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Abstract

Deep learning has been a long standing pursuit in machine learning, which until
recently was hampered by unreliable training methods before the discovery of im-
proved heuristics for embedded layer training. A complementary research strategy
is to develop alternative modeling architectures that admit efficient training meth-
ods while expanding the range of representable structures toward deep models. In
this paper, we develop a new architecture for nested nonlinearities that allows arbi-
trarily deep compositions to be trained to global optimality. The approach admits
both parametric and nonparametric forms through the use of normalized kernels
to represent each latent layer. The outcome is a fully convex formulation that is
able to capture compositions of trainable nonlinear layers to arbitrary depth.

1 Introduction

Deep learning has recently achieved significant advances in several areas of perceptual computing,
including speech recognition [1], image analysis and object detection [2, 3], and natural language
processing [4]. The automated acquisition of representations is motivated by the observation that
appropriate features make any learning problem easy, whereas poor features hamper learning. Given
the practical significance of feature engineering, automated methods for feature discovery offer an
important tool for applied machine learning. Ideally, automatically acquired features capture simple
but salient aspects of the input distribution, upon which subsequent feature discovery can compose
increasingly abstract and invariant aspects [5]; an intuition that appears to be well supported by
recent empirical evidence [6].

Unfortunately, deep architectures are notoriously difficult to train and, until recently, required sig-
nificant experience to manage appropriately [7, 8]. Beyond well known problems like local minima
[9], deep training landscapes also exhibit plateaus [10] that arise from credit assignment problems in
backpropagation. An intuitive understanding of the optimization landscape and careful initialization
both appear to be essential aspects of obtaining successful training [11]. Nevertheless, the devel-
opment of recent training heuristics has improved the quality of feature discovery at lower levels
in deep architectures. These advances began with the idea of bottom-up, stage-wise unsupervised
training of latent layers [12, 13] (“pre-training”), and progressed to more recent ideas like dropout
[14]. Despite the resulting empirical success, however, such advances occur in the context of a
problem that is known to be NP-hard in the worst case (even to approximate) [15], hence there is no
guarantee that worst case versus “typical” behavior will not show up in any particular problem.

Given the recent success of deep learning, it is no surprise that there has been growing interest in
gaining a deeper theoretical understanding. One key motivation of recent theoretical work has been
to ground deep learning on a well understood computational foundation. For example, [16] demon-
strates that polynomial time (high probability) identification of an optimal deep architecture can be
achieved by restricting weights to bounded random variates and considering hard-threshold genera-
tive gates. Other recent work [17] considers a sum-product formulation [18], where guarantees can
be made about the efficient recovery of an approximately optimal polynomial basis. Although these



treatments do not cover the specific models that have been responsible for state of the art results,
they do provide insight into the computational structure of deep learning.

The focus of this paper is on kernel-based approaches to deep learning, which offer a potentially
easier path to achieving a simple computational understanding. Kernels [19] have had a significant
impact in machine learning, partly because they offer flexible modeling capability without sacri-
ficing convexity in common training scenarios [20]. Given the convexity of the resulting training
formulations, suboptimal local minima and plateaus are eliminated while reliable computational
procedures are widely available. A common misconception about kernel methods is that they are
inherently “shallow” [5], but depth is an aspect of how such methods are used and not an intrinsic
property. For example, [21] demonstrates how nested compositions of kernels can be incorporated
in a convex training formulation, which can be interpreted as learning over a (fixed) composition of
hidden layers with infinite features. Other work has formulated adaptive learning of nested kernels,
albeit by sacrificing convexity [22]. More recently, [23, 24] has considered learning kernel repre-
sentations of latent clusters, achieving convex formulations under some relaxations. Finally, [25]
demonstrated that an adaptive hidden layer could be expressed as the problem of learning a latent
kernel between given input and output kernels within a jointly convex formulation. Although these
works show clearly how latent kernel learning can be formulated, convex models have remained
restricted to a single adaptive layer, with no clear paths suggested for a multi-layer extension.

In this paper, we develop a convex formulation of multi-layer learning that allows multiple latent
kernels to be connected through nonlinear conditional losses. In particular, each pair of succes-
sive layers is connected by a prediction loss that is jointly convex in the adjacent kernels, while
expressing a non-trivial, non-linear mapping between layers that supports multi-factor latent rep-
resentations. The resulting formulation significantly extends previous convex models, which have
only been able to train a single adaptive kernel while maintaining a convex training objective. Addi-
tional algorithmic development yields an approach with improved scaling properties over previous
approaches, although not yet at the level of current deep learning methods. We believe the result
is the first fully convex training formulation of a deep learning architecture with adaptive hidden
layers, which demonstrates some useful potential in empirical investigations.

2 Background

To begin, consider a multi-layer condi-

tional model where the input x; is an n @\ @ @\
dimensional feature vector and the out-
puty; € {0,1}™ is a multi-label target @ e 91 @ @ 72 @ e k]
vector over m labels. For concreteness, Ly Ly Ly ‘
consider a three-layer model (Figure 1).
Here, the output of the first hidden layer
is determined by multiplying the input, x;, with a weight matrix W € R"*" and passing the result
through a nonlinear transfer o1, yielding ¢; = o1(Wx;). Then, the output of the second layer is
determined by multiplying the first layer output, ¢;, with a second weight matrix U € R" *" and
passing the result through a nonlinear transfer o9, yielding 8; = o2(U¢;), etc. The final output is
then determined via y; = 03(V'6;), for V € R™*h" For simplicity, we will set b’ = h.

Figure 1: Multi-layer conditional models

The goal of training is to find the weight matrices, W, U, and V', that minimize a training objective
defined over the training data (with regularization). In particular, we assume the availability of ¢
training examples {(x;,y;)}!_;, and denote the feature matrix X := (x1,...,x;) € R"*" and the
label matrix Y := (y1,...,y:) € R™*? respectively. One of the key challenges for training arises

from the fact that the latent variables ® := (¢1,...,¢;) and © := (01, .. ., 0;) are unobserved.

To introduce our main development, we begin with a reconstruction of [25], which proposed a con-
vex formulation of a simpler two-layer model. Although the techniques proposed in that work are
intrinsically restricted to two layers, we will eventually show how this barrier can be surpassed
through the introduction of a new tool—normalized output kernels. However, we first need to pro-
vide a more general treatment of the three main obstacles to obtaining a convex training formulation
for multi-layer architectures like Figure 1.

2.1 First Obstacle: Nonlinear Transfers

The first key obstacle arises from the presence of the transfer functions, o;, which provide the essen-
tial nonlinearity of the model. In classical examples, such as auto-encoders and feed-forward neural



networks, an explicit form for o; is prescribed, e.g. a step or sigmoid function. Unfortunately, the
imposition of a nonlinear transfer in any deterministic model imposes highly non-convex constraints
of the form: ¢; =1 (Wx;). This problem is alleviated in nondeterministic models like probabilistic
networks (PFN) [26] and restricted Boltzman machines (RBMs) [12], where the nonlinear relation-
ship between the output (e.g. ¢;) and the linear pre-image (e.g. Wx;) is only softly enforced via
a nonlinear loss L that measures their discrepancy (see Figure 1). Such an approach was adopted
by [25], where the values of the hidden layer responses (e.g. ¢;) were treated as independent vari-
ables whose values are to be optimized in conjunction with the weights. In the present case, if one
similarly optimizes rather than marginalizes over hidden layer values, ¢ and © (i.e. Viterbi style
training), a generalized training objective for a multi-layer architecture (Figure 1) can be expressed:

pmin  Li(WX, @)+ 5 [W]* + Ly(U®,0) + 5 |UI* + La(VO,Y) + £ [IV]*. 1 (D)
The nonlinear loss L bridges the nonlinearity introduced by o, and Ly bridges the nonlinearity
introduced by o2, etc. Importantly, these losses, albeit nonlinear, can be chosen to be convex in their
first argument; for example, as in standard models like PFNs and RBMs (implicitly). In addition to
these exponential family models, which have traditionally been the focus of deep learning research,
continuous latent variable models have also been considered, e.g. rectified linear model [27] and the
exponential family harmonium. In this paper, like [25], we will use large-margin losses which offer
additional sparsity and simplifications.

Unfortunately, even though the overall objective (1) is convex in the weight matrices (W, U, V)
given (¥, ©), it is not jointly convex in all participating variables due to the interaction between the
latent variables (®, ©) and the weight matrices (W, U, V).

2.2 Second Obstacle: Bilinear Interaction

Therefore, the second key obstacle arises from the bilinear interaction between the latent variables
and weight matrices in (1). To overcome this obstacle, consider a single connecting layer, which
consists of an input matrix (e.g. ®) and output matrix (e.g. ©) and associated weight matrix (e.g. U):
min L(U®, 0) + 3 [heali )
By the representer theorem, it follows that the optimal U can be expressed as U = A®’ for some
A € R™*t, Denote the linear response Z = U® = AP’'® = AK where K = ®'® is the input
kernel matrix. Then tr(UU’) = tr(AKA') = tr(AKKTKA') = trgZKTZ’), where KT is the
Moore-Penrose pseudo-inverse (recall K K K = K and KT KKt = KT), therefore
) = mZinL(Z, 0)+ i tr(ZK1Z'). (3)

This is essentially the value regularization framework [28]. Importantly, the objective in (3) is jointly
convex in Z and K, since tr(ZKZ) is a perspective function [29]. Therefore, although the single
layer model is not jointly convex in the input features & and model parameters U, it is convex in
the equivalent reparameterization (K, Z) given ©. This is the technique used by [25] for the output
layer. Finally note that Z satisfies the constraint Z € R™*"® := {U® : U € R™*"}, which we
will write as Z € R® for convenience. Clearly it is equivalent to Z € RK.

2.3 Third Obstacle: Joint Input-Output Optimization

The third key obstacle is that each of the latent variables, ® and ©, simultaneously serve as the in-
puts and output targets for successive layers. Therefore, it is necessary to reformulate the connecting
problem (2) so that it is jointly convex in all three components, U, ® and O; and unfortunately (3) is
not convex in ©. Although this appears to be an insurmountable obstacle in general, [25] propose an
exact reformulation in the case when © is boolean valued (consistent with the probabilistic assump-
tions underlying a PFM or RBM) by assuming the loss function satisfies an additional postulate.

Postulate 1. L(Z, ©) can be rewritten as L*(©'Z,©’'0) for L* jointly convex in both arguments.

Intuitively, this assumption allows the loss to be parameterized in terms of the propensity matrix
©’Z and the unnormalized output kernel ©’0O (hence the superscript of L*). That is, the (¢, j)-th
component of ©'Z stands for the linear response value of example j with respect to the label of the
example ¢. The j-th column therefore encodes the propensity of example j to all other examples.
This reparameterization is critical because it bypasses the linear response value, and relies solely on

! The terms ||W||%, ||U||* and ||V'||* are regularizers, where the norm is the Frobenius norm. For clarity
we have omitted the regularization parameters, relative weightings between different layers, and offset weights
from the model. These components are obviously important in practice, however they play no key role in the
technical development and removing them greatly simplifies the expressions.



the relationship between pairs of examples. The work [25] proposes a particular multi-label predic-
tion loss that satisfies Postulate 1 for boolean target vectors 6;; we propose an alternative below.

Using Postulate 1 and again letting Z = U®, one can then rewrite the objective in (2) as
L"(©'U®,0'0) + %HUH2 Now if we denote N := ©'© and S := ©'Z = ©'U® (hence
S € ©R® = NRK), the formulation can be reduced to the following (see Appendix A):

(2) = min L"(8, N) + Ltr(KTS'NTS). (4)

Therefore, Postulate 1 allows (2) to be re-expressed in a form where the objective is jointly convex
in the propensity matrix S and output kernel N. Given that N is a discrete but positive semidefinite
matrix, a final relaxation is required to achieve a convex training problem.

Postulate 2. The domain of N =0’0O can be relaxed to a convex set preserving sufficient structure.

Below we will introduce an improved scheme for such relaxation. Although these developments
support a convex formulation of two-layer model training [25], they appear insufficient for deeper
models. For example, by applying (3) and (4) to the three-layer model of Figure 1, one obtains

LY(S1, N )+ 5 tr(K TS NI S )+ LY(Sa, No)+ 3 tr(N] S4NJ So)+ L3 (Z3,Y) + 1 tr(Z3 NS Z3),
where N; = ®'® and Ny = ©’0O are two latent kernels imposed between the input and output.

Unfortunately, this objective is not jointly convex in all variables, since tr(V 1T SéN;r Ss) is not jointly
convex in (N7, Sa, Na), hence the approach of [25] cannot extend beyond a single hidden layer.

3 Multi-layer Convex Modeling via Normalized Kernels

Although obtaining a convex formulation for general multi-layer models appears to be a significant
challenge, progress can be made by considering an alternative approach. The failure of the previous
development in [25] can be traced back to (2), which eventually causes the coupled, non-convex
regularization to occur between connected latent kernels. A natural response therefore is to recon-
sider the original regularization scheme, keeping in mind that the representer theorem must still be
supported. One such regularization scheme appears has been investigated in the clustering literature
[30, 31], which suggests a reformulation of the connecting model (2) using value regularization [28]:

min L(U®, ©) + Lleu|?. 5)

Here ||©’U ||? replaces |U||? from (2). The significance of this reformulation is that it still admits
the representer theorem, which implies that the optimal U must be of the form U = (00’) A®
for some A € R™*". Now, since © generally has full row rank (i.e. there are more examples than
labels), one may execute a change of variables A = ©B. Such a substitution leads to the regularizer
|©'(e0")feBd| ?, which can be expressed in terms of the normalized output kernel [30]:
M :=0'(ee")e. (6)

The term (©O’)1 essentially normalizes the spectrum of the kernel ©’6, and it is obvious that all
eigen-values of M are either O or 1, i.e. M? = M [30]. The regularizer can be finally written as

|IMB® || = tr(MBKB'M) = tr(MBKK'KB'M) = tr(SK'S'), where § := MBK. (7)
It is easy to show S = ©'Z = ©'U®, which is exactly the propensity matrix.

As before, to achieve a convex training formulation, additional structure must be postulated on the
loss function, but now allowing convenient expression in terms of normalized latent kernels.

Postulate 3. The loss L(Z,©) can be written as L™ (0’ Z,0'(00")10) where L™ is jointly convex
in both arguments. Here we write L™ to emphasize the use of normalized kernels.
Under Postulate 3, an alternative convex objective can be achieved for a local connecting model
L™(S, M)+ 3 tr(SK'S’), where S € MRK. (8)
Crucially, this objective is now jointly convex in S, M and K; in comparison to (4), the normal-
ization has removed the output kernel from the regularizer. The feasible region {(S, M, K) : M »
0,K = 0,5 € MRK} is also convex (see Appendix B). Applying (8) to the first two layers and (3)
to the output layer, a fully convex objective for a multi-layer model (e.g., as in Figure 1) is obtained:
L7 (Sy, My) + Ltr(S1KTST) + L5 (S, Ma) + L tr(SaM{SY) + Ls(Z3,Y) + $ tr(Z5 M3 Z4), (9)
where S; € M{RK, Sy € MyRM;, and Z3 € RM-,.2 All that remains is to design a convex
relaxation of the domain of M (for Postulate 2) and to design the loss L™ (for Postulate 3).

2 Clearly the first layer can still use (4) with an unnormalized output kernel N; since its input X is observed.



3.1 Convex Relaxation of the Domain of Output Kernels )/

Clearly from its definition (6), M has a non-convex domain in general. Ideally one should design
convex relaxations for each domain of ©. However, M exhibits some nice properties for any ©:

M>=0, M=<I, tr(M)=tr((00")7(06))=rank(00’) = rank(®). (10)
Here T is the identity matrix, and we also use M > 0 to encode M’ = M. Therefore, tr(M)
provides a convenient proxy for controlling the rank of the latent representation, i.e. the number of
hidden nodes in a layer. Given a specified number of hidden nodes h, we may enforce tr(M) = h.
The main relaxation introduced here is replacing the eigenvalue constraint A;(M) € {0, 1} (implied
by M 2 = M) with0 < Ai(M) < 1. Such a relaxation retains sufficient structure to allow, e.g.,
a 2-approximation of optimal clustering to be preserved even by only imposing spectral constraints
[30]. Experimental results below further demonstrate that nesting preserves sufficient structure, even
with relaxation, to capture relationships that cannot be recovered by shallower architectures.

More refined constraints can be included to better account for the domain of ©. For example, if ©
expresses target values for a multiclass classification (i.e. ©;; € {0,1}, ©'1 = 1 where 1 is a vector
of all one’s), we further have M;; > 0 and M1 = 1. If © corresponds to multilabel classification
where each example belongs to exactly k (out of the h) labels (i.e. © € {0, l}h“, ©’1 = k1), then
M can have negative elements, but the spectral constraint M1 = 1 still holds (see proof in Appendix
C). So we will choose the domains for M; and My in (9) to consist of the spectral constraints:

M ={0=M=<T:M1=1, tr(M) = h}. (11)
3.2 A Jointly Convex Multi-label Loss for Normalized Kernels

An important challenge is to design an appropriate nonlinear loss to connect each layer of the model.
Rather than conditional log-likelihood in a generative model, [25] introduced the idea of a using
large margin, multi-label loss between a linear response, z, and a boolean target vector, y € {0, 1}":

L(z,y) =max(1 -y + kz — 1(y'z)) (12)
where 1 denotes the vector of all 1s. Intuitively this encourages the responses on the active labels,
y'z, to exceed k times the response of any inactive label, kz;, by a margin, where the implicit
nonlinear transfer is a step function. Remarkably, this loss can be shown to satisfy Postulate 1 [25].

This loss can be easily adapted to the normalized case as follows. We first generalize the notion of
margin to consider a a “normalized label” (YY”)ty:
L(z,y) = max(1 — (YY")'y + kz — 1(y'z))

To obtain some intuition, consider the multiclass case where k£ = 1. In this case, YY" is a diagonal
matrix whose (i, )-th element is the number of examples in each class i. Dividing by this number
allows the margin requirement to be weakened for popular labels, while more focus is shifted to less
represented labels. For a given set of ¢ paired input/output pairs (Z,Y") the sum of the losses can
then be compactly expressed as L(Z,Y) = >, L(z;,y;) = 7(kZ — (YYNY) +t —tr(Y'Z),
where 7(I') := 3, max; I';;. This loss can be shown to satisfy that satisfies Postulate 3:3

L™(S,M)=7(S— tM)+t—tr(S), where S=Y'Z and M =Y'(YY")'Y. (13)
This loss can be naturally interpreted using the remark following Postulate 1. It encourages that the
propensity of example j with respect to itself, S;;, should be higher than its propensity with respect
to other examples, S;;, by a margin that is defined through the normalized kernel M. However note
this loss does not correspond to a linear transfer between layers, even in terms of the propensity
matrix S or normalized output kernel M. As in all large margin methods, the initial loss (12) is a
convex upper bound for an underlying discrete loss defined with respect to a step transfer.

4 Efficient Optimization

Efficient optimization for the multi-layer model (9) is challenging, largely due to the matrix pseudo-
inverse. Fortunately, the constraints on M are all spectral, which makes it easier to apply conditional
gradient (CG) methods [32]. This is much more convenient than the models based on unnormalized
kernels [25], where the presence of both spectral and non-spectral constraints necessitated expensive
algorithms such as alternating direction method of multipliers [33].

* A simple derivation extends [25]: 7(kZ — (YY”)'Y) = max, pmxt_y,,_, tt(A (KZ — (YY')TY)) =
max, yixt.gq_q + QY (kZ = (YY)Y)) = 7(Y'Z — £ M). Here the second equality follows because
RUQ1=1
for any A € RT” satisfying A1 = 1, there must be an ) € th satisfying '1 = 1and A = YQ/k.



Algorithm 1: Conditional gradient algorithm to optimize f (M, Ms) for My, My € M.

1 Initialize M 1 and Mg with some random matrices.

2 whiles=1,2,...do

3 Compute the gradients G = %le(]\;[l, Mg) and Gy = 8%?42]‘(]\2/1, Mg).

4 Compute the new bases M7 and M3 by invoking oracle (15) with G; and G respectively.
s | Totally corrective update: mingea, gea, f (3i_ i Mi, >0 B M3).

6 Set My = 35, a;M{ and My = S5_, B; M}; break if stopping criterion is met.

7 return (M, My).

Denote the objective in (9) as (M1, M, S1, 52, Z3). The idea behind our approach is to optimize

F(My, M) = SleMlRK,Sgén]\}IIQIRMl,deRMz 9(My, My, 51, 82, Z3) (14)

by CG; see Algorithm 1 for details. We next demonstrate how each step can be executed efficiently.

Oracle problem in Step 4. This requires solving, given a gradient G (which is real symmetric),

max tr(—GM) < max tr(—G(HM:H + 111")), where H = I — 111", (15)
MeM 0<M; <1, tr(M;)=h—1 g ‘

Here we used Lemma 1 of [31]. By [34, Theorem 3.4], maxo<as, <1, tr(My)=h—1 tt(—HGHM;) =
Z?;ll A; where A\; > Ao > ... are the leading eigenvalues of —H G H. The maximum is attained
at M; = Zi.:ll v; v}, where v; is the eigenvector corresponding to A;. The optimal solution to
argmax ;¢ o4 tr(—GM) can be recovered by Zf;ll v;v; + 111’, which has low rank for small h.

Totally corrective update in Step 5. This is the most computationally intensive step of CG:

Lo T (> e,y BiM3), (16)

where A stands for the s dimensional probability simplex (sum up to 1). If one can solve (16)
efficiently (which also provides the optimal S7, S, Z3 in (14) for the optimal « and 3), then the
gradient of f can also be obtained easily by Danskin’s theorem (for Step 3 of Algorithm 1). However,
the totally corrective update is expensive because given a and (3, each evaluation of the objective f
itself requires an optimization over S, S, and Z3. Such a nested optimization can be prohibitive.

A key idea is to show that this totally corrective update can be accomplished with considerably
improved efficiency through the use of block coordinate descent [35]. Taking into account the
structure of the solution to the oracle, we denote

My(e) =Y ;M{ =ViD(a)V{, and My(B):= B;M;=VoD(B)Vy, (I7)

where D(a) = diag([a11},, @21}, .. .]") and D(B) = diag([11},, 821}, ...]’). Denote
P(a7ﬂa Sl? SQa Z3) =g (Ml(a)7 MQ(ﬂ)a S17 525 Z3) . (18)

Clearly S; € M, (a)RK iff S; = V1 A1 K for some Ay, So € My(B)RM,; () iff So = Vo As M (@)
for some A, and Z3 € RMy () iff Z3 = A3 My(8) for some As. So (16) is equivalent to

ach.. ﬁemAifAl,A2,A3P (a, B, V1 A1 K, Vo Ao M7 (), AsMs(3)) (19)
= LY (ViAL1 K, My () + 5 tr(Vi A K AL VY) (20)

+ Ly (VoA My (@), Ma(B)) + 5 tr(VaAe My (a) A5 V) (21)

+ L3(A3M(B),Y) + 5 tr(A3My(B) As). (22)

Thus we have eliminated all matrix pseudo-inverses. However, it is still expensive because the size
of A; depends on t. To simplify further, assume X', V; and V5 all have full column rank.* Denote
By = A1 X' (note K = X'X), B, = AyVy, B3 = A3V,. Noting (17), the objective becomes

4 This assumption is valid provided the features in X are linearly independent, since the bases (eigen-
vectors) accumulated through all iterations so far are also independent. The only exception is the eigen-vector

% 1. But since o and (3 lie on a simplex, it always contributes a constant +11" to M1 (cx) and Ma(/3).



R(e, B, B1, Bs, Bs) := LT (ViB1 X, ViD(a)V}) + & tr(Vi By B{VY) (23)
+ Ly (VaBaD(a)V{, VaD(B)V3) + 5 tr(VaBoD(a) ByVy)  (24)
+ L3(BsD(B)V3,Y) + 5 tr(B; D(B) By). (25)

This problem is much easier to solve, since the size of B; depends on the number of input features,
the number of nodes in two latent layers, and the number of output labels. Due to the greedy nature
of CG, the number of latent nodes is generally low. So we can optimize R by block coordinate
descent (BCD), i.e. alternating between:

1. Fix (e, 3), and solve (By, Bs, B3) (unconstrained smooth optimization, e.g. by LBFGS).
2. Fix (B, B, B3), and solve («, 3) (e.g. by LBFGS with projection to simplex).

BCD is guaranteed to converge to a critical point when L}, L% and L3 are smooth.” In practice,
these losses can be made smooth by, e.g. approximating the max in (13) by a softmax. It is crucial
to note that although both of the two steps are convex, R is not jointly convex in its variables. So in
general, this alternating scheme can only produce a stationary point of R. Interestingly, we further
show that any stationary point must provide a global optimal solution to P in (18).

Theorem 1. Suppose (., 3, B1, B2, Bs) is a stationary point of R with a; > 0 and 8; > 0. Assume
X', Vi and Vs all have full column rank. Then it must be a globally optimal solution to R, and this
(e, B) must be an optimal solution to the totally corrective update (16).

See the proof in Appendix D. It is noteworthy that the conditions «¢; > 0 and 5; > 0 are trivial to
meet because CG is guaranteed to converge to optimal if a; > 1/s and 8; > 1/s at each step s.

S Empirical Investigation

To investigate the potential of deep versus shallow convex training methods, and global versus local
training methods, we implemented the approach outlined above for a three-layer model along with
comparison methods. Below we use CVX3 and CVX2 to refer respectively to three and two-layer
versions of the proposed model. For comparison, SVM1 refers to a one-layer SVM; and TS1a [37]
and TS1b [38] refer to one-layer transductive SVMs; NET?2 refers to a standard two-layer sigmoid
neural network with hidden layer size chosen by cross-validation; and LOC3 refers to the proposed
three-layer model with exact (unrelaxed) with local optimization. In these evaluations, we followed
a similar transductive set up to that of [25]: a given set of data (X,Y) is divided into separate
training and test sets, (X,,Y7) and Xy, where labels are only included for the training set. The
training loss is then only computed on the training data, but the learned kernel matrices span the
union of data. For testing, the kernel responses on test data are used to predict output labels.

5.1 Synthetic Experiments

Our first goal was to compare the effective modeling capacity of a three versus two-layer archi-
tecture given the convex formulations developed above. In particular, since the training formulation
involves a convex relaxation of the normalized kernel domain, M in (11), it is important to determine
whether the representational advantages of a three versus two-layer architecture are maintained. We
conducted two sets of experiments designed to separate one-layer from two-layer or deeper models,
and two-layer from three-layer or deeper models. Although separating two from one-layer models
is straightforward, separating three from two-layer models is a subtler question. Here we considered
two synthetic settings defined by basic functions over boolean features:

Parity: y = 2, @22 @ ... 0wy, (26)

Inner Product: y = (21 ATmy1) D (T2 ATiy2) © ... @ (T A 2y,), Where m = 5.(27)
It is well known that Parity is easily computable by a two-layer linear-gate architecture but cannot
be approximated by any one-layer linear-gate architecture on the same feature space [39]. The IP

problem is motivated by a fundamental result in the circuit complexity literature: any small weights
threshold circuit of depth 2 requires size exp(€2(n)) to compute (27) [39, 40]. To generate data from

STechnically, for BCD to converge to a critical point, each block optimization needs to have a unique optimal
solution. To ensure uniqueness, we used a method equivalent to the proximal method in Proposition 7 of [36].



35 CIFAR | MNIST | USPS COIL Letter
® 30 TSla | 30.7+42 | 16.3+15 | 12.7+12 | 16.0+20 5.7+20
§ . TS1b | 26.0+65 | 16.0+20 | 11.0+1.7 | 20.0+36 5.0+10
0 25 . S SVM1 | 333419 | 18.3+05 | 12.7+02 | 16.3+07 7.0+03
S 20 NET2 | 30.7+17 | 153417 | 127+04 | 153414 | 5305
e et CVX2 | 277455 | 127+32 | 9.7+31 | 14.0+36 | 5.7+29
w15 <ot LOC3 | 36.0+17 | 22.0+17 | 123411 | 17.7+22 | 11.3+02

10 ot CVX3 | 233+05 | 13.0403 | 9.0+o9 | 9.0+03 | 5.7+02

10 15 20 25 30 35
Error of CVX2

(a) Synthetic results: Parity data. (b) Real results: Test error % (= stdev) 100/100 labeled/unlabeled.

50

45 CIFAR | MNIST USPS COIL Letter
™ TSla | 32.0+26 | 10.7+3.1 | 103406 | 13.7+40 | 3.8+03
§ 40 TS1b | 26.0+33 | 10.0+35 | 11.0+13 | 189426 | 4.0+05
O 35 SVMI | 323+16 | 123414 | 103 +01 | 14.7+13 | 4.8 +05
? 30 NET2 | 30.7+05 | 11.3+13 | 11.2+05 | 14.5+06 | 4.3 +01
e CVX2 | 23.3+35 8.2+06 7.0+13 8.7+33 | 4.5+09
i 25 LOC3 | 282423 | 127406 | 8.0+01 | 123400 | 7.3 411

20 CVX3 | 19.2+09 6.8 +04 6.2 +0.7 7.7+11 | 3.0+02

3

5 20 25 30 35 40 45 50

Error of CVX2

(c) Synthetic results: IP data.  (d) Real results: Test error % (== stdev) 200/200 labeled/unlabeled.

Figure 2: Experimental results (synthetic data: larger dots mean repetitions fall on the same point).

these models, we set the number of input features to n = 8 (instead of n = 2 as in [25]), then
generate 200 examples for training and 100 examples for testing; for each example, the features x;
were drawn from {0,1} with equal probability. Then each z; was corrupted independently by a
Gaussian noise with zero mean and variance 0.3. The experiments were repeated 100 times, and the
resulting test errors of the two models are plotted in Figure 2. Figure 2(c) clearly shows that CVX3
is able to capture the structure of the IP problem much more effectively than CVX2, as the theory
suggests for such architectures. In almost every repetition, CVX3 yields a lower (often much lower)
test error than CVX2. Even on the Parity problem (Figure 2(a)), CVX3 generally produces lower
error, although its advantage is not as significant. This is also consistent with theoretical analysis
[39, 40], which shows that IP is harder to model than parity.

5.2 Experiments on Real Data

We also conducted an empirical investigation on some real data sets. Here we tried to replicate
the results of [25] on similar data sets, USPS and COIL from [41], Letter from [42], MNIST, and
CIFAR-100 from [43]. Similar to [23], we performed an optimistic model selection for each method
on an initial sample of ¢ training and ¢ test examples; then with the parameters fixed the experiments
were repeated 5 times on independently drawn sets of ¢ training and ¢ test examples from the remain-
ing data. The results shown in Table 2(b) and Table 2(d) show that CVX3 is able to systematically
reduce the test error of CVX2. This suggests that the advantage of deeper modeling does indeed
arise from enhanced representation ability, and not merely from an enhanced ability to escape local
minima or walk plateaus, since neither exist in these cases.

6 Conclusion

We have presented a new formulation of multi-layer training that can accommodate an arbitrary
number of nonlinear layers while maintaining a jointly convex training objective. Accurate learning
of additional layers, when required, appears to demonstrate a marked advantage over shallower
architectures, even when models can be trained to optimality. Aside from further improvements
in algorithmic efficiency, an interesting direction for future investigation is to capture unsupervised
“stage-wise” training principles via auxiliary autoencoder objectives within a convex framework,
rather than treating input reconstruction as a mere heuristic training device.
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Supplementary material

A Derivation of (4)
Recall that the objective function in (2) can be rewritten as
1
L' (0'U®,0'0) + 5 [tealie® (28)

using Postulate 1. Then by the representer theorem, the optimal U can be expressed by U = © AD’
for some matrix A. Denoting S := ©'Z = ©'U® and N := 0’0, the objective becomes

L“(S,N) + %tr(KTS’NTS), (29)

since
tr(KTS'NTS) = tr(KT®'U'ONTO'UP) = tr(KT®'PA'O'ONTO'OAD'®) (30)
=tr(KTKANNINAK) = tr(KA'NA) (uwing KK'K =K)  (31)
= tr(®'DPA'O'OA) = |OAD'|* = |U|?. (32)

B Proof that the Feasible Region of (8) is Convex

Here we prove that the set
Vi={(M,S,K): M =0,K = 0,5 € MRK} (33)
is convex.

Recall that R® consists of matrices in the row span of ®. Since M and K are PSD, the constraint
S € MRK involves the intersection of two convex constraints. Let

Vi={(M,S,K): M =0,K =0,5c MR} (34)
Vo={(M,S,K): M »=0,K >0,S € RK}. (35)

First, we show that the set V7 is convex. Suppose S; € MR and Sy € MsR where M; = 0 and
M = 0. To prove that S1+S2 € (M;+M>)R, it suffices to show that M1 RUM>R C (M7 +M3)R.
To this end, consider its contrapositive, i.e., there exists ry, ro, x such that x’(Mjry + Mars) # 0
while x’ (M7 + Ms) = 0. However this is impossible, because the latter implies x' M; = x' My = 0’
when M7 = 0 and M5 > 0.

V5 is convex for isomorphic reasons. It remains only to show V' = V; N V5, since an intersection of
convex sets is convex. The C relationship is straightforward. To show O, let S = M P = QK for
some P and @); then note that SK'K=S=MM'S. Hence MMTSKTK = S,ie. SeV.

C Proof of M1 =1 in Section 3.1
Proof: Consider the compact SVD: © = UXV’ where U'U = I and V'V = I. Then ©'1 = k1

implies XU’1 = kV'1. Since M = VV': M1 = VV'1 = 1VEU'l = 161 = 1. Note
©,; €{0, 1} is not used.

D Proof of Theorem 1

For convenient reference, we repeat the objective R here
1
R(e, 3, B1, By, Bs) := LT (ViB1 X, ViD(e)VY) + 3 tr(ViB1B1VY) (36)
1
+ Ly (VaBa D(@)V], VaD(B)V3) + 5 tr(VaBo D(e) By Vy) - (37)

+ L3(BsD(B)V3,Y) + %tr(BgD(ﬁ)Bg). (38)
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To enforce Theorem 1, we will use constraints

a; >1/s, pi>1/s, Ta=1, 1'8=1. (39)
Proof. Let
Cy = BoD(av), Cs = B3D(3) (40)
Then R is equivalent to
R(e, B8, By, By, B3) = S(a, 3, By, C5,C3) 41
= LY (ViB1X,ViD(a)V]) + %tr(VlBlBiVl’) (42)

1
+ Ly (VoaCo V], VaD(B)Vy) + 5 tr(VaCaD() ' CoV2) - (43)
1
+ Ls(CsV3,Y) + 5 tr(Cs D(B)' C3). (44)

Clearly S is jointly convex in (e, 8, By, C2,C3). Thanks to the invertability of D(«) and D(3),
we apply chain rule to the stationarity condition of B;:

0
75(&,/@, Blv 027 03) =0

0 0
R(aw@thBQ»BL’)) = 7S(a,ﬁ731,02,03) =

0= 9B, o8, 9B,
(45)
0= -2 R(a. B, By, By, By) = —2—S(a, B, By, Cs, C5)D(@) = —0—S(ex, B, By, Cs, Cs) — 0
_6B2 s My P21, D2, D3 _802 s My D1, ©2,V3 802 My, D1, V2,03) —
(46)
0= -2 R(a. B, Br, By, Bs) — 2 S(c, B, By, Cs, C5)D(B) = —2—S(cv, B, B1, Cs, () — 0
_833 s My P11, D2, D3 _603 s My P1, ©2,V3 803 s My P1, ©2,V3) —

47

Note R is convex in («,3) given B;, and «;, 5; satisfy the constraint (39). So KKT conditions
(regarding the optimality of (¢, 3) given Bj, Ba, B3) ensure that there exist Lagrange multipliers
(14, A) (corresponding to the sum up to one constraints) and (a;, b;) (corresponding to the greater
than or equal to 1/s constraint) such that

(673 2 1) Bz Z 17 ]-/a = 17 1/16 = 17 (48)
s s
ailai =) =0, b(fi—1) =0, a; >0, b >0, (49)
and
0
0= R(a7IBaBlaBQ>B3) — 1 —ay (50)
80@
(chain rule) = 8S(oz,@B Cy,C3) + aBD(oz) iS(ozﬁB Cy,C3) ) — n—a;
7(’)0@ y 2, D1, L2, L3 80%2 a0, y 9, D1, L2, L3 14 i
(51)
1o}
by (46) = 8(}‘S(a’ﬁ’BhC27CS) — B — a4, (52)
and similarly,
0= 385‘5(075,31702,03) —A—bi (53)

Since S is jointly convex in all its variables, (45)-(49), (52), and (53) provide all the KKT conditions
required to establish the global optimality of (e, 3, By, Ca, C3) for S. The claims in the theorem
then follow. O]
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