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Abstract

A default assumption in reinforcement learning (RL) and optimal control is that
observations arrive at discrete time points on a fixed clock cycle. Yet, many appli-
cations involve continuous-time systems where the time discretization, in principle,
can be managed. The impact of time discretization on RL methods has not been
fully characterized in existing theory, but a more detailed analysis of its effect
could reveal opportunities for improving data-efficiency. We address this gap by
analyzing Monte-Carlo policy evaluation for LQR systems and uncover a funda-
mental trade-off between approximation and statistical error in value estimation.
Importantly, these two errors behave differently to time discretization, leading to
an optimal choice of temporal resolution for a given data budget. These findings
show that managing the temporal resolution can provably improve policy evalua-
tion efficiency in LQR systems with finite data. Empirically, we demonstrate the
trade-off in numerical simulations of LQR instances and standard RL benchmarks
for non-linear continuous control.

1 Introduction

In many real-world applications of control and reinforcement learning, the underlying system evolves
continuously in time [Eliasmith and Furlong, 2022]. For instance, a physical system like a robot is
naturally modelled as a stochastic dynamical system. Nonetheless, sensor measurements are typically
captured at discrete time intervals, which entails choosing the sampling frequency or measurement
step-size. This step-size is usually treated as an immutable quantity based on prior measurement
design, but it has a significant impact on data efficiency [Burns et al., 2023]. We will see that, from a
data-cost perspective, learning can be far more data efficient if it operates at a temporal resolution
that is allowed to differ from a prior step-size choice.

In this work, we investigate episodic policy evaluation with a finite data budget to provide a key initial
step to addressing broader research questions on the impact of temporal resolution in reinforcement
learning. We show that data efficiency can be significantly improved by leveraging a precise
understanding of the trade-off between approximation error and statistical estimation error in value
estimation — two factors that react differently to the level of temporal discretization. Intuitively,
employing a finer temporal resolution leads to a better approximation of the continuous-time system
from discrete measurements; however, under a fixed data budget, denser data within each trajectory
results in fewer trajectories, leading to increased estimation variance due to system stochasticity. This
implies that, for a given data cost, it can be beneficial to increase temporal spacing between recorded
data points beyond a pre-set measurement step-size. This holds true for any system with stochastic
dynamics, even if the learner has access to exact (noiseless) state measurements.
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The main contributions of this work are twofold. First, we conduct a theoretical analysis focusing on
the canonical case of Monte-Carlo value estimation in a Langevin dynamical system (linear dynamics
perturbed by a Wiener process) with quadratic instantaneous costs, which corresponds to policy
evaluation in linear quadratic control (LQR). To formalize the impact of time discretization on policy
evaluation, we present analytical expressions for the mean-squared error that exactly characterize the
approximation-estimation trade-off with respect to the step-size parameter. From this trade-off, we
derive the optimal step-size for a given Langevin system and characterize its dependence on the data
budget. Second, we carry out a numerical study that illustrates and confirms the trade-off in both linear
and non-linear systems, including several MuJoCo control environments. The latter also highlights
the practical impact of the choice of sampling frequency, which significantly affects the MSE, and we
therefore provide recommendations to practitioners for properly choosing the step-size parameter.

1.1 Related Work

There is a sizable literature on reinforcement learning for continuous-time systems [e.g. Doya, 2000,
Lee and Sutton, 2021, Lewis et al., 2012, Bahl et al., 2020, Kim et al., 2021, Yildiz et al., 2021].
These previous works largely focus on deterministic dynamics without investigating trade-offs in
temporal discretization. A smaller body of work considers learning continuous-time control under
stochastic [Baird, 1994, Bradtke and Duff, 1994, Munos and Bourgine, 1997, Munos, 2006], or
bounded [Lutter et al., 2021] perturbations, but their objective is to make standard learning methods
more robust to small time scales [Tallec et al., 2019], or develop continuous-time algorithms that unify
classical methods in discrete-time [Jia and Zhou, 2022a,b], without explicitly addressing temporal
discretization. However, we find that managing temporal resolution offers substantial improvements
not captured by previous studies.

The LQR setting is a standard framework in control theory and it gives rise to a fundamental optimal
control problem [Lindquist, 1990], which has proven to be a challenging scenario for reinforcement
learning algorithms [Tu and Recht, 2019, Krauth et al., 2019]. The stochastic LQR considers
linear systems driven by additive Gaussian noise with a quadratic cost, minimised using a feedback
controller. Although this is a well-understood scenario with a known optimal controller in closed form
[Georgiou and Lindquist, 2013], the statistical properties of the long-term cost have only recently
been investigated [Bijl et al., 2016]. Our research closely relates to the now extensive literature on
reinforcement learning in LQR systems [e.g. Bradtke, 1992, Krauth et al., 2019, Tu and Recht, 2018,
Dean et al., 2020, Tu and Recht, 2019, Dean et al., 2018, Fazel et al., 2018, Gu et al., 2016]. These
works uniformly focus on the discrete time setting, although the benefits of managing spatial rather
than temporal discretization have also been considered [Sinclair et al., 2019, Cao and Krishnamurthy,
2020]. Wang et al. [2020] studies continuous-time LQR, focusing on the exploration problem. Basei
et al. [2022] provides a regret bound depending on sampling frequency, for a specific algorithm
based on least-squares estimation. Their analysis considers approximation and estimation errors
independently, without identifying a trade-off.

There is compelling empirical evidence that managing temporal resolution can greatly improve
learning performance [Lakshminarayanan et al., 2017, Sharma et al., 2017, Huang et al., 2019, Huang
and Zhu, 2020, Dabney et al., 2021, Park et al., 2021], typically achieved through options [Sutton
et al., 1999], a specific instance of which is action persistence, achieved by maintaining a fixed
action over multiple time steps (also known as action repetition). Recently, these empirical findings
have been supported by an initial theoretical analysis [Metelli et al., 2020], showing that temporal
discretization plays a role in determining the effectiveness of fitted Q-iteration. Their analysis does
not consider fully continuous systems, but rather remains anchored in a base-level discretization.
Furthermore, it only provides worst-case upper bounds, without capturing detailed practical trade-
offs. Lutter et al. [2022] discusses the practical trade-off on time discretization but do not provide
theoretical support. Bayraktar and Kara [2023] analyzes a trade-off between sample complexity and
approximation error, which however requires the state and action spaces of the diffusion process to be
discretized to yield an MDP. The two components in the trade-off are analyzed independently, unlike
the unified statistical analysis provided in our work, and no exact characterization is presented.

2 Policy Evaluation in Continuous Linear Quadratic Systems

In the classical continuous-time linear quadratic regulator (LQR), a state variable X (¢) € R™ evolves
over time ¢ > 0 according to the following equation:

dX(t) = AX(t) dt + BU(¢) dt + o dW (2). )



The dynamical model is fully specified by the matrices A € R"*", B € R™*P and the diffusion
coefficient o. The control input U (¢) € RP is given by a fixed policy, and W (¢) is a Wiener process.
The state variable X (¢) is fully observed. For simplicity, we assume that the dynamics start at

X(0) = 0 € R™ [c.f. Abbasi-Yadkori and Szepesvari, 2011, Dean et al., 2020].

The quadratic cost J is defined for positive definite, symmetric matrices Q € R™*"™ and R € RP*P,
a system horizon 0 < 7 < oo and a discount factor y € (0, 1]:

J, = / T [X 0T QX (t)+U () RU (t)] dt. @)
0

In the following, we consider the class of controllers given by static feedback of the state, i.e.:
U(t) = KX(t) where K € RP*™ is the static control matrix yielding the control input. It is well
known that in infinite horizon setting, the optimal control belongs to this class. Given such an input,
the LQR in Equation (1) can be further reduced to a linear stochastic dynamical system described by
a Langevin equation. Using the definitions A := A + BK and Q := Q + K " RK, we express both
the state dynamics and the cost in a more compact form:

AX (1) = AX (t) +odW (t),  J, = / ' VX (1) QX (t) dt. 3)
0

The expected cost w.r.t. the Wiener process is V- = E [J;]. The policy plays a role in this work solely
from its impact in the closed-loop dynamics A. Equation (3) is what we analyze in the following. We
explicitly distinguish the finite-horizon setting where 7 < 0o, v < 1 and the cost is V., and the infinite-
horizon setting where T = 00, v < 1 and the cost is V. In order not to incur infinite costs in either
scenario, a stable closed-loop matrix A should be assumed. Note that the existence of a stabilizing
controller is guaranteed under the standard controllability assumptions in LQR [Fazel et al., 2018,
Abbasi-Yadkori et al., 2019, Dean et al., 2020]. Thus the closed-loop stability can be safely assumed.

Monte-Carlo Policy Evaluation Our main objective in policy evaluation is to estimate the expected
cost from discrete-time observations. To this end, we choose a uniform discretization of the interval
[0, T'] with increment h, resulting in N = T'/h time points ¢ := kh for k € {0,1,..., N}. Here,
the estimation horizon T', such that T' < oo and T' < 7, is chosen by the practitioner (for simplicity
assume that T'/h is an integer). With the N points sampled from one trajectory, a standard way to
approximate the integral in Equation (3) is through the Riemann sum estimator

N—-1

J(h) =Y 4"*hX (tx)" QX (tx). “

k=0

To estimate V.., we average M independent trajectories with cost estimates jl, ... Ju to obtain the
Monte-Carlo estimator:
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Our primary goal is to understand the mean-squared error of the Monte-Carlo estimator for a fixed
system (specified by A, o and @), to inform an optimal choice of the step-size parameter h for a
predetermined data budget B = M - N.

Note that one degree of freedom remains in choosing M and N. For simplicity, we require that in
the finite-horizon setting, the estimation grid is chosen to cover the full episode [0, 7] which leads
to the constraint 7' = 7 = N - h. We write the mean-squared error-surface as a function of h and B:

MSEr(h, B) = E[(Var(h) — Vr)?]. )

In the infinite horizon setting, i.e. 7 = oo, the estimation horizon T is a free variable chosen by the

experimenter that determines the number of trajectories through M = % = %. The mean-squared
error for the infinite horizon setting is given as a function of h, B, and 7":

MSE.(h, B,T) = E[(Var(h) — Vao)?] . (6)



3 Characterizing the Mean-Squared Error (MSE)

In the following our aim is to characterize the MSE of the Monte-Carlo estimator as a function of the
step-size h and data budget B (and estimation horizon 7" in the infinite horizon setting). Our results
uncover a fundamental trade-off for choosing an optimal step-size that leads to a minimal MSE.

One-Dimensional Langevin Process To simplify the exposition while preserving the main ideas,
we will first present the results for the 1-dimensional case. The analysis for the vector case exhibits
the same quantitative behavior but is significantly more involved. To distinguish the 1-dimensional
from the n-dimensional setting described in Equation (3), we use lower-case symbols. Let z(¢) € R
be the scalar state variable that evolves according to the following Langevin equation:

dz(t) = ax(t) dt + o dw(t). @)

Here, a € R is the drift coefficient and w(¢) is a Wiener process with scale parameter o > 0. We
assume that @ < 0, i.e. the system is stable (or marginally stable).

The realized sample path in episode i = 1,..., M is z;(¢) (with starting state 2(0) = 0) and
t € [0,T]. The expected cost is

V. = ]E{/ yir(t) dt] :/ ’yth[:r?(t)] dt, ®)
0 0

where 7;(t) = qx2(t) is the quadratic cost function for a fixed ¢ > 0. The Riemann sum that

approximates the cost realized in episode i € [M] becomes J;(h) = iv:—o1 hqxz2(kh). Given data

from M episodes, the Monte-Carlo estimator is Vs (h) = = Zf\il Ji(h). Since the square of the

cost parameter g2 factors out of the mean-squared error, we set ¢ = 1 in what follows.

3.1 Finite-Horizon Setting

Recall that in the finite-horizon setting we set the system horizon 7 and estimation horizon 7T to be
the same. This implies that the estimation grid covers the full episode, i.e. h/N = T = 7. Perhaps
surprisingly, the mean-squared error of the Riemann estimator for the Langevin system (7) can be
computed in closed form. The result takes its simplest form in the finite-horizon, undiscounted setting
where v = 1 and 7 < oo. This result is summarized in the following theorem.

Theorem 3.1 (Finite-horizon, undiscounted MSE). In the finite-horizon, undiscounted setting, the
mean-squared error of the Monte-Carlo estimator is

Es(h,T,a)
B )
ot (—2ah + e?" — 1)2 (e — 1)2
16a4 (e20h — 1)
AT [ (€297 — 1) (4e2ah + ¢29T 4 1) — (e2ah — 1) (e2ah 4 42T 4 1) T]

2a? (e20h — 1)2

MSEr(h, B) = E1(h,T,a) + where

El (ha Ta a) =

i
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While perhaps daunting at first sight, the result exactly characterizes the error surface as a function of
the step-size h and the budget B for any given Langevin system. The proof involves computing the
closed-form expressions for the second and fourth moments of the random trajectories x;(t) and is
provided in Appendices A and B.1.

In the case of marginal stability (a = 0), a simpler form of the MSE emerges that is easier to interpret.
Taking the limit @ — 0 of the previous expression yields the following result (refer to the discussion
and proof in Appendix B.1):

Corollary 3.2 (MSE for marginally stable system). Assume a marginally stable system, a = 0. Then
the mean-squared error of the Monte-Carlo estimator is
otT® 1 o*T?(—2T? 4 2hT — h?)

o'T? B2 4 C L
4 3 hB 3B .

MSEr(h, B) =



The first part of the expression can be understood as a Riemann sum approximation error controlled
by the h? term. The second part corresponds to the variance term that decreases with the number of
episodes as ﬁ = %. The remaining terms are of lower order terms for small / and large B. For a
fixed data budget B, the step-size h can be chosen to balance these two terms:

1/3

2

h*(B) := argmin MSEy(h,B) ~ T | — , ©)
R>0 3B

where the approximation omits higher order terms in 1/B. From this, we can compute the optimal

number of episodes M* ~ %ﬁ = (%) '/3 B2/3 We remark that under the assumption B > 1, we
also obtain that M* > 1. This is in agreement with the implicit requirement that / is big enough to
consider at least one whole trajectory, i.e. h > T/ B.

Consequently, the mean-squared error for the optimal choice of h (up to lower order terms in 1/B):

MSEr (h*, B) ~ 3(3/2)"/3 o*T*B2/3

In other words, the optimal error rate as a function of the data budget is O(B~2/3). We can further
obtain a similar form for ~* for the general case where a < 0.

Corollary 3.3 (Approximate MSE). The MSE is

T
MSE7(h, B) = ¢i(0,a, T)h?* + %

for h = 0 and B — oo, with system-dependent constants
AT (40T — e*oT + e**T(8aT — 4) +5)
8at

+0(5 +h%)

4 (eQaT _ 1)2

16a2
Moreover, for any h > 0 and B > 0,

c1(o,a,T) =0 co(o,a,T) = —0

o 2¢o
h? + = < MSEp(h, B) <4 h? + ==
ah”+ 55 SMSEr(h, B) S dah” + 5

with ¢y = ¢1(0,a,T) and ca = c2(0,a,T) and the inequalities holds true up to a finite, lower-order
polynomial expressions iBhpoly(h7 a,T), given in Appendix B.2.

For the proof please see Appendix B.2. From the corollary, we can derive an optimal step-size, up to
lower order terms in 1/B:

o o 1/3
h*(B) ~ <_T(4GT—64 “te? T<8aT—4)+5)> B3, (10)

aZ(e2aT —1)2

Note that the same h*(B) also minimizes the upper bound of the MSE up to a constant factor. The

scaling MSEr (h*, B) < O(B~2/3) cannot be improved given the lower bound on the MSE. The
derivation is provided in Appendix B.3 where we also include a more precise expression of h*.

Discounted Cost Adding discounting (v < 1) in the finite-horizon setting does not fundamentally
change the results; however, it makes the derivation more involved (Appendix B.4).

Vector Case Addressing the general case (n-dimensional Langevin systems with n > 1) for a
stable matrix A requires forgoing the exact form of the MSE. We derive tight bounds on the MSE,
both of which are convex functions of h, thereby narrowing down its behaviour with respect to the
step size. The results are presented in Appendix C.3. Although the convex behaviour is proven only
for Langevin systems, our experimental results in Section 4 exhibit a similar trade-off for general
nonlinear stochastic systems.

Under the additional assumption that the matrix A is also diagonalisable, we are again able to exactly
characterise the MSE with closed-form computations. Diagonalisability is a mild assumption since it
can be achieved under a controllable system. Indeed, controllability allows for the free adjustment of
the eigenvalues of the closed-loop matrix A through the choice of the controller K. The eigenvalues
can effectively be chosen to be distinct from each other to ensure a diagonalisable A. While the
explicit form of the MSE is computable, its lengthy formula is not easily interpretable and is thus
deferred to Appendix C. The following theorem summarizes the result as a Taylor expansion for
small h and large B.



Theorem 3.4 (Mean-squared error - vector case). Assume A is diagonalisable, with eigenvalues
A = {\,..., \n}. The mean-squared error of the Monte-Carlo estimator in the finite-horizon,
undiscounted setting, is

MSET (h, B) = E1 (h,, T’7 A) + w, where
Ey (h,T,A) = (C1 + C1 (A) O (1)) o*T?h* + O(h?)
BTN _ @,y cymom) e +oa/B).

B hB

The proof, including the exact derivation of the constants C'1, C; (A), Ca, Cs (A), can be found in
Appendix C.1. Note that the terms composing the MSE closely resemble those obtained in the scalar
analysis. In fact, when comparing them with the expressions in Equation (22) and Equation (23)
(in Appendix B.3), the expression has the same order for i, B and 7. The only difference is that
in the vector case, cumbersome eigenvalue-dependent constants are involved, whereas in the scalar
case, the result can more easily be expressed in terms of the system parameter a.

Since the optimal choice for h is determined by balancing the trade-off between the two terms above,
E for the approximation error and E» for the variance, its expression is analogous to the scalar case,
as shown by the following corollary.

Corollary 3.5 (Optimal step size - vector case). Under the assumption that B > 1, the optimal
step-size for the vector case is given by

_ 1/3
y _( Ti+Ci(M)O(T) —1/3 -1/3
W (B) = (62<1A>+52(A>0<T>) TB 4 o(B7H).

The constants in Corollary 3.5 are the same as in Theorem 3.4.

3.2 Infinite-Horizon Setting

The main characteristic of the finite-horizon setting is the trade-off between approximation and
estimation error. Recall that in the infinite-horizon setting (7 = 00), the estimation horizon T < oo
becomes a free variable that is chosen by the experimenter to define the measurement range [0, 7).
Consequently the mean-squared error of the Monte-Carlo estimator suffers an additional truncation
error from using a finite Riemann sum with N = T'/h terms as an approximation to the infinite
integral that defines the cost V.. More precisely, we decompose the expected cost Vo, = Vp + Vr oo,

where Vi = fOT y'E[z%(t)]dt as before, and

_ [e’e} . ) _ UQ’YT 1 B e2aT )
VT’OO_/T TELEO) df =5, (log(v) log () +2a) (v

It is a direct calculation based on Lemma A.1 in Appendix. Thus the mean-squared error becomes

MSE(h, B, T) = E[(Vas(h) — V)?] = MSEr(h, B) — 2E [VM(h) - VT} Voo + Vi oo, (12)

where MSEr(h, B) = E [(VM (h) — V)?] is the mean-squared error of discounted finite-horizon
setting. Note that the term V'Z%,oo is neither controlled by a small step-size h nor by a large data budget
B, hence results in the truncation error from finite estimation. Fortunately, geometric discounting
ensures that V’Ig,oo = O(427T), which is not unexpected given that the term constitutes the tail of the
geometric integral. In particular, setting T' = ¢ - log(B)/log(1/~) for large enough ¢ > 1 ensures
the truncation error is below the estimation variance. We summarize the result in the next theorem.

Theorem 3.6 (Infinite-horizon, discounted MSE). In the infinite-horizon, discounted setting, the
mean-squared error of the Monte-Carlo estimator is

1 ot
_ 4 ) 34 5 —1
MSEo (h, B,T) = o* T C(a,~) w5 T 1 h*+O(h’)+ O(B™), (13)
where we let C(a,v) = log(v)(a+log(;))(2a+log(7))2 and assume that y* = o(h*).



The proof is provided in Appendix B.5. It follows that the optimal choice for the step-size
is h*(B,T) =~ (36TC’(a,’y)/B)1/5. The minimal mean-squared error is MSE, (h*, T, B) <
O((T C(a,7)/B)*> +~*T). Lastly, we remark that if 47 is treated as a constant, the cross term
IE[VM (h) — VT} V.o in Equation (12) introduces a dependence of order O(h~?") to the mean-
squared error. In this case, the overall trade-off becomes MSE« (h, B,T) ~ O(1/(hB) +~*(1 +
h)), and the optimal step-size is h* ~ B~1/2.

Vector Case Similar to the finite-horizon setting, we establish tight bounds for the MSE in the
general case involving a stable matrix A. The detailed results are presented in Appendix C.3. As
before, the MSE for the vector case can be computed in closed-form assuming that A is both
diagonalisable and stable. The result reflects the same behaviour as in the scalar case. Conveniently,
the MSE in Theorem 3.6 has been expressed with sharp terms in A and B, while confining the
dependence on the system parameter a within the constant C', and the impact of higher-order terms in
T within Vr . This allows us to state the vector case result in a similar form, where the constant will
now depend on the eigenvalues of the matrix A, as well as the discount factor -y. These are provided
in full detail in Appendix C.2.

Corollary 3.7. For A diagonalisable, with eigenvalues given by A, the mean-squared error of the
Monte-Carlo estimator in the infinite-horizon, discounted setting is

T ot
MSE (h, B,T) = C304h73 + mh4 +0 (h5 + %)

with a constant Cs = C3 (A, ~) and under the assumption that vT = o (h4).

The terms in Corollary 3.7 correspond to estimation error, approximation error and truncation error,
mirroring the scalar scenario. The optimal step-size exhibits the same dependencies on 7" and B as in
the scalar case, albeit with a different constant dependent on the eigenvalues.

4 From Linear to Non-Linear Systems: A Numerical Study

The trade-off identified in our analysis suggests that there exists an optimal choice for temporal
resolution in policy evaluation. Our next goal is to verify the trade-off in several simulated dynamical
systems. While our analysis assumes a linear transition and quadratic cost, we empirically demonstrate
that such a trade-off also exists in nonlinear systems. For our experimental setup, we choose simple
linear quadratic systems mirroring the setting of Section 2, as well as several standard benchmarks
from Gym [Brockman et al., 2016] and MuJoCo [Todorov et al., 2012]. Our findings confirm the theo-
retical results and highlight the importance of choosing an appropriate step-size for policy evaluation.

4.1 Linear Quadratic Systems

We first run numerical experiments on the Langevin dynamical systems to examine the behaviour of
the trade-off identified in our analysis. The results are shown in Fig. 1. For these experiments, we fix
the noise 02 = 1 and the cost Q = I. The lines in the plot represent the sample mean (Va; (h) — V)2
and the shading represent the standard error of our sample means, computed over 50 independent
runs. The plots in Fig. 1 exhibit a clear, U-shaped trade-off, as predicted by our theoretical results.

Fig. 1(a) shows the MSE in a one-dimensional system with 7' = 8 and a = —1. The ground truth V' is
calculated analytically by using Eq. 21 in the Appendix. The figure illustrates how the error changes
as we vary the data budget, B = {2!2,213 214 215 216} "and also illustrates the improvement that
can be obtained by increasing the budget. As we increase B, both the error and the optimal step size
h*, decrease. This result strongly aligns with the analysis shown in Theorem 3.1 and Corollary 3.3.
The same analysis is performed with respect to the parameter a, while fixing the data budget, in
Fig. 1(b). By increasing the absolute value of the drift coefficient, the diffusion has a smaller impact,
thus trajectories have less variability. This leads to a smaller A* for the optimal point of the trade-off.

Fig. 1(c) and 1(d) present the experimental results for both undiscounted finite horizon and dis-
counted infinite horizon multi-dimensional systems. For the finite-horizon setting, V' is computed
by numerically solving the Riccati Differential Equation; while in infinite-horizon, it is calculated
through Lyapunov equation using a standard solver. In our multi-dimensional experiments, we set the
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Figure 1: Mean-squared error trade-off in linear quadratic systems of different dimension n. The first
two plots show the dependence of the optimal step-size on the data budget B and drift coefficient a,
respectively. A{1,2,3,4,5} in the last two plots are random matrices and the two sets are not equal.

dimension n = 3. We fix all parameters and run our experiments for 5 randomly sampled 3 x 3 dense,
stable matrices in each setting. More details on the matrix structure can be found in Appendix D.1.
Results in both plots suggest that the impact of the eigenvalues of A on h* is mild and that the
eigenvalue-dependent constant terms in Corollary 3.5 only marginally affect the optimal step-size
h*, similar to the trend observed in the scalar case with parameter a. In the infinite horizon system,
the horizon needs to be large enough to manage truncation error while simultaneously being small
enough to collect multiple trajectories. We choose v large enough such that a good estimate of V' can
be obtained, and set 7' = 1/(1 — ~y), which is referred to as the effective horizon in the RL literature.

4.2 Nonlinear Systems

Many nonlinear behaviors can be approximated by a high-dimensional linear system, which would
be bounded by our theoretical results on the general case of n-dimensional systems, hinting that
similar trade-offs could characterize nonlinear systems as well. We empirically show that the trade-off
identified in linear quadratic systems carries over to nonlinear systems, with more complex cost func-
tions. We demonstrate it in several simulated nonlinear systems from OpenAl Gym [Brockman et al.,
2016], including Pendulum, BipedalWalker and six MuJoCo [Todorov et al., 2012] environments:
InvertedDoublePendulum, Pusher, Swimmer, Hopper, HalfCheetah and Ant. We note that the original
environments all have a fixed temporal discretization d¢, pre-chosen by the designer. To measure the
effect of h, we first modify all environments to run at a small discretization ¢ = 0.001 as the proxy
to the underlying continuous-time systems. We train a nonlinear policy parameterized by a neural net-
work for each system, by the algorithm DAU [Tallec et al., 2019]. This policy is used to gather episode
data from the continuous-time system proxy at intervals of 6t = 0.001 which are then down-sampled
for different h based on the ratio of i and d¢. The policy is stable in the sense that it produces reason-
able behavior (e.g., pendulum stays mostly upright; Ant walking forward; etc.) and not cause early
termination of episodes (e.g., BipedalWalker does not fall), in the continuous-time system proxy. The
results of the MSE of Monte-Carlo policy evaluation are shown in Fig. 2. Similar to the linear systems
case, we vary the data budget B and see how the MSE changes with the step-size h. The MSE shows
a clear minimum for choosing the optimal step-size h*, which generally decreases as the data budget
increases. We slightly abuse notations by using V, V' to refer to the true and estimated sum of rewards
instead of the cost. The true value of V' is approximated by averaging the sum of rewards observed
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Figure 2: MSE of Monte-Carlo policy evaluation in nonlinear systems. The line and shaded region
denote the sample mean and its standard error of (V7 (h)—V)2, from 30 random runs. T is the horizon
in physical time (seconds). By denotes the environment-dependent base sample budget, chosen such
that it gives a full episode for the smallest i (see Appendix D.4). The optimal step-size generally
decreases as the data budget increases (with ‘InvertedDoublePendulum-v2’ being the only exception).

at 6t = 0.001 from 150k episodes. These environments fall under the finite horizon undiscounted
setting. The system (and estimation) horizon 7" of our experiments is chosen to be the physical time
of 1k steps under the default d¢ in the original environments (with the exception of 200 steps for
Pendulum and 500 steps for BipedalWalker). Please refer to Appendix D.4 for more implementation
details, including the setup of B, T, 6t, h, training, and the compute resources. These systems are
stochastic in the starting state, while having deterministic dynamics. Despite the different settings
from our analysis, a clear trade-off is evident in all systems. This suggests that our findings may have
broader applicability than the specific conditions under which our theoretical analysis was established.

4.3 Guidelines for Setting Step-Size h

The precise characterization of the MSE in Section 3 can be exploited to set the step-size close to
the optimal value without any prior knowledge of the system, provided experiments on a smaller
data budget are performed beforehand. Although the optimal step-size h* clearly depends on all
quantities characterizing the dynamics and the policy, the technical analysis of the MSE accurately
quantifies how h* scales with respect to the data budget B. Specifically, h* (B) ~ ¢ »B~1/3 for
finite horizon and h* (B) ~ ¢; B =1/5 for infinite horizon, where cp and ¢; hide the dependencies
on the system parameters, exposing only the order in B. This allows us to extrapolate the optimal
step-size for the given data budget, using the constant estimated with a smaller one. By evaluating
through numerical experiments the performances of different step-sizes on the reduced data budget,
it is possible to identify an approximate h*, and subsequently determine cy or ¢y, which then gives
the whole range of optimal values of h with respect to B through the aforementioned relation. Note
that this approach does not require prior knowledge of the dynamics, yet it provides a systematic
way for setting the step size h for any given scenario.

Figure 3 plots the empirical h* over B for o
all nonlinear environments, and fitted lines

based on the relation from the analysis 101
h* = ¢pB~1/3, where the constant cp
varies with the environment. The plot
shows that the scaling of h* wrt. B
predicted by our analysis is overall a good 102
approximation of the trend observed in

the experiments with nonlinear systems, 10t 16° 1
except for negative cases like the Inverted-
DoublePendulum.  This suggests that Figure 3: Empirical * in nonlinear experiments (solid)
setting the step-size according to the anal- compared with analysis in Corollary 3.5 (dashed): h* =
ysis can yield a value close to optimality. ¢z B~1/3, cp is estimated from data by least squares.
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5 Conclusions

We provide a precise characterization of the approximation, estimation and truncation errors incurred
by Monte-Carlo policy evaluation in continuous-time linear stochastic dynamical systems with
quadratic cost. This analysis reveals a fundamental bias-variance trade-off, modulated by the level
of temporal discretization h. Moreover, we confirm in numerical simulations that the analysis
accurately captures the trade-off in a precise, quantitative manner. We also demonstrate that the
trade-off carries over to non-linear environments such as the popular MuJoCo physics simulation.
These findings show that managing the temporal discretization level h can greatly improve the
quality of Monte-Carlo policy evaluation under a fixed data budget B. These results have direct
implications for practice, as it remains common to adopt a pre-set step-size regardless of the data
resources anticipated, which we have seen is a highly sub-optimal approach for a given budget.

The present work serves as a first step toward understanding the effects of temporal resolution on RL.
There are several limitations that we would like to address in future work. Our analysis is restricted
to Monte-Carlo estimation, while there are more advanced techniques such as temporal difference
learning and direct system identification, which may exhibit different behaviours. Also, our focus
is policy evaluation. It is worth studying policy optimization to understand the full control setting,
which might require relaxing the stability assumption on the closed-loop system since the controllers
being iterated might not always be stable. Additionally, it would be interesting to explore non-uniform
discretization schemes, such as through an adaptive sampling scheme. From the system’s perspective,
we have currently analyzed stochastic linear quadratic systems with additive Gaussian noise and
noiseless observations. It remains to be determined if the exact characterization is still attainable with
other types of noise, in the partially observable case, or with noisy observations. Finally, extending
the analysis to non-linear systems would be valuable.
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Appendix

A Moment Calculations

Recall that the solution of the SDE in Equation (7), with « (0) = 0, takes the following form:
t
x(t) = a/ e du (s). (14)
0

An integral part of finding the mean-squared error of the Monte-Carlo estimator is the computation of
the moments E [z(¢)?] , E [z(¢)*] and E [z(s)?z(t)?] when s < t.

Lemma A.1. Ler x(t) be the solution of Equation (7). The second moment of the state variable is

E[z?(t)] = — (e** — 1) . 1
220] = 2 (- 1) a5
For the fourth moment, we get:
Efe ()] = 32 (2~ 1)’ (16)
4a?
Assuming that s < t, we further get:
g
E[Q:Z(S)xz(t)] — @(62115 _ 1)62at {(e—Qas _ e—2at) + 3(1 _ e—Qas)} ) (17)

Proof.

(1) We start with the second moment E [z()?].

t 2 t o2
</ easdw(s)) _ 0_262at/ 672asd8 _ 7(e2at o 1)
0 0 2a

The calculation makes use of the Itd isometry, which can be stated as:

E l(/otz(s) dw (s))Q] =E Mtz(sf ds] , (18)

for any stochastic process z(-) adapted to the filtration induced by the Wiener process w (-).

E [2(t)?] = 0?*"E

(2) Next we compute E [z(t)*] through Itd’s integral. Define y (¢) := fg e~ dw (u), so that
dy (t) = e~ dw (t). Thus,

Af () = 1 (5 (6) dy (1) + 30" (5 (1)) (dy (1))°
= f/(y (1)) e~ dw (1) + %f” (v (6) 2 dt,

for any f (). By choosing f (y) = y*:



Therefore, by integration and taking the expectation:

E[f (y(1)] = E [ / ) e w]+ e[ Pty () e @l
</0 —av qay ( ))3 e~ dw (u) /Ot 1o (/Ou = dw (v))Q o—2au du‘|

2
(/ e” e ¥ dw (v )) du]
0
2
(/ e~ e ¥ dw (v )> 1 du (Tt6 isometry)
0

— 6/ / —2av 72au do du

_ —2au _ ,—2au
—/0 e %a (1 e ) du

:4??(17672“)2

1
“E
3

= 6E

From Equation (14) it holds = (t) = ge®y (¢) so that the second part of the lemma follows.

(3) Lastly, we compute E [z(s)?z(t)?] for s < t.

E [22 (s)2? ()] = o*e***TIE [(/OS e~ doy (u)>2 </Ot . (u)>2]
= gtealsHIR l( [ e au <u>>2 ([ emawi | P (u)ﬂ
[t e e

(i) (ii)

+E

Note that we computed (i) before. For (ii) it holds:

s 2 s
E (/ e " dw (u)) :/ e 2 dy
0 0
1
- —(1— —2as
5, (1—e7")
and
t 2 t
E </ e " dw (u)> = / e 2% qy
1
— %(672(15 _ 672at)
Therefore, assuming s < ¢, it holds that:
E [:c2 (s)x2 (t)] — ghe2als+i) i (1 - 6720,5) (672as o 672at) + i (1 o 672113)2
4a? 4a?
_ 0—74(62“ . 1)62115 {(672” 72a5) + 3( 72at)}
" 4a2 ’
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B Calculations of the Mean-Squared Error

B.1 Undiscounted, Finite-Horizon: Proof of Theorem 3.1

Proof. We first note that

h M N-1
E[Vas(h > Elap(kh)] :hZE
i=1 k=0
where we denote z(t) = z1(¢) for simplicity. Next we expand the mean-squared error
E[(Var(h) = Vr)?] = [Vz@( )] = 2VrE [V (h)] + V7
M N-1 2
= (Z >} > — 2V7E[Var(h)] + V2
i=1 k=0
p2 MoN-1 R
=P > Ela}(kh)a3(h)] — 2VrE[Vyr (h)] + Vi
i,j=1k,l=0
p2 N1 2
M?—M_ - .
= Z Elz 2?(1h)] + TE[VM(’U]? — 2VrE[Var (R)] + Vi
Icl 0
For the last equality, note that E[Vy; (h)]2 = h? kl 0 E[2?(kh)]E[z2(Ih)]. It remains to compute

the expressions. By Lemma A.1 we have for the second moment of the state variable:

2
E[22(t)] = % (€2 1) . (19)
a
Assuming that s < ¢, from the same lemma we get the following for the fourth moments:

ot

E[Iz(S)IL‘Z (t)] — F(ems o 1)62at {(6720'8 o 672at) + 3(1 o 6720’5)} ) (20)
a
Note that by symmetry, a similar expression follows for s > t.
Using these expressions, for the expected cost we get

T 2 T 2 2aT
—1
— [ ER2@)dt =2 200 =2 (2 21
Vr /0 Lav) 2a Jy (e ) 2a 2a @D

We remark that a similar expression was previously obtained in [Bijl et al., 2016, Theorem 3]. Next,
the expected estimated cost is

N-1 27 N— 1 2 2aT
h oc‘h |1—e
:hE:E 2(kh) 7‘7 p2akh _ 1) — N
)] [:17 ( %2 ~ 2a 1 — e2ah
Lastly, it remains to compute the sum
— Elz=(kh lh)] = — Elz=(kh lh — Elz*(kh
7 2 Bl k)] = S 5 Bl (kh)a* ()] + 57 3 B (ki)

4T (h2 (e2aT _ 1) (862ah 4 362aT 4 1) 4 T2 (e2ah _ 1)2 — KT (eZah _ 1) (€2ah 4 562aT))

4a2Bh (e2eh — 1)*
The last equality is a cumbersome calculation that involves nested geometric sums. We verified the

result using symbolic computation. For reference we provide the notebooks containing all calculations
in the supplementary material. It remains to collect all terms to get the final result. O

Proof of Corollary 3.2. When a = 0, the Langevin equation 7 is reduced to dxz(t) = o dw(t). The
computation of MSE can be performed similarly to that in the proof of Theorem 3.1, by using the
following moment results of Wiener process.

E[z%(t)] = o?t,
E[z%(s)x?(t)] = o"s(t +2s) whens < t.
It remains to compute the sums, and collect terms, as in the proof of Theorem 3.1. O
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It is also worth pointing out that the result of Corollary 3.2 can also be computed by taking the limit
of the MSE in Theorem 3.1 when @ — 0. And the resulting MSE from the limit matches the one
computed directly as in the proof above. This shows that the MSE in Theorem 3.1 is continuous at
a=0.

B.2 Undiscounted, Finite-Horizon: Approximate MSE

Proof of Corollary 3.3. For the asymptotic expansion, we use Theorem 3.1 to compute the leading
terms in h of the mean-squared error:

0_4(62aT _ 1)2
Ey(h,T,a) = h? h? 22
1(h,T,a) 162 +O(r), (22)
Ey(h,T,a)  o'T (4aT — " + T (8aT —4) +5) 1 N o?T(1 — e*eT 4 4aTe?T)
B 8a* hB 1038
ATh (1 + 4aT + 29T (84T + 4) — 5eeT ATp2(pdaT _ q
TR AT Y Gl k) 25 MR o /B
24a2B 12aB
(23)

Next, we compute explicit upper and lower bounds on the MSE that hold for any ~ and B. Note that
forall z <0,

_ T _ 2
2?/4 < W <a?. (24)

Hence we can directly bound the F; term from Theorem 3.1:

44,202(p2aT _ 112 4p2(0,2aT _ 1)2
o*4a*h*(e 1):0h(e 1) <B <4
64a* 16a?

To bound E5 note that for z < 0,

ota?h?(e2eT — 1)2

16a4

1 1 2
— < — <14 = 25
22 7 (1—e®)2 — erz 25

Abbreviating E3 = h (€27 — 1) (4e?*h + 297 4 1) — (e?*h — 1) (e?*" + 42T + 1) T, we have
By = zazi’f,Tiﬁzih)z, and hence
1

8ath?

1
4 4
o'l - B3 < By < (1+8a4h2) -FE3-0°T

To upper bound FE,, we repetitively use that forall z < 0, 1 + 2 < e < 1+ 2z + ’”—22 and
l+o+% + 2 <e.
ES =h (eZaT _ 1) (462ah +62aT 4 1) _ (eQah _ 1) (e2ah +462aT 4 1) T
— 4h62aT62ah + h64aT o 4h62ah _h— T€4ah . 4T€2ahe2aT + 4T€2aT 4T
— h(eQQh(4e2aT _ 4) + e4(LT _ 1) _ 4T62aT62ah _ Te4(lh 4 4T62aT + T
4
< h((1+ 2ah + 2a*h* + §a3h3)(4e2aT —4) + e —1)
4 32
—4Te* T (1 + 2ah + 2a2h? + §a3h3) — T(1 + 4ah + 8a®h* + §a3h3) +4Te?T 4T
= h(4e®T — 5 4 €197 — 8aTe®T — 4Ta) + h*(2a(4e*T — 4) — 8a*Te**T — 84>T)

16 32 16
+ h3(8a2(62“T _ 1) _ §G3T€QGT _ §a3) + h4§(62aT _ 1)

32
< h-(4e?*T — 5 4 19T — 8aTe?*T — 4Ta) + §h2a4T3 + 16R3a*T?

Combining the last two displays yields the claimed upper bound. The lower bound follows along the
same lines. Note that the bounds can be refined by including higher-order approximations of e®.

O
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B.3 Undiscounted, Finite-Horizon: Optimal Step Size

Although the exact optimal step size h* can be obtained from Theorem 3.1, such exact h* doesn’t
have an explicit analytic solution in general. Numerically, we can find h* by searching over step-sizes
hpm =T/mform = 1,..., B, provided knowledge of the system parameters « and fixed horizon T
or, by finding the root between 0 and 1 of the following equation

5+ 4aT — 2T (4 + €2*T — 8aT))(9aTh + 3T) + 2a*Th*(37 — 5a**T + 28aT + 56aTe**™
—32e2°T) + a®h3[3B(e2*T — 1)2 + aT(91 — 7T + 60aT + 120aTe?*T — 84¢2*T)] =0,

where the equation is a simplified form of %MSET(h, B) =0.

From the analysis point of view, a trivial way to see the order of A* in terms of B, a, T is finding
the dominated term by using Taylor’s expansion for exponential parts (which is true for any h) in
Theorem 3.1. Such asymptotic expansion is given in Corollary 3.3. It is immediate that for h > 1,
both Equation (22) and Equation (23) will blow up. Thus, a small i < 1 is considered to minimize
Ei(h,T,a)+ w Keeping the first term in both Equation (22) and Equation (23) and solving
for the optimal h* yields the result in Equation (10).

A more precise approximation of 2* than Equation (10) is a minimizer of Ey(h,T,a) + %ﬁ")

truncated at O(h3):

3 2 3 5
h*(a7TaB) = & + < Dl - 3D2 \/ 9D2 - D1D2>

3D;  \33D3 2a2D3 |\ 4a*D? 942D}

1

D3 3D 9D2  D3Dy \

+ 1 _ 2 + 2 1472 (26)
33D3  2a?Ds 4a*D3  9a2D3 )

where
Dy =T (1+4aT + **T(8aT + 4) — 5¢**T) |
Dy =T (4aT — e*" + e**T(8aT — 4) +5) ,
D3 =3B(e**T —1)% — 4aT(e*T - 1).

We can further express Equation (26) in terms of B, as

o o 1/3
h*(B) = <_T(4GT_ et 4 27 (8aT — 4) +5)> B3

a2(e2eT — 1)2
T (1+ 4aT + €27 (8aT + 4) — 5¢*T)  4aT(e2T +1)D3/>
9(e2eT — 1)2B T 9a2/3(e2eT — 1)5/3
4aT?(e?T +1)Dy
27(e20T — 1)3

B—4/3

B2+ O(B~3).
where the first term is exactly the result in Equation (10).

B.4 Finite-Horizon, Discounted

As stated in Section 3.1, adding discounting in the finite-horizon setting makes the mean-squared
error more involved. In the regime where h is small and B is large, a Taylor expansion characterizes
the error surface as follows:

4 4, 2T ( 2aT _ 2
MSEr(h, B, ) ~ ol 5+ e
log(y)(a + log(v))(2a + log(v))? hB 16a2
Lo 1) (07 (T (Ra + log (7)) —log (1) —2a) 5, ot
52 144
27
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The approximation shows only the lowest order terms for 1/(hB), 4T and h. The derivation is given
in Lemma B.1 below. The results shows that main trade-off between h and B persists also for the
discounted objective, as long as v7 is treated as a constant relative to h? and 1/hB. In the limit where
7T becomes small (e.g. v/ = o(h*)) the nature of the trade-off changes in that the approximation
error improves to O(h?*). This can be understood from the fact that under geometric discounting
combined with a decaying process, the sum of N = T'/h estimation errors do not suffer a factor N,
thereby removing a factor of 1/h from the (non-squared) approximation error.

Lemma B.1 (Finite-horizon, discounted). In the finite-horizon with a discount factor v € (0, 1]
setting, the mean-squared error of the Monte-Carlo estimator is

MSET(h’B”Y) = El(thaa7’y) + W7
where
= n? ey (L 434 5
E(h,T,a,7) = Ci(T,v,a)c"h” + Co(T,7,a)0"h° + 144+03(T,'y,a) o+ Oh)

_ ot (T + ’YTO4 (Tv 7 a))
B0 = 4oy + og(3)) 2a + o 7 O

~2T (eQaT _ 1)2

T 70) = 16a2 )
PN Gt Y i (e2an§a;L log(y)) — log()) -~ %)

AT 77 (%7 (20 + 1og(7)) ~ Tog(1)” — da (27 (2a + log(7)) — log(7))]
C’3(T,’y7a) =

576a2 ’
Cy(T,~,a) is some finite constant of (T, a) that includes " as a factor .

Proof. The proof follows the similar computations as those in the previous proof with a new expected
cost as follows. In particular, using Lemma A.1, we get

T 2 Te2aT _ q T_1
Vi = tE,Qtdt:”<7€ 7 ) 28
T /0 VE[(?)] 2a \log(vy) +2a  log(7) (28)

Furthermore, the expected estimated cost is

o°h kh

. Qh 1—’}/T€2aT 1_,YT
ElVi (B)] = —— 2akh _ ) — ah _
[V (h)] 20 £ 7 (e ) 2a \1— Ahe2ah — 1 _~h
Finally, the sum containing the fourth order cross-moments is
o kh+lhE 2 kh 2 IR = kh+lhE 2 kh 2 Ih w QkhE 4 L.
Mkl:ofy [2*(kh)z(th)] = 5+ Mv [%(kh)2™( )]+M§v [ (kh)]

While not impossible to calculate on paper, a written derivation is beyond the scope of this work.
Instead, we rely on symbolic computation to obtain the expression and corresponding Taylor approxi-
mations. The notebooks containing all derivations are provided in the supplementary material. [

B.5 Infinite Horizon: Proof of Theorem 3.6

Proof. The proof relies on the decomposition provided in Equation (12). It only remains to compute
the following cross term.

E [VM(h) . VT] Vi oo

ot [ AT T e2aT h [1—~Te2T | _ AT 1 [ATe2T _1 T 1
T 2 <log(v) ~ log(7) +2a> [261 (1 —Ahe2eh 1 —’7h> 2 <log(v) +2a log(7) ﬂ
_ o'y*T (€27 — 1) (log(7) (e**T — 1) — 2a) It
8a?log(7) (2a + log(v))
o*yT (2a +log(y) — 2 T'log(7)) (2a (vFe**T — 1) + 47 log(y) (e2** — 1))

48a2log(7) (2a + log(v))

h% 4+ O(h%).

18



Thus, the mean-squared error MSE (h, B, T,v) = E [(VM(h) — Vi)?] is obtained by combining
the above computation with Equation (11) and Lemma B.1. O

It is worth pointing out the trade-off always exists with or without the assumption v = o(h*) from
MSE (h, B, T,~). For example, if y7 is constant with respect to h,

1 1
log(7)(a + log(7))(2a + log(v))? * hB
0.4,.YZT (€2aT _ 1) (log(*y) (e2aT _ 1) _ 2&)
8a?log(7) (2a + log(7))
a’y?1[(1 = e**T) log(v) + 2a]?
4a?[log(v)(a + log(v))]?

MSE. (h, B,T,v) = ¢*T

+ h

+0O(h*) +0(B™).

From the above expression, MSE, (h, B, T, y) contains a constant term in this case. For the other
cases of v7', MSE (h, B, T, ) can be obtained similarly by combining the cross term in the proof of
Theorem 3.6, Equation (11) and Lemma B.1. The case where vZ' = o(h*) is particularly interesting
because even as ’yT — 0 at such a fast rate, there is still a trade-off that never vanishes.

C Vector Case Analysis

C.1 Finite-Horizon, Undiscounted: Proof of Theorem 3.4

Proof. Consider the n-dimensional system that the solution of the trajectory of X (¢) is
t
X(t) = a/ A=) AW (1) .
0

Since A is a diagonalizable matrix, we can decompose A as A = P~1DP, where P is a invert-
ible matrix (not necessarily to be orthogonal) and D is a diagonal matrix whose diagonal entries
(A1, , An) are corresponding to the eigenvalues of the matrix A. Followed by which, we can
decompose the matrix exponential of A as:

eAt — P—leDtP )

Define the “diagonalized" process X (+) as:

t
PX (t) = Pa/ eA=9) AW (s)
0

t
= aPP*l/ P p AW (s)
0

= a/t ePt=9) AW (s) =: X (t)
0

where W (s) is a Wiener process (with dependent components when P is not orthogonal). This
implies that X () = P71X (-).

To see X;(t) clearly, we denote P = [pijl7 =1, and Xi(t) = ( Y) ), Q) (t))T, then qbl(i) (t) =
> i1 Dijo f(f et (t=s) dwy) (s) foreachl € {1,---,n}. Particularly, in such an expression, w](i (s)

are independent Wiener processes for different 7 or j. Correspondingly, X (t) = (¢1(t), -+, én(t)) T,
and ¢i(t) = 327, pijo fot eM=%) dw;(s) foreach ! € {1,--- ,n}, where w;(s) are independent
Wiener processes for different ;.
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By trace operation, we can rewrite Vi (h) as follows:

R 1 M N-1
VM(h):MZ hX (ts)' QX (ty)
=1 k=0
1 M N-1 B
—tr{M;k_OhX( ) QP 1X(tk)}

where Vi (h) = & SSM STV VR (8) X ()T € R
Similarly, Vr = tr {P~"QP~'Vr}, where Vr = fo X(H)X(t)"] dt.
Therefore, the MSE 1 (h, B) can be written as

MSEr(h, B) = E {(VM (h) — VTﬂ —E {tr {prprl (f;M (h) — VT) }2] )

For notional simplicity, we denote matrix P~ ' QP =: B = [b;;]7"._
[Cljmj:r

Noting the fact that

MSET(h’ B) =E Z bjlclj = Z bjlllbj2l2E [Clljl Cl2j2] ) (30)

l1,J1,l2,72

it is sufficient to find MSEr by only computing E [¢;, j, Ciy s ]-

We first introduce the following expectations that are used in the computations. For any s < ¢

L (t—u) ® Aa(s—u) Mtz (A1+A2)
E 17w q 2087w d = 1— e MTa2)8 31
{/0 e w(u)/o e w(u)} VW ( e ) ; (€28

s s t t
E [/ er(s—w) dw(u)/ er2(s—v) dw(u)/ erat—w) dw(u)/ eHa(t=w) dw(u)]
0 0 0 0

1
_ (A1 H+A2)s+(As+A)t 1— —(A1+A2)s 1— —(A3+A4)s
‘ {(/\1 +A2) (A3 + Ag) ( ‘ ) ( ‘ )

! 1-—
+orrmoea ¢

- (M +/\4)1()\2 + A3) (1 e ) ( e (/\2“3)8)

(1 _()\1+A2)s) ( —(As3+Aa)s _ e—()x3+>\4)t)} (32)

—(A1+A3)s) (1 —(A2+A4)s)

1
+
(M + A2) (Mg + A\4)

T t s (AM+X2)T _ 1 _
/ E [/ et dw(u)/ et () dw(u)} dt = © L=t )T . (33)
0 0 0 (A1 +A2)?
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By using the definitions of VY (h) and V7, it is trivial to see forany I, j € {1,--- ,n}

M N-1 T
ho” (kh)o\” (kh) — / E[¢1(t)¢; (t)] dt
i=1 k=0
2 M N-1 n
Dl 1(kh—s dw(z > ( Dia 6 (kh—s) dw(z ( )>

=1 k=0 <o¢z:1 l / Z ’ /
_ 52 ' - e (t=s) Aj(t—s)

o /0 E o;pla/o dwe ( ija/ dws(s) || dt

- ho? o~ (M sy g, 0 T kh—s) g, (1)
= Zplapja Wz Z /0 eM dwi’ (s) /0 et dwy (s)
T t t
f02/ E {(/ e (t—s) dwa(s)) </ i (t—s) dwa(s)>} dt |+
0 0 0
kh kh

Z DPiaPjip

a#B

where the last equation is due to the fact that for o # 3

([ 0 ) [ 0] -

ThUS, for any ll; l27j17j2 € {L e ,’Il},

n
E [Clljl clzJé] = Z pllapjlapz2apj2a0411 (M, h, T, Ay Ajis Mgy Ao @)

a=1

n
+ Z pllapjlaplzﬁpj2ﬂa4z2 (Ma h7 T7 )‘lla )‘j1 ) )‘125 )‘jza «, 5)
B

n
+ Zpllapjlﬁplzapjzﬂa4z3 (M7 h7T7 )‘l17Aj1a)‘lzaAj2aaaﬁ) ’ (34)
a#p

where

T (M h T /\117>‘j13A127)‘j25a)

l ilvz:l </ Ay (kh—s) dwfj)(s)> </kh ehin(Fh=e) dwfj)(S)>

=1

T t
- / E (/ et (t=9) dwa(s)> (/ et (t=9) dwa(s))] dt| x
0 0 0
M N-1 kh kh
[ 3 ( / e (kh=s) dng>(s)> ( / ¢Hia (k=) dng>(s)>
i=1 0 0

k=0

- /OTE [(/Ot Aty (t—5) dwa (s )) (/Ote/\jz(ts) dwa(s))] dt]} ,
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and

Lo (M, b, Ty Ny, Ay Atys Ay, 0, B)

M N-1 kh
A (kh=5) 1,0 ( i (h=s) 3D (g
{[ §j§j</ da<>><A da<ﬁ

=1 k=0

T t t
- / ]EK / i (-9) dwa(s)> ( / o 5) dwa(s)ﬂ dt] x
0 0 0
h L= Hh i, (kR (%) kh A, (kh (1)
FEE ([t ([ s

i=1 k=0

T t t
- / E {(/ eMia (t=3) dwg(s)) (/ eriz (t=9) dwg(s))] dt] }
0 0 0
I3(M7h7T)‘l15)‘j1a)‘l27 ]27 56)
M N-1 kh ) kh .
{ Z Z (/ oAty (kh—s) dw&z)(s)> (/ oNin (kh—s) dwg)(s)ﬂ %
i=1 k=0 0
M N-1 kh
[ Z (/ ez (kh—s) dw?(s)) (/ iz (kh—s) dw?(s))]} _
e 0

=1 0

and

Note that wgf ) and wg) are independent for o # /3. By using the expectations Equations (31) and (33),
we can further obtain Zy (M, h, T, \i,, Ajy, Aiys Ajy, @, B) as

IQ(M7haT7)‘l17)\j15Al27 jz?aﬁ)
h 1—eGutra)T 1 |
>< Gt ) e O = G )

)\ll + )‘j1)2

h 1— Putrn)T )
e ) D S Y C VD VS LA )
( ( ) ) (M, + /\j2)2 ( 1= (A, + /\JQ)T)

In the following computations, we will use C' and C(\;, Aj,, Ai,, Aj,) to represent some constants
that are not depending on h, T, B.

The expectation Z; (M, h, T, A, Aj,, A,y Ajy, ) is computed exactly the same way as in the proof
of Theorem 1 by using the expectation results Equation (31) and Equation (32). Notice that the
expectation result Equation (31) (when s = t) has the same order in ¢ as the expectation Equation (15).
Moreover, the two expectations Equation (32) and Equation (17) have the same orders in s and t.
Thus, Z, (M, h, T, A1, Aj,, Ay, Aj,, @) has the same orders in k, T', B as the scalar MSE, i.e.

Ty (M, B, T Ny Mgy Aty Ajys @) = (C1 4 Cr (A, Mgy A, Ajy) O(T) TR + O(RP)
_ T> 1
+ (02 + Cy (/\11,)\]'1,/\12,)\]‘2) O(T)) B + O (B)
The expectation Zy (M, h, T, Ai,, Aj, s Aips Aj,, v, B) can be computed directly and has the result:
(e()\ll +’\J'1)T — 1) (e(’\IQ +>‘j2)T
Lo (M, h, T, Ay, Njy s A
2( s by Ly ALy Ajy l27 ]27 7ﬁ) 4()\l1+)\]1)(>\l2+)\]2)

1
= (4T2 + Cg()\zl,/\jl,)\lz,)\j2)(’)(T3))> h? +O(h?).

>h2 +O(h?)
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The expectation Z3 (M, h, T, A1, , Aj, , Aiy, Ajy» @, §) can be computed as follows:
I?) (Ma h7T7 )‘lla)‘jp)‘lz) J2 75)
B2 o (6(A11+>\12)kh _ 1) (e(/\j1+)\j2)kh _ 1) B2

M &~ Ay +A,) (A + Aj)
W2 g e A o (1 _ e—(Azl+Al2)kh) (1 _ e—(Athz)kh)

M k<q (>‘l1 + /\lz) (Ajl + Ajz)

2 Ay qhF ALy khA X, gh4- Az, kh
h e 2 i i ( _ e—(/\ll+Al2)kh> (1 _ e—()xj1+)\j2)kh)

M= () (g, +As)

+

_ 75 1
= (04 + Cy ()\ll, )\jl’)\ZZ’ )‘jz) O(T)) @ +O (B) .

Thus, the final result is obtained by the expression of MSE in Equation (30), Equation (34) and the
above computations. Again, we rely on symbolic computation to obtain the expression and corre-

sponding Taylor approximations and include the notebooks of all derivations in the supplementary

material. O

The extension from Theorem 3.4 to the discounted finite-horizon results can be done in the same way
as in the above proof (add the discount factor v in V) by using the expectation cost for any \; and

)\21
T t s
/ V'E [/ eM(t—w) dw(u)/ er2 () dw(u)} dt
0 0 0

1 /yTe(Al"r)Q)T —1 fyT —1
(A ) (log (M) + (1 +A2)  log (7)) '

C.2 Proof of Corollary 3.7

Proof. We shall follow the similar proof as in the proof of Theorem 3.4 and the proof of Theorem 3.6.

Continuing from Equation (34), in infinite-horizon discounted setting, we have

Il (M h T )\ll,)\jla)\lga)\jzaf%a)

M N-1 kh 4 kh ,
{ Z Z AR (/ e (kh=s) dwg)(8)> (/ et (kh=s) dwgf)(s)>
0

i=1 k=0
o] t
- / V'E [(/ e (=) dwa(s)) (/ et (t=5) dwa(3)>} dt} X
0 0 0
h o=~ kh s (kh—s) 7, (i) oy (kh—s) 7, ()
— v / eM2 TS qull (s) / €28 dap it ()
M Z 0 0 (

i=1 k=0

< e[ (f e awnn) ([ amto) o]}
and

IQ(Mah7T7)\l1a)‘j17>\lza gayr Yy (¥ 55)

-

h 1—ATePutr)T a7 1 ( 1 1 )
()\ll + /\jl) 1-— ’yhe(AllJr)‘Jl h ]- - ’yh ()‘11 + >‘j1) log (7) 1Og (’7) + )‘11 + )\jl

)
h A 1 < 1 1
()‘lz + /\jz) 1—7 6<>\l2+>\ z)h 1- fyh (/\lz + )‘jz) 1Og (7) log (’7) + /\12 + /\jz ’
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and

M N-1

IS (Ma h7T7 )\lu)‘ju)\lfza )‘jzaraaaﬁ)
i kh _ kh ‘
- okt / A (kh=3) 43, (0) () / i (kh—s) dw/(;)(S) «
. k 0 0

kh kh )
th (/ iy (kh—s) dw&“(s)) </ iz (kh—s) dwg)(s)ﬂ} )
0 0

Similar arguments as in proof of Theorem 3.4, we can conclude Zy (M, h, T, Ni;, Ajy s Aipy Ajy, )
has the same orders in h, B, T as the MSE result in Theorem 3.6.

Moreover, let C; (A1, Ajy, Aty s Ajy, 7y, T')’s are some constants that depend on A;, Aj,, Ay, Ajy, v, T,
then

IQ (M7h>T7 >\ll7)‘j17)\l2u)\j27’77a56)
= 0—472T (Cl ()‘ll ) )\jla )\lg ) >\j2 » s T) + CQ()\ll ) )\jl ) )‘12 ) )‘j2a Y T)h)
+ 047T (03(Al1 ) >‘j1 ) Alzv >‘j2 » Vs T)h2 + 04()‘11 ) )‘j1 ) >‘lzv /\jzv e T)hd)

1
+ 0’4 (144 +’YTC5()\l1,)\j1’)\l2, A]Q?’Y)T)) h4 + O(h5) ,

and
I?) (M7 h>T7 )\l17)‘j17)‘l2a)‘j2a’77aaﬁ)
p2 N1 (e()\ll—i-klg)kh _ 1) (e(Ajl-i-)\jz)kh _ 1) h2-y2kh

+
M~ (A + Asp) (A 4 Ajz)
A, kh+Xi, gh+Xj, kh+)Xj, qh

hj ey KhtAi, aht Xy khtX 5 q (1 B e,(,\llﬂb)kh) (1 _ 67(,\j1+xj2)kh> (ko)
M= (A + M) (A + Ass)

2 Aty b A, kR As, gh+ g, kR
h* ey aht Ay khtXj, qh+ (1 _ 6_(>\11+)\12)kh> (1 _ e—()\j1+)\j2)kh> ~(k+a)h
M= iy M) (g +As)

T° 1
:060‘117)‘]‘17)\[27)\]'2"771—’)@+O 5)-

The result in this Corollary is obtained by combining the above results. And we include the notebooks
of all derivations in the supplementary material. O

C.3 The case when A is a general stable matrix

Lemma C.1 (MSE when A is a general stable matrix ). Let A be a stable n x n matrix with distinct
eigenvalues A\, -+ , A\p, and corresponding multiplicities qi,- - - , Gm. There exist some constants
{Ci}Yy, Co and Cj(A1,--+ , Am,7,T)’s, such that the mean-squared error of the Monte-Carlo
estimator in different setting satisfies

(1) Finite-Horizon undiscounted setting:
m

MSET S |:Z qiéiMSET(h, B, /\1), 01 ()\1, ey )\m, T)O'4T2h2
i=1

(6_’2 + 03()‘1) T a)"ma T)O(T)) 0.4T27L+3

+ Bh

+0m%+mé), (35)

where MSEr(h, B, \;) is the mean-squared error of the Monte-Carlo estimator in Theorem 3.1 by
replacing the drift a by \;.
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(2) Finite-Horizon discounted setting:

m
MSET € |:Z qZClMSET(h7 B7 s )‘1)7 04(A17 e 7A’rn7 s T)U4FY2TT2h’2
=1
+C5(A1s s Am, 1, 1oy A + Co(Ar, -+, A, T)o* b
+ (C7(>\17 e 7>‘WL7 v T)) 0—4T2n71
Bh

where MSE7 (h, B, v, \;) is the mean-squared error of the Monte-Carlo estimator in Lemma B.1 by
replacing the drift a by \;.

+ O(h?) +O(%) , (36)

(3) Infinite-Horizon discounted setting:

MSE € [ZquiMSEoo(mBﬂ,)\i),
i=1
(CsA 1, s Ay 1 T) + Co(Aty - -+ 5 Ay v, T)R) 02T
+ (Cio(A1, s Ams 1, TR + Cri(Ar, -+, A, 7, T)R?) oy
Cis( A1, s Am, 7, T)) T2 1
Bh

+O(r°) + 0(;)} , 37)

+ Cra( A1y Am, T)o*h* + (

where MSE,(h, B,~, \;) is the mean-squared error of the Monte-Carlo estimator in Theorem 3.6
by replacing the drift a by \;.

Proof. As we can see the proof of Lemma B.1 is based on the proof of Theorem 3.1 with adding
a discount factor «, and the proof of Theorem 3.6 is based on the proof of Lemma B.1 with the
decomposition Equation (12). By using the same flow direction, it is sufficient to show the result in
case (1) and the results in case (2) and (3) follows.

Consider the decomposition of MSE in finite-horizon undiscounted setting:

MSE; = E [(VM - VT)Z}

e[l ]

E {V]@} _E [VMT + (E {VM} - VT>2

Partl Part2

Before the analysis of part 1 and part 2, we will introduce the following mean-squared error notations
for the finite-horizon undiscounted scalar case with drift \;:

MSEr(h, B, \;) = Var(h, \;) + Approximation(h, B, \;) , (38)

where Var(h, \;) = E {Vz\ﬂ —E [VM} ’ and Approximation(h, B, \;) = (IE [VM} — VT)2.

For part 1:
B[V = hﬂz 3 E [X(kh) T QX (kh)X;(1h)T QX (ih)]
i,5,k,l
= Ah% 3 {E [X(kh) T QX (k)] E [X;(1h) T QX;(1h)] + 2tr {QE [Xi(kh)xj(zhf]ﬂ
1,5kl

=1’ E[X(kh)TQX (kh)] E [X,(1h) "QX (1h)] +
k,l

% 3 tr {QE [X (kh)X (kh)T]} + A‘ME Yt {QE [X (k)X (1h) ]}, (39)
k

k<l
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where the second equality is based on Isserlis’ theorem and the trace operation.

Notice that E {VM} P > E [X (kR)T QX (kh)] E [X(1h)T QX (ih)], thus

E [VJ@] —E [VM] i

2h? T142 | 4h? T112
=57 2 {QE[X (k)X (kh) 1]} + 5= > tr {QE [X(kh)X (1h) "]}
k k<l
To analyze the above form, we decompose the matrix A by it Jordan form, i.e. A = P~1JP for
some inevitable matrix P and J = diag(J;,- - - , J, ), where J; is the Jordan block corresponding to
the eigenvalue \;.
Notice that e’/ (*h=#) = diag(e/1(r=5) ... ¢/m(Fh=5)) where
(kh—s)? (kh—s)%i 1
1 kh-—s 2!9 (qiil)l )
B (0 U
Ji(kh=s) _ Ai(kh—s) 1 kh — s @2
1

Combining with the fact that for any &, [,

khALR -
E [X (kh)X(1h)T] = / AUh=8) AT (1h=s) g
0

khALR .
— / P*leJ(khfs)PPTeJ (lh*S)PfT ds ,
0

we can conclude that for any k < [, tr {QE [X (kh)X (Ih) "]} is a linear combination of £, ; ; and
Ly ; ; forall 4, j, where

kh
Ly = C’m,y‘/ R R E
0

ehikh | oA

— T (1 _ —(M+A.7>kh)
VTN ‘

kh
Lo j:=0Ca;, / eikh=s) 42 (th=9)) (|-, — 5)Ti(1h — 5)T ds,
0

where C1 ; j, C; ; are some constants and ¢; € {0,--- ,¢; — 1}, ¢; € {0,--- ,¢; — 1}.

For the integral in Lo ; j, as ¢; + ¢; < n — 1, we can have the inequality:

kh
/ O (h=s) £, (h=2) (b1, _ )i (1, — §) dis
0
kh
S Tn—l/ e(/\i(kh—s)—i-kj(lh—s)) ds. (40)
0

Since

o {QE [XkXW Y = 3 Y ] Lo Lo

i1,J1,02,J2 k,l 11,lo€{1,2}

and all the terms are nonnegative. We drop all terms that include L ; ; factor and only include the
L3, ; with k = [ terms in the lower bound of part 1. That is to say, the lower bound of part 1 is

>oimy qiCiVar(h, ;).

The upper bound of part 1 can be obtained by replacing all £ ; ; factors by L ; ; and use the bound
(CatCs(A,+ A, TYO(T) ) o* T F?
Bh

given in Equation (40). This leads to the upper bound for part 1 is
o(%).
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For Part 2, let g(t) = E [ X (t) "QX(t)] on [0,T]. Then E [VM} is the left Riemann sum approxima-
tion of g(¢), by the property of Riemann approximation,

E [VM} — V| ~ 20T g(T) + O(h?),

where

0

T
9(T) = tr {QE [X(T)X(T) "]} = o*tr {Q/ eA(t=9) AT (t=5) ds} ,
which is a constant depends on Ay, - - - , A, 7. Thus
(E [VNI] Ve R Ci(OM - A, T)OAT2RE + O(R3),

which has the same order in A as the scalar case in finite-horizon undiscounted setting. Thus the
result in Equation (35) is obtained by combining part 1 bounds and part 2 approximation.

As we explained in the beginning of this proof, in the finite-horizon discounted setting, we will follow
the similar arguments as in the proof of Equation (35) to obtain result Equation (36).

For the infinite-horizon discounted setting, the corresponding part 1 in the MSE, is the same as
the part 1 in MSEr of Equation (36). The part 2 is approximated by using the decomposition
Equation (12) and the fact that

Vieo = /Oo fytE [X(t>TQX(t)] dt = WTC(Ta T, A, Am) -
T

To verify Vr o is O(yT), one can find the bounds of Vi o, by using the similar arguments in the
above proof of Equation (35) and the following inequality:

t
/ QAN E=9) (4 _ )Eiti g
0

t tnfl
< gt / SN (E—9) g — (6(Ai+Aj)t _ 1) _
0 ()‘i + )‘j)

Then the components in [°"+'E[X(#)X(t)"] dt is lower bounded by
I m (eX+2)t —1) dt and upper bounded by [/° (’/’\tf_:;;) (et —1) dt. By
the celebrated approximation of incomplete gamma function when 7' is large, we have

e} tyn—1 T —1
/ S (Xt —1) arm L o (X7 —1)
v (Ait+A)) (Ai +A5)
Followed by
o0
Voo :tr{Q/ YE[X#)X ()] dt},
T
we can obtain that Vi oo = 4T C(r, T, A1, -+, Am)-

This result leads to the fact that part 2 is

(Cs(M s Ay v T) + Co( Aty -+, Ay v, T)R) 0*92T + (Cro(As -+ 3 Ay v, T)R?
+011()\17 e 7)\7713 v T)hg) 047T + C'12(/\17 e 7/\m7 T)U4h4 + O(h5) )

which coincides with the Var(hJ;) in the infinite-horizon discounted scalar case. The results in (3)
then follows. O

D Complements to Numerical Simulations

The LQR experiments were run on a MacBook pro with an i9 CPU and 16GB of RAM.
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D.1 Randomly-sampled Matrices

The matrices A in Figure 1(c) and Figure 1(d), corresponding to controlled multi-dimensional linear
systems, are generated according to the procedure described below. It ensures the stability of the
resulting system, i.e., that eigenvalues of the sampled matrix are negative.

The procedure works by random sampling an eigendecomposition. It starts with uniformly sampling
two eigenvalues from disjoint, bounded intervals, A\; € [—1.5,—1.0) and A3 € (—1.0,—0.75].
The final eigenvalue is set to be Ao = —1.0. Note that since all the eigenvalues sampled are
negative, any matrix whose eigenvalues are A1, Ao, A3 is said to be stable. Next, the eigenvectors
are sampled randomly from the classical compact groups detailed in [Mezzadri, 2006]. For that,
we randomly sample an orthogonal matrix L using a built-in SCIPY [Virtanen et al., 2020] routine,
ORTHO_GROUP.RVS. Now let A = diag(A1, A2, A3), the random, dense, stable matrix A is obtained
by computing the product A = LTAL.

D.2 Trade-off in LQR with Scaled Identity Matrices

In order to better understand the transition from scalar to vector case in the trade-off of the step-size
due to the MSE in Section 3, numerical experiments for the case of identity matrices scaled by a
constant are provided in this section. This allows to characterise the role played by the eigenvalues,
with respect to the parameter a in the scalar case.

T=2, B=4096 T=32,B=16384, y=0.9
102,
r:‘\ 101,
S
I
= 10°
< e
<§ —o— A=-025/3
~ _1] o A=-0.50/;
10 <o A=-1l5
10731 o A=-21 e & - A=-2i; o
o A=-4i; °o—o o A=-4l3 —o—o
10—2,
10-3 1072 107! 10° 102 1071 10°
h h
(a) n = 3, finite horizon (b) n = 3, infinite horizon

Figure 4: Mean-squared error trade-off in LQR with scaled identity matrices A. The plots show the
dependence of the optimal step-size on the eigenvalues of the linear systems in both finite and infinite
horizon settings. The same trend of the scalar case w.r.t. the parameter a can be observed here.

As expected, results in Figure 4 suggest that the trade-off for scaled identity matrices is very similar
to the one in the scalar case. In this simple case the eigenvalues that are identical on all dimensions
play the same role as the parameter a, i.e., by decreasing them, the trade-off shifts towards a smaller
value for the optimal step-size, as suggested also by Figure 1(b).

D.3 Comparison of Empirical and Analytical MSEs in One-dimensional Langevin Systems

Figure 5 compares the empirical MSE in Figures 1(a) and 1(b) with the analytical MSEs, including
both the exact and approximate versions. We can observe that the empirical results are consistent
with the analysis. The error in approximate MSE becomes noticeable for large h especially when
h > 1, as expected. Nevertheless, the optimal h* remains consistent.

D.4 Implementation Details for Nonlinear Systems Experiments

We summarize the environment-specific parameters in Table | for the nonlinear-system experiments.
Compute Resources For training the stable policy for non-mujoco environments, we used a server
with one GTX 1080. The training for MuJoCo environments was conducted on a cluster, using a

single V100 Volta for each environment. For inference, since we need to run many episodes, we
scaled things up on a cluster of CPUs.

28



T=8, a=-1.0 T=8, a=-1.0

10! 10!
bR U
S 100 > 100
| |
ST ST
10- 10~
<>2 —o— B=4096 <>2 —e— B=4096
= o B=8192 = o B=8192
_, | —e— B=16384 _, | —o- B=16384
10774 o 32768 = 1071 o p-32768 =
o B=65536 o ©- B=65536 o
1073 1072 107! 10° 10! 1072 1072 107! 10° 10!
h h
(a) exact MSE, vary B (b) approximate MSE, vary B
T=8, B=16384 T=8, B=16384

1073 1072 107t 10° 10!
h

(c) exact MSE, vary a (d) approximate MSE, vary a

Figure 5: Comparison between the empirical (solid) and analytical MSEs (dashed) in one-dimensional
Langevin systems.

Training Details We used the CDAU algorithm described in [Tallec et al., 2019] to train the policies
since we find this algorithm to be robust to time discretization, especially when the environment
runs at 6t = 0.001. We closely followed the hyper-parameters setup described in Section 2 in the
Appendix of [Tallec et al., 2019]. For more details, please refer to their paper, and the code in the
supplementary materials.

Inference Details We run the policy for 300k episodes at the finest time discretization ¢ = 0.001
(600k in InvertedDoublePendulum and Pusher) and store the reward sequences. The number of
episodes is chosen to be sufficient for 30 runs and the largest possible number of trajectories
(depending on h and the data budget B). These data get down-sampled offline for different choices
of h. The episodes are randomly shuffled when we vary B.
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Table 1: The setup of the environments. *: In MuJoCo environments in OpenAl Gym, §t =
timestep * frame_skip, where ‘timestep’ (the step size of the MuJoCo dynamics simulation) and
‘frame_skip’ (the algorithmic step size) are two pre-set quantities in their implementation. In our
setup, 0t = 0.001 seconds for the proxies to the continuous-time environments.

Environment Episode Length ~ Original* Horizon T’
(steps) ot (seconds)

Pendulum 200 0.05 10

BipedalWalker 500 0.02 10

InvertedDoublePendulum 1000 0.05 50

Pusher 1000 0.05 50

Swimmer 1000 0.04 40

Hopper 1000 0.008 8

HalfCheetah 1000 0.05 50

Ant 1000 0.05 50
Environment By h
Pendulum 10k [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
BipedalWalker 10k [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
InvertedDoublePendulum 25k  [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1]
Pusher 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4, 1]
Swimmer 20k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
Hopper 8k  [0.001, 0.002, 0.004, 0.01, 0.02, 0.04, 0.1]
HalfCheetah 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4]
Ant 25k [0.002, 0.004, 0.01, 0.02, 0.04, 0.1, 0.2, 0.4]
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