimization since the regularization involves
empirical expectations inside a nonlinear function. We exploit alternative regularizations following the
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spirit of ALM, while circumventing the computational difficulty. Recall the fact that the regularization
on dual variable does not change the optimal solution (Nachum et al., 2019b, Theorem 4), i.e.

τ∗ (s, a) =

{
argmax
τ>0

EdD [τ · r (s, a)]
∣∣EdD [∆ (x; τ, φ)] = 0

}
(37)

=

{
argmax
τ>0

EdD [τ · r (s, a)]− αEp [h (τ)]
∣∣EdD [∆ (x; τ, φ)] = 0

}
, (38)

where p is some distribution over S ×A.

We show the upper bound as an example, and the lower bound can be treated similarly. We have

(wu, τ
∗) = argmax

w∈Kf

{
argmax
τ>0

Ew [τ · r (s, a)]
∣∣Ew [∆ (x; τ, φ)] = 0

}
= argmax

w∈Kf

{
argmax
τ>0

Ew [τ · r (s, a)]− αEp [h (τ)]
∣∣Ew [∆ (x; τ, φ)] = 0

}
, (39)

where the equality comes from Nachum et al. (2019b, Theorem 4) and the fact the regularization
Ep [h (τ)] does not depend on w. Then, we can solve (39) alternatively for (wu, τ

∗) by Lagrangian,
max
τ>0

min
β

max
w∈Kf

Ew
[
τ · r (s, a) + β>∆ (x; τ, φ)

]
− αEp [h (τ)] . (40)

Although the optimal β̃∗ to (40) differs from β∗, (wu, τ
∗) are the same. Once we have the (wu, τ

∗),
we can recover the original Lagrangian ρ̃π (wu) = Ewu [τ · r (s, a)], since Ewu

[
β∗>∆ (x; τ∗, φ)

]
=

0 in the original Lagrangian Ew (` (x; τ∗, β∗)) in (11) due to the KKT condition.

Comparing to the original ALM, the new regularization takes the advantage of ALM while keeps the
original computational efficiency.

E Proofs for Statistical Properties

In this section, we provide the detailed proofs for the asymptotic coverage Theorem 2 and the finite-
sample correction Theorem 4. For notation simplicity, we use sup, max and inf,min interchangeably.
With a little abuse of notation, we use

∫
as
∑

on discrete domain.

E.1 Asymptotic Coverage

Theorem 2 follows from a result in Duchi et al. (2016). The following notation will be needed:

• ` (x; τ, β) = (1− γ)β>φ (s0, a0) + τ (s, a)
(
r (s, a) + γβ>φ (s′, a′)− β>φ (s, a)

)
;

• ‖f‖1 :=
∫
|f (s, a)| dD (s, a) dsda, and ‖φ (s, a)‖2 :=

√
〈φ, φ〉;

• ‖f (s, a)‖L2(dD) := EdD
[
f2 (s, a)

] 1
2 , H ⊂ L2

(
dD
)
, we define L∞ (H) be the space of

bounded linear functionals onH with ‖L1 − L2‖H := suph∈H |L1h− L2h| for L1, L2 ∈
L∞ (H);

• p = dP
dµ , with a Lebesgue measure µ, is the Radon-Nikodym derivative. Abusing notation a

bit, we use (Df (P ||Q) , D (p||q)), and (EP [·] ,Ep (·)) interchangeably.

Definition 7 (Duchi et al., 2016, Hadamard directionally differentiability) Let Q be the space of
signed measures bounded with norm ‖·‖H. The functional T : P → R is Hadamard directionally
differentiable at P ∈ P tangentially to B ⊂ Q if for all H ∈ B, there exists dTp (H) ∈ R such
that for all convergent sequences tn → 0 and ‖Hn −H‖H → 0 that satisfies P + tnHn ∈ P , the
following holds

T (P + tnHn)− T (P )

tn
→ dTP (H) , as n→∞.

We say T : P → R has an influence function T 1 (x;P ) ∈ R if

dTP (Q− P ) :=

∫
T 1 (x;P ) d (Q− P ) (x) ,

and EP
[
T 1 (x;P )

]
= 0.
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We consider f in Df satisfying the following assumption (Duchi et al., 2016),
Assumption 1 (Smoothness of f -divergence) The function f : R+ → R is convex, three times
differentiable in a neighborhood of 1, f (1) = f ′ (1) = 0 and f ′′ (1) = 2.5

Then, the following theorem, which slightly simplifies Duchi et al. (2016, Theorem 10), characterizes
the asymptotic coverage of the general uncertainty estimation,

Theorem 8 (General asymptotic coverage) Let Assumption 1 hold andH = {h (x; τ, β)}, where
h (x; τ, β) is Lipschitz and the space of (τ, β) is compact. Denote B ⊂ Q be such that∥∥∥√n(P̂n − P0

)
−G

∥∥∥
H
→ 0 with G ∈ B. Assume T : P → R is Hadamard differentiable

at P0 tangentially to B with influence function T 1 (·;P0) and dTP is defined and continuous on the
whole Q, then,

lim
n→∞

P
(
T (P0) ∈

{
T (P ) : Df (P ||Pn) 6

ξ

n

})
= P

(
χ2
1 6 ξ

)
.

Denote the T (P ) = maxτ>0 minβ∈Rp EP [` (x; τ, β)] by convexity-concavity, our proof for The-
orem 2 will be mainly checking the conditions required by Theorem 8: i), Lipschitz continuity of
functions inH, and ii) Hadamard differentiability of T (P ).

We first specify the regularity assumption for stationary distribution ratio:

Assumption 2 (Stationary ratio regularity) The target stationary state-action correction rato is
bounded: ‖τ∗‖∞ 6 Cτ < ∞, and τ∗ ∈ Fτ where Fτ is a convex, compact and bounded RKHS
space with bounded kernel function ‖k ((·, ·) , (s, a))‖Fτ 6 K.

The bounded ratio component of Assumption 2 is a standard assumption used in Nachum et al.
(2019a); Zhang et al. (2020a); Uehara et al. (2019). The latter part regarding Fτ is required for the
existence of solutions. In fact, the RKHS assumption Fτ is already quite flexible, and it includes
deep neural networks by adopting the neural tangent kernels (Arora et al., 2019).

With Assumption 2, we can immediately obtain
T (P ) = max

τ∈Fτ
min
β∈Rp

EP [` (x; τ, β)] = min
β∈Rp

max
τ∈Fτ

EP [` (x; τ, β)]

by the minimax theorem (Ekeland and Temam, 1999, Proposition 2.1). By this equivalence, we will
focus on the min-max form.

Since r ∈ [0, Rmax], one has for every π that Qπ 6 Rmax/(1 − γ). Therefore, it is reasonable to
assume the following regularity conditions for φ:

Assumption 3 (Embedding feature regularity) There exist some finite constants Cβ and Cφ, such
that ‖β‖2 6 Cβ , ‖φ‖2 6 Cφ. Moreover, φ (s, a) is Lφ-Lipschitz continuous.

This assumption implies
∥∥β>φ∥∥∞ 6 ‖β‖2 ‖φ‖2 6 CβCφ and Lipschitz continuity of β>φ (s, a).

We define Fβ := {β| ‖β‖2 6 Cβ}.

Lemma 9 (Lipschitz continuity) Under Assumptions 2 and 3, function ` satisfies ‖` (x; τ, β)‖∞ 6
M and is C`-Lipschitz in (τ, β), for some proper finite constants M and C`.

Proof We first show the boundedness claim. By the definition of ` (x; τ, β), one has
‖` (x; τ, β)‖∞
6 (1− γ)

∥∥β>φ∥∥∞ +
∥∥τ (s, a)

(
r (s, a) + γβ>φ (s′, a′)− β>φ (s, a)

)∥∥
∞

6 (1− γ)
∥∥β>φ∥∥∞ + ‖τ (s, a)‖∞

(
r (s, a) + γβ>φ (s′, a′)− β>φ (s, a)

)
6 (1− γ)CβCφ + Cτ (Rmax + (1 + γ)CβCφ)

= (Cτ + 1) (1− γ)CβCφ + CτRmax := M.

5That f(1) = 0 is required in the definition of f-divergence. If f ′ (1) 6= 0, one can “lift” it by f̄ (t) = f(t)−
f ′(1)(t− 1) so that the new function satisfies f̄ ′ (1) = 0. f ′′ (1) = 2 is assumed for easier calculation without
loss of generality, as discussed in Duchi et al. (2016). For example, one can use f (t) = 2x log x− 2 (x− 1)

for modified KL-divergence, f (t) = (x− 1)2 for χ2-divergence, and f (t) = − log x+ (x− 1)− 1
2

(x− 1)2

for reverse KL-divergence.
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We equip Fτ ×Fβ with the norm
‖(τ, β)‖ := ‖τ‖Fτ + ‖β‖2 , (41)

Then, we show the Lipschitz continuity of ` (x; τ, β) in (τ, β),
|` (x; τ1, β1)− ` (x; τ2, β2)|
6 (1− γ)

∣∣∣φ (s0, a0)
>

(β1 − β2)
∣∣∣+
∣∣∣τ2 (s, a) (β1 − β2)

>
(γφ (s′, a′) + φ (s, a))

∣∣∣
+

∣∣(τ1 (s, a)− τ2 (s, a))
(
r (s, a) + γβ>1 φ (s′, a′)− β>1 φ (s, a)

)∣∣
6 (1− γ) ((2 + γ)Cφ + Cτ ) ‖β1 − β2‖2 + (Rmax + (1 + γ)CφCβ) |τ1 (s, a)− τ2 (s, a)| ,
6 (1− γ) ((2 + γ)Cφ + Cτ ) ‖β1 − β2‖2 + (Rmax + (1 + γ)CφCβ)K ‖τ1 − τ2‖Fτ ,
6 C`

(
‖β1 − β2‖2 + ‖τ1 − τ2‖Fτ

)
,

which implies the ` (x; τ, β) is C`-Lipschitz continuous with
C` := max {(1− γ) ((2 + γ)Cφ + Cτ , (1 + γ)CφCβ)K} .

We now check the Hadamard directional differentiability of T (P ). The following proof largely
follows Duchi et al. (2016); Römisch (2014).

Lemma 10 (Hadamard Differentiability) Under Assumptions 2 and 3, the functional T (P ) =
minβ∈Fβ maxτ∈Fτ EP [` (x; τ, β)] is Hadamard directionally differentiable on P tangentially to
B (H, P0) ⊂ L∞ (H) with derivative

dTP (H) :=

∫
` (x; τ∗, β∗) dH (x) ,

where (β∗, τ∗) = argminβ∈Fβ argmaxτ∈Fτ EP0
[` (x; τ, β)].

Proof For convenience, we define

H̃ (τ, β) :=

∫
` (x; τ, β) dH (x) ,

where H is associated with a measure in Q.

We first show the upper bound convergence. For Hn ∈ B (H, P0) with ‖Hn −H‖H → 0, for any
sequence tn → 0, we have

T (P0 + tnHn)− T (P0)

= min
β∈Fβ

max
τ∈Fτ

(
EP0

[` (x; τ, β)] + tnH̃n (τ, β)
)
− min
β∈Fβ

max
τ∈Fτ

EP0
[` (x; τ, β)]

6 max
τ∈Fτ

(
EP0

[` (x; τ, β∗)] + tnH̃n (τ, β∗)
)
− EP0

[` (x; τ, β∗)]

6 max
τ∈Fτ

tnH̃n (τ, β∗) .

Denote τ∗n = argmaxτ∈Fτ H̃n (τ, β∗), by definition, we have

max
τ∈Fτ

H̃n (τ, β∗)− max
τ∈Fτ

H̃ (τ, β∗) 6 H̃n (τ∗n, β
∗)− H̃ (τ∗n, β

∗) 6
∥∥∥H̃n − H̃

∥∥∥
H
→ 0.

Therefore, we obtain

lim sup
n

1

tn
(T (P0 + tnHn)− T (P0)) 6 H̃ (τ∗, β∗) .

For the lower bound part, we have
T (P0 + tnHn)

= min
β∈Fβ

{
max
τ∈Fτ

(
EP0

[` (x; τ, β)] + tnH̃n (τ, β)
)}

= min
β∈Fβ

{
EP0 [` (x; τn (β) , β)] + tn

(
H̃n (τn (β) , β)− H̃ (τn (β) , β)

)
+ tnH̃ (τn (β) , β)

}
6 min

β∈Fβ

{
EP0

[` (x; τn (β) , β)] + tn

∥∥∥H̃n − H̃
∥∥∥
H

+ tn

∥∥∥H̃∥∥∥
H

}
6 min

β∈Fβ
EP0

[` (x; τn (β) , β)] +O (1) · tn,
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where τn (β) = argmaxτ∈Fτ

(
EP0

[` (x; τ, β)] + tnH̃n (τ, β)
)

.

Denote the set of ε-ball of solutions w.r.t. P as

SP (ε) :=

{
β ∈ Fβ : max

τ∈Fτ
EP [` (x; τ, β)] 6 min

β∈Fβ
max
τ∈Fτ

EP [` (x; τ, β)] + ε

}
.

Then, β∗n ∈ SP0+tnHn (0) implies β∗n ∈ SP0 (ctn), which in turn implies the sequence of β∗n has a
subsequence β̃∗m that converges to β∗ ∈ SP0

(0).

It is straightforward to check the Lipschitz continuity of ¯̀(β) := maxτ E [` (x; τ, β)] as∣∣¯̀(β1)− ¯̀(β2)
∣∣

6 (1− γ) ‖β1 − β2‖2 Eµ0π [‖φs0,a0‖]2 +

∣∣∣∣max
τ∈Fτ

E
[
τ · r + β>1 ∆

]
− max
τ∈Fτ

E
[
τ · r + β>2 ∆

]∣∣∣∣
6 (1− γ) ‖β1 − β2‖2 Eµ0π [‖φs0,a0‖]2 + max

τ∈F

∣∣E [τ · r + β>1 ∆
]
− E

[
τ · r + β>2 ∆

]∣∣
6 (1− γ) ‖β1 − β2‖2 Eµ0π [‖φs0,a0‖]2 + max

τ∈F

∣∣∣E [(β1 − β2)
>

∆
]∣∣∣

6 ((1− γ)Cφ + Cτ (1 + γ)Cφ) ‖β1 − β2‖2 .
Therefore, with β̃∗n → β∗, we have

lim
m

˜̀
(
β̃∗m

)
= min

β

˜̀(β) = T (P0) ,

and due to the optimality, for any m,
˜̀
(
β̃∗m

)
> min

β

˜̀(β) .

T (P0 + tmHm)− T (P0)

> max
τ∈Fτ

{
EP0

[
`
(
x; τ, β̃∗m

)]
+ tnH̃n

(
τ, β̃∗m

)}
− max
τ∈Fτ

EP0

[
`
(
x; τ, β̃∗m

)]
> EP0

[
`
(
x; τm

(
β̃∗m

)
, β̃∗m

)]
+ tnH̃n

(
τm

(
β̃∗m

)
, β̃∗m

)
− EP0

[
`
(
x; τm

(
β̃∗m

)
, β̃∗m

)]
= tnH̃n

(
τm

(
β̃∗m

)
, β̃∗m

)
,

where τm
(
β̃∗m

)
= argmaxτ∈Fτ EP0

[
`
(
x; τ, β̃∗m

)]
.

Since β̃∗m → β∗, we have τm
(
β̃∗m

)
→ τ∗, and thus,∣∣∣H̃n

(
τm

(
β̃∗m

)
, β̃∗m

)
− H̃ (τ∗, β∗)

∣∣∣
6

∣∣∣H̃n

(
τm

(
β̃∗m

)
, β̃∗m

)
− H̃

(
τm

(
β̃∗m

)
, β̃∗m

)∣∣∣+
∣∣∣H̃ (τm (β̃∗m) , β̃∗m)− H̃ (τ∗, β∗)

∣∣∣
6

∥∥∥H̃n − H̃
∥∥∥
H

+
∣∣∣H̃ (τm (β̃∗m) , β̃∗m)− H̃ (τ∗, β∗)

∣∣∣→ 0,

where we use ` (τ, β;x) is Lipschitz continuous. Therefore, we obtain

lim inf
n

1

tn
(T (P0 + tnHn)− T (P0)) > H̃ (τ∗, β∗) .

Theorem 2 (Asymptotic coverage) Under Assumptions 1, 2, and 3, if D contains i.i.d. samples and
the optimal solution to the Lagrangian of (5) is unique, we have

lim
n→∞

P
(
ρπ ∈ Cfn,ξ

)
= P

(
χ2
(1) 6 ξ

)
. (42)

Therefore, Cf
n,χ2,1−α

(1)

is an asymptotic (1− α)-confidence interval of the value of the policy π.

Proof The proof is to verify the conditions in Theorem 8 hold. By Lemma 6, we can rewrite

P
(
ρπ ∈ Cfn,ξ

)
= P

(
ρπ ∈

{
ρ̂π (w)

∣∣w ∈ Kf}) ,
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where, according to the boundedness assumption on β in Assumption 3,
ρ̂π (w) = max

τ>0
min
β∈Fβ

Ew
[
τ · r + β>∆ (x; τ, φ)

]
= min
β∈Fβ

max
τ>0

Ew
[
τ · r + β>∆ (x; τ, φ)

]
.

With Lemma 9 and Lemma 10, the conditions in Theorem 8 are satisfied. We apply Theorem 8 on
the unique optimal solution (τ∗, β∗) = argminβ∈Fβ argmaxτ>0 EP0 [` (x; τ, β)]. We have dTP is a
linear functional on the space of bounded measures and

dTP0
(H) =

∫
` (x; τ∗, β∗) dH (x) ,

with the canonical gradient given by T 1 (·;P0) = ` (x; τ∗, β∗)− EP0 [` (x; τ∗, β∗)].

E.2 Finite-Sample Correction

The previous section considers the asymptotic coverage of CoinDICE. We now analyze the finite-
sample effect for the estimator, for the special case f (x) = (x− 1)

2. Thus, Df is the χ2-divergence.

Consider the optimization problem,

max
w∈Rn

w>z, s.t. Df (w||p̂n) 6
ξ

n
,w ∈ Pn−1 (p̂n) . (43)

The following result will be needed.

Lemma 11 (Namkoong and Duchi, 2017, Theorem 1) Let Z ∈ [0,M ] be a random variable,
σ2 = V ar (Z) and s2n = Ep̂n

[
Z2
]
− Ep̂n [Z]

2 as the population and sample variance of Z,
respectively. For ξ > 0, we have[√

ξ

n
s2n −

Mξ

n

]
+

6 max
w

{
Ew [Z] |Df (w||p̂n) 6

ξ

n
,w ∈ Pn−1 (p̂n)

}
− Ep̂n [Z] 6

√
ξ

n
s2n.

Moreover, for n > max
{

2, M
2

σ2 max {4σ, 22}
}

, with probability at least 1− exp
(
− 3nσ2

5M2

)
,

max
w

{
Ew [Z] |Df (w||p̂n) 6

ξ

n
,w ∈ Pn−1 (p̂n)

}
= Ep̂n [Z] +

√
ξ

n
s2n.

The follow is the symmetric version of Lemma 11, which can be obtained immediately by negating
the random variable Z. For completeness, we give the proof below, which is adapted from Namkoong
and Duchi (2017). Recall that the lower bound is obtained by solving the following:

min
w∈Rn

w>z, s.t. Df (w||p̂n) 6
ξ

n
, w ∈ Pn−1 (p̂n) . (44)

Lemma 12 (Lower bound variance representation) Under the same conditions in Lemma 11, for
ξ > 0, we have[√

ξ

n
s2n −

Mξ

n

]
+

6 Ep̂n [Z]−min
w

{
Ew [Z] |Df (w||p̂n) 6

ξ

n
,w ∈ Pn−1 (p̂n)

}
6

√
ξ

n
s2n.

Moreover, for n > max
{

2, M
2

σ2 max {4σ, 22}
}

, with probability at least 1− exp
(
− 3nσ2

5M2

)
,

min
w

{
Ew [Z] |Df (w||p̂n) 6

ξ

n
,w ∈ Pn−1 (p̂n)

}
= Ep̂n [Z]−

√
ξ

n
s2n.

Proof Denote u = 1
n − w, we have u>1 = 0, and the optimization (44) can be written as

z̄ −max
u

u> (z − z̄) , s.t. ‖u‖22 6
ξ

n
, u>1 = 0, u 6

1

n
, (45)

with z̄ = 1
n

∑n
i=1 zi. Obviously, by the Cauchy-Schwartz inequality,

u> (z − z̄) 6
√
ξ

n
‖z − z̄‖2 ,
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and the equality holds if and only if

ui =

√
ξ (z − z̄)

n ‖z − z̄‖2
=

√
ξ (z − z̄)
n
√
ns2n

.

Given the constraint u 6 1
n , to achieve the maximum, one needs to ensure

max
i

√
ξ (z − z̄)
n
√
ns2n

6 1.

If this condition is satisfied, we have

Ep̂n [Z]−min
w

{
Ew (Z) |Df (w||p̂n) 6

ξ

n

}
6

√
ξ

n
s2n.

Since z ∈ [0,M ], we have |zi − z̄| 6M , to ensure the condition, we need ξM2

ns2n
6 1⇔ s2n > ξM2

n .

Otherwise, suppose s2n <
ξM2

n , or equivalently ξs2n
n < ξ2M2

n , then,

min
w
w>z 6 Ep̂n [z]−

[√
ξ

n
s2n −

Mξ

n

]
+

.

For the high-probability statement, when n > max
{

2, M
2

σ2 max {4σ, 22}
}

, and the event s2n > 3
64σ

2

holds, s2n > ξM2

n . Following Maurer and Pontil (2009, Theorem 10), one can bound that

P (|sn − σ| 6 a) 6 exp

(
− na2

2M2

)
.

Setting a =
(

1−
√
3
8

)
σ completes the proof.

With Lemma 11 and Lemma 12, we represent the confidence bounds with variance. We resort to an
empirical Bernstein bound applied to the function space F with bounded function h : X → [0,M ],
using empirical `∞-covering numbers, N∞ (F , ε, n),

Lemma 13 (Maurer and Pontil, 2009, Theorem 6) Let n > 8M2

t and t > log 12. Then, with
probability at least 1− 6N∞ (F , ε, 2n) e−t, for any h ∈ F ,

E [h]− Ep̂n [h] 6

√
18V arp̂n (h) t

n
+

15Mt

n
+ 2

(
1 + 2

√
2t

n

)
ε.

Theorem 4 (Finite-sample correction) Denote by N∞ (Fτ , ε, 2n) and N∞ (Fβ , ε, 2n) the `∞-
covering numbers of Fτ and Fβ with ε-ball on 2n empirical samples, respectively. Let Df be
χ2-divergence. Under Assumptions 2 and 3, let M := (Cτ + 1) (1− γ)CβCφ + CτRmax and
C` := max {(1− γ) ((2 + γ)Cφ + Cτ , (1 + γ)CφCβ)K}, then, we have

P (ρπ ∈ [lu − ζn, un + ζn]) > 1− 12N∞ (Fτ , ε, 2n)N∞ (Fβ , ε, 2n) e−
ξ
18 ,

where (ln, un) are the solutions to (11), ζn = 11Mξ
6n + 2

(
1 + 2

√
ξ
9n

)
C`ε and ξ = χ2,1−α

(1) .

When the VC-dimensions of Fτ and Fβ (denoted by dFφ and dFβ , respectively) are finite, we have

P (ρπ ∈ [ln − κn, un + κn]) > 1− 12 exp

(
c1 + 2

(
dFτ + dFβ − 1

)
log n− ξ

18

)
,

where c1 = 2c+ log dFτ + log dFβ +
(
dFτ + dFβ − 1

)
, and κn = 11Mξ

6n + 2C`Mn

(
1 + 2

√
ξ
9n

)
.

Proof We focus on the upper bound, and the lower bound can be bounded in a similar way. Define
(τ∗, β∗) := argmax

τ∈Fτ
argmin

β
EdD [` (x; τ, β)](

ŵ∗, τ̂∗, β̂∗
)

:= argmax
w

argmax
τ∈Fτ

argmin
β

Ew [` (x; τ, β)] .
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By definition and the optimality of β∗, we have

ρπ = EdD [` (x; τ∗, β∗)] 6 EdD
[
`
(
x; τ∗, β̂∗

)]
. (46)

Applying Lemma 13 and the Lipschitz-continuity of ` (x; τ, β) on Fτ ×Fβ , with probability at least
1− 6N∞ (Fτ , ε, 2n)N∞ (Fβ , ε, 2n) e−t, we have

EdD
[
`
(
x; τ∗, β̂∗

)]

6 Ep̂n
[
`
(
x; τ∗, β̂∗

)]
+ 3

√√√√2V arp̂n

(
`
(
x; τ∗, β̂∗

))
t

n
+

15Mt

n
+ 2

(
1 + 2

√
2t

n

)
C`ε

6 max
Df (w||p̂n)6 ξ

n

Ew
[
`
(
x; τ∗, β̂∗

)]
−


√√√√ξV arp̂n

(
`
(
x; τ∗, β̂∗

))
n

− Mξ

n


+

+3

√√√√2V arp̂n

(
`
(
x; τ∗, β̂∗

))
t

n
+

15Mt

n
+ 2

(
1 + 2

√
2t

n

)
C`ε

6 max
Df (w||p̂n)6 ξ

n

max
τ∈Fτ

min
β∈Fβ

Ew [` (x; τ, β)] +
11

6n
Mξ + 2

(
1 + 2

√
2t

n

)
C`ε

where the second equation comes from Lemma 11 and the third line comes from setting t 6 ξ
18

and the definition of β̂∗. Combining this with (46), we may conclude that with probability at least
1− 6N∞ (Fτ , ε, 2n)N∞ (Fβ , ε, 2n) e−

ξ
18 ,

ρπ 6 max
Df (w||p̂n)6 ξ

n

max
τ∈Fτ

min
β∈Fβ

Ew [` (x; τ, β)] +
11Mξ

6n
+ 2

(
1 + 2

√
ξ

9n

)
C`ε.

With the same strategy based on Lemma 12 and Lemma 13, we can also bound the finite-sample
lower bound correction that with probability at least 1− 6N∞ (Fτ , ε, 2n)N∞ (Fβ , ε, 2n) e−

ξ
18 ,

ρπ > max
Df (w||p̂n)6 ξ

n

max
τ∈Fτ

min
β∈Fβ

Ew [` (x; τ, β)]− 11Mξ

6n
− 2

(
1 + 2

√
ξ

9n

)
C`ε.

The first part of the theorem is then proved.

For the second part, by van der Vaart and Wellner (1996, Theorem 2.6.7), one can bound
N (F , ε, 2n) 6 cVC (F)

(
16Mne

ε

)VC(F)−1
for some constant c. We set ε = M

n and denote
dF = VC (F). Plugging this into the bound, we obtain

P (ρπ ∈ [ln − κ, un + κ]) > 1− 12 exp

(
c1 + 2

(
dFτ + dFβ − 1

)
log n− ξ

18

)
,

where c1 and κ are as given in the theorem statement.

F Implementing Principles of Optimism and Pessimism

Based on the discussion in Section 5, the optimism and pessimism principles can be implemented by
maximizing uD (π) and lD (π), respectively. In this section, we first calculate the gradient∇πuD (π)
and ∇πlD (π), and elaborate on the algorithm details.

Since we will optimize the policy π, we modify the confidence interval estimator in CoinDICE
slightly, so that π is an explicitly parameterized distribution. Concretely, we consider the samples
x := (s0, s, a, r) with s0 ∼ µ0 (s), (s, a, r, s′) ∼ dD, which leads to the corresponding upper and
lower bounds with

˜̀(x; τ, β, π) := τ · r + β>∆̃ (x; τ, φ, π) ,
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where ∆̃ (x; τ, φ, π) = (1− γ)Eπ(a0|s0) [φ (s0, a0)] + γEπ(a′|s′) [φ (s′, a′) τ (s, a)] −
φ (s, a) τ (s, a).

Theorem 14 Given optimal (β∗l , τ
∗
l , w

∗
l ) and (β∗u, τ

∗
u , w

∗
u) for lower and upper bounds, respectively,

the gradients of lD (π) and uD (π) can be computed as

∇πlD (π)

∇πuD (π)

 =


Ew∗l

[
(1− γ)Ea0∼π

[
∇π log π (a0|s0)β∗l

>φ (s0, a0)
]

+

γEa′∼π(a′|s′)
[
τ∗l (s, a)∇π log π (a′|s′)β∗l

>φ (s′, a′)
]]

Ew∗u
[
(1− γ)Ea0∼π

[
∇π log π (a0|s0)β∗u

>φ (s0, a0)
]

+

γEa′∼π(a′|s′)
[
τ∗u (s, a)∇π log π (a′|s′)β∗u

>φ (s′, a′)
]]


(47)

Proof We focus on the computation of∇πuD (π) with the optimal (β∗u, τ
∗
u , w

∗
u):

∇πuD (π) = Ew∗u
[
∇π ˜̀(x; τ, β)

]
= (1− γ)Ew∗u∇πEa0∼π

[
β∗u
>φ (s0, a0)

]
+ γEw∗u

[
τ∗u (s, a)∇πEa′∼π(a′|s′)

[
β∗u
>φ (s′, a′)

]]
= (1− γ)Ew∗uEa0∼π

[
∇π log π (a0|s0)β∗u

>φ (s0, a0)
]

(48)

+γEw∗uEa′∼π(a′|s′)
[
τ∗u (s, a)∇π log π (a′|s′)β∗u

>φ (s′, a′)
]
. (49)

The case for the lower bound can be obtained similarly:

∇πlD (π) = (1− γ)Ew∗l Ea0∼π
[
∇π log π (a0|s0)β∗l

>φ (s0, a0)
]

(50)

+ γEw∗l Ea′∼π(a′|s′)
[
τ∗l (s, a)∇π log π (a′|s′)β∗l

>φ (s′, a′)
]
.

Now, we are ready to apply the policy gradient upon uD (π) or lD (π) to implement the optimism
for exploration or pessimism for safe policy improvement, respectively. We illustrate the details
in Algorithm 2.

Algorithm 2 CoinDICE-OPT: implementation of optimism/pessimism principle

Inputs: initial policy π0, a desired confidence 1 − α, a finite sample dataset D := {x(j) =

(s
(j)
0 , s(j), a(j), r(j), s′(j))}nj=1, number of iterations T .

for t = 1, . . . , T do
Estimate (β∗u, τ

∗
u , w

∗
u) via Algorithm 1 for optimism. {(β∗l , τ

∗
l , w

∗
l ) for pessimism.}

Sample
{
x(j)

}k
j=1
∼ Dt, a(j)0 ∼ πt(s

(j)
0 ), a(j)′ ∼ πt(s(j)′) for j = 1, . . . , k.

Estimate the stochastic approximation to ∇πuDt (πt) via (49). {∇πlDt (πt) via (50) for pes-
simism.}
Natural policy gradient update: πt+1 = argminπ −〈π,∇πuDt (πt)〉+ 1

ηKL (π||πt).
{πt+1 = argminπ −〈π,∇πlDt (πt)〉+ 1

ηKL (π||πt) for pessimism.}

Collect samples E =
{
x(j) = (s0, s, a, r, s

′)
(j)
}m
j=1

by executing πt+1, Dt+1 = Dt ∪ E .

{Skip the data collection step in offline setting.}
end for
Return πT .
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