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Abstract

We present a new, semi-supervised extension of discriminative random fields
(DRFs) that efficiently exploits labeled and unlabeled training data to achieve
improved accuracy in a variety of image processing tasks. We formulate DRF
training as a form of MAP estimation that combines conditional loglikelihood on
labeled data, given a data-dependent prior, with a conditional entropy regularizer
defined on unlabeled data. Although the training objective is no longer concave,
we develop an efficient local optimization procedure that improves standard su-
pervised DRF training. We then apply semi-supervised DRFs to a set of image
segmentation problems on synthetic and real data sets, and achieve significant im-
provements over supervised DRFs in each case.

1 Introduction

Random field models are a popular probabilistic framework for representing complex dependencies
in natural image data. The two predominant types of random field models correspond to generative
versus discrimative graphical models respectively. Classical Markov random fields (MRFs) [2] fol-
low a traditional generative approach, where one models the joint probability of the observed image
along with the hidden label field over the pixels. Discriminative random fields (DRFs) [11, 10], on
the other hand, directly model the conditional probability over the pixel label field given an observed
image. In this sense, a DRF is equivalent to a conditional random field [12] defined over a 2-D lat-
tice. Following the basic tenet of Vapnik [18], it is natural to anticipate that learning an accurate
joint model should be more challenging than learning an accurate conditional model. Indeed, recent
experimental evidence shows that DRFs tend to produce more accurate image labeling models than
MRFs, in many applications like gesture recognition [15] and object detection [11, 10, 19, 17].

Although DRFs tend to produce superior pixel labelings to MRFs, partly by relaxing the assumption
of conditional independence of observed images given the labels, the approach relies more heavily
on supervised training. DRF training requires labeled image data where each pixel label has been
assigned. However, it is considerably more difficult to obtain labeled data for image analysis than for
other classification tasks, such as document classification, since hand-labeling the individual pixels
of each image is much harder than assigning class labels to objects like text documents.

Recently, semi-supervised training has taken on an important new role in many application areas due
to the abundance of unlabeled data. Consequently, much progress has been made toward developing�
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semi-supervised learning techniques for a variety of approaches, including generative models [14],
self-learning [5], co-training [3], information-theoretic regularization [6, 8], and graph-based trans-
duction [22, 23, 24]. However, most of these techniques have been developed for univariate classi-
fication problems, or class label classification with a structured input [22, 23, 24]. Unfortunately,
semi-supervised learning for structured classification problems, where the prediction variables are
interdependent in complex ways, have not been as widely studied, with few exceptions [1, 9].

Current work on semi-supervised learning for structured predictors [1, 9] has focused primarily on
simple sequence prediction tasks where learning and inference can be efficiently performed using
standard dynamic programming. Unfortunately, the problem we address is more challenging, since
the spatial correlations in a 2-D grid structure create numerous dependency cycles. That is, our
graphical model structure prevents exact inference from being feasible. Learning a model in the
context of approximate inference creates a greater risk of encountering the over-fitting and over
estimating issues discussed in [10, 19].

In this paper, we extend the work on semi-supervised learning for sequence predictors [1, 9], partic-
ularly the CRF based approach [9], to semi-supervised learning of DRFs. There are several advan-
tages of our approach to semi-supervised DRFs. (1) We inherit the standard advantage of discrim-
inative conditional versus joint model training, while still being able to exploit unlabeled data. (2)
The use of unlabeled data enhances our ability to avoid parameter over-fitting and over-estimation
in grid based random fields where only approximate inference is possible. (3) We are still able to
model spatial correlations in a 2-D lattice, despite the fact that this introduces dependency cycles in
the model. Our semi-supervised training procedure can be interpreted as a MAP estimator, where the
parameter prior for the model on labeled data is governed by the conditional entropy of the model
on unlabeled data. This allows us to learn local potentials that capture spatial correlations while
avoiding local over-estimation errors that can be mutually reinforcing [10, 19]. We demonstrate the
robustness of our model by applying it to a pixel denoising problem on synthetic images, and also
to a challenging real world problem of tumor segmentation in magnetic resonance images. In each
case, we have obtained significant improvements over current baselines.

2 Semi-Supervised DRFs (SSDRFs)

We formulate a new semi-supervised DRF training principle based on the standard supervised for-
mulation of [11, 10]. Let � be an observed input image, represented by ��� ���
	 � 	���
 , where �
is a set of the observed image pixels (nodes). Let ��� ��� 	 � 	���
 be the joint set of labels over all
pixels of an image. For simplicity we assume each component

� 	�� � ranges over binary classes� � ��������� � . For example, � might be a magnetic resonance image of a brain and � is a realization
of a joint labeling over all pixels that indicates whether each pixel is normal or a tumor. In this case,�

would be the set of pre-defined pixel categories (e.g. tumor versus non-tumor). A DRF is a con-
ditional random field defined on the pixel labels, conditioned on the observation � . More explicitly,
the joint distribution over the labels � given the observations � is written��� �"!$# %'&)( *+ �,�"%'&.-0/�132'457698;:=< �"> 5@? x &BA 4 5"6 8C4D 69EGF HJI �"> 5@? > D ? x &LK (1)

Here M 	
denotes the neighboring pixels of N . OJPRQ ��	S� x T3�VUXW�Y[Z�\]Q ��	�^`_=a=	 Q7�bTdc denotes the node

potential at pixel N , which quantifies the belief of the class label being
� 	

, where \]Q7edTf� ggdhbi0j�k .lnm Q � 	 �d�9o�� x Tp� � 	 �9orq _=s 	 o Q7�bT is an edge potential that captures spatial correlations among neigh-
boring pixels, such that

s 	 o Q��bT is the pre-defined feature vector given observation � . tvu�Q7�bT is the
normalizing factor, also known as a (conditional) partition function, and can be calculated as+ � �"%'&
( 4xwy-0/�1z2{457698;: < �"> 5 ? x &|A 4 5"6 8C4D 69E F H I �"> 5 ? > D ? %{&LK (2)

Finally, }~��Q ^�� m T are the model parameters. When the edge potentials are set to zero, a DRF
yields a standard logistic regression classifier. The potentials in a DRF incorporate the observed
image, and thereby relax the conditional independence assumption of MRFs. Moreover, the edge
potentials in a DRF can smooth discontinuities between heterogenous class pixels, and also correct
errors made by the node potentials.



Assume we have a set of independent labeled images, ���3��Z�Q��$� gd� � �]� gS� T�T �������b� Q7�$��� � � �]��� � Tdc ,

and a set of independent unlabeled images, ���[� Z �$��� h�gS� �������
� �$� _ � c . Our goal is to build a DRF

model from the combined set of labeled and unlabeled examples, ���B���z� , combined.

The standard supervised DRF training procedure is based upon maximizing the log of a posterior
probability of the labeled examples in �[��J� �7�9&�( �4���'�9������� �"!=� ��� # %b� ��� &'  I{¡'I¢�£ (3)

where a Gaussian prior over the edge parameters
m

is assumed, and a uniform prior over parameters^
is assumed. Here ¤=Q m TR�¦¥�Q m¨§�© ��ªB«�¬ T , where

¬
is the identity matrix. The hyperparameter

ª
adds a regularization term. In effect, the Gaussian prior introduces a form of regularization to limit
over-fitting on rare features and avoid degeneracy in the case of correlated features.

There are a few issues that require emphasis regarding the supervised learning criteria (3). First,
the value of

ª
is critical to the final result, and unfortunately selecting the appropriate

ª
is a non-

trivial task, which in turn makes the learning procedures more challenging and costly [13]. Second,
the Gaussian prior is data-independent, and is not associated with either the unlabeled or labeled
observations a priori.

Inspired by the work in [8] and [9], we propose a semi-supervised learning algorithm for DRFs
that makes full use of the available data by exploiting a form of entropy regularization as a prior
over the parameters on ­C� . Specifically, for a semi-supervised DRF, we formulate to maximize the
following objective® � �7��&�( �4¯ �.� �°��� �±� �"! � ¯ � # % � ¯ � &GA³² ¡4¯ � �µ´ � 4xw �±�9�"!�# % �°¶ � & ������· � �"!$# % ��¶ � & (4)

The first term of (4) is the conditional likelihood over the labeled data set ��� , and the second term is
a conditional entropy prior over the unlabeled data set ��� , weighted by a tradeoff parameter ¸ . The
resulting estimate is then formulated as a MAP estimate.

The motivation behind the objective (4) is to minimize the uncertainty on possible configurations
over parameters. That is, minimizing the conditional entropy over unlabeled instances provides more
confidence to the algorithm to find hypothetical labelings for the unlabeled data that are consistent
with the supervised labels. That is, greater certainty on the estimated labelings coincides with greater
conditional likelihood on the supervised labels, and vice versa. This criterion has been shown to be
effective for univariate classification [8], and chain structured CRFs [9], but here we apply it to the
2-D lattice case.

Unfortunately, the MAP objective (4) is no longer concave, since the conditional entropy over unla-
beled data is a composite function of the parameters } thus becomes no-concave.

3 Parameter Estimation

Several factors constrained the form of training algorithm: Because of overhead and the risk of
divergence, it was not practical to employ a Newton method. Iterative scaling was not possible
because the updates no longer have a closed form. Although the criticism of the gradient descent’s
presentation is well taken, it is the most practical approach we will adopt to optimize the semi-
supervised MAP formulation (4) and allows us to improve on standard supervised DRF training.

To formulate a local optimization procedure, we need to compute the gradient of the objective (4)
with respect to the parameters. Unfortunately, because of the nonlinear mapping function \]QS¹ºT , we
are not able to represent the gradient of objective function as compactly as [9], which was able to
express the gradient as a product of the covariance matrix of features and the parameter vector } .
Nevertheless, despite the added complexity of the DRF model, it is straightforward to show that the



derivatives of objective function with respect to the node parameters
^

is given by»»½¼ ® � �7�9& (5)( �4¯ �.� 457698 ¾À¿ > � ¯ �5 2 *  fÁb�"> � ¯ �5 ¼ ¡'Â 5 �"% � ¯ � & K   4 w �±�9�"!�# % � ¯ � &L> 5 2 *  ÃÁb�"> 5 ¼ ¡{Â 5 �"% � ¯ � & K|Ä Â 5 �"% � ¯ � &
A¨² ¡4¯ � �n´ � 45"698,¾ÆÅÇ 4 w � � �"!�# %
� ¯ � & 2x:=< �"> 5@? x &BA 4D 69EGF HJI �"> 5@? > D ? %{&LK½> 5 2 *  fÁb�"> 5 ¼ ¡ Â 5 �"%
� ¯ � &LK
 �È 4 w � � �"!�# %b� ¯ � & 2x:=< �"> 5@? x &GA 4D 69EGF HJI �"> 5@? > D ? %{&LK�É�È 4 w � � �"!$# %b� ¯ � &L> 5 2 *  CÁ=�"> 5 ¼ ¡ Â 5 �"%b� ¯ � &LK±É Ä Â 5 �"%
� ¯ � &
Also, the derivatives of objective function with respect to the edge parameters

m
are given by»» I ® � �7��&�( �4¯ �.� 457698 ¾ 4D 6 EBF$¿ > � ¯ �5 > � ¯ �D   4 w � � �"!$# %
� ¯ � &L> 5 > D ÄCÊ 5 D �"%
� ¯ � & (6)

A ² ¡4¯ � �µ´ ��457698 ¾ ÅÇ 4 w �±� �"!�# % � ¯ � & 2 : < �"> 5 ? x &GA 4D 69EGF H I �"> 5 ? > D ? %{& K > 5 > D �È 4 w �±� �"!�# % � ¯ � & 2r: < �"> 5 ? x &GA 4D 69EGF H I �"> 5 ? > D ? %{&LK±É�È 4 w ���9�"!$# % � ¯ � &L> 5 > D É Ä Ê 5 D �"% � ¯ � &
where the first term in (5) and (6) is the gradient of the supervised component of the DRF over
labeled data, and the second term is the gradient of conditional entropy prior of the DRF over
unlabeled data.

Given the lattice structure of the joint labels, it is intractable to compute the exact expectation terms
in the above derivatives. It is also intractable to compute the conditional partition function t u Q7�bT .
Therefore, as in standard supervised DRFs, we need to incorporate some form of approximation.
Similar to [2, 11, 10], we incorporate the pseudo-likelihood approximation, which assumes that the
joint conditional distribution can be approximated as a product of the local posterior probabilities
given the neighboring nodes and the observation� � �"!�# %{& Ë Ì5"6 8 � � �"> 5 # > EBF0? %'& (7)� � �"> 5 # > EGF�? %{&�( *Í 5 �"%'& -0/�132�:=< �"> 5@? %'&|A 4D 69EGF HJI �"> 5@? > D ? %{&LK (8)

Using the factored approximation in (8), we can reformulate the training objective as® �=ÎBÏ �7��&�( �4¯ �.�
8 ¾4 5 �'� ����� � � �"! � ¯ �5 # ! � ¯ �EBF ? %
� ¯ � & (9)

A¨² ¡4¯ � �µ´ �
8 ¾4 5 �'� 4�Ð F �±�9�"> 5 # > EGF ? % � ¯ � & ����� �±� �"> 5 # > EBF % � ¯ � &

Here, the derivative of the second term in ( Ñ ), with respect to the potential parameters
^

and
m

, can
be reformulated as a factored conditional entropy, yielding»»½¼ ® � ÎBÏ �7�9& (10)( �4¯ �.� 457698 ¾À¿ > � ¯ �5 2 *  fÁb�"> � ¯ �5 ¼ ¡'Â 5 �"% � ¯ � &LKz  4 Ð F �±�9�"> 5 # > E F ? % � ¯ � &L> 5 2 *  CÁb�"> 5 ¼ ¡'Â 5 �"% � ¯ � &LK Ä Â 5 �"% � ¯ � &
A¨² ¡4¯ � �n´ ��45"698,¾ ÅÇ 4 Ð F �±�9�"> 5 # > EGF ? % � ¯ � & 2r: < �"> 5 ? x &BA 4D 6 E

i

H I �"> 5 ? > D ? %'&LK½> 5 2 *  CÁ=�"> 5 ¼ ¡'Â 5 �"% � ¯ � &LK
 �È 4 Ð F �±�9�"> 5 # > EGF % � ¯ � & 2r: < �"> 5 ? x &BA 4D 6 E F H I �"> 5 ? > D ? %'&LK±É�È 4 Ð F �±�9�"> 5 # > EGF ? % � ¯ � &L> 5 2 *  CÁ=�"> 5 ¼ ¡'Â 5 �"% � ¯ � &LK�É Ä Â 5 �"% � ¯ � &



and »» I ® � ÎBÏ �7�9&)( �4¯ �'� 45"6 8 ¾ 4D 69EGF 2 > � ¯ �5 > � ¯ �D  3�±� �"> 5 # > D ? % � ¯ � &L> 5 > D K Ê 5 D �"% � ¯ � & (11)

A ² ¡4¯ � �µ´ ��457698 ¾ ÅÇ 4 Ð F �±� �"> 5 # > EBÒ ? % � ¯ � & 2�: < �"> 5 ? x &BA 4D 69EGF H I �"> 5 ? > D ? %{&LK½> 5 > D
  È 4"Ð F ���9�"> 5 # > EBF ? % � ¯ � & 2 : < �"> 5 ? x &GA 4D 69EGF H I �"> 5 ? > D ? %{& K�É�È 47Ð F ���9�"> 5 # > EGF ? % � ¯ � &L> 5 > D É Ä Ê 5 D �"% � ¯ � &
Assuming the factorization, the true conditional entropy and feature expectations can be computed
in terms of local conditional distributions. This allows us efficiently to approximate the global
conditional entropy over unlabeled data. Note that there may be an over-smoothing issue associated
with the pseudo-likelihood approximation, as mentioned in [10, 19]. However, due to the fast and
stable performance of this approximation in the supervised case [2, 10] we still employ it, but below
show that the over-smoothing effect is mitigated by our data-dependent prior in the MAP objective
(4).

4 Inference
As a result of our formulation, the learning method is tightly coupled with the inference steps. That
is, for the unlabeled data, Ó�Ô , each time we compute the local conditional covariance (10 and 11),
we perform inference steps for each node N and its neighboring nodes M 	

. Our inference is based on
iterative conditional modes (ICM) [2], and is given by> �5 (ÖÕ�× ��Ø Õ /Ð F 69Ù � �"> 5 # > EGF ?ÛÚ & (12)

We could alternatively compute the marginal conditional probability Ü�Q �½	0Ý ÓCT �Þyßxà�á F Ü�Q ��	d�d� 
±â0	 Ý ã T for each node using the sum-product algorithm (i.e. loopy belief prop-
agation), which iteratively propagates the belief of each node to its neighbors. Clearly, there are a
range of approximation methods available, each entailing different accuracy-complexity tradeoffs.
However, we have found that ICM yields good performance at our tasks below, and is probably one
of the simplest possible alternatives.

5 Experiments

Using standard supervised DRF models, Kumar and Hebert [11, 10] reported interesting experi-
mental results for joint classification tasks on a 2-D lattice, which represents an image with a DRF
model. Since labeling image data is expensive and tedious, we believe that better results could be
further obtained by formulating a MAP estimation of DRFs with abundant unlabeled image data.
In this section, we present a series of experiments on synthetic and real data sets using our novel
semi-supervised DRFs. In order to evaluate our model, we compare the results with those using
maximum likelihood estimation of supervised DRFs [11]. There are two reasons that we consider
the standard MLE DRF from [11] instead of the parameter regularized DRFs from [10]. First, we
want to show the difference between the ML and MAP principles. Second, [19] reports that the
experimental results obtained by DRF are quite sensitive to the selection of the regularization term
in [10].

To quantify the performance of each model, we used the Jaccard score äå� _{æ� _{æ h
ç æ hbç
èJ� �
where

TP denotes true positives, FP false positves, and FN false negatives. Although there are many
accuracy measures available, we used this score to penalize the false negatives since many imaging
tasks are very imbalanced: that is, only a small percentage of pixels are in the “positive” class.

The tradeoff parameter, ¸ , was tuned on one held out data set and then held fixed at 0.2 for all of the
experiments.

5.1 Synthetic image sets

Our primary goal in using synthetic data sets was to demonstrate how well different models classified
pixels as a binary classification over a 2-D lattice in the presence of noise. We generated 18 synthetic
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Figure 1: Outputs from synthetic data
sets. From left to right: Testing in-
stance, Ground Truth, Logistic Regres-
sion (LR), DRF, and SSDRF.
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Figure 2: Accuracy and Convergency

data sets, each with its own shape. The intensities of each image were independently corrupted by
noise generated from a Gaussian ¥�Q�é ��� T . We observed interesting results using supervised DRFs,
as well as semi-supervised DRFs, which are shown in Figure 1. Kumar and Hebert [10, 19] reported
over-smoothing effects from the local approximation approach of PL while our experiments indicate
that the over-smoothing is caused not only by PL approximation, but also by the sensitivity of the
regularization to the parameters. However, using our semi-supervised DRF as a MAP formulation
in learning, we have dramatically improved the performance of standard supervised DRF.

Note that the first row in Figure 1 shows good results from the standard DRF, while the oversmoothed
outputs are presented in the last row. Although the ML approach may learn proper parameters
from some of data sets, unfortunately its performance has not been consistent since the standard
DRF’s learning of the edge potential tends to be overestimated. For instance, the last row shows
that overestimating parameters of the DRF segment all pixels into a class due to the complicated
edges and structures containing non-target area within the target area, while semi-supervised DRF
performance is not degraded at all. Overall, by learning more statistics from unlabeled data, our
model dominates the standard DRF in most cases. This is because our MAP formulation avoids
the overestimate of potentials and uses the edge potential to correct the errors made by the node
potential. Figure 2(a) shows the results over 18 synthetic data sets. Each point above the diagonal
line in Figure 2(a) indicates SSDRF producing higher Jaccard scores for a data set. Note that our
model stably converged when we increased the ratio ( ê=ëpì ê
í ) of unlabeled data sets in our learning,
as in Figure 2(b), where ê=ë denotes the number of unlabeled images and ê
í the number of labeled
images. Similar results have also been reported in simple single variable classification task [8].

5.2 Brain Tumor Segmentation

We have applied our semi-supervised DRF model to the challenging real world problem of tumor
segmentation in medical imaging. Our goal here is to classify each pixel of an magnetic resonance
(MR) image into a pre-defined category: tumor and non-tumor. This is a very important, yet notori-
ously difficult, task in surgical planning and radiation therapy which currently involves a significant
amount of manual work by human medical experts.

We applied three models to the classification of 9 studies from brain tumor MR images. For each
study, N , we divided the MR images into ­Cî	 , ­ Ô	 , and ­ 
	

, where an MR image (a.k.a slice) has
three modalities available — T1, T2, and T1 contrast. Note that each modality has ï�ï ��ð ï,ñ pixels.

As with much of the related work on automatic brain tumor segmentation (such as [7, 21]), our
training is based on patient-specific data, where training MR images for a classifier are obtained
from the patient to be tested. Note that the training sets and testing sets for a classifier are disjoint.
Specifically, LR and DRF takes ­fî	 as the training set and ­ Ô	 and ­ 
	

for testing sets, while SSDRF
takes ­ î	 and ­ Ô	 for training and ­ Ô	 and ­ 
	

for testing.

We segmented the “enhancing” tumor area, the region that appears hyper-intense after injecting
the contrast agent (we also included non-enhancing areas contained within the enhancing contour).
Table 1 and 2 present Jaccard scores of testing ­ Ô	 and ­ 
	

for each study, ¤ 	 , respectively. While
the standard supervised DRF improves over its degenerate model LR by

� ò
, semi-supervised DRF



Table 1: Jaccard Scores for ­ Ô	 .

Testing from ­ Ô	
Studies LR DRF SSDRF¤ g 53.84 59.81 59.81¤ « 83.24 83.65 84.67¤Gó 30.72 30.17 75.76¤Bô 72.04 76.16 79.02¤Gõ 73.26 73.59 75.25¤Gö 88.39 89.61 87.01¤G÷ 69.33 69.91 75.60¤Gø 58.49 58.89 73.03¤Gù 60.85 56.49 83.91
Average 65.57 66.48 77.12

Table 2: Jaccard Scores for ­ 
	
.

Testing from ­ 
	
Studies LR DRF SSDRF¤ g 68.01 68.75 68.75¤ « 69.61 69.73 70.06¤Gó 23.11 21.90 71.13¤Bô 56.52 63.07 68.40¤Gõ 51.38 52.36 51.29¤Gö 85.65 86.35 85.43¤G÷ 66.71 68.68 70.27¤Gø 44.92 45.36 73.09¤Gù 21.11 20.16 38.06
Average 54.11 55.15 66.27

significantly improves over the supervised DRF by
���9ò

with ¤Öúûé|¹ é�é ð ï�ï using a paired example
t test. Considering the fact that MR images contain much noise and the three modalities are not
consistent among slices of the same patient, our improvement is considerable. Figure 3 shows the
segmentation results by overlaying the testing slices with segmented outputs from the three models.
Each row demonstrates the segmentation for a slice, where white blob areas for the slice correspond
to the enhancing tumor area.

6 Conclusion
We have proposed a new semi-supervised learning algorithm for DRFs, which was formulated as
MAP estimation with conditional entropy over unlabeled data as a data-dependent prior regular-
ization. Our approach is motivated by the information-theoretic argument [8, 16] that unlabeled
examples can provide the most benefit when classes have small overlap. A simple approximation
approach was introduced for this new learning procedure that exploits the local conditional proba-
bility to efficiently compute the derivative of objective function.

We have applied this new approach to the problem of image pixel classification tasks. By exploiting
the availability of auxiliary unlabeled data, we are able to improve the performance of the state of
the art supervised DRF approach. Our semi-supervised DRF approach shares all of the benefits of
the standard DRF training, including the ability to exploit arbitrary potentials in the presence of
dependency cycles, while obtaining improved accuracy through the use of unlabeled data.

The main drawback is the increased training time involved in computing the derivative of the condi-
tional entropy over unlabeled data. Nevertheless, the algorithm is sufficiently efficient to be trained
on unlabeled data sets that yield a surprising improvement in classification accuracy over standard
supervised training of DRFs as well as iid logistic regression classifiers. To further accelerate the
performance with respect to accuracy, we may apply loopy belief propagation [20] or graph-cuts [4]
as an inference tool. Since our model is tightly coupled with inference steps during the learning, the
proper choice of an inference algorithm will most likely improve segmentation tasks.
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