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Abstract

A key bottleneck in structured output prediction is the need for inference dur-
ing training and testing, usually requiring some form of dynamic programming.
Rather than using approximate inference or tailoring a specialized inference
method for a particular structure—standard responses to the scaling challenge—
we propose to embed prediction constraints directly into the learned representa-
tion. By eliminating the need for explicit inference a more scalable approach to
structured output prediction can be achieved, particularly at test time. We demon-
strate the idea for multi-label prediction under subsumption and mutual exclusion
constraints, where a relationship to maximum margin structured output prediction
can be established. Experiments demonstrate that the benefits of structured output
training can still be realized even after inference has been eliminated.

1 Introduction

Structured output prediction has been an important topic in machine learning. Many prediction
problems involve complex structures, such as predicting parse trees for sentences [28], predicting
sequence labellings for language and genomic data [[1]], or predicting multilabel taggings for doc-
uments and images [7} 8} [13, |20]]. Initial breakthroughs in this area arose from tractable discrim-
inative training methods—conditional random fields [[19, 27] and structured large margin training
[26] 29]—that compare complete output configurations against given target structures, rather than
simply learning to predict each component in isolation. More recently, search based approaches that
exploit sequential prediction methods have also proved effective for structured prediction [4} 21]].
Despite these improvements, the need to conduct inference or search over complex outputs both
during the training and testing phase proves to be a significant bottleneck in practice.

In this paper we investigate an alternative approach that eliminates the need for inference or search
at test time. The idea is to shift the burden of coordinating predictions to the training phase, by
embedding constraints in the learned representation that ensure prediction relationships are satisfied.
The primary benefit of this approach is that prediction cost can be significantly reduced without
sacrificing the desired coordination of structured output components.

We demonstrate the proposed approach for the problem of multilabel classification with hierarchi-
cal and mutual exclusion constraints on output labels [8]]. Multilabel classification is an important
subfield of structured output prediction where multiple labels must be assigned that respect semantic
relationships such as subsumption, mutual exclusion or weak forms of correlation. The problem is of
growing importance as larger tag sets are being used to annotate images and documents on the Web.
Research in this area can be distinguished by whether the relationships between labels are assumed
to be known beforehand or whether such relationships need to be inferred during training. In the lat-
ter case, many works have developed tailored training losses for multilabel prediction that penalize
joint prediction behavior [6} 9, 30] without assuming any specific form of prior knowledge. More
recently, several works have focused on coping with large label spaces by using low dimensional



projections to label subspaces [3,[17,22]. Other work has focused on exploiting weak forms of prior
knowledge expressed as similarity information between labels that can be obtained from auxiliary
sources [11]]. Unfortunately, none of these approaches strictly enforce prior logical relationships be-
tween label predictions. By contrast, other research has sought to exploit known prior relationships
between labels. The most prominent such approaches have been to exploit generative or conditional
graphical model structures over the label set [S,[16]. Unfortunately, the graphical model structures
are either limited to junction trees with small treewidth [5] or require approximation [12]]. Other
work, using output kernels, has also been shown able to model complex relationships between la-
bels [I15] but is hampered by an intractable pre-image problem at test time.

In this paper, we focus on tractable methods and consider the scenario where a set of logical label
relationships is given a priori; in particular, implication and mutual exclusion relationships. These
relationships have been the subject of extensive work on multilabel prediction, where it is known
that if the implication/subsumption relationships form a tree [25] or a directed acyclic graph [2, 8]
then efficient dynamic programming algorithms can be developed for tractable inference during
training and testing, while for general pairwise models [32] approximate inference is required. Our
main contribution is to show how these relationships can be enforced without the need for dynamic
programming. The idea is to embed label relationships as constraints on the underlying score model
during training so that a trivial labelling algorithm can be employed at test time, a process that can
be viewed as pre-compiling inference during the training phase.

The literature on multivariate prediction has considered many other topics not addressed by this
paper, including learning from incomplete labellings, exploiting hierarchies and embeddings for
multiclass prediction [31], exploiting multimodal data, deriving generalization bounds for structured
and multilabel prediction problems, and investigating the consistency of multilabel losses.

2 Background

We consider a standard prediction model where a score function s : X x ) — R with parameters 6
is used to determine the prediction for a given input x via

y = argmaxs(x,y). (1)

yey

Here y is a configuration of assignments over a set of components (that might depend on x). Since
Y is a combinatorial set, cannot usually be solved by enumeration; some structure required for
efficient prediction. For example, s might decompose as s(x,y) = > .. 5(X,y.) over a set of
cliques C that form a junction tree, where y. denotes the portion of y covered by clique c. ) might
also encode constraints to aid tractability, such as y forming a consistent matching in a bipartite
graph, or a consistent parse tree [28]]. The key practical requirement is that s and ) allow an efficient
solution to (I)). The operation of maximizing or summing over all y € ) is referred to as inference,
and usually involves a dynamic program tailored to the specific structure encoded by s and ).

For supervised learning one attempts to infer a useful score function given a set of ¢ training pairs
(x1,¥1), (X2,¥2), ---, (X¢t, y¢) that specify the correct output associated with each input. Conditional
random fields [[19] and structured large margin training (below with margin scaling) [28|29] can both
be expressed as optimizations over the score model parameters 6 respectively:

min 7(0) + Z; log ( > exp(so(xi, y))) — s0(Xi,yi) @)

yey
t
min v(0)+ 3 mage (A0y) + 50(.)) = 2003, 3

where r(0) is a regularizer over § € ©. Equations (I)), (Z) and (3) suggest that inference overy € Y
is required at each stage of training and testing, however we show this is not necessarily the case.

Multilabel Prediction To demonstrate how inference might be avoided, consider the special case
of multilabel prediction with label constraints. Multilabel prediction specializes the previous set up
by assuming y is a boolean assignment to a fixed set of variables, where y = (y1, y2, ..., y¢) and
yi € {0,1}, i.e. each label is assigned 1 (true) or O (false). As noted, an extensive literature that



has investigated various structural assumptions on the score function to enable tractable prediction.
For simplicity we adopt the factored form that has been reconsidered in recent work [} [11]] (and
originally [13]): s(x,y) = >, s(x, yx). This form allows (T)) to be simplified to

y = argmax > s(X, = argmax si(x 4
y gyeyzk: (%, Yx) gyeyzk:yk k(%) 4)

where si(x) = s(x,yr = 1) — s(x,yr = 0) gives the decision function associated with label
yr € {0,1}. That is, based on (@), if the constraints in ) were ignored, one would have the
relationship i = 1 < sg(x) > 0. The constraints in ) play an important role however: it has been
shown in [8] that imposing prior implications and mutual exclusions as constraints in ) yields state
of the art accuracy results for image tagging on the ILSVRC corpus. This result was achieved in [§]]
by developing a novel and rather sophisticated dynamic program that can efficiently solve (@) under
these constraints. Here we show how such a dynamic program can be eliminated.

3 Embedding Label Constraints

Consider the two common forms of logical relationships between labels: implication and mutual
exclusion. For implication one would like to enforce relationships of the form y; = 2, meaning
that whenever the label y; is set to 1 (true) then the label yo must also be set to 1 (true). For mutual
exclusion one would like to enforce relationships of the form —y; V —y2, meaning that at least one
of the labels y; and yo must be set to O (false) (i.e., not both can be simultaneously true). These
constraints arise naturally in multilabel classification, where label sets are increasingly large and
embody semantic relationships between categories [2, (8}, 32]. For example, images can be tagged
with labels “dog”, “cat” and “Siamese” where “Siamese” implies “cat”, while “dog” and “cat” are
mutually exclusive (but an image could depict neither). These implication and mutual exclusion
constraints constitute the “HEX” constraints considered in [§]].

Our goal is to express the logical relationships between label assignments as constraints on the score
function that hold universally over all x € &'. In particular, using the decomposed representation
(), the desired label relationships correspond to the following constraints

Implication y; = ys: s1(x) > -0 = s(x)>d§ VxeX (5)
Mutual exclusion —y; V —ys: s1(x) < =8 or s(x)<—§ VxeX (6)

where we have introduced the additional margin quantity § > 0 for subsequent large margin training.

3.1 Score Model

The first key consideration is representing the score function in a manner that allows the desired
relationships to be expressed. Unfortunately, the standard linear form s(x,y) = (6, f(x,y)) cannot
allow the needed constraints to be enforced over all x € X without further restricting the form
of the feature representation f; a constraint we would like to avoid. More specifically, consider
a standard set up where there is a mapping f(x, y) that produces a feature representation for an
input-label pair (x,yy). For clarity, we additionally make the standard assumption that the inputs
and outputs each have independent feature representations [[11]], hence f(x, yx) = ¢(x) ® ¢y, for an
input feature map ¢ and label feature representation ;. In this case, a bi-linear score function has
the form sx(x) = ¢(x) " Ay +b' ¢(x) + ¢ 1y, + d for parameters 0 = (A, b, ¢, d). Unfortunately,
such a score function does not allow si(x) > J (e.g., in Condition @) to be expressed over all
x € X without either assuming A = 0 and b = 0, or special structure in ¢.

To overcome this restriction we consider a more general scoring model that extends the standard
bi-linear form to a form that is linear in the parameters but quadratic in the feature representations:

ox) 7' [ P A b]Téx) P A b
—sk(x) = l Vg AT Q ¢ l UV ] for 0 = AT Q ¢ |.
1 bT ¢’ r 1 bT ¢’ r

Here §# = 0T and s, is linear in 6 for each k. The benefit of a quadratic form in the features is that
it allows constraints over x € X’ to be easily imposed on label scores via convex constraints on 6.



Lemma 1 If0 = 0 then —si(x) = | Up(x) + u — Vo ||? for some U, V and u.

Proof: First expand (7)), obtaining —sj(x) = ¢(x) " Po(z) +2¢(x) " Ay, +2b T ¢(z) + 10, Qg +
2c "9y + 7. Since @ = 0 there must exist U, V and usuch that 0 = [U", -V " u|"[UT, -V T u],
where UTU = P,U'V = A, UTu=b,V'V=0Q,Vu=—c andu’u = r. Asimple
substitution and rearrangement shows the claim. ]

The representation (7)) generalizes both standard bi-linear and distance-based models. The standard
bi-linear model is achieved by P = 0 and () = 0. By Lemmal[I] the semidefinite assumption 6 > 0
also yields a model that has a co-embedding [24] interpretation: the feature representations ¢(x)
and v, are both mapped (linearly) into a common Euclidean space where the score is determined
by the squared distance between the embedded vectors (with an additional offset u). To aid the
presentation below we simplify this model a bit further. Set b = 0 and observe that (7)) reduces to

.
P A

s = - | 0] L o] ] ®)

where 7, = —r — 2¢ " 4;,. In particular, we modify the parameterization to § = {’yk}izl U{bpag}

such that 0p 4 denotes the matrix of parameters in (8). Importantly, (8) remains linear in the new
parameterization. Lemmal|I]can then be modified accordingly for a similar convex constraint on 6.

Lemma 2 If0paq = 0 then there exist U and V such that for all labels k and |

sk(x) = k= [lUs(x) — Ve ? )
U Quy, — bl QU — ¥ Qo + 0 Quy |V, — V)2 (10)

Proof:  Similar to Lemma since Opag > 0, there exist U and V such that Opag =
UT,-VTTIUT, -V T where U'U = P,V'V = Qand U"V = —A. Expanding (8)) and sub-
stituting gives (). For (T0) note ¢} Quy, — ;) Qo — 1 Qubr +1 Qubr = (v — 1) " Qb — ).
Expanding Q gives (Yx — ¢1) T Q(¢br — 1) = (Yx — 1) "V IV (b — 1) = [[Vib = V|2 W
This representation now allows us to embed the desired label relationships as simple convex con-
straints on the score model parameters 6.

3.2 Embedding Implication Constraints

Theorem 3 Assume the quadratic-linear score model [8) and 0p g = 0. Then for any § > 0 and
« > 0, the implication constraint in () is implied for all x € X by:

Y1484+ (1+ ) (] Qun — b Qbg — g Qiby + g Qi) < 72 — 0 (11)
(2)% (0] Qr — ] Qubs — by Qubr +0J Qo) > 1 +6. (12)

Proof: First, since fpag = 0 we have the relationship (]EI), which implies that there must exist

vectors v; = Vby and vo = Vaby such that ¢ Qi1 — ] Qo — g Quby +1bg Qips = |jvy — 1|2
Therefore, the constraints (TT)) and (T2) can be equivalently re-expressed as

NI+ +a)n -l < -0 (13)
(5) I —1al® = 40 (14)
with respect to these vectors. Next let p(x) := U¢(x) (which exists by (9)) and observe that
lp(x) —v2l* = [lp(x) = v+ 01— o
= G =l + llvn = w2l + 20u(x) = v1,01 = 22), (15)

Consider two cases.

Case 1: 2{u(x) — v1,v1 — o) > a1 — v2||%. In this case, by the Cauchy Schwarz inequality we
have 2||pu(x) — 11 ||||v1 — ve|| > 2(u(x) —VL —vg) > al|lvy —val|?, which implies ||u(x) — vy | >
2llvy — vo||, hence |[pu(x) — v1[|* > ()" |1 — v2||* = 71 + 0 by constraint (T4). But this implies
that s1(x) < —¢ therefore it does not matter what value s2(x) has.



Case 2: 2(u(x) — vi,v1 — 1) < allvy — v2||?. In this case, assume that s1(x) > —6, i.e.
llp(x) — v1||* < v1 + 6, otherwise it does not matter what value s3(x) has. Then from it fol-
lows that [[2(x) — v [2 < [[a(x) — v |2+ (1) [y — val|? < 7+ 6+ (1+a) 11— v |2 < 72— 6
by constraint (I3). But this implies that so(x) > 0, hence the implication is enforced. ]

3.3 Embedding Mutual Exclusion Constraints

Theorem 4 Assume the quadratic-linear score model (8) and Opag *= 0. Then for any § > 0 the
mutual exclusion constraint in () is implied for all x € X by:

L0 QU1 — ¥ Qo — g QU + 1y Qb)) > 1+ 72 + 26. (16)

Proof: As before, since @pag = 0 we have the relationship , which implies that there must exist

vectors v; = Vb; and vy = Vg such that 1] Qb — 1] Qo — g Qi1 +1pg Qipa = |1y — va|%.
Observe that the constraint (T6) can then be equivalently expressed as

sl =wl® > n+ 425 (17)
and observe that
= v2l® = llvr = u(x) + p(x) = o

= 1 = GNP + () = wal* +2(v1 — p(x), p(x) = v2) (18)

using p(x) := Ud(x) as before (which exists by ([@)). Therefore

la(x) = l* + llu(x) = ol = flvn = vell* = 2(v1 — p(x), p(x) = v2)

= (11— pu(x)) + () —v2) * = 21— pu(x), () —v2) (19)
> gl — n(x) + (u(x) — )| (20)
= %”l/l — 1/2H2. (21)

(To prove the inequality observe that, since 0 < |la — b||%, we must have (a,b) < %lal|* +
111b|[%, hence 2(a,b) < i|la||? + %[|b]|> + (a,b) = i|la + b||*, which establishes —2(a,b) >

—3|la+b]|?. The inequality then follows simply by setting a = v; — p(x) and b = p(x) — vo.)

Now combining (2I) with the constraint implies that ||u(x) — v1]|? + ||u(x) — o> >
Hlv1 — val|? > 71 + 72 + 26, therefore one of ||u(x) — v1]|? > 71 + 6 or [|u(x) — va|> > 12 + 6
must hold, hence at least one of s1(x) < —J or sz(x) < —d must hold. Therefore, the mutual
exclusion is enforced. ]

Importantly, once Opaq = 0 is imposed, the other constraints in Theorems [3|and 4| are all linear in
the parameters () and ~.

4 Properties

We now establish that the above constraints on the parameters in (8] achieve the desired properties.
In particular, we show that given the constraints, inference can be removed both from the prediction
problem (@) and from structured large margin training (3).

4.1 Prediction Equivalence

First note that the decision of whether a label y;, is associated with x can be determined by

s(x,yp =1) > s(x,y, =0) <  max ypsk(x) >0 < 1=arg max ygsi(x). (22)
yr€{0,1} yr€{0,1}

Consider joint assignments y = (y1,...,y) € {0,1}' and let ) denote the set of joint assignments
that are consistent with a set of implication and mutual exclusion constraints. (It is assumed the
constraints are satisfiable; that is, ) is not the empty set.) Then the optimal joint assignment for a

given x can be specified by arg maxycy 22:1 Yr Sk (X).



Proposition 5 If the constraint set ) imposes the constraints in (3) and (6) (and is nonempty), and
the score function s satisfies the corresponding constraints for some 6 > 0, then

l l
max » ypsk(x) = ) maxyps(x) (23)
yey Yk
k=1 k=1
Proof: First observe that
l l l
ryﬂggZ@/ksk(X) < myanyksk(X) = Z%akaSk(X) (24)
Yk
k=1 = k=1

so making local classifications for each label gives an upper bound. However, if the score function
satisfies the constraints, then the concatenation of the local label decisions y = (y1, ..., ;) must
be jointly feasible; that is, y € ). In particular, for the implication y; = y2 the score constraint
(3) ensures that if s;(x) > 0 > —0 (implying 1 = argmax,, yis1(x)) then it must follow
that so(x) > d, hence so(x) > 0 (implying 1 = argmax,, y252(x)). Similarly, for the mutual
exclusion —y; V —yo the score constraint (6] ensures min(si(x),s2(x)) < —d§ < 0, hence if
s1(x) > 0 > —4§ (implying 1 = argmax,, yis1(x)) then it must follow that s5(x) < —6 < 0
(implying 0 = arg max,, y252(x)), and vice versa. Therefore, since the maximizer y of is
feasible, we actually have that the leftmost term in (24) is equal to the rightmost. ]

Since the feasible set ) embodies non-trivial constraints over assignment vectors in (23), interchang-
ing maximization with summation is not normally justified. However, Proposition[5]establishes that,
if the score model also satisfies its respective constraints (e.g., as established in the previous section),
then maximization and summation can be interchanged, and inference over predicted labellings can
be replaced by greedy componentwise labelling, while preserving equivalence.

4.2 Re-expressing Large Margin Structured Output Training

Given a target joint assignment over labels t = (¢1,...,¢;) € {0, 1}5, and using the score model (8)),
the standard structured output large margin training loss (3 can then be written as

l l
Zr;leaf}(A(ya + Zs Xzayk Xl; zk ZIH&XA yv + Z Yk — tzk Sk X’L) (25)
) k=1 k=1

using the simplified score function representation such that ¢;;, denotes the k-th label of the i-th
training example If we furthermore make the standard assumption that A(y,t;) decomposes as

Aly,t;) = Zk 1 0% (Yg, tir), the loss can be simplified to

l
Si(yrs ti —t; i) 26
Z;Iyrlgc; k(Ur, tie) + (Y — tin) sk(X:) (26)

Note also that since y, € {0,1} and t;, € {0,1} the margin functions d;, typically have the form
3,(0,0) = 6x(1,1) = 0 and 5 (0,1) = dko1 and dx(1,0) = k10 for constants dy0; and dx10, which
for simplicity we will assume are equal, d;91 = dr10 = ¢ for all k (although label specific margins
might be possible). This is the same ¢ used in the constraints (3) and (6).

The difficulty in computing this loss is that it apparently requires an exponential search over y. When
this exponential search can be avoided, it is normally avoided by developing a dynamic program.
Instead, we can now see that the search over y can be eliminated.

Proposition 6 If the score function s satisfies the constraints in (3) and (@) for 6 > 0, then

! !
> Igleafjiz Sy tin) + (k — tie)su(xi) = D> max 6(Yrs ti) + (Y — tin) s (x:).(27)
i k=1 k=1

i



Proof: For a given x and t € Y, let fi(y) = 0(y,tx) + (v — tr)sk(x), hence yr, =
arg maxye{o,1} f(y). It is easy to show that

1 earg max fi(y) <= sp(x)>trd — (1 — ), (28)
ye{0,1}

which can be verified by checking the two cases, t;, = 0 and t;, = 1. When ¢, = 0 we have fj(0) =
0 and fx(1) = d + s(x), therefore 1 = y € argmaxyec(o,1} fe(y) iff & + s(x) > 0. Similarly,
when t;, = 1 we have f;(0) = § — s(x) and fr(1) = 0, therefore 1 = y,, € argmaxyco,1} fx(¥)
iff 6 — s(x) < 0. Combining these two conditions yields 28).

Next, we verify that if the score constraints hold, then the logical constraints over y are automatically
satisfied even by locally assigning y, which implies the optimal joint assignment is feasible, i.e.
y € ), establishing the claim. In particular, for the implication y; = yo, it is assumed that t; = ¢
in the target labeling and also that score constraints hold, ensuring s1(x) > —§ = sa(x) > 4.
Consider the cases over possible assignments to ¢ and ¢5:

Ift; =0andty =0theny; =1 = f1(1) > f1(0) = d+s1(x) > 0= 51(x) > —§ = s2(x) > 6
(by assumption) = s3(x) > —d = J + s2(x) > 0= fa(1) > f2(0) = y, = 1.

Ift; =0andty = 1theny; =1 = f1(1) > f1(0) = d+s1(x) > 0= 51(x) > —J = s2(x) >0
(by assumption) = 0 > § — s2(x) = f2(1) > f2(0) = y2 = 1 (tight case).

The case t; = 1 and 3 = 0 cannot happen by the assumption thatt € ).

Ift; =landty = 1theny; = 1= f1(1) > f1(0) = 0> J—s1(x) = s51(x) > —J = s2(x) >0
(by assumption) = 0 > § — s2(x) = fa(1) > f2(0) = y2 = 1.

Similarly, for the mutual exclusion —y; V —yso, it is assumed that —¢; V —to in the target labeling
and also that the score constraints hold, ensuring min(s; (x), s2(x)) < —d. Consider the cases over
possible assignments to ¢1 and to:

Ift; = 0 and t2 = O then y; = 1 and yo = 1 implies that s;(x) > —d and so(x) > —3, which
contradicts the constraint that min(s; (x), s2(x)) < —4 (tight case).

Ifty = 0and t; = 1theny; = 1 and yo = 1 implies that s;(x) > —¢ and s2(x) > §, which
contradicts the same constraint.

Ift; = 1 and ¢t = 0 then y; = 1 and y, = 1 implies that s1(x) > § and so(x) > —4, which again
contradicts the same constraint.

The case t; = 1 and {2 = 1 cannot happen by the assumption thatt € ).

Therefore, since the concatenation, y, of the independent maximizers of (27) is feasible, i.e. y € ),
we have that the rightmost term in (27)) equals the leftmost. |

Similar to Section [4.1] Proposition [6| demonstrates that if the constraints (3)) and (6) are satisfied
by the score model s, then structured large margin training reduces to independent labelwise
training under the standard hinge loss, while preserving equivalence.

5 Efficient Implementation

Even though Section [3| achieves the primary goal of demonstrating how desired label relationships
can be embedded as convex constraints on score model parameters, the linear-quadratic represen-
tation (8) unfortunately does not allow convenient scaling: the number of parameters in 0pa¢ (8)

is (”;Z) (accounting for symmetry), which is quadratic in the number of features, n, in ¢ and the
number of labels, £. Such a large optimization variable is not practical for most applications, where
n and ¢ can be quite large. The semidefinite constraint #p 4o > 0 can also be costly in practice.

Therefore, to obtain scalable training we require some further refinement.

In our experiments below we obtained a scalable training procudure by exploiting trace norm reg-
ularization on §p4¢ to reduce its rank. The key benefit of trace norm regularization is that effi-
cient solution methods exist that work with a low rank factorization of the matrix variable while
automatically ensuring positive semidefiniteness and still guaranteeing global optimality [10 [14].
Therefore, we conducted the main optimization in terms of a smaller matrix variable B such that
BBT = 6p AQ- Second, to cope with the constraints, we employed an augmented Lagrangian
method that increasingly penalizes constraint violations, but otherwise allows simple unconstrained
optimization. All optimizations for smooth problems were performed using LBFGS and nonsmooth
problems were solved using a bundle method [23].



Dataset | Features Labels Depth # Training # Testing Reference
Enron 1001 57 4 988 660 (18]
WIPO 74435 183 5 1352 358 [25]
Reuters 47235 103 5 3000 3000 [20]

Table 1: Data set properties

% test error Enron | WIPO | Reuters test time (s) Enron | WIPO | Reuters
unconstrained 12.4 21.0 27.1 unconstrained | 0.054 | 0.070 0.60
constrained 9.8 2.6 4.0 constrained 0.054 | 0.070 0.60
inference 6.8 2.7 29.3 inference 0.481 | 0.389 5.20

Table 2: (left) test set prediction error (percent); (right) test set prediction time (s)

6 Experimental Evaluation

To evaluate the proposed approach we conducted experiments on multilabel text classification data
that has a natural hierarchy defined over the label set. In particular, we investigated three multi-
label text classification data sets, Enron, WIPO and Reuters, obtained from https://sites.
google.com/site/hrsvmproject/datasets—hier (see Table[I]for details). Some pre-
processing was performed on the label relations to ensure consistency with our assumptions. In
particular, all implications were added to each instance to ensure consistency with the hierarchy,
while mutual exclusions were defined between siblings whenever this did not create a contradiction.

‘We conducted experiments to compare the effects of replacing inference with the constraints outlined
in Section 3] using the score model (8)). For comparison, we trained using the structured large margin
formulation (3)), and trained under a multilabel prediction loss without inference, but both including
then excluding the constraints. For the multilabel training loss we used the smoothed calibrated
separation ranking loss proposed in [24]. In each case, the regularization parameter was simply set
to 1. For inference, we implemented the inference algorithm outlined in [§8]].

The results are given in Table[2] showing both the test set prediction error (using labelwise prediction
error, i.e. Hamming loss) and the test prediction times. As expected, one can see benefits from
incorporating known relationships between the labels when training a predictor. In each case, the
addition of constraints leads to a significant improvement in test prediction error, versus training
without any constraints or inference added. Training with inference (i.e., classical structured large
margin training) still proves to be an effective training method overall, in one case improving the
results over the constrained approach, but in two other cases falling behind. The key difference
between the approach using constraints versus that using inference is in terms of the time it takes
to produce predictions on test examples. Using inference to make test set predictions clearly takes
significantly longer than applying labelwise predictions from either a constrained or unconstrained
model, as shown in the right subtable of Table 2]

7 Conclusion

We have demonstrated a novel approach to structured multilabel prediction where inference is re-
placed with constraints on the score model. On multilabel text classification data, the proposed
approach does appear to be able to achieve competitive generalization results, while reducing the
time needed to make predictions at test time. In cases where logical relationships are known to
hold between the labels, using either inference or imposing constraints on the score model appear to
yield benefits over generic training approaches that ignore the prior knowledge. For future work we
are investigating extensions of the proposed approach to more general structured output settings, by
combining the method with search based prediction methods. Other interesting questions include
exploiting learned label relations and coping with missing labels.


https://sites.google.com/site/hrsvmproject/datasets-hier
https://sites.google.com/site/hrsvmproject/datasets-hier
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