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Abstract

Optimal scaling has been well studied for Metropolis-Hastings (M-H) algorithms
in continuous spaces, but a similar understanding has been lacking in discrete
spaces. Recently, a family of locally balanced proposals (LBP) for discrete spaces
has been proved to be asymptotically optimal, but the question of optimal scaling
has remained open. In this paper, we establish, for the first time, that the efficiency
of M-H in discrete spaces can also be characterized by an asymptotic acceptance
rate that is independent of the target distribution. Moreover, we verify, both
theoretically and empirically, that the optimal acceptance rates for LBP and random
walk Metropolis (RWM) are 0.574 and 0.234 respectively. These results also help
establish that LBP is asymptotically O(N

2
3 ) more efficient than RWM with respect

to model dimension N . Knowledge of the optimal acceptance rate allows one to
automatically tune the neighborhood size of a proposal distribution in a discrete
space, directly analogous to step-size control in continuous spaces. We demonstrate
empirically that such adaptive M-H sampling can robustly improve sampling in
a variety of target distributions in discrete spaces, including training deep energy
based models.

1 Introduction

The Markov Chain Monte Carlo (MCMC) algorithm is one of the most widely used methods for
sampling from intractable distributions (Robert & Casella, 2013). An important class of MCMC
algorithms is Metropolis-Hastings (M-H) (Metropolis et al., 1953; Hastings, 1970), where new states
are generated from a proposal distribution followed by a M-H test. The efficiency for M-H algorithms
depends critically on the proposal distribution. For example, gradient based methods, such as the
Metropolis Adjusted Langevin Algorithm (MALA) (Rossky et al., 1978), Hamiltonian Monte Carlo
(HMC) (Neal et al., 2011), and their variants Girolami & Calderhead (2011); Hoffman et al. (2014)
substantially improve the performance of M-H algorithms in theory and in practice, compared to
naive Random Walk Metropolis (RWM), by leveraging gradient information to guide the proposal
distribution (Roberts & Rosenthal, 2001).

Despite many advances, progress in gradient based methods has generally focused on continuous
spaces. However, Zanella (2020) recently proposed a general framework of locally balanced proposals
(LBP) for discrete spaces, where a proposal distribution is designed to utilize probability changes
between states. Subsequently, Grathwohl et al. (2021) accelerated the sampler by using gradient
information to approximate the probability change. In empirical evaluations, similar to gradient based
samplers in continuous spaces, LBP significantly outperforms RWM and other samplers in discrete
spaces. However, both Zanella (2020) and Grathwohl et al. (2021) constrain the proposal distribution
to lie within a 1-Hamming ball; i.e., only one site of the state variable is allowed to change per M-H
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step. Such a restricted update reduces the efficiency of the sampler. Sun et al. (2021) noticed this
problem and modified the proposal distribution to allow multiple sites to be changed per M-H step.
Although such larger updates significantly improve efficiency, Sun et al. (2021) do not show how to
determine the update size, leaving the number of sites updated in an M-H step as a hyperparameter to
tune.

In continuous spaces, the scale of the proposal distribution is known to be a critical hyperparameter
for obtaining an efficient M-H sampler. For example, consider a Gaussian proposal N (x, σ2) for
modifying a current state x with scale σ. If σ is too small, the Markov chain will converge slowly
since its increments will be small. Conversely, if σ is too large, the M-H test will reject too high
a proportion of proposed updates. A significant literature has studied optimal scaling for gradient
based methods in continuous spaces (Gelman et al., 1997; Roberts & Rosenthal, 1998, 2001; Beskos
et al., 2013), showing that the optimal scaling can be adaptively tuned w.r.t. the acceptance rate,
independent of the target distribution. Such results suggest a direction for solving the optimal scaling
problem for LBP. However, the underlying techniques for approximating a diffusion process cannot
be directly applied to LBP given its discrete nature.

In this work, we consider an asymptotic analysis as the dimension of the discrete model, N , converges
to infinity. Starting with a product distribution, we prove that the asymptotic efficiency of LBP in dis-
crete spaces is 2RΦ(− 1

2λ1R
3
2 /N) with an asymptotic acceptance rate of 2Φ(− 1

2λ1R
3
2 /N), where

the scale R represents the number of sites to update per M-H step. Therefore, the asymptotically
optimal scale of the proposal distribution is R = O(N

2
3 ) with an asymptotically optimal acceptance

rate of 0.574, independent of the target distribution. Moreover, for RWM in a discrete space, we show
that the asymptotic efficiency and acceptance rate are 2RΦ(− 1

2λ2R
1
2 ) and 2Φ(− 1

2λ2R
1
2 ), respec-

tively. Hence, the asymptotically optimal scale is O(1) and the asymptotically optimal acceptance
rate is 0.234 for RWM. By comparing LBP and RWM at their respective optimal scales, it can be
determined that LBP is O(N

2
3 ) more efficient than RWM.

These asymptotically optimal acceptance rates are robust in the following respects. First, although
the initial derivation is established w.r.t. product distributions, the result can be expanded to more
general distributions. Second, the efficiency is not sensitive around the optimal acceptance rate. For
example, whereas 0.574 is the optimal acceptance rate for LBP, the algorithm retains high efficiency
for acceptance rates between 0.5 and 0.7. Based on these observations, we propose an adaptive LBP
(ALBP) algorithm that automatically tunes the update scale to suit the target distribution.

We validate these theoretical findings in a series of empirical simulations on the Bernoulli model, the
Ising model, factorized hidden Markov models (FHMM) and restricted Boltzmann machines (RBM).
The experimental outcomes comport with the theory. Moreover, we demonstrate that ALBP can
automatically find near optimal scales for these distributions. We also use ALBP to train deep energy
based models (EBMs), finding that it reduces the MCMC steps needed in contrastive divergence
training (Hinton, 2002; Tieleman & Hinton, 2009), significantly improving the efficiency of the
overall training procedure.

2 Background

Metropolis-Hastings Algorithm Let π denote the target distribution. Given a current state x(n), a
M-H sampler draws a candidate state y from a proposal distribution q(x(n), y). Then, with probability

min
{

1, π(y)q(y,x(n))
π(x(n))q(x(n),y)

}
the proposed state is accepted and x(n+1) = y; otherwise, x(n+1) = x(n).

In this way, the detailed balance condition is satisfied and the M-H sampler generates a Markov chain
x0, x1, ... that has π as its stationary distribution.

Locally Balanced Proposal. The locally balanced proposal (LBP) is a special case of the pointwise
informed proposal (PIP), which is a class of M-H algorithms for discrete spaces (Zanella, 2020)
using the proposal distribution Qg(x, y) ∝ g (π(y)/π(x)) such that g is a scalar weight function.
Zanella (2020) shows that the family of locally balancing functions G = {g : R+ → R+, g(t) =
tg( 1

t ),∀t > 0} (e.g. g(t) =
√
t or t

t+1 ) is asymptotically optimal for PIP. Hence, PIP with a locally
balanced function for its weight function is referred to as LBP. Despite having good proposal quality,
PIP requires the weight g(π(z)/π(x)) to be calculated for all candidate states z in the neighborhood
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of x, which results in its high computational cost. Grathwohl et al. (2021) propose to estimate the
probability change by leveraging the gradient, improving the scalability of LBP.

Locally Balanced Proposal with Auxiliary Path. Sun et al. (2021) generalize LBP by introducing
an auxiliary path sampler, which allows multiple sites to be updated per M-H step. In particular, Sun
et al. (2021) sequentially selects the update indices without replacement, and uses these indices as
auxiliary variables to keep the proposal distribution tractable while preserving the detailed balance
condition. Although this can achieve significant improvements in empirical performance, Sun et al.
(2021) manually tune the update size per M-H step, and leave the optimal scale problem open.

3 Main Result

3.1 Problem Statement

We establish asymptotic limit theorems for two M-H algorithms in discrete spaces: the locally
balanced proposal (LBP) and random walk Metropolis (RWM). Following previous work (Gelman
et al., 1997; Roberts & Rosenthal, 1998; Beskos et al., 2013; Vogrinc et al., 2022), we conduct
our analysis on a product probability measure π. In particular, for a state space X = {0, 1}N , we
consider a factored target distribution

π(N)(x) =

N∏
i=1

πi(xi) =

N∏
i=1

pxii (1− pi)1−xi (1)

where each site is assumed to have a sufficiently large probability for being both 0 and 1; that is, for a
fixed ε ∈ (0, 14 ), we assume the target distribution belongs to:

Pε := {π(N) : ε < pj ∧ (1− pj) <
1

2
− ε,∀j = 1, ..., N,N ≥ 1} (2)

where we denote a ∧ b = min{a, b}. To measure the efficiency of the sampler, an ergodic estimate
varies with the objective function considered. Alternatively, we use a natural progress estimate: the
expected jump distance (EJD). Denote Pθ as the transition kernel, d(x, y) as the Hamming distance
between x and y. For a M-H sampler parameterized by θ, its expected jump distance ρ(θ) and
corresponding expected acceptance rate a(θ) are

ρ(θ) =
∑

X,Y ∈X
π(X)Pθ(X,Y )d(X,Y ), a(θ) =

∑
X,Y ∈X

π(X)Pθ(X,Y )1{X 6=Y } (3)

In continuous space, the limit of sampling process is a diffusion process, whose efficiency is de-
termined by the expected squared jump distance (ESJD) (Roberts & Rosenthal, 2001). In discrete
space, the limit of the sampling process is a jump process, whose velocity is characterized by the
EJD. Hence, EJD is the correct metric to measure the efficiency in discrete space; see more details in
Appendix B.1.

3.2 Locally Balanced Proposal

We consider the M-H sampler LBP-R, where R refers to flipping R indices in each M-H step.
Given a current state x, LBP-R calculates the weight wj for flipping index j as in PIP. Since we are
considering a binary target distribution of the form (1), we have

wj(x) = wj(xj) = g(
πj(1− xj)
πj(xj)

) (4)

where g is a locally balanced function. Following Sun et al. (2021), LBP-R select indices ur with
probability P(ur = j) ∝ wj sequentially for r = 1, ..., R, without replacement. The new state y
is obtained by flipping indices u1:R of x. If we consider u as an auxiliary variable, the accept rate
A(x, y, u) in the M-H acceptance test can be written as

A(x, y, u) = 1 ∧
π(y)

∏R
r=1

wur (y)
W (y,u)+

∑r
i=1 wui (y)

π(x)
∏R
r=1

wur (x)

W (x,u)+
∑R
i=r wui (x)

, where W (x, u) =

N∑
i=1

wi −
R∑
r=1

wur (5)
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From theorem 1 in Sun et al. (2021), the auxiliary sampler LBP-R satisfies detailed balance. A M-H
step of LBP-R is summarized in Algorithm 1.

Algorithm 1: A M-H step of LBP-R and ALBP

1 Given current state x(n), current Rt, initialize candidate set C = {1, .., N};
2 for r = 1, ..., R or r = 1, ..., rounding(Rt) do
3 Sample ur with P(ur = j) ∝ wj(x(n))1{j∈C};
4 Pop ur out of the candidate set: C ← C\{ur};
5 end
6 Obtain y by flipping indices u1, ..., uR of x(n).;
7 if rand(0,1) < A(x(n), y, u) then x(n+1) = y else x(n+1) = x(n);
8 if t < Twarmup then Rt+1 ← Rt + (A(x(n), y, u)− 0.574);

3.3 Optimal Scaling for Locally Balanced Proposal

We are now ready to state the first asymptotic theorem.

Theorem 3.1. For arbitrary sequence of target distributions {π(N)}∞N=1 ⊂ Pε, the M-H sampler
LBP-R with a locally balanced weight function g obtains the following, if R = blN 2

3 c,

lim
N→∞

a(R)− 2Φ

(
−1

2
λ1l

3
2

)
= 0 (6)

where Φ is the c.d.f. of standard normal distribution and λ1 only depends on π(N)

λ21 = λ21(π(N)) =

∑N
j=1 pjwj(1)(wj(0)− wj(1))2

4(Ex[ 1
N

∑N
i=1 wi(xi)])

2
∑N
i=1 piwi(1)

(7)

The definition of λ1 in (7) explains the motivation of restricting the target distributions in (2). In
fact, introducing the ε gives upper and lower bounds of λ1. When all pj are arbitrarily close to 1

2 ,
(wj(0)− wj(1))2 in numerator will be zero, so is λ1. As a result, the acceptance rate will always be
1. Else, when all pj are arbitrarily close to 0 or 1, Ex[ 1

N

∑N
i=1 wi(xi)] in denominator will be zero,

and λ1 will be infinity. As a result, the acceptance rate will always be 0. So, we have to make the
mild assumption in (2) to assure the following asymptotic result holds. A more detailed discussion
about ε is given in Appendix B.2.

Corollary 3.2. The optimal choice of scale for R = lN
2
3 is obtained when the expected acceptance

rate is 0.574, independent of the target distribution.

Proof. When R = lN
2
3 , denote z = λ

2
3
1 l, we have:

ρ(R) = a(R)R = 2lN
2
3

(
Φ

(
−1

2
λ1l

3
2

)
+ o(1)

)
=
(N
λ1

) 2
3

2zΦ
(
− 1

2
z

3
2

)
+ o

(
N

2
3

)
(8)

It means the optimal value of z is independent of the target distribution π(N). As Φ is known, we can
numerically solve z = 1.081, and the corresponding expected acceptance rate is a = 0.574.

3.4 Proof of Theorem 3.1

Denote the current state as x and a new state proposed in LBP-R as y. Consider the acceptance rate
A(x, y, u) in (5). Using the fact that, if index j is not flipped then wj(y) = wj(x), we have:

π(y)

π(x)

∏R
r=1 wur (y)∏R
r=1 wur (x)

=
π(y)

π(x)

∏N
i=1 wi(y)∏N
i=1 wi(x)

=

N∏
i=1

πi(yi)/πi(xi)g(πi(xi)/πi(yi))

g(πi(yi)/πi(xi))
= 1 (9)
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where (9) takes advantage of the property of a locally balanced function. Hence, the acceptance rate
A(x, y, u) can be simplified to:

1 ∧ exp

(
R∑
r=1

log
(1 +

∑R
i=r wui(x)/W (x, u)

1 +
∑r
i=1 wui(y)/W (y, u)

))
(10)

From the definition in (5), we have W (x, u) = W (y, u). Denote i ∧ j = min{i, j} and i ∨ j =
max{i, j}, we have the following approximation:

Lemma 3.3. Define W = Ex,u[W (x, u)]. We have: limN→0

∑R
r=1 log(

1+
∑R
i=r wui (x)/W (x,u)

1+
∑r
i=1 wui (y)/W (y,u) ) −

(A+B) = 0, where

A =
1

W

R∑
r=1

(R− r + 1)wui(xui)− rwui(yui) (11)

B =− 1

2

1

W 2

R∑
i,j=1

[
i ∧ j wui(xui)wuj (xuj )− (R− i ∨ j + 1)wui(yui)wuj (yuj )

]
(12)

To analyzeA andB, we reverse the order of x and u. In particular, instead of first sampling x ∼ π(x),
then sampling u ∼ p(x|u), we use a reversed order where we first determine the indices u, then the
values of xu, and finally the values of x−u.

Lemma 3.4. The joint distribution p(x, u) = π(x)p(u|x) can be decomposed in the following form:

p(x, u) =

R∏
r=1

p(ur|u1:r−1)

R∏
r=1

p(xur |u, xu1:r−1
) p(x−u|u, xu) (13)

Denote j /∈ u1:r−1 represents j 6= ui for i = 1, ..., r − 1, the conditional probabilities are

p(ur = j|u1:r−1) =
pjwj(1)1{j /∈u1:r−1}∑N
i=1 piwi(1)1{i/∈u1:r−1}

+O(N−
5
2 ) (14)

p(xj = 1|u, x1:j−1, ur = j) =
1

2
+ r

wj(0)− wj(1)

W
+O(N−

2
3 ) (15)

With the conditional distribution in Lemma 3.4, we are able to give a concentration property of the
term B and show it is safe to ignore:

Lemma 3.5. With a probability larger than 1−O(exp(−N 1
2 )), B = O

(
N−

1
12

)
.

For term A, we use martingale central limit theorem with convergence rate (Haeusler, 1988) to bound
the Kolmogorov-Smirnov statistic.

Lemma 3.6. When R = lN
2
3 , λ1 defined as (7), we have:

|P(
A− µ
σ
≥ t)− Φ(t)| = O

(
N−

1
12

)
, µ = −1

2
λ21l

3, σ2 = λ21l
3 (16)

By (16), the expectation w.r.t. A asymptotically equals to the expectation on N (µ, σ2). The final
step to prove Theorem 3.1 is to exploit a property of the normal distribution.

Lemma 3.7. If Z ∼ N (µ, σ2), then we have:

E[1 ∧ exp(Z)] = Φ
(µ
σ

)
+ exp

(
µ+

σ2

2

)
Φ
(
− σ − µ

σ

)
(17)

where Φ is the c.d.f. of the standard normal distribution.

By Lemma 3.6, 3.7, we have the expectation of (10), which is the expected accept rate, equals to:

E[a(R)] = Φ
(
− 1

2
λ1l

3
2

)
+ exp(0)Φ

(
− 1

2
λ1l

3
2

)
= 2Φ

(
− 1

2
λ1l

3
2

)
(18)
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3.5 Optimal Scaling for Random Walk Metropolis

We denote the Random Walk Metropolis in discrete space as RWM-R, where R refers to flipping
R indices in each M-H step. Under the Bernoulli distribution, a site is more likely to stay at high
probability position, so if we randomly flip a site, it is more likely to decrease its probability. That is,
intuitively, the acceptance rate will decrease exponentially as the scale R increases. Consequently,
the optimal scale for RWM-R should be O(1). Though this is not a rigorous proof, the constant
scaling indicates that it will be hard to directly prove an asymptotic theorem for RWM-R. To address
this difficulty, we first restrict our target distribution to a smaller class of Bernoulli distributions
P(β)
ε ⊂ Pε, which is formally defined as follows. For a fixed ε ∈ (0, 14 ) and a fixed β > 0, define

P(β)
ε :=

{
π(N) :

1

2
− 1

2Nβ
+

ε

Nβ
< pj ∧ (1− pj) <

1

2
− ε

Nβ

}
(19)

When N is large, each pj will be very close to 1
2 . In this way, the acceptance rate will not drop too

fast when R is increased, and a non-constant R will be permitted. This enables us to prove:

Theorem 3.8. For arbitrary sequence of target distributions {π(N)}∞N=1 ⊂ P
(β)
ε , the M-H sampler

RWM-R obtains the following, if R = lN2β ,

lim
N→∞

a(R)− 2Φ

(
−1

2
λ2l

1
2

)
(20)

where Φ is the c.d.f. of the standard normal distribution and λ2 only depends on π(N).

λ22 = λ22(π(N)) =
2

N

N∑
i=1

N2β(2pi − 1) log
pi

1− pi
(21)

Corollary 3.9. The optimal scale R = lN2β is obtained when the expected acceptance rate is 0.234,
independent of the target distribution.

The rate in Corollary 3.9 is proved for arbitrary β > 0. If we let β decrease to 0, at β = 0 the optimal
scale for RWM-R is O(1) while the optimal acceptance rate is 0.234. Also, we can notice that P(β)

ε

converges to Pε when β decrease to 0 and we are able to show the optimal scale of RWM in Pε is
O(1), see details in Appendix B.3. However, this limit is not mathematically rigorous, because
Theorem 3.8 and Corollary 3.9 only hold asymptotically, such that a smaller β requires a larger N .
Hence, when β decreases to 0, N must approach infinity to satisfy the asymptotic theorem. Although
there is this minor gap in the analysis, the conclusion nevertheless aligns very well with different
target distributions in the experiment section.

4 Adaptive Algorithm

Given knowledge of the optimal acceptance rate, one can design an adaptive algorithm that automati-
cally tunes the scale of the M-H samplers. For this purpose, we use stochastic optimization Andrieu &
Thoms (2008); Robbins & Monro (1951) to adjust the scaling parameter Rt to ensure that the statistic
At = at − δ approaches 0, where at is the acceptance probability for iteration t and δ is the target
acceptance rate (0.574 for LBP and 0.234 for RWM). According to Theorem 3.1 and Theorem 3.8,
the acceptance rate is a decreasing function of the scaling Rt. Hence, we use the update rule:

Rt+1 ← Rt + ηtAt (22)

with step size ηt = 1. We follow common practice and adapt the tunable MCMC parameters during a
warmup phase before freezing them thereafter Gelman et al. (2013). The computational cost for (22)
is ignorable comparing the total cost of a M-H step. The algorithm boxes for ALBP and ARWM are
given in Appendix C. More advanced implementations are possible, but it is out of the focus in the
paper. We observe below that this simple approach is able to maintain the sampler robustly near the
optimal acceptance rate.
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5 Related Work

Informed proposals for Metropolis-Hastings (M-H) algorithms have been extensively studied for
continuous spaces (Robert & Casella, 2013). The most famous algorithms are the Metropolis-adjusted
Langevin algorithm (MALA) (Rossky et al., 1978) and Hamiltonian Monte Carlo (HMC) (Neal
et al., 2011). MALA, HMC, and their variants (Girolami & Calderhead, 2011; Hoffman et al., 2014;
Welling & Teh, 2011; Titsias & Dellaportas, 2019; Hirt et al., 2021; Hoffman et al., 2021; Hird et al.,
2020; Livingstone & Zanella, 2019) use the gradient of the target distribution to guide the proposal
distribution toward high probability regions, which brings substantial improvements in sampling
efficiency compared to uninformed methods, such as random walk Metropolis (RWM) (Metropolis
et al., 1953).

Informed proposals have also demonstrated recent success in discrete spaces. Zanella (2020) first
gives a formal definition of the pointwise informed proposal (PIP) for discrete spaces, then proves
that locally balanced proposals (LBP), using a family of locally balanced functions as the weight
function in PIP, are asymptotically optimal for PIP. Following this work, Power & Goldman (2019)
extended the framework to Markov jump processes and introduced non-reversible heuristics to
accelerate sampling. Sansone (2021) parameterize the locally balanced function and tune it by
minimizing a mutual information. Grathwohl et al. (2021) give a more scalable version of LBP for
differentiable target distributions by estimating the probability change through the gradient. Despite
strong empirical results, the LBP method of Zanella (2020) only flips one bit per M-H step, since
PIP has to restrict the proposal distribution to a small neighborhood, e.g. a 1-Hamming ball, due
to its computational cost. Sun et al. (2021) generalize LBP to flip multiple bits in a single M-H
step, gaining significant improvement in sampling efficiency. However, the scaling of the proposal
distribution in Sun et al. (2021) was manually tuned and the optimal scaling problem was left open.

For continuous spaces, the optimal scaling problem for informed proposals has been well studied.
A significant literature has already shown that the scale can be tuned with respect to the optimal
acceptance rate (Roberts & Rosenthal, 2001), e.g. 0.234 for RWM (Gelman et al., 1997), 0.574 for
MALA Roberts & Rosenthal (1998), 0.651 for HMC Beskos et al. (2013), and 0.574 for Barker
(Vogrinc et al., 2022), by decreasing the scale so that the Markov chain converges to a diffusion
process. However, such a technique is not directly applicable to LBP given its discrete nature.
Roberts (1998) make an initial attempt on discrete space, however it assumes all dimensions satisfy
independent, identical Bernoulli distribution. In this work, we have established for the first time the
optimal scale for LBP and RWM in discrete spaces.

6 Experiments

The effectiveness of LBP has been extensively demonstrated in previous work, e.g. Zanella (2020);
Grathwohl et al. (2021); Sun et al. (2021), in comparison to other M-H samplers for discrete spaces,
such as RWM, Gibbs sampling, the Hamming Ball sampler (Titsias & Yau, 2017), and continuous
relaxation based methods Zhang et al. (2012); Pakman & Paninski (2013); Nishimura et al. (2017);
Han et al. (2020). Therefore, we focus on simulating LBP-R, with weight function g(t) = t

t+1 , and
RWM-R to validate our theoretical findings. More experiments, including different weight functions
and comparison between "with" and "without" replacement versions of LBP are given in Appendix D.

Throughout the experiment section, we will use the gradient approximation (Grathwohl et al.,
2021). That is to say, we estimate the change in probability of flipping index i is estimated by:
d̃xi = exp((1 − 2xi)(∇ log π(x))i) For the Bernoulli distribution, this is still exact and does not
hinder the justification of the theoretical results. For more complex models, this approximation makes
the algorithms significantly more efficient. In particular, the gradient approximation only requires
two calls of the probability function and two calls of the gradient function. Consequently, LBP with
gradient approximation will take about twice time per update compared to RWM. In our experiments,
we observe that LBP and GWG takes 1.2 ± 0.2 and 1.1 ± 0.1 more time per update, respectively,
than RWM, across all target distributions. We therefore omit reporting the detailed run time for each
method.
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6.1 Sampling from different target distributions

We consider four target distributions: the Bernoulli distribution, the Ising model, the factorial hidden
Markov model (FHMM), and the restricted Boltzmann machine (RBM). For each model, we consider
three configurations: C1, C2, and C3 for smooth, moderate, and sharp target distributions. To obtain
performance curves, we first simulate LBP-1 and RWM-1 for an initial acceptance rate amax. Then,
we adopt amax − 0.02, ..., amax − 0.02k, ... as a target acceptance rate. For each rate, we use the
adaptive sampler to obtain an estimated scale R, with which we simulate 100 chains and calculate the
final real acceptance rate and efficiency. In this way, we collect abundant data points to characterize
the relationship between acceptance rate and efficiency to facilitate the following analyses.
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Figure 1: Efficiency Curves on Bernoulli
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Bernoulli Distribution. We validate our theoretical results on Bernoulli distribution. The probability
mass function is given in (1). For each configuration, we simulate on domains with three dimen-
sionalities: N = 100, 800, 6400. The scatter plot for N = 800 is reported in Figure 1. We also
estimate λ in (7) and (21) and plot the theoretical efficiency curve in (5) and (20). From Figure 1, we
can see that the simulation results align well with the theoretically predicted curves, and the optimal
efficiencies were achieved at 0.574 for LBP and 0.234 for RWM for all configurations.

Ising Model. The Ising model (Ising, 1924) is a classical model in physics defined on a p× p square
lattice graph (Vp, Ep) (details in Appendix D.2). For each configuration, we simulate on three sizes
p = 20, 50, 100. We report the results for p = 50 in Figure 2. For LBP, the optimal efficiencies are
achieved at around 0.5, which is slightly less than 0.574, although these values are close. Thus we
can say that the asymptotically optimal acceptance rate for LBP still applies to the Ising model. For
RWM, 0.234 perfectly matches the acceptance rate where the optimal efficiencies are obtained.

Factorial Hidden Markov Model. The FHMM (Ghahramani & Jordan, 1995) uses latent variables
x ∈ X = {0, 1}L×K to characterize time series data y ∈ RL (details in Appendix D.3). Given y, we
sample the hidden variables x from the posterior π(x) = p(x|y). For each configuration, we simulate
in three sizes L = 200, 1000, 4000. We report the results for L = 1000 in Figure 3. One can observe
that these results match the theoretical predictions very well.
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Figure 3: Efficiency Curves on FHMM
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Figure 4: Efficiency Curves on RBM

Restricted Boltzmann Machine. A RBM (Smolensky, 1986) is a bipartite latent-variable model
that defines a distribution over binary data x ∈ {0, 1}N and latent data z ∈ {0, 1}h (details in
Appendix D.4). We train an RBM on the MNIST dataset using contrastive divergence (Hinton, 2002)
and sample observable variables x. We report the results in Figure 4. For LBP, although RBM is
much more complex than a product distribution, its efficiency versus acceptance rate curves still
match the theoretical predictions very well. For RWM, even using R = 1 will result in acceptance
rates less than 0.234 for all configurations. Although we cannot check what the optimal value is, we
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Figure 5: Optimal Scaling R and Efficiency Ratio with respect to model dimension N

still observe that efficiency is an increasing function of the acceptance rate when the acceptance rate
is less than 0.234, as predicted by the theory.

Optimal Scaling and Efficiency. We examine how optimal scaling R for LBP, RWM and their
relative efficiency ratio grow w.r.t. the model dimension N . In figure 5, we can see that both the
optimal scaling and efficiency ratio are linear in log-log plot and the slopes are close to 2

3 across
Bernoulli, Ising, and FHMM. The results matches the theories that the optimal scaling R = O(N

2
3 )

for LBP, R = O(1) for RWM, and the relative efficiency ratio LBP over RWM is O(N
2
3 ).

Table 1: Performance of the Samplers on Various Distributions

Size Bernoulli Ising FHMM RBM

Sampler EJD ESS Time EJD ESS Time EJD ESS Time EJD ESS Time

RWM-1 0.65 10.02 15.44 0.64 12.14 74.28 0.79 7.26 58.03 0.17 10.76 59.54
ARWM 1.70 18.44 14.90 1.58 19.60 77.45 4.32 13.32 60.02 0.17 11.13 61.24
GRWM 1.70 18.67 18.01 1.59 20.16 76.89 4.35 15.22 61.19 0.17 10.76 59.54
LBP-1 1.00 13.39 24.36 1.00 14.11 111.19 1.00 6.91 134.42 0.98 13.38 116.04
ALBP 78.63 622.35 28.07 96.23 821.06 124.37 242.01 129.28 487.63 26.07 25.59 144.03
GLBP 78.83 644.43 25.42 96.68 809.12 129.28 242.52 140.43 508.27 25.86 25.83 119.38

6.2 Adaptive Sampling

We have validated the theoretical findings regarding the optimal acceptance rates on various distri-
butions. In this section, we examine the performance of the adaptive sampler. In addition to the
expected jump distance (EJD), we also report the effective sample size (ESS) 2. We compare the
adaptive sampler ALBP, ARWM with their single step version LBP-1, RWM-1, and grid search
version GLBP, GRWM, where we tune the scaling R by grid search. We give the sampling results
on Bernoulli model, Ising model, FHMM, and RBM with medium size and configuration C2 in
table 1. More results are given in Appendix D. We can see that the adaptive samplers are significantly
more efficient than single step samplers, especially for LBP. Also, the adaptive samplers can robustly
achieve almost the same performance comparing to using grid search to find the optimal scaling.

6.3 Training Deep Energy Based Models

Learning an EBM is a challenge task. Given data sampled from a true distribution π, we maximize
the likelihood of the target distribution πθ(x) ∝ e−fθ(x) parameterized by θ. The gradient estimation
requires samples from the current model, which is typically obtained via MCMC. The speed of
training an EBM is determined by how fast a MCMC algorithm can obtain a good estimate of the
second expectation.

2Computed using Tensorflow Probability
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Figure 6: Samples from deep EBMs trained by ALBPs sampler.

We evaluate adaptive samplers by learning deep EBMs. Following the setting in Grathwohl et al.
(2021), we train deep EBMs parameterized by Residual Networks (He et al., 2016) on small binary
image datasets using PCD (Tieleman & Hinton, 2009) with a replay buffer (Du & Mordatch, 2019).
We compare two single step samplers and two adaptive samplers, where LBPb uses g(t) = t

t+1 as
weight function and LBPs uses g(t) =

√
t as weight function. When we allow them to run enough

iterations in PCD, they are able to train EBMs in same good quality. To measure the efficiency of
these samplers, we compare the minimum number of M-H steps needed in PCD in table 2. We can
see that adaptive samplers only need one half or even one fifth iterations compare to single step
samplers. We also present long-run samples from our trained models via ALBPs in Figure 6.

Table 2: Minimum M-H Steps Needed for PCD

Dataset LBPb-1 ALBPb LBPs-1 ALBPs
Static MNIST 90 20 40 15

Dynamic MNIST 100 20 40 15
Omniglot 100 60 30 5
Caltech 100 60 80 30

7 Discussion

In this paper, we have addressed the optimal scaling problem for the locally balanced proposal (LBP)
in (Sun et al., 2021). We verified, both theoretically and empirically, that the asymptotically optimal
acceptance rate for LBP is 0.574, independent of the target distribution. Moreover, knowledge of
the optimal acceptance rate allows one to adaptively tune the neighborhood size for a proposal
distribution in a discrete space. We verified the theoretical findings on a diverse set of distributions,
and demonstrated that adaptive LBP can improve sampling efficiency for learning deep EBMs.

We believe there is considerable room for future work that builds on these results. For theoretical
investigation, the theory established under a strong assumption that the target distribution is a product
distribution, despite the results applies very well to more complicated distributions. We believe the
results still hold under a weaker assumption that the target distribution has no phase transition. We
also believe it is possible to design a HMC style sampler for discrete spaces in the framework of
Sun et al. (2021) by using LBP as a block for the auxiliary path. For empirical investigation, many
real-world problems involve probability models of discrete structured data, such as syntax trees for
natural language processing (Tai et al., 2015), program synthesis (Dai et al., 2020), and graphical
models for molecules (Gilmer et al., 2017). Efficient discrete samplers should be able to accelerate
both learning and inference with such models.
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A Complete Proof

A.1 A concentration of W (x, u)

Lemma A.1. Define W = Ex,u[W (x, u)]. We have:

P(|W (x, u)−W | > N
1
2 t) ≤ 2e−C2t

2

(23)

where C2 is an absolute constant that only depends on the scalar ε in (2).

Proof. Define a martingale Mn, n = 0, 1, ..., N + R. We let M0 = 0. When n ≤ N , it has
independent increment

Mn =

n∑
i=1

wi(x)− E[wi(x)], n = 1, ..., N (24)

For n > N , it is defined as

MN+r = MN+r−1 − wur (x) + E[wur (x)|M1, ...,MN+r−1] (25)

= MN+r−1 − wur (x) +

∑
i/∈u1:r−1

w2
i (x)∑

i/∈u1:r−1
wi(x)

(26)

where i /∈ u1:r−1 means i 6= uj for j = 1, ..., r− 1. Since pi are controlled by ε in (2), we can find a
uniform bound

1

4C1
= 2 sup

ε<p<1−ε
g(

1− p
p

) (27)

For 1 ≤ n ≤ N , we have

|Mn −Mn−1| = |wi(x)− E[wi(x)]| ≤ 2 max
x,u
|wi(x)| ≤ 1

4C1
(28)

For 1 ≤ r ≤ R, we have

|MN+r −MN+r−1| =

∣∣∣∣∣−wur (xur ) +

∑
i 6=u1:r−1

w2
i (xi)∑

i 6=u1:r−1
wi(xi)

∣∣∣∣∣ ≤ 1

4C1
(29)

Hence, we can apply the Azuma-Hoeffding inequality:

P(|W (x, u)−W | > tN
1
2 ) = P(|Mn −M0| > tN

1
2 ) ≤ 2e

−t2N
2 1
4C1

(N+R)
= 2e−C1t

2

. (30)

Thus we prove the lemma.

The lemma indicates with high probability, for arbitrary δ > 0

W (x, u)−W = o(N
1
2+δ) (31)

One observation of the proof is that, the concentration holds for arbitrary 0 ≤ R ≤ N . For example,
when R = N , W (x, u) ≡W ≡ 0, the concentration is still valid.

A.2 Lemma 3.3

Proof. Using Taylor’s series, we have

log(1 +

R∑
i=r

wui(x)/W (x, u)) =

∑R
i=r wui(x)

W (x, u)
− 1

2
(

∑R
i=r wui(x)

W (x, u)
)2 +O(

R3

N3
) (32)

log(1 +

r∑
i=1

wui(y)/W (x, u)) =

∑r
i=1 wui(y)

W (x, u)
− 1

2
(

∑r
i=1 wui(y)

W (x, u)
)2 +O(

R3

N3
) (33)
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Using Lemma A.1 and the property W (x, u) = W (y, u), with high probability, the first order term
becomes to:

R∑
r=1

∑R
i=r wui(x)

W (x, u)
−
∑r
i=1 wui(y)

W (x, u)
=

R∑
r=1

(R− r + 1)wui(x)− rwui(y)

W (x, u)
(34)

=

R∑
r=1

(R− r + 1)wui(x)− rwui(y)

W
+O(

R2

N
3
2−δ

) (35)

Similarly, with high probability, the second order term becomes to:

R∑
r=1

(

∑R
i=r wui(x)

W (x, u)
)2 − (

∑r
i=1 wui(y)

W (x, u)
)2 (36)

=
1

W (x, u)2

R∑
r=r

( R∑
i,j=r

wui(x)wuj (x)−
r∑

i,j=1

wui(y)wuj (y)
)

(37)

=
1

W (x, u)2

R∑
i=1

R∑
j=1

min{i, j}wui(x)wuj (x)− (R−max{i, j}+ 1)wui(y)wuj (y) (38)

=
1

W 2

R∑
i=1

R∑
j=1

min{i, j}wui(x)wuj (x)− (R−max{i, j}+ 1)wui(y)wuj (y) + o(
R3

N
5
2−δ

) (39)

Since R = lN
2
3 , denote i ∧ j = min{i, j}, i ∨ j = max{i, j}, with high probability, we have

R∑
r=1

log
1 +

∑R
i=r wui(xui)/W (x, u)

1 +
∑r
i=1 wui(yui)/W (x, u)

(40)

=
1

W

R∑
r=1

(R− r + 1)wui(x)− rwui(y) + o(N
1
12−δ)

− 1

2W 2

R∑
i=1

R∑
j=1

i ∧ jwui(x)wuj (x)− (R− i ∨ j + 1)wui(y)wuj (y) (41)

Select 0 < δ < 1
12 , and the corresponding t = Nδ , we have, for large enough N , the above equation

does not hold with probability exponentially small, and the term o(N
1
12−δ) can be ignored. Hence

we prove the weak convergence.

A.3 Proof for Lemma 3.4

Proof. The distribution p(ur|u1:r−1) can be approximated using the following tricks. First, using
lemma A.1, with high probability, we have:

P(ur = i|u1:r−1) = Ex/∈u1:r

[
P(xi = 1)wi(1)

W (x−i, xi = 1, u1:r−1)
+

P(xi = 0)wi(0)

W (x−i, xi = 0, u1:r−1)

]
(42)

=
piwi(1) + (1− pi)wi(0)

W
+O(N−

3
2 ) (43)

Derive the similar result for P(ur = j|u1:r−1). Since we have R = lN
3
2 , for arbitrary 1 ≤ r ≤ R,

we have W has the same order as N . Using the property of locally balanced function, where
piwi(1) = (1− pi)wi(0), we have

P(u1 = i)

P(u1 = j)
=
piwi(1)

pjwj(1)
+O(N−

5
2 ) (44)
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Then, we use the identity:

1 =

N∑
i=1

P(u1 = i) (45)

=

N∑
j=1

(
piwi(1)

pjwj(1)
+O(N−

5
2 )

)
P(u1 = j) (46)

=

(∑N
i=1 piwi(1)

pjwj(1)
+O(N−

3
2 )

)
P(u1 = j) (47)

hence, we have for the first step u1:

P(u1 = j) =
pjwj(1)∑N
i=1 piwi(1)

+O(N−
5
2 ) (48)

Recursively use this trick, for 1 ≤ r ≤ R = lN
2
3 we have:

P(ur = j|u1:r−1) =
pjwj(1)1{j /∈u1:r−1}∑N
i=1 piwi(1)1{i/∈u1:r−1}

+O(N−
5
2 ) (49)

Next, we calculate the conditional probability for x. To simplify the notation, we denote P(xj =
1|u, ur = j, xu1:j−1

) to represented index j is selected at step ur, and not been selected in all previous
steps u1, ..., ur−1. Also, we denote

W (x, u, s, t) = W (x, u) +

t∑
k=s

wuk(x) (50)

In this way, the conditional probability for x can be written as

P(xj = 1|u, ur = j, xu1:j−1
) (51)

=E[
πj(1)

∏r−1
l=1 (1− wj(1)

W (x−j ,xj=1,u,l,R) )
wj(1)

W (x−j ,xj=1,u,r,R)∑1
v=0 πj(v)

∏r−1
l=1 (1− wj(1)

W (x−j ,xj=v,u,l,R) )
wj(1)

W (x−j ,xj=v,u,r,R)

|u, ur = j, xu1:j−1 ] (52)

=E[

∏r−1
l=1 (1− wj(1)

W (x−j ,xj=1,u,l,R) )
1

W (x−j ,xj=1,u,r,R)∑1
v=0

∏r−1
l=1 (1− wj(1)

W (x−j ,xj=v,u,l,R) )
1

W (x−j ,xj=v,u,r,R)

|u, ur = j, xu1:j−1
] (53)

Since R = lN
2
3 , according to lemma A.1, with high probability we have:

wj(1)

W (x−j , xj = v, u, l, R)
=

wj(1)

W +O(N
1
2 ) +O(R)

=
wj(1)

W
+O(N−

4
3 ) (54)

Using this approximation, we have:

P(xj = 1|u, ur = j, xu1:j−1) (55)

=E[

∏r−1
l=1 (1− wj(1)

W +O(N−
4
3 ))( 1

W +O(N−
4
3 ))∑1

v=0

∏r−1
l=1 (1− wj(v)

W +O(N−
4
3 ))( 1

W +O(N−
4
3 ))
|u, ur = j, xu1:j−1

] (56)

=E[

∏r−1
l=1 (1− wj(1)

W +O(N−
4
3 ))∑1

v=0

∏r−1
l=1 (1− wj(v)

W +O(N−
4
3 ))

(1 +O(N−
2
3 ))|u, ur = j, xu1:j−1

] (57)

=E[
1− (r − 1)

wj(1)
W + (r − 1)O(N−

4
3 )

(1− (r − 1)
wj(0)
W ) + (1− (r − 1)

wj(1)
W ) + (r − 1)O(N−

4
3 )
|u, ur = j, xu1:j−1

] (58)

=E[
1− (r − 1)

wj(1)
W

(1− (r − 1)
wj(0)
W ) + (1− (r − 1)

wj(1)
W )

+ (r − 1)O(N−
4
3 )|u, ur = j, xu1:j−1 ] (59)

=
1

2
+ (r − 1)

wj(0)− wj(1)

4W
+ (r − 1)O(N−

4
3 ) (60)

Thus we prove the lemma.
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A.4 A Property for the conditional distribution of u

The following result shows that marginal distribution for u1 is a good approximation of the conditional
distribution.

Proposition A.2. For N large enough, the conditional distribution for ur = j given u1:r−1 can be
approximated by the marginal distribution of u1

p(ur = j|u1:r−1, j /∈ u1:r−1) (61)

=Eu1:r−1

[ pjwj(1)∑
i/∈u1:r−1

piwi(1)

]
+O(N−

5
2 ) (62)

=Eu1:r−1

[ pjwj(1)∑N
i=1 piwi(1)

+
pjwj(1)

∑N
i=1 piwi(1)(1− 1{i/∈u1:r−1})

(
∑
i/∈u1:r−1

piwi(1))(
∑N
i=1 piwi(1))

]
+O(N−

5
2 ) (63)

=p(u1 = j) +O(
r

N2
) (64)

A.5 Proof for Lemma 3.5

Proof. We first calculate its expectation using the conditional distribution derived in lemma 3.4. To
simplify the notation, we denote δw(i) = wui(0)− wui(1) for i = 1, ..., R and

S(i, j, k, l) = i ∧ jwui(k)wuj (l)− (R− i ∨ j + 1)wui(1− k)wuj (1− l) (65)

P (i, k) =
1

2
− (−1)k(i− 1)

δw(i)

4W
+ (i− 1)O(N−

4
3 ) (66)

for i, j = 1, ..., R, and k, l = 0, 1. Then we have

− 1

2W 2

R∑
i=1

R∑
j=1

[i ∧ jwui(xui)wuj (xuj )− (R− i ∨ j + 1)wui(yui)wuj (yuj )|u] (67)

=− 1

2W 2

R∑
i,j=1

1∑
k=0

1∑
l=0

S(i, j, k, l)P (i, k)P (j, l) (68)

=− 1

2W 2

R∑
i,j=1

(R− (i+ j) + 1)(wui(0) + wui(1))(wuj (0) + wuj (1)) +O(
R2

N
) (69)

=− 1

2W 2

R∑
i,j=1

(R− (i+ j) + 1)(wui(0) + wui(1))(wuj (0) + wuj (1)) +O(
R4

N3
) (70)

The remaining expectation is with respect to u. From proposition A.2, we know that the conditional
expectation of ui can be estimated via the marginal distribution of u1. In fact, when R = lN

2
3 , we

have:

E[wur (0) + wur (1)|u1:r−1] (71)

=E[

N∑
j=1

(wj(1) + wj(0))(
pjwj(1)∑N
i=1 piwi(1)

+O(
R

N2
)|u1:r−1] (72)

=E[wu1
(0) + wu1

(1)] +O(N−
4
3 ) (73)

and similarly, we have:

E[(wur (0) + wur (1))2|u1:r−1] = E[(wu1
(0) + wu1

(1))2] +O(N−
4
3 ) (74)
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Using these properties, we have

E[

R∑
i,j=1

(R− (i+ j) + 1)(wui(0) + wui(1))(wuj (0) + wuj (1))] (75)

=E[E[· · ·E[2

R∑
i=1

R∑
j>i

(R− (i+ j) + 1)(wui(0) + wui(1))(wuj (0) + wuj (1))

+

R∑
r=1

(R− 2r + 1)(wur (0) + wur (1))2|u1:R−1] · · · |u1]] (76)

=E[2

R∑
i=1

R∑
j>i

(R− (i+ j) + 1)(wu1
(0) + wu1

(1))(wu1
(0) + wu1

(1))] +O(N
2
3 )

+ E[

R∑
r=1

(R− 2r + 1)(wu1
(0) + wu1

(1))2] +O(1) (77)

=(wu1(0) + wu1(1))2
N∑

i,j=1

(R− (i+ j) + 1) +O(N
2
3 ) (78)

=O(N
2
3 ) (79)

Hence, we prove that

E[− 1

2W 2

R∑
i=1

R∑
j=1

[i∧ jwui(xui)wuj (xuj )− (R− i∨ j + 1)wui(yui)wuj (yuj )] = O(N−
4
3 ) (80)

The expectation of the B (12) is small. To show it is save to ignore, we will prove the concentration
property. Consider a function of x and u:

F (x, u) = −1

2

1

W 2

R∑
i=1

R∑
j=1

[i ∧ jwui(xui)wuj (xuj )− (R− i ∨ j + 1)wui(yui)wuj (yuj ) (81)

where y is obtained by flipping indices u of x. For changing x, we have:

|F (x1, ..., xj , ..., xN , u1, ..., uR)− F (x1, ..., x
′
j , ..., xN , u1, ..., uR)| ≤ cj (82)

where cj = 0 if j /∈ u or cj = O(R
2

N2 ) if there exists r and ur = j. For chaning u, we have

|F (x1, ..., xN , u1, ..., ui, ...uR)− F (x1, ..., xN , u1, ..., u
′
i, ..., uR)| ≤ di (83)

where di = O(R
2

N2 ) for i = 1, ..., R. By McDiarmid’s inequality, we have:

P(|F (x, u)− E[F (x, u)] ≥ t R
5
2

N
7
4

) ≤ 2 exp(− 2t2R5/N
7
2∑N

j=1 c
2
j +

∑R
i=1 d

2
i

) . exp(−2t2N
1
2 ) (84)

Hence, F (x, u) will concentrate to its expectation at scale O(R
5
2 /N

7
4 ). Since R = lN

2
3 , with

probability larger than 1−O(exp(−N 1
2 )), B = O(N−

1
12 ).

A.6 Lemma 3.6

Proof. To show that A weakly converges to a normal distribution, we use martingale central limit
theorem. Define a martingale Mn, for n = 0, 1, ..., 2R. When n ≤ R, we let the process Mn = 0
and the filter Fn as the σ-algebra determined by u1, ..., un. For R+ 1 ≤ R+ n ≤ 2R, define

MR+n = MR+n−1 +
1

W

(
(R− r + 1)wun(xn)− rwun(1− xun)

− E[(R− r + 1)wun(xn)− rwun(1− xun)]
)

(85)
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We first estimate the mean of the increment using the conditional probability derived in lemma 3.4. If
n ≤ R, the mean is obviously 0, else

E[
(R− r + 1)wur (xur )− rwur (yur )

W
|ur = j] (86)

=
(R− r + 1)wj(1)− rwj(0)

W
(
1

2
+ r

wj(0)− wj(1)

W
+O(

R

N
3
2

+
R2

N2
)) (87)

+
(R− r + 1)wj(0)− rwj(1)

W
(
1

2
− rwj(0)− wj(1)

W
+O(

R

N
3
2

+
R2

N2
)) (88)

=
1

2

R− 2r + 1

W
(wj(1) + wj(0))− r(R+ 1)

4W 2
(wj(0)− wj(1))2 +O(

R2

N
5
2

+
R3

N3
) (89)

Then we estimate the variance of Mn −Mn−1. We start with estimating the 2nd moment.

E[(
(R− r + 1)wur (xur )− rwur (yur )

W
)2|ur = j] (90)

=(
(R− r + 1)wj(1)− rwj(0)

W
)2(

1

2
+ r

wj(0)− wj(1)

W
) +O(

R

N
3
2

+
R2

N2
)) (91)

+
((R− r + 1)wj(0)− rwj(1)

W
)2(

1

2
− rwj(0)− wj(1)

W
) +O(

R

N
3
2

+
R2

N2
)) (92)

=
1

2
((R− r + 1)2 + r2)

w2
j (0) + w2

j (1)

W 2
− 2r(R− r + 1)

wj(0)wj(1)

W 2
+O(

R3

N
7
2

+
R4

N4
) (93)

Then, we are able to calculate the variance:

var[
(R− r + 1)wur (xur )− rwur (yur )

W
|ur = j] (94)

=E[(
(R− r + 1)wur (xur )− rwur (yur )

W
)2|ur = j]

− E2[
(R− r + 1)wur (xur )− rwur (yur )

W
|ur = j] (95)

=
(R+ 1)2

4

w2
j (0) + w2

j (1)

W 2
− (R+ 1)2

2

wj(0)wj(1)

W 2
+O(

R2

N
5
2

+
R3

N3
) (96)

=
(R+ 1)2

4W 2
(wj(0)− wj(1))2 +O(

R2

N
5
2

+
R3

N3
) (97)

We calculate the value of its mean µ and variance σ2.

µ = E[

R∑
r=1

(R− r + 1)wur (xur )− rwur (yur )
W

|u] (98)

=

R∑
r=1

1

2

R− 2r + 1

W
(wur (1) + wur (0))− r(R+ 1)

4W 2
(wur (0)− wur (1))2 (99)

σ2 =

R∑
r=1

var[
(R− r + 1)wur (xur )− rwur (yur )

W
|u] (100)

=

R∑
r=1

(R+ 1)2

4W 2
(wur (0)− wur (1))2 (101)
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Define µ1 = E[wu1(1) + wu1(0)]. For the first part in µ, using proposition A.2, we have

E[

R∑
r=1

R− 2r + 1

W
(wur (1) + wur (0))] (102)

=E[

R∑
r=1

R− 2r + 1

W
µ1 +O(N−

5
3 )] (103)

=O(N−
2
3 ) (104)

Define σ2
1 = E[(wu1

(0)− wu1
(1))2], From lemma 3.4, we have

E[(wur (0)− wur (1))2] = σ2
1 +O(N−

4
3 ), ∀r = 1, ..., R (105)

for the second term in µ, we have

R∑
r=1

−r(R+ 1)

4W 2
(wur (0)− wur (1))2 = −R(R+ 1)2

8W 2
σ2
1 +O(N−

4
3 ) (106)

for the variance σ2, we have:
R∑
r=1

(R+ 1)2

4W 2
(wur (0)− wur (1))2 =

R(R+ 1)2

4W 2
σ2
1 +O(N−

4
3 ) (107)

Finally, we will decouple R with W . Specifically:

1

W 2
=

1

E2[
∑
k/∈u wk(xk)]

=
1

E2[
∑N
k=1 wk(xk)]

+O(N−
8
3 ) (108)

Combine everything together, we have

µ = − R(R+ 1)2

8E2[
∑N
k=1 wk(xk)]

σ2
1 +O(N−

2
3 ) (109)

σ2 =
R(R+ 1)2

4E2[
∑N
k=1 wk(xk)]

σ2
1 +O(N−

4
3 ) (110)

Since R = lN
2
3 , we have the sum of the conditional variance is O(1) and the reminder is o(1).

For a martingale, we need to check one more step. We know |Mn −Mn−1| = 0 for n ≤ R. For
n+R > R, we have:

|MR+n −MR+n−1| =
1

W

(
(R− r + 1)wur (x)− rwur (y)− E[(R− r + 1)wur (x)− rwur (y)]

)
(111)

= O(
R

N
) = O(N−

1
3 ) (112)

is uniformly bounded by a constant independent of N and R. We denote

λ21 =

∑N
j=1 pjwj(1)(wj(0)− wj(1))2

4E2[ 1
N

∑N
k=1 wk(xk)]

∑N
i=1 piwi(1)

(113)

Then we can rewrite:

µ = −1

2
λ21l

3 (114)

σ2 = λ21l
3 (115)

By martingale central limit theorem, we have that:

A− µ
σ
−→dist. N (0, 1) (116)
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Furthermore, we use the convergence rate in Haeusler (1988), we have:

LR,2δ ≡
2R∑
r=1

E
(
|Mr −Mr−1|2+2δ

)
= O(

R3+2δ

N2+2δ
) (117)

MR,2δ ≡ E[|
2R∑
r=1

E[(Mr −Mr−1)2|Fr−1]− 1|1+δ] = O(
R4+4δ

N4+4δ
) (118)

Then we have the probability

|P(
A− µ
σ
≤ t)− Φ(t)| ≤ DR (119)

where

DR ≤ Cδ(LR,2δ +MR,2δ)
1

3+2δ = O(R/N
2+2δ
3+2δ ), ∀δ > 0 (120)

where Cδ is an absolute constant that only depends on δ. We select δ = 1
2 , we have:

|P(
A− µ
σ
≤ t)− Φ(t)| ≤ O(R/N

3
4 ) (121)

Since we consider R = lN
2
3 , we prove the lemma.

A.7 Proof of Lemma 3.7

Proof. Assume Z ∼ N (µ, σ2), then we have:

Emin{1, eZ} =

∫ 0

−∞
ez

1√
2πσ

e−
(z−µ)2

2σ2 dz +

∫ ∞
0

1√
2πσ

e−
(z−µ)2

2σ2 dz (122)

=

∫ 0

−∞

1√
2πσ

e−
z2−2µz+µ2−2σ2z

2σ2 dz +

∫ ∞
−µ

1√
2πσ

e−
z2

2σ2 dz (123)

= exp(µ+
σ2

2
)

∫ 0

−∞

1√
2πσ

e−
(z−(µ+σ2))2

2σ2 dz +

∫ ∞
−µ

1√
2πσ

e−
z2

2σ2 dz (124)

= exp(µ+
σ2

2
)

∫ −µ−σ2

−∞

1√
2πσ

e−
z2

2σ2 dz +

∫ µ

−∞

1√
2πσ

e−
z2

2σ2 dz (125)

= exp(µ+
σ2

2
)Φ(−µ

σ
− σ) + Φ(

µ

σ
) (126)

Specially, when µ = − 1
2σ

2, we have:

Emin{1, eZ} = 2Φ(−1

2
σ) (127)

A.8 Proof for Theorem 3.8

Proof. In RWM-R, the proposal distribution is uniform, hence we only need to consider the probabil-
ity ratio in the acceptance rate. Given current state x and the picked indices u, the proposed state y is

22



obtained by flipping indices u of x. The acceptance rate is:

A(x, y, u) = 1 ∧ π(y)

π(x)
(128)

= 1 ∧
R∏
r=1

πur (y)

πur (x)
(129)

= 1 ∧
R∏
r=1

p
yur
ur (1− pur )1−yur
p
xur
ur (1− pur )1−xur

(130)

= 1 ∧
R∏
r=1

p
1−2xur
ur (1− pur )2xur−1 (131)

= 1 ∧ exp(

R∑
r=1

(1− 2xur ) log
pur

1− pur
) (132)

Define the martingale Mn, n = 1, ..., 2R. For r = 1, ..., R, we have Mr = 0 and the filtration Fr is
determined by the σ-algebra of u1, ..., uR. For R+ 1 ≤ R+ n ≤ 2R, we have:

MR+n = MR+n−1 + (1− 2xun) log
pun

1− pun
− E[(1− 2xun) log

pun
1− pun

] (133)

Hence, for n ≤ R, the increment is 0. For n+R > R, denote the mean of the increment is :

E[(1− 2xun) log
pun

1− pun
] = (1− 2pun) log

pun
1− pun

(134)

the variance of the increment is:

E[(MR+j −MR+j−1)2|u, x1:j−1] (135)

=E[((1− 2xun) log
pun

1− pun
− E[(1− 2xun) log

pun
1− pun

])2] (136)

=E[((1− 2xun) log
pun

1− pun
)2]− E2[(1− 2xun) log

pun
1− pun

] (137)

=(log
pun

1− pun
)2 − (1− 2pun)2(log

pun
1− pun

)2 (138)

=4pj(1− pun)(log
pun

1− pun
)2 (139)

When N is large, we have pun − 1
2 = O(N−β), hence

4pun(1− pun)(log
pun

1− pun
)2 (140)

=4pun(1− pun) log(1 +
2pun − 1

pun
) log(

pun
1− pun

) (141)

=4(
1

2
+O(N−β))(1− pun)(

2pun − 1

1− pun
+O(N−2β)) log(

pun
1− pun

) (142)

=2(2pun − 1) log(
pun

1− pun
)(1 +O(N−β)) (143)

is negative twice of the corresponding mean. Since the indices u are uniformly picked, the conditional
distribution of ur is:

P(ur = j|u1:r−1) =
1{j /∈u1:r−1}∑N
i=1 1{i/∈u1:r−1}

=
1

N
+O(

R

N2
) (144)
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Hence, we have the mean is

µ = E[

R∑
r=1

(1− 2xun) log
pun

1− pun
] (145)

= E[R(1− 2xu1) log
pu1

1− pu1

+O(
R2

N2
)] (146)

=
R

N2β

1

N

N∑
i=1

N2β(1− 2pi) log
pi

1− pi
+O(

R2

N2
) (147)

Similarly, we have the variance is:

σ2 = E[

R∑
r=1

2(2xun − 1) log
pun

1− pun
] =

R

N2β

2

N

N∑
i=1

N2β(2pi − 1) log
pi

1− pi
+O(

R2

N2
) (148)

When R = O(N2β), the variance is at a constant order. For a martingale, we also need to check
the increments are uniformly bounded. When n ≤ R, the increment is always 0. When R + 1 ≤
R+ n ≤ 2R, we have:

|MR+n −MR+n−1| = |(1− 2xun) log
pun

1− pun
− E[(1− 2xun) log

pun
1− pun

]| ≤ C(ε) (149)

where C(ε) is a constant only determined by ε. Hence, by martingale central limit theorem, we have
the distribution of M2R converges to a normal distribution. Denote

λ22 =
2

N

N∑
i=1

N2β(2pi − 1) log
pi

1− pi
(150)

Then we can rewrite:

µ = −1

2
λ22

R

N2β
(151)

σ2 = λ22
R

N2β
(152)

Denote Z =
∑R
r=1(1− 2xur ) log

pur
1−pur

. By martingale central limit theorem, we have

Z − µ
σ
−→dist. N (0, 1) (153)

Furthermore, using the convergence rate in Haeusler (1988), we have:

LR,2δ ≡
2R∑
r=1

E
(
|Mr −Mr−1|2+2δ

)
= O(

R

N (4+4δ)β
) (154)

MR,2δ ≡ E[|
2R∑
r=1

E[(Mr −Mr−1)2|Fr−1]− 1|1+δ] = O(
R2+2δ

N2+2δ
) (155)

Then we have the probability

|P(
A− µ
σ
≤ t)− Φ(t)| ≤ DR (156)

where
DR ≤ Cδ(LR,2δ +MR,2δ)

1
3+2δ = O(R

1
3+2δ /N

4+4δ
3+2δ ), ∀δ > 0 (157)

where Cδ is an absolute constant that only depends on δ. We select δ = 1
2 , we have:

|P(
A− µ
σ
≤ t)− Φ(t)| ≤ O(R

1
4 /N

5
4 ) (158)

Hence, the expectation w.r.t.
∑R
r=1(1− 2xur ) log

pur
1−pur

converges to the expectation w.r.t.

N (−1

2
λ22

R

N2β
, λ22

R

N2β
) (159)
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Using lemma 3.7, we have the acceptance rate converges to:

a(R) = 2Φ(−1

2
λ2
R

1
2

Nβ
) (160)

In RWM-R, the distance between the current state x and the proposed state y is always d(x, y) = R,
hence we have:

ρ(R) = Ra(R) = 2RΦ(−1

2
λ2
R

1
2

Nβ
) (161)

When R = ω(N2β), we can give a concentration property. Since the selection of ur is a martingale,
we can apply Azuma-Hoeffding inequality:

P(|M2R − µ| > tλ2R
3
4 /N

3
2β) . 2 exp(−2t2R

3
2 /N3β

RN−2β
) = 2 exp(−2t2R

1
2 /Nβ) (162)

Hence, When N is sufficiently large, with probability larger than 1 − O(exp(−2t2R
1
2 /Nβ)), we

have:
R∑
r=1

(1− 2xur ) log
pur

1− pur
= −1

2
λ22

R

N2β
+O(

tR
3
4

N
3
2β

) = −C
2
λ22

R

N2β
(163)

For C > 0 independent with N,R.

A.9 Proof for Corollary 3.9

Proof. When R = O(N2β), denote z = Rλ22/N
2β

ρ(R) = 2RΦ(−1

2
λ2
R

1
2

Nβ
) (164)

=2(N2β/R)(Rλ22/N
2β)Φ(−1

2
((Rλ22/N

2β)
1
2 ) (165)

=2(N2β/R)zΦ(−1

2
z

1
2 ) (166)

which means the optimal value of z is independent of the target distribution. As Φ is known, we
can numerically solve z = 5.673. Hence the corresponding expected acceptance rate a = 0.234,
independent with the target distribution, and the efficiency is Θ(N2β). When R = ω(N2β), with
probability 1−O(exp(−2R/Nβ)), the acceptance rate decrease exponentially fast, rendering o(1)
jump distance. For the remaining probabilityO(exp(−2R/Nβ)), assuming all proposals are accepted,
the efficiency is still bounded by:

R exp(−2R/Nβ) = o(1) (167)

Hence, optimal efficiency is achieved when R = O(N2β).
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B Discussion

B.1 Expected Jump Distance as the Metric to Tune the Scale

In this section, we want to convince the reader that the expected jump distance (EJD) is the correct
metric to evaluate the efficiency for samplers in discrete space. To simplify the derivation, we consider
the distribution

π(N)(x) =

N∏
i=1

πi(xi) =

N∏
i=1

pxi(1− p)1−xi (168)

We can notice that, compared to the target distributions considered in the main text (1), we assume
the target distribution is identical in each dimension.

Let the LBP chain, with R = lN
2
3 , being denoted as {x(1), x(2), ...}. Since all dimensions are

identical, we only need to focus on the first dimension. Denote w1 = g(π1(x1=0)
π1(x1=1) ) and w0 =

g(π1(x1=1)
π1(x1=0) ). From Lemma. A.1, we can see that:

lim
N→∞

P(u,∃uj = 1|x1 = 0)

P(u,∃uj = 1|x1 = 1)
=
w0

w1
(169)

That’s to say, the probability ratio of x1 = 0 and x1 = 1 being flipped equals to their weight ratio.
Then we compare the acceptance rate in M-H test. From the proof of the main theorem 3.1, we know
the acceptance rate is determined by the term A defined in (11)

A =
1

W

R∑
r=1

(R− r + 1)wui(xui)− rwui(yui) (170)

We can see that, when the first dimension is flipped in proposal, the difference of A is O(N−
1
3 ) for

x1 = 0 and x1 = 1. As a result, we have:

lim
N→∞

P(accept |u,∃uj = 1, x1 = 0)

P(accept |u,∃uj = 1, x1 = 1)
= 1 (171)

Now, we consider the one-dimensional process ZNt = x1(btN 1
3 c). The identical assumption implies

that, the frequency for a site, for example the first dimension, being selected is lN−
1
3 . We can easily

see that when N is large enough, ZNt converges to a jump process Zt, whose generator we denote.

Q =

[
−Q01 Q01

Q10 −Q10

]
(172)

From the derivation above, we know that

Q01

Q10
= lim
N→∞

∑
u Ex2:N

[P(u,∃uj = 1|x1 = 0)P(accept |u,∃uj = 1, x1 = 0)]∑
u Ex2:N

[P(u,∃uj = 1|x1 = 1)P(accept |u,∃uj = 1, x1 = 1)]
=
w0

w1
(173)

Since the sketch of proof above shows that the ratio is independent with the parameter l, we have the
following important decomposition

Q = λ(l)Q(p) (174)

where Q(p) is a matrix only depends on p and the locally balanced function g selected, and λ(l) is a
scalar only depends on the parameter l.

Since Q(p) only depends on the target distribution, for any test functions f(·), the inverse auto-
correlation of the jump process is proportional to λ(l). When we tune l, the coefficient λ(l) =

l · 2Φ(−λ1l
3
2 ) is the multiplication of the proposal frequency and the acceptance rate. The value

λ1 is defined in (7). As a jump process, we don’t have to analytically compute the value of λ(l), as
λ(l) is proportional to the expected jump distance (EJD). So, we can tune l by maximizing the EJD,
without having to know the formulation of the target distribution.

Remark 1: The jump process in discrete space is different from the diffusion process in continuous
space. For diffusion process, its velocity is characterized by the ESJD. But for jump process, its
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ε 0.1 0.05 0.025 0.0125

N 10 40 160 640
Table 3: When p = 0.5− ε

ε 0.01 0.005 0.0025 0.00125

N 50 100 200 400
Table 4: When p = ε

velocity is characterized by the EJD. That’s why Langevin algorithms tunes the step size via ESJD
(Roberts & Rosenthal, 1998), but our LBP tunes the path length via EJD.

Remark 2: To simplify the derivation, we assume that the target distributions have identical marginals.
For target distributions with non-identical marginal distribution, different dimensions i = 1, ..., N
can have different velocity λi(l). But the sampling process will still converge to jump process, and
we shall still use EJD to measure the efficiency.

B.2 The Choice of ε and the Optimal Acceptance Rate

The convergence of (6) does not depend on the value of ε in (2). Based on the proof above, we
can know (6) converges at the rate O(N−

1
12 ). But the convergence of the optimal acceptance rate

depends on the ε. We can first consider two extreme cases for intuition. When all pi are close to 1
2 ,

λ1 in (7) will be close to 0 and the optimal acceptance rate will be close to 1; when all pi are close to
0 or 1, λ1 in (7) will be close to∞ and the optimal acceptance rate will be close to 0. Hence, the
main purpose to use fixed ε is to give upper and lower bounds for λ1 in (7), such that the optimal
acceptance rate can converge to 0.574 as in Corollary 3.2.

Next, we discuss how does the model dimension N in (1) needed in terms of ε to make sure the
optimal convergence to 0.574. When all pi have the extreme value determined by ε, using locally
balanced function g(t) =

√
t, we can consider the following two situations:

• All |pi − 0.5| = ε→ 0. Then we have:

λ21 =

∑N
i=1

√
ε(1− ε)(

√
ε

1−ε −
√

1−ε
ε )2

4ε(1− ε)
∑N
i=1

√
ε(1− ε)

≈
∑N
i=1 0.5 · 4ε2

4 ·
∑N
i=1 0.5

= ε2 (175)

When the expected acceptance is 0.574, we need λ1l
3
2 = O(εl

3
2 ) equals to a constant, which

means l has the same order as ε−
2
3 . Since we have R = lN

2
3 ≤ N , we need ε−

2
3 = O(N

1
3 ).

As a result, we requires ε−1 = O(N
1
2 ), which basically means we need N ≥ ε−2 to have

the optimal acceptance rate converges to 0.574.
• All 0.5− |pi − 0.5| = ε→ 0. We have:

λ21 =

∑N
j=1 ε

√
1−ε
ε (
√

1−ε
ε −

√
ε

1−ε )
2

4(
√
ε(1− ε))2

∑N
i=1

√
ε(1− ε)

≈
∑N
j=1 ε

1
2 ε−1

4ε
∑N
j=1 ε

− 1
2

=
1

4
ε−2 (176)

When the expected acceptance is 0.574, we need λ1l
3
2 = O(ε−1l

3
2 ) equals to a constant,

which means l has the same order as ε
2
3 . Since we have R = lN

2
3 ≥ 1, we have l−1 =

O(N
2
3 ). As a result, we requires ε−1 = O(N−1), which basically means we need N ≥ ε−1

to have the optimal acceptance rate converges to 0.574.

So, both situations show that we need N increase with ε to make sure the optimal acceptance rate
converges. In the main text, we assume ε is a constant and it guarantees Corollary 3.2 holds.

We conduct extra numerical simulations to verify our results. To simplify the experiments, we assume
all dimensions have the same configurations: pi = p. We report the size of N needed to guarantee
that the optimal acceptance rate is 0.574 in Table 3 and Table 4.

B.3 Optimal Scale of RWM

When we assume the target distribution belongs to (2), the derivation of the optimal acceptance
rate 0.234 is no longer valid. But we can still show the optimal scale is R = O(1) by proving the
acceptance rate decreasing exponentially fast.
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In particular, assume we use R = lNβ in RWM. Then the acceptance rate can be written as:

A = min{1, A′ =
π(y)

π(x)
=

∏R
j=1 πuj (y)∏R
j=1 πuj (x)

} (177)

Consider the martingale Mj , j = 0, 1, ..., R, such that M0 = 0 and

Mj −Mj−1 = log
πuj (y)

πuj (x)
− E[log

πuj (y)

πuj (x)
|u1:j−1] = (1− 2xuj ) log

puj
1− puj

(178)

By assumption in (2), we know that

E[log
πuj (y)

πuj (x)
|u1:j−1] = E[(1− 2xuj ) log

puj
1− puj

|u1:j−1] = (1− 2puj ) log
puj

1− puj
(179)

≤ 2ε log
1− 2ε

1 + 2ε
< 0 (180)

And we have

|Mj −Mj−1| ≤ 2

∣∣∣∣(1− 2ε) log
ε

1− ε

∣∣∣∣ := K (181)

By Azuma-Hoeffding lemma, we have

P(|
R∑
j=1

log
πuj (y)

πuj (x)
− E[log

πuj (y)

πuj (x)
]| ≥ R 3

4 t) ≤ 2e
−Rfrac12t2

K2 (182)

For β > 0, R increases to infinity when N → ∞. In this case, logA′ concentrates to a value
T ≤ R · 2ε log 1−2ε

1+2ε and A′ decreases exponentially fast. Hence, the optimal scaling of RWM is
O(1).
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C Adaptive Algorithm

We give the algorithm box for ALBP:

Algorithm 2: Adaptive Locally Balanced Proposal

1: Initialize current state x(1).
2: Initialize scale R1 = 1.
3: for t=1, ..., T do
4: Initialize candidate set C = {1, .., N}.
5: R← probabilistic rounding of Rt
6: for r=1, ..., R do
7: Sample ur with P(ur = j) ∝ wj(x(t))1{j∈C}.
8: C ← C\{ur}.
9: end for

10: Obtain y by flipping indices u1, ..., uR of x(t).
11: Compute acceptance rate A = A(x(t), y, u).
12: if rand(0,1) < A then
13: x(t+1) = y
14: else
15: x(t+1) = x(t)

16: end if
17: if t < Twarmup then
18: Rt+1 ← Rt + (A− 0.574).
19: end if
20: end for

We give the algorithm box for ARWM:

Algorithm 3: Adaptive Random Walk Metropolis

1: Initialize current state x(1).
2: Initialize scale R1 = 1.
3: for t=1, ..., T do
4: Initialize candidate set C = {1, .., N}.
5: R← probabilistic rounding of Rt
6: Uniformly sample u1, ..., uR.
7: Obtain y by flipping indices u1, ..., uR of x(t).
8: Compute acceptance rate A = A(x(t), y, u).
9: if rand(0,1) < A then

10: x(t+1) = y
11: else
12: x(t+1) = x(t)

13: end if
14: if t < Twarmup then
15: Rt+1 ← Rt + (A− 0.234).
16: end if
17: end for
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D Experiment Details

We consider five samplers:

• RWM: random walk Metropolis

• GWG(
√
t): LBP with replacement, same as algorithm 1 except for skipping line 5, weight

function g(t) =
√
t

• LBP(
√
t): LBP given in algorithm 1, weight function g(t) =

√
t

• GWG( t
t+1 ): LBP with replacement, same as algorithm 1 except for skipping line 5, weight

function g(t) = t
t+1

• LBP( t
t+1 ): LBP given in algorithm 1, weight function g(t) = t

t+1

For each sampler, we first start simulating with R = 1 to get an initial acceptance rate amax.
Then we adopt amax − 0.02, amax − 0.04, ..., amax − 0.02k as the target acceptance rate, until
amax − 0.02k < 0.03. For each target acceptance rate atarget, we use our adaptive sampler to get
an estimated scaling Rtarget. Then we simulate 100 chains with scaling Rtarget to get the expected
acceptance rate, expected jump distance, effective sample size (a, d, e).

To measure the performance of the adaptive sampler, we compare three versions for each sampler
above. In particular, for sampler X we have

• X-1, represents fixed scaling R = 1 version of the sampler.
• AX, represents the adaptive version of the sampler, whose target acceptance rate is selected

as 0.234 for RWM, and 0.574 for else.
• GX, represents the grid search version of the sampler, where we always use the best results

among all simulations for different target acceptance rates we mentioned above.

D.1 Simulation on Bernoulli Model

The density function for Bernoulli distribution is:

π(N)(x) =

N∏
i=1

πi(xi) =

N∏
i=1

pxii (1− pi)1−xi (183)

We consider three configurations

• C1: pi is independently, uniformly sampled from [0.25, 0.75].
• C2: pi is independently, uniformly sampled from [0.15, 0.85].
• C3: pi is independently, uniformly sampled from [0.05, 0.95].

For each configuration, we simulate on three sizes:

• N = 100, sample Markov chain x1:10000, use x1:5000 for burn in, use x5001:10000 to estimate
expected acceptance rate, expected jump distance, effective sample size.

• N = 800, sample Markov chain x1:40000, use x1:20000 for burn in, use x20001:40000 to
estimate expected acceptance rate, expected jump distance, effective sample size.

• N = 6400, sample Markov chain x1:100000, use x1:50000 for burn in, use x50001:100000 to
estimate expected acceptance rate, expected jump distance, effective sample size.

We give the scatter plot of (a, d) and (a, r) in figure 7. And we examine the performance of our
adaptive algorithm in table 5 and table 6.

D.2 Simulation on Ising Model

Ising model is a classic model in physics defined on a p× p square lattice graph (Vp, Ep). That’s to
say, the nodes are indexed by {1, ..., p}2 and an edge ((i, j), (k, l)) exists if and only if one of the
following condition holds:
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Figure 7: Simulation Results on Bernoulli Model

• i = k, j = l + 1

• i = k, j = l − 1

• i = k + 1, j = l

• i = k − 1, j = l

The state space is X = {−1, 1}Vp and the target distribution is defined as:

π(x) ∝ exp
(∑
i∈Vp

αixi − λ
∑

(i,j)∈Ep

xixj

)
(184)

Following Zanella (2020), we consider three configurations

• C1: αv is independently and uniformly sampled from (−0.2, 0.4) if (v1− p
2 )2+(v2− p

2 )2 ≤
p2

2 , else αv is independently and uniformly sampled from (−0.4, 0.2); λ = 0.1.

• C2: αv is independently and uniformly sampled from (−0.3, 0.6) if (v1− p
2 )2+(v2− p

2 )2 ≤
p2

2 , else αv is independently and uniformly sampled from (−0.6, 0.3); λ = 0.15.

• C3: αv is independently and uniformly sampled from (−0.4, 0.8) if (v1− p
2 )2+(v2− p

2 )2 ≤
p2

2 , else αv is independently and uniformly sampled from (−0.8, 0.4); λ = 0.2.

For each configuration, we simulate on three sizes:

31



Size N = 100 N = 800 N = 6400

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 0.75 0.66 0.56 0.75 0.65 0.55 0.75 0.65 0.55
ARWM 3.85 1.81 0.96 3.63 1.70 0.89 3.69 1.74 0.92
GRWM 3.84 1.83 0.96 3.61 1.70 0.90 3.69 1.75 0.93

GWG( t
t+1

)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AGWG( t

t+1
) 13.60 10.14 8.26 41.45 30.23 24.39 123.08 89.48 72.56

GGWG( t
t+1

) 13.84 10.30 8.31 42.50 30.88 24.74 127.55 91.68 73.33
LBP( t

t+1
)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP( t
t+1

) 24.05 19.16 15.96 100.25 78.63 64.47 416.55 324.59 266.73
GLBP( t

t+1
) 24.26 19.26 15.98 100.49 78.83 64.69 416.67 324.67 266.21

GWG(
√
t)-1 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

AGWG(
√
t) 13.14 9.41 6.92 39.88 27.81 20.46 118.44 82.52 61.27

GGWG(
√
t) 13.31 9.52 7.04 40.92 28.34 20.60 122.74 84.08 61.52

LBP(
√
t)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP(
√
t) 23.40 17.88 13.59 96.96 72.39 53.28 401.94 297.95 218.09

GLBP(
√
t) 23.53 17.95 13.61 96.93 72.41 53.36 401.89 297.72 218.11

Table 5: Expected Jump Distance on Bernoulli Model

Size N = 100 N = 800 N = 6400

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 18.85 20.09 20.27 10.44 10.02 9.06 8.11 8.04 7.46
ARWM 80.86 47.95 30.49 28.54 18.44 12.97 17.97 11.25 8.66
GRWM 81.82 49.00 31.11 30.13 18.67 13.22 17.99 12.53 9.86

GWG( t
t+1

)-1 28.11 27.89 31.56 10.80 12.75 13.61 7.93 9.17 9.00
AGWG( t

t+1
) 343.74 270.00 253.53 302.65 234.94 215.58 423.86 334.06 307.75

GGWG( t
t+1

) 353.97 278.47 255.11 309.04 247.38 227.08 446.20 343.49 320.93
LBP( t

t+1
)-1 27.37 30.62 33.31 12.11 13.39 14.19 8.81 9.06 9.57

ALBP( t
t+1

) 604.07 528.66 511.27 754.69 622.35 594.59 1472.86 1247.31 1185.65
GLBP( t

t+1
) 658.24 564.55 529.03 751.22 644.43 604.47 1484.93 1259.07 1179.93

GWG(
√
t)-1 26.19 30.17 30.92 12.35 12.41 14.29 8.97 8.97 9.00

AGWG(
√
t) 335.66 254.36 205.81 284.31 206.75 175.17 406.81 303.40 261.13

GGWG(
√
t) 336.70 254.30 209.78 296.11 224.29 187.23 422.89 318.11 267.72

LBP(
√
t)-1 28.36 27.88 30.93 12.11 12.50 14.12 8.48 10.07 9.36

ALBP(
√
t) 598.66 488.24 412.74 702.91 570.50 482.58 1411.88 1135.84 935.89

GLBP(
√
t) 636.34 510.63 428.40 734.46 588.45 482.09 1417.15 1147.37 946.22

Table 6: Effective Sample Size on Bernoulli Model

• p = 20, sample Markov chain x1:10000, use x1:5000 for burn in, use x5001:10000 to estimate
expected acceptance rate, expected jump distance, effective sample size.

• p = 50, sample Markov chain x1:40000, use x1:20000 for burn in, use x20001:40000 to estimate
expected acceptance rate, expected jump distance, effective sample size.

• p = 100, sample Markov chain x1:100000, use x1:50000 for burn in, use x50001:100000 to
estimate expected acceptance rate, expected jump distance, effective sample size.

We give the scatter plot of (a, d) and (a, r) in figure 8. And we examine the performance of our
adaptive algorithm in table 8 and table 9.

32



Size N = 100 N = 800 N = 6400

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 6.26 8.85 5.15 14.45 15.44 12.48 39.10 42.70 41.07
ARWM 7.10 6.32 5.27 15.84 14.90 14.74 42.18 43.27 44.44
GRWM 7.33 6.41 5.90 13.66 18.01 14.56 43.64 44.58 42.24

GWG( t
t+1

)-1 7.63 9.17 7.45 13.61 13.13 12.73 60.10 66.24 54.25
AGWG( t

t+1
) 7.49 9.61 7.48 14.18 17.95 15.59 57.39 72.89 69.93

GGWG( t
t+1

) 9.07 9.04 8.15 16.89 20.09 10.99 70.31 68.87 63.86
LBP( t

t+1
)-1 10.60 12.68 10.35 23.58 24.36 19.74 70.11 94.35 86.53

ALBP( t
t+1

) 11.30 10.83 11.83 24.81 28.07 21.57 129.27 108.42 108.88
GLBP( t

t+1
) 10.76 11.57 10.97 30.71 25.42 19.33 92.47 100.16 100.06

GWG(
√
t)-1 10.80 11.22 7.19 17.70 26.87 19.60 58.95 59.23 61.19

AGWG(
√
t) 9.57 13.00 7.23 18.22 19.46 20.27 78.60 67.59 65.13

GGWG(
√
t) 9.44 7.36 8.64 18.83 20.72 20.11 65.64 50.45 65.91

LBP(
√
t)-1 13.18 13.82 11.71 25.62 28.37 28.94 86.08 81.86 90.00

ALBP(
√
t) 12.51 12.21 10.59 23.16 22.51 21.02 102.78 107.33 103.70

GLBP(
√
t) 14.38 13.48 10.34 23.97 30.38 21.48 120.14 100.18 117.96

Table 7: Running Time on Bernoulli Model

Size p = 20 p = 50 p = 100

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 0.77 0.65 0.54 0.77 0.64 0.52 0.76 0.63 0.51
ARWM 4.02 1.70 0.89 3.83 1.58 0.82 3.64 1.47 0.76
GRWM 4.12 1.69 0.90 3.84 1.59 0.83 3.64 1.47 0.76

GWG( t
t+1

)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AGWG( t

t+1
) 27.93 19.35 14.73 74.33 50.27 37.68 150.31 100.21 74.15

GGWG( t
t+1

) 28.39 19.64 14.96 76.33 51.44 38.31 155.29 102.49 75.47
LBP( t

t+1
)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP( t
t+1

) 43.42 30.99 23.50 141.01 96.23 69.54 338.14 219.73 152.05
GLBP( t

t+1
) 43.45 31.10 23.62 141.20 96.68 70.16 339.11 221.49 154.52

GWG(
√
t)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AGWG(
√
t) 26.96 18.09 13.29 72.04 47.25 34.30 145.43 94.41 68.09

GGWG(
√
t) 27.49 18.32 13.39 73.94 48.03 34.54 149.84 95.79 68.30

LBP(
√
t)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP(
√
t) 43.85 31.83 24.32 146.02 105.43 79.82 364.76 261.05 195.65

GLBP(
√
t) 43.73 31.76 24.33 146.21 105.38 79.78 364.84 260.81 195.67

Table 8: Expected Jump Distance on Ising Model

D.3 Simulation on FHMM

FHMM uses latent variables x ∈ X = {0, 1}L×K to characterize time series data y ∈ RL. Denote
p(x) as the prior for hidden variables x, and p(y|x) for the likelihood:

p(x) =

L∏
l=1

p(xl,1)

K∏
k=2

p(xl,k|xl,k−1) (185)

p(y|x) =

L∏
l=1

N (yl;w
Txl + b, σ2) (186)

Specifically, we have p(xl,1) = 0.1, p(xl,k = xl,k−1|xl,k−1) = 0.8 independently ∀l = 1, ..., L and
∀k = 2, ...,K. And we have all entries in W and b are independent Gaussian random variables. We
sample latent variables x and sample y ∼ p(y|x). Then we simulate our samplers to sample the latent
variables x from the posterior π(x) = p(x|y).

We consider three configurations
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Figure 8: Simulation Results on Ising Model

• C1: σ2 = 2

• C2: σ2 = 1

• C3: σ2 = 0.5

For each configuration, we simulate on three sizes:

• L = 200,K = 5, sample Markov chain x1:10000, use x1:5000 for burn in, use x5001:10000 to
estimate expected acceptance rate, expected jump distance, effective sample size.

• L = 1000,K = 5, sample Markov chain x1:40000, use x1:20000 for burn in, use x20001:40000
to estimate expected acceptance rate, expected jump distance, effective sample size.

• L = 4000,K = 5, sample Markov chain x1:100000, use x1:50000 for burn in, use
x50001:100000 to estimate expected acceptance rate, expected jump distance, effective sample
size.

We give the scatter plot of (a, d) and (a, r) in figure 9. And we examine the performance of our
adaptive algorithm in table 11 and table 12.
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Size p = 20 p = 50 p = 100

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 13.85 13.70 13.25 11.39 12.14 9.73 9.27 8.58 8.36
ARWM 51.66 27.50 17.39 35.34 19.60 12.89 22.99 13.31 9.47
GRWM 54.48 27.36 19.41 35.85 20.16 13.96 24.28 13.99 10.32

GWG( t
t+1

)-1 19.55 18.06 20.73 13.53 13.30 14.54 10.26 11.44 11.38
AGWG( t

t+1
) 362.96 250.15 205.55 611.15 429.22 340.15 755.44 533.07 419.56

GGWG( t
t+1

) 377.87 264.00 211.38 641.09 434.17 349.96 795.99 543.68 441.19
LBP( t

t+1
)-1 17.78 18.76 20.24 13.69 14.11 14.88 10.04 10.32 12.30

ALBP( t
t+1

) 551.81 394.65 330.29 1135.03 821.06 620.26 1733.51 1164.64 868.62
GLBP( t

t+1
) 575.40 416.56 328.42 1161.62 809.12 629.38 1742.19 1184.58 880.69

GWG(
√
t)-1 19.95 17.66 17.87 13.22 13.57 14.22 9.54 10.17 11.50

AGWG(
√
t) 356.57 236.55 176.42 569.23 399.21 306.83 727.25 501.14 379.41

GGWG(
√
t) 359.85 244.00 186.74 611.60 407.16 312.81 774.36 508.04 384.21

LBP(
√
t)-1 18.24 19.32 20.65 14.01 14.09 16.07 10.24 11.53 11.08

ALBP(
√
t) 562.14 413.21 329.44 1197.76 867.77 680.61 1866.85 1359.86 1078.16

GLBP(
√
t) 576.18 414.54 328.02 1223.24 877.04 695.96 1861.60 1374.12 1079.32

Table 9: Effective Sample Size on Ising Model

Size p = 20 p = 50 p = 100

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 18.78 19.73 19.64 71.79 74.28 75.45 173.58 142.63 143.42
ARWM 18.84 19.94 19.37 76.05 77.45 78.17 134.24 149.44 150.26
GRWM 19.20 20.08 19.99 76.09 76.89 76.90 134.70 149.48 150.13

GWG( t
t+1

)-1 29.54 31.07 31.78 89.62 92.75 97.31 228.38 224.22 228.92
AGWG( t

t+1
) 31.07 32.54 40.28 97.31 99.73 104.38 271.45 304.41 273.28

GGWG( t
t+1

) 31.10 32.38 32.26 96.96 99.61 104.46 271.39 267.24 273.17
LBP( t

t+1
)-1 36.40 37.61 46.76 108.31 111.19 116.87 260.65 291.16 269.27

ALBP( t
t+1

) 37.42 38.36 38.82 126.34 124.37 116.80 308.16 320.08 317.61
GLBP( t

t+1
) 37.91 39.26 39.12 124.74 129.28 125.60 309.07 310.78 316.89

GWG(
√
t)-1 29.93 30.59 31.06 115.42 120.13 121.43 216.42 237.03 240.41

AGWG(
√
t) 30.17 31.68 31.53 95.37 98.34 103.86 261.55 273.21 280.95

GGWG(
√
t) 30.57 31.46 31.44 121.69 125.99 127.66 259.48 304.54 280.64

LBP(
√
t)-1 36.99 37.42 36.98 106.82 110.86 117.53 258.04 275.03 283.44

ALBP(
√
t) 37.62 38.84 37.58 125.48 128.87 121.34 303.28 306.60 312.44

GLBP(
√
t) 36.87 38.96 37.87 125.95 130.17 174.29 403.14 305.27 339.78

Table 10: Running Time on Ising Model

D.4 Simulation on RBM

RBM is a bipartite latent-variable model, defining a distribution over binary data x ∈ {0, 1}N
and latent data z ∈ {0, 1}h. Given parameters W ∈ Rh×N , b ∈ RN , c ∈ Rh, the distribution of
observable variables x is obtained by marginalizing the latent variables z:

π(x) ∝ exp(bTx)

h∏
i=1

(1 + exp(Wix+ ci)) (187)

We train the RBM on MNIST dataset using contrastive divergence (Hinton, 2002) in three configura-
tions

• C1: h = 100

• C2: h = 400

• C3: h = 1000
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Simulation on FHMM L = 4000

Figure 9: Simulation Results on FHMM

For each configuration, we sample Markov chain x1:40000, use x1:20000 for burn in, use x20001:40000
to estimate expected acceptance rate, expected jump distance, effective sample size.

We give the scatter plot of (a, d) and (a, r) in figure 10. And we examine the performance of our
adaptive algorithm in table 14 and table 15.
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Size L = 200 L = 1000 L = 4000

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 0.83 0.79 0.74 0.83 0.79 0.73 0.83 0.80 0.74
ARWM 6.85 4.41 2.55 6.79 4.32 2.50 6.94 4.40 2.54
GRWM 6.91 4.45 2.56 6.83 4.35 2.51 6.97 4.39 2.54

GWG( t
t+1

)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
AGWG( t

t+1
) 59.96 50.53 40.05 142.24 118.18 93.44 294.85 243.23 191.70

GGWG( t
t+1

) 61.24 51.63 40.74 146.40 121.91 95.88 305.78 251.09 197.28
LBP( t

t+1
)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP( t
t+1

) 97.11 85.70 65.77 278.20 242.01 179.51 687.29 585.02 416.32
GLBP( t

t+1
) 97.47 85.78 65.97 278.59 242.52 180.60 687.74 586.70 420.53

GWG(
√
t)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AGWG(
√
t) 57.52 47.55 36.53 137.11 111.40 85.78 286.03 230.52 177.22

GGWG(
√
t) 58.83 48.53 37.21 141.15 114.24 87.45 296.62 237.35 180.79

LBP(
√
t)-1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

ALBP(
√
t) 96.64 85.77 66.91 283.12 248.95 193.99 715.20 627.85 488.14

GLBP(
√
t) 97.14 85.58 67.14 283.51 248.84 194.34 716.13 628.80 488.50

Table 11: Expected Jump Distance on FHMM

Size L = 200 L = 1000 L = 4000

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 9.83 8.98 8.78 6.33 7.26 7.01 6.82 6.14 6.09
ARWM 35.88 28.73 18.09 18.45 13.32 10.68 10.99 10.04 8.37
GRWM 39.65 29.04 19.09 19.15 15.22 11.00 12.79 10.49 8.52

GWG( t
t+1

)-1 10.78 10.43 9.96 7.13 6.91 7.22 6.50 5.82 6.69
AGWG( t

t+1
) 306.97 262.30 213.37 288.52 245.50 196.80 295.08 241.20 195.35

GGWG( t
t+1

) 320.12 273.95 217.62 303.42 257.10 205.59 312.35 257.75 210.94
LBP( t

t+1
)-1 10.70 10.26 10.58 7.25 7.25 7.05 5.97 6.34 6.76

ALBP( t
t+1

) 499.13 455.94 352.52 573.35 487.63 383.97 679.06 594.70 436.70
GLBP( t

t+1
) 508.67 456.24 356.10 572.88 508.27 393.32 702.34 600.21 451.36

GWG(
√
t)-1 10.30 10.22 11.06 6.69 7.90 7.09 6.53 6.72 6.80

AGWG(
√
t) 294.38 251.57 190.81 278.17 227.18 186.24 289.14 232.77 184.94

GGWG(
√
t) 309.79 264.26 202.46 291.43 238.06 186.76 302.98 251.14 194.88

LBP(
√
t)-1 9.86 10.52 10.82 6.98 7.24 7.68 6.05 6.59 6.52

ALBP(
√
t) 502.23 443.64 348.77 575.49 524.64 406.15 727.50 645.50 504.30

GLBP(
√
t) 508.85 444.36 362.72 578.29 520.92 408.98 724.64 651.81 515.16

Table 12: Effective Sample Size on FHMM
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Figure 10: Simulation Results on RBM

37



Size L = 200 L = 1000 L = 4000

Sampler C1 C2 C3 C1 C2 C3 C1 C2 C3

RWM-1 136.30 129.16 30.23 58.29 58.03 61.32 112.92 112.73 110.94
ARWM 139.53 138.36 29.94 60.08 60.02 58.61 120.83 119.95 120.38
GRWM 137.61 123.72 30.14 66.84 61.19 58.43 120.42 120.39 118.40

GWG( t
t+1

)-1 49.54 48.86 56.84 113.86 112.89 82.67 282.79 282.29 281.53
AGWG( t

t+1
) 48.80 64.40 68.73 119.27 124.07 88.57 315.22 315.52 313.65

GGWG( t
t+1

) 49.76 48.60 57.24 118.77 118.59 88.57 315.45 314.77 315.27
LBP( t

t+1
)-1 53.94 69.11 75.98 129.92 134.42 91.59 295.47 294.56 292.91

ALBP( t
t+1

) 43.73 57.83 64.59 92.14 129.28 93.24 315.10 327.57 308.84
GLBP( t

t+1
) 57.84 57.21 63.94 136.68 140.43 100.02 315.52 314.08 309.44

GWG(
√
t)-1 231.12 196.52 56.26 112.63 110.48 109.11 279.85 279.51 277.10

AGWG(
√
t) 209.90 218.15 55.81 113.70 119.34 114.59 964.08 314.70 314.63

GGWG(
√
t) 218.94 218.49 55.59 116.99 117.65 112.57 314.86 314.45 311.70

LBP(
√
t)-1 256.23 248.33 62.95 147.23 128.65 121.14 1069.63 945.32 292.23

ALBP(
√
t) 57.65 57.08 63.78 133.30 130.70 98.33 313.61 311.16 308.09

GLBP(
√
t) 232.46 230.29 64.57 129.31 153.27 130.77 315.30 313.04 309.27

Table 13: Running Time on FHMM

Size h = 100 h = 400 h = 1000

RWM-1 0.20 0.17 0.14
ARWM 0.19 0.17 0.14
GRWM 0.20 0.17 0.14

GWG( t
t+1 )-1 0.99 0.98 0.96

AGWG( t
t+1 ) 12.75 11.31 9.62

GGWG( t
t+1 ) 12.91 11.36 9.58

LBP( t
t+1 )-1 0.99 0.98 0.96

ALBP( t
t+1 ) 29.03 26.07 22.47

GLBP( t
t+1 ) 29.19 25.85 22.55

GWG(
√
t)-1 0.99 0.99 0.99

AGWG(
√
t) 5.74 5.50 5.04

GGWG(
√
t) 5.76 5.58 5.10

LBP(
√
t)-1 1.00 1.00 1.00

ALBP(
√
t) 11.41 10.65 9.93

GLBP(
√
t) 11.53 11.09 10.10

Table 14: Expected Jump Distance on RBM
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Size h = 100 h = 400 h = 1000

RWM-1 15.46 10.76 8.04
ARWM 15.08 11.13 8.82
GRWM 15.46 10.76 8.24

GWG( t
t+1 )-1 19.42 14.45 12.70

AGWG( t
t+1 ) 31.71 16.42 16.21

GGWG( t
t+1 ) 33.77 18.51 17.36

LBP( t
t+1 )-1 17.99 13.38 11.16

ALBP( t
t+1 ) 48.20 25.59 23.61

GLBP( t
t+1 ) 51.82 25.83 25.78

GWG(
√
t)-1 21.03 13.59 12.20

AGWG(
√
t) 21.92 13.51 15.52

GGWG(
√
t) 24.97 16.58 15.81

LBP(
√
t)-1 19.72 12.02 10.77

ALBP(
√
t) 33.43 16.95 17.28

GLBP(
√
t) 32.90 19.51 18.74

Table 15: Effective Sample Size on RBM

Size h = 100 h = 400 h = 1000

RWM-1 67.37 59.54 43.48
ARWM 69.71 61.24 42.28
GRWM 67.37 59.54 44.52

GWG( t
t+1 )-1 92.75 93.28 69.18

AGWG( t
t+1 ) 99.34 95.26 74.14

GGWG( t
t+1 ) 94.70 96.48 73.09

LBP( t
t+1 )-1 118.60 116.04 87.54

ALBP( t
t+1 ) 84.03 144.03 90.43

GLBP( t
t+1 ) 121.71 119.38 91.12

GWG(
√
t)-1 109.86 94.40 69.86

AGWG(
√
t) 94.97 94.63 72.30

GGWG(
√
t) 96.42 94.23 72.93

LBP(
√
t)-1 116.63 116.15 86.23

ALBP(
√
t) 120.47 118.61 88.35

GLBP(
√
t) 118.45 118.86 89.34

Table 16: Running Time on RBM
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