
Convex Two-Layer Modeling

Özlem Aslan Hao Cheng Dale Schuurmans
Department of Computing Science, University of Alberta

Edmonton, AB T6G 2E8, Canada
{ozlem,hcheng2,dale}@cs.ualberta.ca

Xinhua Zhang
Machine Learning Research Group
National ICT Australia and ANU
xinhua.zhang@anu.edu.au

Abstract

Latent variable prediction models, such as multi-layer networks, impose auxil-
iary latent variables between inputs and outputs to allow automatic inference of
implicit features useful for prediction. Unfortunately, such models are difficult
to train because inference over latent variables must be performed concurrently
with parameter optimization—creating a highly non-convex problem. Instead
of proposing another local training method, we develop a convex relaxation of
hidden-layer conditional models that admits global training. Our approach ex-
tends current convex modeling approaches to handle two nested nonlinearities
separated by a non-trivial adaptive latent layer. The resulting methods are able
to acquire two-layer models that cannot be represented by any single-layer model
over the same features, while improving training quality over local heuristics.

1 Introduction

Deep learning has recently been enjoying a resurgence [1, 2] due to the discovery that stage-wise
pre-training can significantly improve the results of classical training methods [3–5]. The advan-
tage of latent variable models is that they allow abstract ”semantic” features of observed data to be
represented, which can enhance the ability to capture predictive relationships between observed vari-
ables. In this way, latent variable models can greatly simplify the description of otherwise complex
relationships between observed variates. For example, in unsupervised (i.e., ”generative”) settings,
latent variable models have been used to express feature discovery problems such as dimensionality
reduction [6], clustering [7], sparse coding [8], and independent components analysis [9]. More
recently, such latent variable models have been used to discover abstract features of visual data
invariant to low level transformations [1, 2, 4]. These learned representations not only facilitate
understanding, they can enhance subsequent learning.

Our primary focus in this paper, however, is on conditional modeling. In a supervised (i.e. ”condi-
tional”) setting, latent variable models are used to discover intervening feature representations that
allow more accurate reconstruction of outputs from inputs. One advantage in the supervised case
is that output information can be used to better identify relevant features to be inferred. However,
latent variables also cause difficulty in this case because they impose nested nonlinearities between
the input and output variables. Some important examples of conditional latent learning approaches
include those that seek an intervening lower dimensional representation [10] latent clustering [11],
sparse feature representation [8] or invariant latent representation [1, 3, 4, 12] between inputs and
outputs. Despite their growing success, the difficulty of training a latent variable model remains
clear: since the model parameters have to be trained concurrently with inference over latent vari-
ables, the convexity of the training problem is usually destroyed. Only highly restricted models can
be trained to optimality, and current deep learning strategies provide no guarantees about solution
quality. This remains true even when restricting attention to a single stage of stage-wise pre-training:
simple models such as the two-layer auto-encoder or restricted Boltzmann machine (RBM) still pose
intractable training problems, even within a single stage (in fact, simply computing the gradient of
the RBM objective is currently believed to be intractable [13]).

1

Meanwhile, a growing body of research has investigated reformulations of latent variable learn-
ing that are able to yield tractable global training methods in special cases. Even though global
training formulations are not a universally accepted goal of deep learning research [14], there are
several useful methodologies that have been been applied successfully to other latent variable mod-
els: boosting strategies [15–17], semidefinite relaxations [18–20], matrix factorization [21–23], and
moment based estimators (i.e. ”spectral methods”) [24, 25]. Unfortunately, none of these approaches
has yet been able to accommodate a non-trivial hidden layer between an input and output layer while
retaining the representational capacity of an auto-encoder or RBM (e.g. boosting strategies embed
an intractable subproblem in these cases [15–17]). Some recent work has been able to capture re-
stricted forms of latent structure in a conditional model—namely, a single latent cluster variable
[18–20]—but this remains a rather limited approach.

In this paper we demonstrate that more general latent variable structures can be accommodated
within a tractable convex framework. In particular, we show how two-layer latent conditional models
with a single latent layer can be expressed equivalently in terms of a latent feature kernel. This
reformulation allows a rich set of latent feature representations to be captured, while allowing useful
convex relaxations in terms of a semidefinite optimization. Unlike [26], the latent kernel in this
model is explicitly learned (nonparametrically). To cope with scaling issues we further develop
an efficient algorithmic approach for the proposed relaxation. Importantly, the resulting method
preserves sufficient problem structure to recover prediction models that cannot be represented by any
one-layer architecture over the same input features, while improving the quality of local training.

2 Two-Layer Conditional Modeling
We address the problem of training a two-layer latent
conditional model in the form of Figure 1; i.e., where
there is a single layer of h latent variables, φ, between
a layer of n input variables, x, and m output variables,
y. The goal is to predict an output vector y given an
input vector x. Here, a prediction model consists of
the composition of two nonlinear conditional models,
f1(Wx) ; φ and f2(V φ) ; ŷ, parameterized by the
matricesW ∈ Rh×n and V ∈ Rm×h. Once the param-
eters W and V have been specified, this architecture
defines a point predictor that can determine ŷ from x
by first computing an intermediate representation φ.

To learn the model parameters, we assume we are given
t training pairs {(xj ,yj)}tj=1, stacked in two matrices
X = (x1, ...,xt) ∈ Rn×t and Y = (y1, ...,yt) ∈
Rm×t, but the corresponding set of latent variable val-
ues Φ = (φ1, ...,φt) ∈ Rh×t remains unobserved.

W φj

f1

V

xj yj

f2

t

Figure 1: Latent conditional model
f1(Wx) ; φ, f2(V φ) ; ŷ, whereφj is
a latent variable, xj is an observed input
vector, yj is an observed output vector,
W are first layer parameters, and V are
second layer parameters.

To formulate the training problem, we will consider two losses, L1 and L2, that relate the input
to the latent layer, and the latent to the output layer respectively. For example, one can think of
losses as negative log-likelihoods in a conditional model that generates each successive layer given
its predecessor; i.e., L1(Wx,φ) = − log pW (φ|x) and L2(V φ,y) = − log pV (y|φ). (However,
a loss based formulation is more flexible, since every negative log-likelihood is a loss but not vice
versa.) Similarly to RBMs and probabilistic networks (PFNs) [27] (but unlike auto-encoders and
classical feed-forward networks), we will not assume φ is a deterministic output of the first layer;
instead we will consider φ to be a variable whose value is the subject of inference during training.

Given such a set-up many training principles become possible. For simplicity, we consider a Viterbi
based training principle where the parameters W and V are optimized with respect to an optimal
imputation of the latent values Φ. To do so, define the first and second layer training objectives as

F1(W,Φ) = L1(WX,Φ) + α
2 ‖W‖

2
F , and F2(Φ, V) = L2(V Φ, Y) + β

2 ‖V ‖
2
F , (1)

where we assume the losses are convex in their first arguments. Here it is typical to assume
that the losses decompose columnwise; that is, L1(Ψ̂,Φ) =

∑t
j=1 L1(ψ̂j ,φj) and L2(Z, Y) =∑t

j=1 L2(ẑj ,yj), where ψ̂j is the jth column of Ψ̂ and ẑj is the jth column of Ẑ respectively. This

2

follows for example if the training pairs (xj ,yj) are assumed I.I.D., but such a restriction is not nec-
essary. Note that we have also introduced Euclidean regularization over the parameters (i.e. negative
log-priors under a Gaussian), which will provide a useful representer theorem [28] we exploit later.
These two objectives can be combined to obtain the following joint training problem:

min
W,V

min
Φ
F1(W,Φ) + γF2(Φ, V), (2)

where γ > 0 is a trade off parameter that balances the first versus second layer discrepancy. Unfor-
tunately (2) is not jointly convex in the unknowns W , V and Φ.

A key modeling question concerns the structure of the latent representation φ. As noted, the ex-
tensive literature on latent variable modeling has proposed a variety of forms for latent structure.
Here, we follow work on deep learning and sparse coding and assume that the latent variables are
boolean, φ ∈ {0, 1}h×1; an assumption that is also often made in auto-encoders [13], PFNs [27],
and RBMs [5]. A boolean representation can capture structures that range from a single latent clus-
tering [11, 19, 20], by imposing the assumption that φ′1 = 1, to a general sparse code, by imposing
the assumption that φ′1 = k for some small k [1, 4, 13].1 Observe that, in the latter case, one
can control the complexity of the latent representation by imposing a constraint on the number of
“active” variables k rather than directly controlling the latent dimensionality h.

2.1 Multi-Layer Perceptrons and Large-Margin Losses

To complete a specification of the two-layer model in Figure 1 and the associated training problem
(2), we need to commit to specific forms for the transfer functions f1 and f2 and the losses in (1). For
simplicity, we will adopt a large-margin approach over two-layer perceptrons. Although it has been
traditional in deep learning research to focus on exponential family conditional models (e.g. as in
auto-encoders, PFNs and RBMs), these are not the only possibility; a large-margin approach offers
additional sparsity and algorithmic simplifications that will clarify the development below. Despite
its simplicity, such an approach will still be sufficient to prove our main point.

First, consider the second layer model. We will conduct our primary evaluations on multi-
class classification problems, where output vectors y encode target classes by indicator vectors
y ∈ {0, 1}m×1 such that y′1 = 1. Although it is common to adopt a softmax transfer for f2 in
such a case, it is also useful to consider a perceptron model defined by f2(ẑ) = indmax(ẑ) such that
indmax(ẑ) = 1i (vector of all 0s except a 1 in the ith position) where ẑi ≥ ẑl for all l. Therefore,
for multi-class classification, we will simply adopt the standard large-margin multi-class loss [29]:

L2(ẑ,y) = max(1− y + ẑ− 1y′ẑ). (3)
Intuitively, if yc = 1 is the correct label, this loss encourages the response ẑc = y′ẑ on the correct
label to be a margin greater than the response ẑi on any other label i 6= c.

Second, consider the first layer model. Although the loss (3) has proved to be highly successful for
multi-class classification problems, it is not suitable for the first layer because it assumes there is
only a single target component active in any latent vector φ; i.e. φ′1 = 1. Although some work
has considered learning a latent clustering in a two-layer architecture [11, 18–20], such an approach
is not able to capture the latent sparse code of a classical PFN or RBM in a reasonable way: using
clustering to simulate a multi-dimensional sparse code causes exponential blow-up in the number of
latent classes required. Therefore, we instead adopt a multi-label perceptron model for the first layer,
defined by the transfer function f1(ψ̂) = step(ψ̂) applied componentwise to the response vector ψ̂;
i.e. step(ψ̂i) = 1 if ψ̂i > 0, 0 otherwise. Here again, instead of using a traditional negative log-
likelihood loss, we will adopt a simple large-margin loss for multi-label classification that naturally
accommodates multiple binary latent classifications in parallel. Although several loss formulations
exist for multi-label classification [30, 31], we adopt the following:

L1(ψ̂,φ) = max(1− φ+ ψ̂φ′1− 1φ′ψ̂) = max
(
(1− φ)/(φ′1) + ψ̂ − 1φ′ψ̂/(φ′1)

)
. (4)

Intuitively, this loss encourages the average response on the active labels, φ′ψ̂/(φ′1), to exceed the
response ψ̂i on any inactive label i, φi = 0, by some margin, while also encouraging the response on
any active label to match the average of the active responses. Despite their simplicity, large-margin
multi-label losses have proved to be highly successful in practice [30, 31]. Therefore, the overall
architecture we investigate embeds two nonlinear conditionals around a non-trivial latent layer.

1 Throughout this paper we let 1 denote the vector of all 1s with length determined by context.

3

3 Equivalent Reformulation

The main contribution of this paper is to show that the training problem (2) has a convex relaxation
that preserves sufficient structure to transcend one-layer models. To demonstrate this relaxation, we
first need to establish the key observation that problem (2) can be re-expressed in terms of a kernel
matrix between latent representation vectors. Importantly, this reformulation allows the problem to
be re-expressed in terms of an optimization objective that is jointly convex in all participating vari-
ables. We establish this key intermediate result in this section in three steps: first, by re-expressing
the latent representation in terms of a latent kernel; second, by reformulating the second layer ob-
jective; and third, by reformulating the first layer objective by exploiting large-margin formulation
outlined in Section 2.1. Below letK = X ′X denote the kernel matrix over the input data, let Im(N)
denote the row space of N , and let and † denote Moore-Penrose pseudo-inverse.

First, simply defineN = Φ′Φ. Next, re-express the second layer objectiveF2 in (1) by the following.

Lemma 1. For any fixed Φ, letting N = Φ′Φ, it follows that

min
V

F2(Φ, V) = min
B∈Im(N)

L2(B, Y) + β
2 tr(BN†B′). (5)

Proof. The result follows from the following sequence of equivalence preserving transformations:

min
V

L2(V Φ, Y) + β
2 ‖V ‖

2
F = min

A
L2(AN, Y) + β

2 tr(ANA′) (6)

= min
B∈Im(N)

L2(B, Y) + β
2 tr(BN†B′), (7)

where, starting with the definition of F2 in (1), the first equality in (6) follows from the representer
theorem applied to ‖V ‖2F , which implies that the optimal V must be in the form of V = AΦ′ for
some A ∈ Rm×t [28]; and finally, (7) follows by the change of variable B = AN .

Note that Lemma 1 holds for any loss L2. In fact, the result follows solely from the structure of the
regularizer. However, we require L2 to be convex in its first argument to ensure a convex problem
below. Convexity is indeed satisfied by the choice (3). Moreover, the term tr(BN†B′) is jointly
convex inN andB since it is a perspective function [32], hence the objective in (5) is jointly convex.

Next, we reformulate the first layer objective F1 in (1). Since this transformation exploits specific
structure in the first layer loss, we present the result in two parts: first, by showing how the de-
sired outcome follows from a general assumption on L1, then demonstrating that this assumption
is satisfied by the specific large-margin multi-label loss defined in (4). To establish this result we
will exploit the following augmented forms for the data and variables: let Φ̃ = [Φ, kI], Ñ = Φ̃′Φ̃,
Ψ̃ = [Ψ̂, 0], X̃ = [X, 0], K̃ = X̃ ′X̃ , and t̃ = t+ h.

Lemma 2. For any L1 if there exists a function L̃1 such that L1(Ψ̂,Φ) = L̃1(Φ̃′Ψ̃, Φ̃′Φ̃) for all
Ψ̂ ∈ Rh×t and Φ ∈ {0, 1}h×t, such that Φ′1 = 1k, it then follows that

min
W

F1(W,Φ) = min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2 tr(D′Ñ†DK̃). (8)

Proof. Similar to above, consider the sequence of equivalence preserving transformations:

min
W

L1(WX,Φ) + α
2 ‖W‖

2
F = min

W
L̃1(Φ̃′WX̃, Φ̃′Φ̃) + α

2 ‖W‖
2
F (9)

= min
C

L̃1(Φ̃′Φ̃CX̃ ′X̃, Φ̃′Φ̃) + β
2 tr(X̃C ′Φ̃′Φ̃CX̃ ′) (10)

= min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2 tr(D′Ñ†DK̃), (11)

where, starting with the definition of F1 in (1), the first equality (9) simply follows from the as-
sumption. The second equality (10) follows from the representer theorem applied to ‖W‖2F , which
implies that the optimal W must be in the form of W = Φ̃CX̃ ′ for some C ∈ Rt̃×t̃ (using the fact
that Φ̃ has full rank h) [28]. Finally, (11) follows by the change of variable D = ÑC.

4

Observe that the term tr(D′Ñ†DK̃) is again jointly convex in Ñ and D (also a perspective func-
tion), while it is easy to verify that L̃1(DK̃, Ñ) as defined in Lemma 3 below is also jointly convex
in Ñ and D [32]; therefore the objective in (8) is jointly convex.

Next, we show that the assumption of Lemma 2 is satisfied by the specific large-margin multi-label
formulation in Section 2.1; that is, assume L1 is given by the large-margin multi-label loss (4):

L1(Ψ̂,Φ) =
∑
j max

(
1− φj + ψ̂jφ

′
j1− 1φ′jψ̂j

)
= τ

(
11′ − Φ + Ψ̂ diag(Φ′1)− 1diag(Φ′Ψ̂)

)
, such that τ(Θ) :=

∑
j max(θj), (12)

where we use ψ̂j , φj and θj to denote the jth columns of Ψ̂, Φ and Θ respectively.

Lemma 3. For the multi-label loss L1 defined in (4), and for any fixed Φ ∈ {0, 1}h×t where
Φ′1 = 1k, the definition L̃1(Φ̃′Ψ̃, Φ̃′Φ̃) := τ(Φ̃′Ψ̃− Φ̃′Φ̃/k)+ t− tr(Φ̃′Ψ̃) using the augmentation
above satisfies the property that L1(Ψ̂,Φ) = L̃1(Φ̃′Ψ̃, Φ̃′Φ̃) for any Ψ̂ ∈ Rh×t.

Proof. Since Φ′1 = 1k we obtain a simplification of L1:

L1(Ψ̂,Φ) = τ
(
11′ − Φ + kΨ̂− 1diag(Φ′Ψ̂)′

)
= τ(kΨ̂− Φ) + t− tr(Φ̃′Ψ̃). (13)

It only remains is to establish that τ(kΨ̂−Φ) = τ(Φ̃′Ψ̃− Φ̃′Φ̃/k). To do so, consider the sequence
of equivalence preserving transformations:

τ(kΨ̂− Φ) = max
Λ∈Rh×t̃

+ :Λ′1=1

tr
(
Λ′(kΨ̃− Φ̃)

)
(14)

= max
Ω∈Rt̃×t̃

+ :Ω′1=1

1
k tr

(
Ω′Φ̃′(kΨ̃− Φ̃)

)
= τ(Φ̃′Ψ̃− Φ̃′Φ̃/k), (15)

where the equalities in (14) and (15) follow from the definition of τ and the fact that linear maxi-
mizations over the simplex obtain their solutions at the vertices. To establish the equality between
(14) and (15), since Φ̃ embeds the submatrix kI , for any Λ ∈ Rh×t̃+ there must exist an Ω ∈ Rt̃×t̃+ sat-
isfying Λ = Φ̃Ω/k. Furthermore, these matrices satisfy Λ′1 = 1 iff Ω′Φ̃′1/k = 1 iff Ω′1 = 1.

Therefore, the result (8) holds for the first layer loss (4), using L̃1 defined in Lemma 3. (The
same result can be established for other loss functions, such as the multi-class large-margin loss.)
Combining these lemmas yields the desired result of this section.
Theorem 1. For any second layer loss and any first layer loss that satisfies the assumption of Lemma
2 (for example the large-margin multi-label loss (4)), the following equivalence holds:

(2) = min
{Ñ :∃Φ∈{0,1}t×hs.t. Φ1=1k,Ñ=Φ̃′Φ̃}

min
B∈Im(Ñ)

min
D∈Im(Ñ)

L̃1(DK̃, Ñ) + α
2 tr(D′Ñ†DK̃)

+γL2(B, Y) + γβ
2 tr(BÑ†B′). (16)

(Theorem 1 follows immediately from Lemmas 1 and 2.) Note that no relaxation has occurred thus
far: the objective value of (16) matches that of (2). Not only has this reformulation resulted in (2)
being entirely expressed in terms of the latent kernel matrix Ñ , the objective in (16) is jointly convex
in all participating unknowns, Ñ , B and D. Unfortunately, the constraints in (16) are not convex.

4 Convex Relaxation
We first relax the problem by dropping the augmentation Φ 7→ Φ̃ and working with the t× t variable
N = Φ′Φ. Without the augmentation, Lemma 3 becomes a lower bound (i.e. (14)≥(15)), hence a
relaxation. To then achieve a convex form we further relax the constraints in (16). To do so, consider

N0 =
{
N : ∃Φ ∈ {0, 1}t×h such that Φ1 = 1k and N = Φ′Φ

}
(17)

N1 =
{
N : N ∈ {0, ..., k}t×t, N � 0,diag(N) = 1k, rank(N) ≤ h

}
(18)

N2 = {N : N ≥ 0, N � 0,diag(N) = 1k} , (19)

where it is clear from the definitions that N0 ⊆ N1 ⊆ N2. Note that the set N0 corresponds to the
original set of constraints from (16). The setN1 simplifies the characterization of this constraint set

5

Algorithm 1: ADMM to optimize F(N) for N ∈ N2.
1 Initialize: M0 = I , Γ0 = 0.
2 while T = 1, 2, . . . do
3 NT ← arg minN�0 L(N,MT−1,ΓT−1), by using the boosting Algorithm 2.
4 MT ← arg minM≥0,Mii=k L(NT ,M,ΓT−1), which has an efficient closed form solution.
5 ΓT ← ΓT−1 + 1

µ (MT −NT); i.e. update the multipliers.

6 return NT .

Algorithm 2: Boosting algorithm to optimize G(N) for N � 0.
1 Initialize: N0 ← 0, H0 ← [] (empty set).
2 while T = 1, 2, . . . do
3 Find the smallest arithmetic eigenvalue of∇G(NT−1), and its eigenvector hT .
4 Conic search by LBFGS: (aT , bT)← mina≥0,b≥0 G(aNT−1 + bhTh

′
T).

Local search by LBFGS: HT← local minHG(HH ′) initialized by H=(
√
aHT−1,

√
bhT).

5 Set NT ← HTH
′
T ; break if stopping criterion met.

6 return NT .

on the resulting kernel matrices N = Φ′Φ. However, neither N0 nor N1 are convex. Therefore, we
need to adopt the further relaxed set N2, which is convex. (Note that Nij ≤ k has been implied
by N � 0 and Nii = k in N2.) Since dropping the rank constraint eliminates the constraints
B ∈ Im(N) and D ∈ Im(N) in (16) when N � 0 [32], we obtain the following relaxed problem,
which is jointly convex in N , B and D:

min
N∈N2

min
B∈Rt×t

min
D∈Rt×t

L̃1(DK,N) + α
2 tr(D′N†DK) + γL2(B, Y) + γβ

2 tr(BN†B′). (20)

5 Efficient Training Approach

Unfortunately, nonlinear semidefinite optimization problems in the form (20) are generally thought
to be too expensive in practice despite their polynomial theoretical complexity [33, 34]. Therefore,
we develop an effective training algorithm that exploits problem structure to bypass the main compu-
tational bottlenecks. The key challenge is that N2 contains both semidefinite and affine constraints,
and the pseudo-inverse N† makes optimization over N difficult even for fixed B and D.

To mitigate these difficulties we first treat (20) as the reduced problem, minN∈N2 F(N), where F
is an implicit objective achieved by minimizing out B and D. Note that F is still convex in N by
the joint convexity of (20). To cope with the constraints on N we adopt the alternating direction
method of multipliers (ADMM) [35] as the main outer optimization procedure; see Algorithm 1.
This approach allows one to divide N2 into two groups, N � 0 and {Nij ≥ 0, Nii = k}, yielding
the augmented Lagrangian

L(N,M,Γ) = F(N) + δ(N�0) + δ(Mij≥0,Mii=k)− 〈Γ, N−M〉+ 1
2µ ‖N−M‖

2
F , (21)

where µ > 0 is a small constant, and δ denotes an indicator such that δ(·) = 0 if · is true, and∞
otherwise. In this procedure, Steps 4 and 5 cost O(t2) time; whereas the main bottleneck is Step 3,
which involves minimizing GT (N) := L(N,MT−1,ΓT−1) over N � 0 for fixed MT−1 and ΓT−1.

Boosting for Optimizing over the Positive Semidefinite Cone. To solve the problem in Step 3
we develop an efficient boosting procedure based on [36] that retains low rank iterates NT while
avoiding the need to determine N† when computing G(N) and ∇G(N); see Algorithm 2. The key
idea is to use a simple change of variable. For example, consider the first layer objective and let
G1(N) = minD L̃1(DK,N) + α

2 tr(D′N†DK). By defining D = NC, we obtain G1(N) =

minC L̃1(NCK,N) + α
2 tr(C ′NCK), which no longer involves N† but remains convex in C; this

problem can be solved efficiently after a slight smoothing of the objective [37] (e.g. by LBFGS).
Moreover, the gradient ∇G1(N) can be readily computed given C∗. Applying the same technique

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) “Xor” (2× 400)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) “Boxes” (2× 320)

−2 0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) “Interval” (2× 200)

XOR BOXES INTER
TJB2 49.8±0.7 45.7 ±0.6 49.3±1.3

TSS1 50.2±1.2 35.7 ±1.3 42.6±3.9

SVM1 50.3±1.1 31.4 ±0.5 50.0±0.0

LOC2 4.2±0.9 11.4 ±0.6 50.0±0.0

CVX2 0.2±0.1 10.1 ±0.4 20.0±2.4

(d) Synthetic results (% error)

Figure 2: Synthetic experiments: three artificial data sets that cannot be meaningfully classified by
a one-layer model that does not use a nonlinear kernel. Table shows percentage test set error.

to the second layer yields an efficient procedure for evaluating G(N) and ∇G(N). Finally note that
many of the matrix-vector multiplications in this procedure can be further accelerated by exploiting
the low rank factorization of N maintained by the boosting algorithm; see the Appendix for details.

Additional Relaxation. One can further reduce computation cost by adopting additional relaxations
to (20). For example, by dropping N ≥ 0 and relaxing diag(N) = 1k to diag(N) ≤ 1k, the
objective can be written as min{N�0,maxiNii≤k} F(N). Since maxiNii is convex in N , it is well
known that there must exist a constant c1 > 0 such that the optimal N is also an optimal solution
to minN�0 F(N) + c1 (maxiNii)

2. While maxiNii is not smooth, one can further smooth it
with a softmax, to instead solve minN�0 F(N) + c1 (log

∑
i exp(c2Nii))

2 for some large c2. This
formulation avoids the need for ADMM entirely and can be directly solved by Algorithm 2.

6 Experimental Evaluation

To investigate the effectiveness of the proposed relaxation scheme for training a two-layer condi-
tional model, we conducted a number of experiments to compare learning quality against baseline
methods. Note that, given an optimal solution N , B and D to (20), an approximate solution to the
original problem (2) can be recovered heuristically by first rounding N to obtain Φ, then recovering
W and V , as shown in Lemmas 1 and 2. However, since our primary objective is to determine
whether any convex relaxation of a two-layer model can even compete with one-layer or locally
trained two-layer models (rather than evaluate heuristic rounding schemes), we consider a transduc-
tive evaluation that does not require any further modification of N , B and D. In such a set-up, train-
ing data is divided into a labeled and unlabeled portion, where the method receives X = [X`, Xu]

and Y`, and at test time the resulting predictions Ŷu are evaluated against the held-out labels Yu.

Methods. We compared the proposed convex relaxation scheme (CVX2) against the following
methods: simple alternating minimization of the same two-layer model (2) (LOC2), a one-layer
linear SVM trained on the labeled data (SVM1), the transductive one-layer SVM methods of [38]
(TSJ1) and [39] (TSS1), and the transductive latent clustering method of [18, 19] (TJB2), which
is also a two-layer model. Linear input kernels were used for all methods (standard in most deep
learning models) to control the comparison between one and two-layer models. Our experiments
were conducted with the following common protocol: First, the data was split into a separate training
and test set. Then the parameters of each procedure were optimized by a three-fold cross validation
on the training set. Once the optimal parameters were selected, they were fixed and used on the test
set. For transductive procedures, the same three training sets from the first phase were used, but then
combined with ten new test sets drawn from the disjoint test data (hence 30 overall) for the final
evaluation. At no point were test examples used to select any parameters for any of the methods.
We considered different proportions between labeled/unlabeled data; namely, 100/100 and 200/200.

Synthetic Experiments. We initially ran a proof of concept experiment on three binary labeled
artificial data sets depicted in Figure 2 (showing data set sizes n× t) with 100/100 labeled/unlabeled
training points. Here the goal was simply to determine whether the relaxed two-layer training
method could preserve sufficient structure to overcome the limits of a one-layer architecture. Clearly,
none of the data sets in Figure 2 are adequately modeled by a one-layer architecture (that does not
cheat and use a nonlinear kernel). The results are shown in the Figure 2(d) table.

7

MNIST USPS Letter COIL CIFAR G241N
TJB2 19.3±1.2 53.2±2.9 20.4±2.1 30.6±0.8 29.2±2.1 26.3±0.8

LOC2 19.3±1.0 13.9±1.1 10.4±0.6 18.0±0.5 31.8±0.9 41.6±0.9

SVM1 16.2±0.7 11.6±0.5 6.2±0.4 16.9±0.6 27.6±0.9 27.1±0.9

TSS1 13.7±0.8 11.1±0.5 5.9±0.5 17.5±0.6 26.7±0.7 25.1±0.8

TSJ1 14.6±0.7 12.1±0.4 5.6±0.5 17.2±0.6 26.6±0.8 24.4±0.7

CVX2 9.2±0.6 9.2±0.5 5.1±0.5 13.8±0.6 26.5±0.8 25.2±1.0

Table 1: Mean test misclassification error % (± stdev) for 100/100 labeled/unlabeled.

MNIST USPS Letter COIL CIFAR G241N
TJB2 13.7±0.6 46.6±1.0 14.0±2.6 45.0±0.8 30.4±1.9 22.4±0.5

LOC2 16.3±0.6 9.7±0.5 8.5±0.6 12.8±0.6 28.2±0.9 40.4±0.7

SVM1 11.2±0.4 10.7±0.4 5.0±0.3 15.6±0.5 25.5±0.6 22.9±0.5

TSS1 11.4±0.5 11.3±0.4 4.4±0.3 14.9±0.4 24.0±0.6 23.7±0.5

TSJ1 12.3±0.5 11.8±0.4 4.8±0.3 13.5±0.4 23.9±0.5 22.2±0.6

CVX2 8.8±0.4 6.6±0.4 3.8±0.3 8.2±0.4 22.8±0.6 20.3±0.5

Table 2: Mean test misclassification error % (± stdev) for 200/200 labeled/unlabeled.

As expected, the one-layer models SVM1 and TSS1 were unable to capture any useful classification
structure in these problems. (TSJ1 behaves similarly to TSS1.) The results obtained by CVX2, on
the other hand, are encouraging. In these data sets, CVX2 is easily able to capture latent nonlin-
earities while outperforming the locally trained LOC2. Although LOC2 is effective in the first two
cases, it exhibits weaker test accuracy while failing on the third data set. The two-layer method
TJB2 exhibited convergence difficulties on these problems that prevented reasonable results.

Experiments on “Real” Data Sets. Next, we conducted experiments on real data sets to deter-
mine whether the advantages in controlled synthetic settings could translate into useful results in
a more realistic scenario. For these experiments we used a collection of binary labeled data sets:
USPS, COIL and G241N from [40], Letter from [41], MNIST, and CIFAR-100 from [42]. (See
Appendix B in the supplement for further details.) The results are shown in Tables 1 and 2 for the
labeled/unlabeled proportions 100/100 and 200/200 respectively.

The relaxed two-layer method CVX2 again demonstrates effective results, although some data sets
caused difficulty for all methods. The data sets can be divided into two groups, (MNIST, USPS,
COIL) versus (Letter, CIFAR, G241N). In the first group, two-layer modeling demonstrates a clear
advantage: CVX2 outperforms SVM1 by a significant margin. Note that this advantage must be
due to two-layer versus one-layer modeling, since the transductive SVM methods TSS1 and TSJ1
demonstrate no advantage over SVM1. For the second group, the effectiveness of SVM1 demon-
strates that only minor gains can be possible via transductive or two-layer extensions, although some
gains are realized. The locally trained two-layer model LOC2 performed quite poorly in all cases.
Unfortunately, the convex latent clustering method TJB2 was also not competitive on any of these
data sets. Overall, CVX2 appears to demonstrate useful promise as a two-layer modeling approach.

7 Conclusion
We have introduced a new convex approach to two-layer conditional modeling by reformulating the
problem in terms of a latent kernel over intermediate feature representations. The proposed model
can accommodate latent feature representations that go well beyond a latent clustering, extend-
ing current convex approaches. A semidefinite relaxation of the latent kernel allows a reasonable
implementation that is able to demonstrate advantages over single-layer models and local training
methods. From a deep learning perspective, this work demonstrates that trainable latent layers can
be expressed in terms of reproducing kernel Hilbert spaces, while large margin methods can be use-
fully applied to multi-layer prediction architectures. Important directions for future work include
replacing the step and indmax transfers with more traditional sigmoid and softmax transfers, while
also replacing the margin losses with more traditional Bregman divergences; refining the relaxation
to allow more control over the structure of the latent representations; and investigating the utility of
convex methods for stage-wise training within multi-layer architectures.

8

References
[1] Q. Le, M. Ranzato, R. Monga, M. Devin, G. Corrado, K. Chen, J. Dean, and A. Ng. Building high-level

features using large scale unsupervised learning. In Proceedings ICML, 2012.
[2] N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. In NIPS, 2012.
[3] Y. Bengio. Learning deep architectures for AI. Foundat. and Trends in Machine Learning, 2:1–127, 2009.
[4] G. Hinton. Learning multiple layers of representations. Trends in Cognitive Sciences, 11:428–434, 2007.
[5] G. Hinton, S. Osindero, and Y. Teh. A fast algorithm for deep belief nets. Neur. Comp., 18(7), 2006.
[6] N. Lawrence. Probabilistic non-linear principal component analysis. JMLR, 6:1783–1816, 2005.
[7] A. Banerjee, S. Merugu, I. Dhillon, and J. Ghosh. Clustering with Bregman divergences. J. Mach. Learn.

Res., 6:1705–1749, 2005.
[8] M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictio-

naries. IEEE Trans. on Image Processing, 15:3736–3745, 2006.
[9] P. Comon. Independent component analysis, a new concept? Signal Processing, 36(3):287–314, 1994.

[10] M. Carreira-Perpiñán and Z. Lu. dimensionality reduction by unsupervised regression. In CVPR, 2010.
[11] N. Tishby, F. Pereira, and W. Bialek. The information bottleneck method. In Allerton Conf., 1999.
[12] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. Contractive auto-encoders: Explicit invariance

during feature extraction. In ICML, 2011.
[13] K. Swersky, M. Ranzato, D. Buchman, B. Marlin, and N. de Freitas. On autoencoders and score matching

for energy based models. In Proceedings ICML, 2011.
[14] Y. LeCun. Who is afraid of non-convex loss functions? http://videolectures.net/eml07 lecun wia, 2007.
[15] Y. Bengio, N. Le Roux, P. Vincent, and O. Delalleau. Convex neural networks. In NIPS, 2005.
[16] S. Nowozin and G. Bakir. A decoupled approach to exemplar-based unsupervised learning. In Proceed-

ings of the International Conference on Machine Learning, 2008.
[17] D. Bradley and J. Bagnell. Convex coding. In UAI, 2009.
[18] A. Joulin and F. Bach. A convex relaxation for weakly supervised classifiers. In Proc. ICML, 2012.
[19] A. Joulin, F. Bach, and J. Ponce. Efficient optimization for discrimin. latent class models. In NIPS, 2010.
[20] Y. Guo and D. Schuurmans. Convex relaxations of latent variable training. In Proc. NIPS 20, 2007.
[21] A. Goldberg, X. Zhu, B. Recht, J. Xu, and R. Nowak. Transduction with matrix completion: Three birds

with one stone. In NIPS 23, 2010.
[22] E. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? arXiv:0912.3599, 2009.
[23] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting

approach. In Advances in Neural Information Processing Systems 25, 2012.
[24] A. Anandkumar, D. Hsu, and S. Kakade. A method of moments for mixture models and hidden Markov

models. In Proc. Conference on Learning Theory, 2012.
[25] D. Hsu and S. Kakade. Learning mixtures of spherical Gaussians: Moment methods and spectral decom-

positions. In Innovations in Theoretical Computer Science (ITCS), 2013.
[26] Y. Cho and L. Saul. Large margin classification in infinite neural networks. Neural Comput., 22, 2010.
[27] R. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56(1):71–113, 1992.
[28] G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. JMAA, 33:82–95, 1971.
[29] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector ma-

chines. JMLR, pages 265–292, 2001.
[30] J. Fuernkranz, E. Huellermeier, E. Mencia, and K. Brinker. Multilabel classification via calibrated label

ranking. Machine Learning, 73(2):133–153, 2008.
[31] Y. Guo and D. Schuurmans. Adaptive large margin training for multilabel classification. In AAAI, 2011.
[32] A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Mach. Learn., 73(3), 2008.
[33] Y. Nesterov and A. Nimirovskii. Interior-Point Polynomial Algorithms in Convex Programming. 1994.
[34] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge U. Press, 2004.
[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning

via the alternating direction method of multipliers. Foundat. Trends in Mach. Learn., 3(1):1–123, 2010.
[36] S. Laue. A hybrid algorithm for convex semidefinite optimization. In Proc. ICML, 2012.
[37] O. Chapelle. Training a support vector machine in the primal. Neural Comput., 19(5):1155–1178, 2007.
[38] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
[39] V. Sindhwani and S. Keerthi. Large scale semi-supervised linear SVMs. In SIGIR, 2006.
[40] http://olivier.chapelle.cc/ssl- book/benchmarks.html.
[41] http://archive.ics.uci.edu/ml/datasets.
[42] http://www.cs.toronto.edu/ kriz/cifar.html.

9

A Additional Algorithm Details

Let us analyze and optimize the computational cost for updates in the boosting algorithm 2. NT ←
HTH

′
T in Step 5 is just conceptual. The bottleneck is the conic/local search in Step 4, and the

computation of ∇G(NT−1) in Step 3. Here we will show that the whole boosting algorithm can be
run by only using HT , and thanks for this explicit decomposition of NT , the gradient of G in both
N and H can be computed considerably faster than just having NT .

A.1 Faster Gradient Calculation by Low Rank Decomposition

Recall that G consists mainly of two parts: the first layer objective in (11) and the second layer
objective in (7). We just show how to solve the first layer, while the technique can be applied
directly to the second layer too. For simplicity, we only consider linear kernel on X , and extension
to nonlinear kernel is also straightforward.

For convenience we copy (11) to here, using NT and HT :

min
W

L1(WX,HT) + α
2 ‖W‖

2
F = min

W
L̃1(H ′TWX,H ′THT) + α

2 ‖W‖
2
F (22)

= min
C

L̃1(H ′THTCX
′X,H ′THT) + β

2 tr(XC ′H ′THTCX
′) (23)

= min
D∈Im(NT)

L̃1(DK,NT) + α
2 tr(D′N†TDK). (24)

Denote this objective as G1(N) or H1(H). The boosting Step 4 indeed only requires the gradient
∇H1(HT), while the gradient ∇G1(NT) is needed only in Step 3. So we focus on the efficient
computation of these two gradients.

To compute ∇H1(HT), it suffices to optimize over W in (22). This is advantageous because a) the
objective is strongly convex which is in favor of LBFGS; b) the size of W is nT , where T is the
iteration index of boosting and is often quite small; c) the gradient inW can be computed inO(tnT)
time, which can also benefit from the low value of T .

To compute ∇G1(NT), one possible approach is to solve for C in (23):

min
C

L̃1(NTCX
′X,NT) + β

2 tr(XC ′NTCX
′). (25)

However, the cost for computing the gradient in C is O(t2n), which is expensive if done at each
iteration of optimization. Therefore we introduce one more change of variable: E = CX ′ and then
the problem becomes

min
E

L̃1(NTEX,NT) + β
2 tr(E′NTE). (26)

So our final strategy is:

• Find the optimal W ∗ for (22) as in computing ∇H1(HT),
• Recover the optimal E∗ for (26) by finding any E that satisfies W ∗ = HTE,
• Use E∗ to compute the gradient∇G1(NT) via (26).

The first and second steps can make use of the low value of T as in computing ∇H1(HT). The last
step does cost O(t2n), but it needs to be done only once, rather than in each iteration of solving for
C in (25). So in summary, the total computational cost is O(tnT) per iteration in optimizing W ,
followed by O(t2n) for one time to recover E∗ and to compute ∇G1(NT) via (26).

B Additional details on the experimental data

For the “real” experiments we used a collection of binary labeled data sets: USPS (241 × 1500)
and G241N (241× 1500) from [40], Letter (vowel letters A-E vs non vowel letters B-F 16× 3098)
from [41], MNIST ({1, 9}vs{4, 8}: 784×28484), and CIFAR-100 (bicycle and motorcycle vs lawn-
mower and tank 256× 1526 where red channel features are preprocessed by averaging pixels) from
[42].

10

	Introduction
	Two-Layer Conditional Modeling
	Multi-Layer Perceptrons and Large-Margin Losses

	Equivalent Reformulation
	Convex Relaxation
	Efficient Training Approach
	Experimental Evaluation
	Conclusion
	Additional Algorithm Details
	Faster Gradient Calculation by Low Rank Decomposition

	Additional details on the experimental data

