
Deep Learning Games

Dale Schuurmans∗
Google

daes@ualberta.ca

Martin Zinkevich
Google

martinz@google.com

Abstract

We investigate a reduction of supervised learning to game playing that reveals new
connections and learning methods. For convex one-layer problems, we demonstrate
an equivalence between global minimizers of the training problem and Nash
equilibria in a simple game. We then show how the game can be extended to general
acyclic neural networks with differentiable convex gates, establishing a bijection
between the Nash equilibria and critical (or KKT) points of the deep learning
problem. Based on these connections we investigate alternative learning methods,
and find that regret matching can achieve competitive training performance while
producing sparser models than current deep learning strategies.

1 Introduction

In this paper, we investigate a new approach to reducing supervised learning to game playing. Unlike
well known reductions [9, 32, 33], we avoid duality as a necessary component in the reduction,
which allows a more flexible perspective that can be extended to deep models. An interesting finding
is that the no-regret strategies used to solve large-scale games [39] provide effective stochastic
training methods for supervised learning problems. In particular, regret matching [13], a step-size
free algorithm, appears capable of efficient stochastic optimization performance in practice.

A central contribution of this paper is to demonstrate how supervised learning of a directed acyclic
neural network with differentiable convex gates can be expressed as a simultaneous move game with
simple player actions and utilities. For variations of the learning problem (i.e. whether regularization
is considered) we establish connections between the critical points (or KKT points) and Nash
equilibria in the corresponding game. As expected, deep learning games are not simple, since even
approximately training deep models is hard in the worst case [15]. Nevertheless, the reduction reveals
new possibilities for training deep models that have not been previously considered. In particular, we
discover that regret matching with simple initialization can offer competitive training performance
compared to state-of-the-art deep learning heuristics while providing sparser solutions.

Recently, we have become aware of unpublished work [2] that also proposes a reduction of supervised
deep learning to game playing. Although the reduction presented in this paper was developed
independently, we acknowledge that others have also begun to consider the connection between deep
learning and game theory. We compare these two specific reductions in Appendix J, and outline the
distinct advantages of the approach developed in this paper.

2 One-Layer Learning Games

We start by considering the simpler one-layer case, which allows us to introduce the key concepts
that will then be extended to deep models. Consider the standard supervised learning problem where
one is given a set of paired data {(xt, yt)}Tt=1, such that (xt, yt) ∈ X ×Y , and wishes to learn a

∗Work performed at Google Brain while on a sabbatical leave from the University of Alberta.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

predictor h :X →Y . For simplicity, we assume X = Rm and Y = Rn. A standard generalized linear
model can be expressed as h(x) = φ(θx) for some output transfer function φ : Rn → Rn and matrix
θ ∈ Rn×m denoting the trainable parameters of the model. Despite the presence of the transfer
function φ, such models are typically trained by minimizing an objective that is convex in z = θx.

OLP (One-layer Learning Problem) Given a loss function ` : Rn × Rn → R that is convex in
the first argument, let `t(z) = `(z, yt) and Lt(θ) = `t(θxt). The training problem is to minimize
L(θ) = T−1

∑T
t=1 Lt(θ) with respect to the parameters θ.

We first identify a simple game whose Nash equilibria correspond to global minima of the one-layer
learning problem. This basic relationship establishes a connection between supervised learning and
game playing that we will exploit below. Although this reduction is not a significant contribution by
itself, the one-layer case allows us to introduce some key concepts that we will deploy later when
considering deep neural networks. A one-shot simultaneous move game is defined by specifying: a
set of players, a set of actions for each player, and a set of utility functions that specify the value to
each player given a joint action selection [40, Page 9] (also see Appendix E). Corresponding to the
OLP specified above, we propose the following game.

OLG (One-layer Learning Game) There are two players, a protagonist p and an antagonist a. The
protagonist chooses a parameter matrix θ ∈ Rm×n. The antagonist chooses a set of T vectors
and scalars {at, bt}Tt=1, at ∈ Rn, bt ∈ R, such that a>t z + bt ≤ `t(z) for all z ∈ Rn; that is, the
antagonist chooses an affine minorant of the local loss for each training example. Both players make
their action choice without knowledge of the other player’s choice. Given a joint action selection
(θ, {at, bt}) we define the utility of the antagonist as Ua = T−1

∑T
t=1 a

>
t θxt + bt, and the utility of

the protagonist as Up = −Ua. This is a two-person zero-sum game with continuous actions.

A Nash equilibrium is defined by a joint assignment of actions such that no player has any incentive
to deviate. That is, if σp = θ denotes the action choice for the protagonist and σa = {at, bt} the
choice for the antagonist, then the joint action σ = (σp, σa) is a Nash equilibrium if Up(σ̃p, σa) ≤
Up(σp, σa) for all σ̃p, and Ua(σp, σ̃a) ≤ Ua(σp, σa) for all σ̃a.

Using this characterization one can then determine a bijection between the Nash equilibria of the
OLG and the global minimizers of the OLP.

Theorem 1 (1) If (θ∗, {at, bt}) is a Nash equilibrium of the OLG, then θ∗ must be a global minimum
of the OLP. (2) If θ∗ is a global minimizer of the OLP, then there exists an antagonist strategy {at, bt}
such that (θ∗, {at, bt}) is a Nash equilibrium of the OLG. (All proofs are given in the appendix.)

Thus far, we have ignored the fact that it is important to control model complexity to improve
generalization, not merely minimize the loss. Although model complexity is normally controlled by
regularizing θ, we will find it more convenient to equivalently introduce a constraint θ ∈ Θ for some
convex set Θ (which we assume satisfies an appropriate constraint qualification; see Appendix C).
The learning problem and corresponding game can then be modified accordingly while still preserving
the bijection between their solution concepts.

OCP (One-layer Constrained Learning Problem) Add optimization constraint θ ∈ Θ to the OLP.
OCG (One-layer Constrained Learning Game) Add protagonist action constraint θ ∈ Θ to OLG.

Theorem 2 (1) If (θ∗, {at, bt}) is a Nash equilibrium of the OCG, then θ∗ must be a constrained
global minimum of the OCP. (2) If θ∗ is a constrained global minimizer of the OCP, then there exists
an antagonist strategy {at, bt} such that (θ∗, {at, bt}) is a Nash equilibrium of the OCG.

2.1 Learning Algorithms

The tight connection between convex learning and two-person zero-sum games raises the ques-
tion of whether techniques for finding Nash equilibria might offer alternative training approaches.
Surprisingly, the answer appears to be yes.

There has been substantial progress in on-line algorithms for finding Nash equilibria, both in theory
[6, 27, 38] and practice [39]. In the two-person zero-sum case, large games are solved by pitting two
regret-minimizing learning algorithms against each other, exploiting the fact that when both achieve
a regret rate of ε/2, their respective average strategies form an ε-Nash equilibrium [42]. For the game
as described above, where the protagonist action is θ ∈ Θ and the antagonist action is denoted σa,

2

we imagine playing in rounds, where on round k the joint action is denoted by σ(k) = (θ(k), σ
(k)
a).

Since the utility function for each player U i for i ∈ {p, a}, is affine in their own action choice for
any fixed action chosen by the other player, each faces an online convex optimization problem [41]
(note that maximizing U i is equivalent to minimizing −U i; see also Appendix G). The total regret
of a player, say the protagonist, is defined with respect to their utility function after K rounds as
Rp(σ(1) . . . σ(K)) = maxθ∈Θ

∑K
k=1 U

p(θ, σ
(k)
a)− Up(θ(k), σ

(k)
a). (Nature can also be introduced

to choose a random training example on each round, which simply requires the definition of regret to
be expressed in terms of expectations over nature’s choices.)

To accommodate regularization in the learning problem, we impose parameter constraints Θ. A
particularly interesting case occurs when one defines Θ = {θ : ‖θ‖1 ≤ β}, since the L1 ball
constraint is equivalent to imposing L1 regularization. There are two distinct advantages to L1

regularization in this context. First, as is well known, L1 encourages sparsity in the solution. Second,
and much less appreciated, is the fact that any polytope constraint allows one to reduce the constrained
online convex optimization problem to learning from expert advice over a finite number of experts
[41]: Given a polytope Θ, define the convex hull basis H(Θ) to be a matrix whose columns are the
vertices in Θ. An expert can then be assigned to each vertex in H(Θ), and an algorithm for learning
from expert advice can then be applied by mapping its strategy on round k, ρ(k) (a probability
distribution over the experts), back to an action choice in the original problem via θ(k) = H(Θ)ρ(k),
while the utility vector on round k, u(k), can be passed back to the experts via H(Θ)>u(k) [41].

Since this reduction allows any method for learning from expert advice to be applied to L1 constrained
online convex optimization, we investigated whether alternative algorithms for supervised training
might be uncovered. We considered two algorithms for learning from expert advice: the normalized
exponentiated weight algorithm (EWA) [25, 36] (Algorithm 3); and regret matching (RM), a
simpler method from the economics and game theory literature [13] (Algorithm 2). For supervised
learning, these algorithms operate by using a stochastic sample of the gradient to perform their
updates (outer loop Algorithm 1). EWA possesses superior regret bounds that demonstrate only a
logarithmic dependence on the number of actions; however RM is simpler, hyperparameter-free,
and still possesses reasonable regret bounds [10, 11]. Although exponentiated gradient methods
have been applied to supervised learning [21, 36], we not aware of any previous attempt to apply
regret matching to supervised training. We compared these to projected stochastic gradient descent
(PSGD), which is the obvious modification of stochastic gradient descent (SGD) that retains a similar
regret bound [8, 31] (Algorithm 4).

2.2 Evaluation

To investigate the utility of these methods for supervised learning, we conducted experiments on
synthetic data and on the MNIST data set [23]. Note that PSGD and EWA have a step size parameter,
η(k), that greatly affects their performance. The best regret bounds are achieved for step sizes of the
form ηk−1/2 and η log(m)k−1/2 respectively [31]; we also tuned η to generate the best empirical
results. Since the underlying optimization problems are convex, these experiments merely focus on
the speed of convergence to a global minimum of the constrained training problem.

The first set of experiments considered synthetic problems. The data dimension was set to m = 10,
and T = 100 training points were drawn from a standard multivariate Gaussian. For univariate
prediction, a random hyperplane was chosen to label the data (hence the data was linearly separable,
but not with a large margin). The logistic training loss achieved by the running average of the
protagonist strategy θ̄ over the entire training set is plotted in Figure 1a. For multivariate prediction, a
4×10 target matrix, θ∗, was randomly generated to label training data by arg max(θ∗xt). The training
softmax loss achieved by the running average of the protagonist strategy θ̄ over the entire training
set is shown in Figure 1b. The third experiment was conducted on MNIST, which is an n = 10
class problem over m = 784 dimensional inputs with T = 60, 000 training examples, evidently not
linearly separable. For this experiment, we used mini-batches of size 100. The training loss of the
running average protagonist strategy θ̄ (single run) is shown in Figure 1c. The apparent effectiveness
of RM in these experiments is a surprising outcome. Even after tuning η for both PSGD and EWA,
they do not surpass the performance of RM, which is hyperparameter free. We did not anticipate this
observation; the effectiveness of RM for supervised learning appears not to have been previously
noticed. (We do not expect RM to be competitive in high dimensional sparse problems, since its
regret bound has a square root and not a logarithmic dependence on n [10].)

3

(a) Logistic loss, synthetic data. (b) Softmax loss, synthetic data. (c) Softmax loss, MNIST data.

Figure 1: Training loss achieved by different no-regret algorithms. Subfigures (a) and (b) are averaged
over 100 repeats, log scale x-axis. Subfigure (c) is averaged over 10 repeats (psgd theory off scale).

3 Deep Learning Games

A key contribution of this paper is to show how the problem of training a feedforward neural network
with differentiable convex gates can be reduced to a game. A practical consequence of this reduction
is that it suggests new approaches to training deep models that are inspired by methods that have
recently proved successful for solving massive-scale games.

Feedforward Neural Network A feedforward neural network is defined by a directed acyclic graph
with additional objects attached to the vertices and edges. The network architecture is specified by
N = (V,E, I,O, F), where V is a set of vertices, E ⊆ V ×V is a set of edges, I = {i1 . . . im} ⊂ V
is a set of input vertices, O = {o1 . . . on} ⊂ V is a set of output vertices, and F = {fv : v ∈ V } is a
set of activation functions, where fv : R→ R. The trainable parameters are given by θ : E → R.

In the graph defined by G = (V,E), a path (v1, ..., vk) consists of a sequence of vertices such that
(vj , vj+1) ∈ E for all j. A cycle is a path where the first and last vertex are equal. We assume that G
contains no cycles, the input vertices have no incoming edges (i.e. (u, i) 6∈ E for all i ∈ I , u ∈ V),
and the output vertices have no outgoing edges (i.e. (o, v) 6∈ E for all o ∈ O, v ∈ V). A directed
acyclic graph generates a partial order≤ on the vertices where u ≤ v if and only if there is a path from
u to v. For all v ∈ V , define Ev = {(u, u′) ∈ E : u′ = v}. The network is related to the training
data by assuming |I| = m, the number of input vertices corresponds to the number of input features,
and |O| = n, the number of output vertices corresponds to the number of output dimensions. It is a
good idea (but not required) to have two additional bias inputs, whose corresponding input features
are always set to 0 and 1, respectively, and have edges to all non-input nodes in the graph. Usually,
the activation functions on input and output nodes are the identity, i.e. fv(x) = x for v ∈ I ∪O.

Given a training input xt ∈ Rm, the computation of the network N is expressed by a circuit value
function ct that assigns values to each vertex based on the partial order over vertices:
ct(ik, θ) = fik(xtk) for ik ∈ I; ct(v, θ) = fv

(∑
u:(u,v)∈E ct(u, θ)θ(u, v)

)
for v ∈ V − I. (1)

Let ct(o, θ) denote the vector of values at the output vertices, i.e. (ct(o, θ))k = ct(ok, θ). Since each
fv is assumed differentiable, the output ct(o, θ) must also be differentiable with respect to θ.

When we wish to impose constraints on θ we assume the constraints factor over vertices, and are
applied across the incoming edges to each vertex. That is, for each v ∈ V − I the parameters θ
restricted to Ev are required to be in a set Θv ⊆ REv , and Θ =

∏
v∈V−I Θv. (We additionally

assume each Θv satisfies constraint qualifications—see Appendix C—and can also alter the factoriza-
tion requirement to allow more complex network architectures—see Appendix H). If Θ = RE , we
consider the network to be unconstrained. If Θ is bounded, we consider the network to be bounded.

DLP (Deep Learning Problem) Given a loss function `(z, y) that is convex in the first argument
satisfying 0≤ `(z, y)<∞ for all z ∈ Rn, define `t(z) = `(z, yt) and Lt(θ) = `t(ct(o, θ)). The
training problem is to find a θ ∈ Θ that minimizes L(θ) = T−1

∑T
t=1 Lt(θ).

DLG (Deep Learning Game) We define a one-shot simultaneous move game [40, page 9] with
infinite action sets (Appendix E); we need to specify the players, action sets, and utility functions.

4

Players: The players consist of a protagonist p for each v ∈ V − I , an antagonist a, and a set
of self-interested zannis sv, one for each vertex v ∈ V .2 Actions: The protagonist for vertex v
chooses a parameter function θv ∈ Θv. The antagonist chooses a set of T vectors and scalars
{at, bt}Tt=1, at ∈ Rn, bt ∈ R, such that a>t z + bt ≤ `t(z) for all z ∈ Rn; that is, the antagonist
chooses an affine minorant of the local loss for each training example. Each zanni sv chooses
a set of 2T scalars (qvt, dvt), qvt ∈ R, dvt ∈ R, such that qvtz + dvt ≤ fv(z) for all z ∈ R;
that is, the zanni chooses an affine minorant of its local activation function fv for each training
example. All players make their action choice without knowledge of the other player’s choice.
Utilities: For a joint action σ = (θ, {at, bt}, {qvt, dvt}), the zannis’ utilities are defined recursively
following the parial order on vertices. First, for each i ∈ I the utility for zanni si on training
example t is Usit(σ) = dit + qitxit, and for each v ∈ V − I the utility for zanni sv on example
t is Usvt(σ) = dvt + qvt

∑
u:(u,v)∈E U

s
tu(σ)θ(u, v). The total utility for each zanni sv is given

by Usv (σ) =
∑T
t=1 U

s
vt(σ) for v ∈ V . The utility for the antagonist a is then given by Ua =

T−1
∑T
t=1 U

a
t where Uat (σ) = bt +

∑n
k=1 aktU

s
okt

(σ). The utility for all protagonists are the same,
Up(σ) = −Ua(σ). (This representation also allows for an equivalent game where nature selects an
example t, tells the antagonist and the zannis, and then everyone plays their actions simultaneously.)
The next lemma shows how the zannis and the antagonist can be expected to act.

Lemma 3 Given a fixed protagonist action θ, there exists a unique joint action for all agents
σ = (θ, {at, bt}, {qvt, dvt}) where the zannis and the antagonist are playing best responses to σ .
Moreover, Up(σ) = −L(θ), ∇θUp(σ) = −∇L(θ), and given some protagonist at v ∈ V − I , if we
hold all other agents’ strategies fixed, Up(σ) is an affine function of the strategy of the protagonist at
v. We define σ as the joint action expansion for θ.

There is more detail in the appendix about the joint action expansion. However, the key point is that
if the current cost and partial derivatives can be calculated for each parameter, one can construct the
affine function for each agent. We will return to this in Section 3.1.

A KKT point is a point that satisfies the KKT conditions [18, 22]: roughly, that either it is a critical
point (where the gradient is zero), or it is a point on the boundary of Θ where the gradient is pointing
out of Θ “perpendicularly” (see Appendix C). We can now state the main theorem of the paper,
showing a one to one relationship between KKT points and Nash equilibria.

Theorem 4 (DLG Nash Equilibrium) The joint action σ=(θ, {at, bt}, {qvt, dvt}) is a Nash equi-
librium of the DLG iff it is the joint action expansion for θ and θ is a KKT point of the DLP.

Corollary 5 If the network is unbounded, the joint action σ = (θ, {at, bt}, {qvt, dvt}) is a Nash
equilibrium of the DLG iff it is the joint action expansion for θ and θ is a critical point of the DLP.

Finally we note that sometimes we need to add constraints between edges incident on different
nodes. For example, in a convolutional neural network, one will have edges e = {u, v} and
e′ = {u′, v′} such that there is a constraint θe = θe′ (see Appendix H). In game theory, if two agents
act simultaneously it is difficult to have one agent’s viable actions depend on another agent’s action.
Therefore, if parameters are constrained in this manner, it is better to have one agent control both.
The appendix (beginning with Appendix B) extends our model and theory to handle such parameter
tying, which allows us to handle both convolutional networks and non-convex activation functions
(Appendix I). Our theory does not apply to non-smooth activation functions, however (e.g. ReLU
gates), but these can be approximated arbitrarily closely by differentiable activations.

3.1 Learning Algorithms

Characterizing the deep learning problem as a game motivates the consideration of equilibrium
finding methods as potential training algorithms. Given the previous reduction to expert algorithms,
we will consider the use of the L1 ball constraint Θv = {θv : ‖θv‖1 ≤ β} at each vertex v. For deep
learning, we have investigated a simple approach by training independent protagonist agents at each
vertex against a best response antagonist and best response zannis [17]. In this case, it is possible

2 Nomenclature explanation: Protagonists nominally strive toward a common goal, but their actions can
interfere with one another. Zannis are traditionally considered servants, but their motivations are not perfectly
aligned with the protagonists. The antagonist is diametrically opposed to the protagonists.

5

Algorithm 1 Main Loop

On round k, observe some xt (or mini batch)
Antagonist and zannis choose best responses

which ensures∇Upv (θv) = −∇L(θ
(k)
v)

g
(k)
v ← ∇Upv (θv)

Apply update to r(k)
v , ρ(k)

v and θ(k)
v ∀v ∈ V

Algorithm 2 Regret Matching (RM)

r
(k+1)
v ← r

(k)
v +H(Θv)

>g
(k)
v −

ρ
(k)
v
>H(Θv)

>g
(k)
v

ρ
(k+1)
v ←

(
r

(k+1)
v

)
+
/
(
1>
(
r

(k+1)
v

)
+

)
θ

(k+1)
v ← H(Θv)ρ

(k+1)
v

Algorithm 3 Exp. Weighted Average (EWA)

r
(k+1)
v ← r

(k)
v + η(k)H(Θv)

>g
(k)
v

ρ
(k+1)
v ← exp(r

(k+1)
v)/(1> exp(r

(k+1)
v))

θ
(k+1)
v ← H(Θv)ρ

(k+1)
v

Algorithm 4 Projected SGD

r
(k+1)
v ← r

(k)
v + η(k)H(Θv)

>g
(k)
v

ρ
(k+1)
v ← L2_project_to_simplex(r

(k+1)
v)

θ
(k+1)
v ← H(Θv)ρ

(k+1)
v

to devise interesting and novel learning strategies based on the algorithms for learning from expert
advice. Since the optimization problem is no longer convex in a local protagonist action θv, we do
not expect convergence to a joint, globally optimal strategy among protagonists. Nevertheless, one
can develop a generic approach for using the game to generate a learning algorithm.

Algorithm Outline On each round, nature chooses a random training example (or mini-batch).
For each v ∈ V , each protagonist v selects her actions θv ∈ Θv deterministically. The antagonist
and zannis then select their actions, which are best responses to the θv and to each other.3 The
protagonist utilities Upv are then calculated. Given the zanni and antagonist choices, Upv is affine
in the protagonist’s action, and also by Lemma 3 for all e ∈ Ev, we have ∂Lt

∂we
= −∂U

p
v (θv)
∂we

. Each
protagonist v ∈ V then observes their utility and uses this to update their strategy. See Algorithm 1
for the general loop, and Algorithms 2, 3 and 4 for specific updates.

Given the characterization developed previously, we know that a Nash equilibrium will correspond to
a critical point in the training problem (which is almost certain to be a local minimum rather than
a saddle point [24]). It is interesting to note that the usual process of backpropagating the sampled
(sub)gradients corresponds to computing the best response actions for the zannis and the antagonist,
which then yields the resulting affine utility for the protagonists.

3.2 Experimental Evaluation

We conducted a set of experiments to investigate the plausibility of applying expert algorithms at each
vertex in a feedforward neural network. For comparison, we considered current methods for training
deep models, including SGD [3], SGD with momentum [37], RMSprop, Adagrad [7], and Adam
[20]. Since none of these impose constraints, they technically solve an easier optimization problem,
but they are also un-regularized and therefore might exhibit weaker generalization. We tuned the step
size parameter for each comparison method on each problem. For the expert algorithms, RM, EWA
and PSGD, we found that EWA and PSGD were not competitive, even after tuning their step sizes.
For RM, we initially found that it learned too quickly, with the top layers of the model becoming
sparse; however, we discovered that RM works remarkably well simply by initializing the cumulative
regret vectors r(0)

v with random values drawn from a Gaussian with large standard deviation σ.

As a sanity check, we first conducted experiments on synthetic combinatorial problems: “parity”,
defined by y = x1 ⊕ · · · ⊕ xm and “folded parity”, defined by y = (x1 ∧ x2)⊕ · · · ⊕ (xm−1 ∧ xm)
[30]. Parity cannot be approximated by a single-layer model but is representable with a single hidden
layer of linear threshold gates [12], while folded parity is known to be not representable by a (small
weights) linear threshold circuit with only a single hidden layer; at least two hidden layers are required
[30]. For parity we trained a m-4m-1 architecture, and for folded parity we trained a m-4m-4m-1
architecture, both fully connected, m= 8. Here we chose the L1 constraint bound to be β = 10
and the initialization scale as σ = 100. For the nonlinear activation functions we used a smooth

3 Conceptually, each zanni has a copy of the algorithm of each protagonist and an algorithm for selecting a
joint action for all antagonists and zannis, and thus do not technically depend upon θv . In practice, these multiple
copies are unnecessary, and one merely calculates θv ∈ Θv first.

6

(a) Learning Parity with logistic loss. (b) MNIST, full layers, train loss. (c) MNIST, full layers, test error.

(d) Folded Parity, logistic loss. (e) MNIST, convolutional, train loss. (f) MNIST, convolutional, test error.

Figure 2: Experimental results. (a) Parity, m-4m-1 architecture, 100 repeats. (d) Folded parity,
m-4m-4m-1 architecture, 100 repeats. (b) and (c): MNIST, 784-1024-1024-10 architecture, 10
repeats. (e) and (f): MNIST, 28×28-c(5×5, 64)-c(5×5, 64)-c(5×5, 64)-10 architecture, 10 repeats.

approximation of the standard ReLU gate fv(x) = τ log(1 + ex/τ) with τ = 0.5. The results shown
in Figure 2a and Figure 2d confirm that RM performs competitively, even when producing models
with sparsity, top to bottom, of 18% and 13% for parity, and 27%, 19% and 21% for folded parity.

We next conducted a few experiments on MNIST data. The first experiment used a fully con-
nected 784-1024-1024-10 architecture, where RM was run with β = 30 and initialization scales
(σ1, σ2, σ3) = (50, 200, 50). The second experiment was run with a convolutional architecture
28×28-c(5×5, 64)-c(5×5, 64)-c(5×5, 64)-10 (convolution windows 5×5 with depth 64), where RM
was run with (β1, β2, β3, β4) = (30, 30, 30, 10) and initialization scales σ = 500. The mini-batch
size was 100, and the x-axis in the plots give results after each “update” batch of 600 mini-batches
(i.e. one epoch over the training data). The training loss and test loss are shown in Figures 2b, 2c,
2e and 2f, showing the evolution of the training loss and test misclassification errors. We dropped
all but SGD, Adam, RMSprop and RM here, since these seemed to dominate the other methods in
our experiments. It is surprising that RM can demonstrate convergence rates that are competitive
with tuned RMSprop, and even outperforms methods like SGD and Adam that are routinely used
in practice. An even more interesting finding is that the solutions found by RM were sparse while
achieving lower test misclassification errors than standard deep learning methods. In particular, in
the fully connected case, the final solution produced by RM zeroed out 32%, 26% and 63% of the
parameter matrices (from the input to the output layer) respectively. For the convolutional case, RM
zeroed out 29%, 27%, 28% and 43% of the parameter matrices respectively. Regarding run times,
we observed that our Tensorflow implementation of RM was only 7% slower than RMSProp on the
convolutional architecture, but 85% slower in the fully connected case.

4 Related Work

There are several works that consider using regret minimization to solve offline optimization problems.
Once stochastic gradient descent was connected to regret minimization in [5], a series of papers
followed [29, 28, 34]. Two popular approaches are currently Adagrad [7] and traditional stochastic
gradient descent. The theme of simplifying the loss is very common: it appears in batch gradient and
incremental gradient approaches [26] as the majorization-minimization family of algorithms. In the

7

regret minimization literature, the idea of simplifying the class of losses by choosing a minimizer
from a particular family of functions first appeared in [41], and has since been further developed.

By contrast, the history of using games for optimization has a much shorter history. It has been shown
that a game between people can be used to solve optimal coloring [19]. There is also a history of
using regret minimization in games: of interest is [42] that decomposes a single agent into multiple
agents, providing some inspiration for this paper. In the context of deep networks, a paper of interest
connects brain processes to prediction markets [1]. However, the closest work appears to be the
recent manuscript [2] that also poses the optimization of a deep network as a game. Although the
games described there are similar, unlike [2], we focus on differentiable activation functions, and
define agents with different information and motivations. Importantly, [2] does not characterize all
the Nash equilibria in the game proposed. We discuss these issues in more detail in Appendix J.

5 Conclusion

We have investigated a reduction of deep learning to game playing that allowed a bijection between
KKT points and Nash equilibria. One of the novel algorithms considered for supervised learning,
regret matching, appears to provide a competitive alternative that has the additional benefit of
achieving sparsity without unduly sacrificing speed or accuracy. It will be interesting to investigate
alternative training heuristics for deep games, and whether similar successes can be achieved on
larger deep models or recurrent models.

References
[1] D. Balduzzi. Cortical prediction markets. In Proceedings of the 2014 International Conference on

Autonomous Agents and Multi-agent Systems, pages 1265–1272, 2014.

[2] D. Balduzzi. Deep online convex optimization using gated games. http://arxiv.org/abs/1604.01952, 2016.

[3] L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade - Second Edition,
pages 421–436. 2012.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge U. Press, 2004.

[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning algorithms.
IEEE Transactions on Information Theory, 50(9):2050–2057, September 2004.

[6] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[8] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the l1-ball for learning
in high dimensions. In Inter. Conf. on Machine Learning, pages 272–279, 2008.

[9] Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights. Games and Economic
Behavior, 29(1-2):79–103, 1999.

[10] G. Gordon. No-Regret algorithms for structured prediction problems. Technical Report CMU-CALD-05-
112, Carnegie Mellon University, 2005.

[11] G. Gordon. No-regret algorithms for online convex programs. In NIPS 19, 2006.

[12] A. Hajnal. Threshold circuits of bounded depth. JCSS, 46(2):129–154, 1993.

[13] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium. Econometrica,
68(5):1127–1150, 2000.

[14] S. Hart and A. Mas-Colell. Regret-based continuous-time dynamics. Games and Economic Behavior,
pages 375–394, 2003.

[15] K. Hoeffgen, H. Simon, and K. Van Horn. Robust trainability of single neurons. JCSS, 52(2):114–125,
1995.

[16] J. Hofbauer and W. H. Sandholm. On the global convergence of stochastic fictitious play. Econometrica,
70(6):2265–2294, 2002.

8

[17] M. Johanson, N. Bard, N. Burch, and M. Bowling. Finding optimal abstract strategies in extensive form
games. In AAAI Conference on Artificial Intelligence, pages 1371–1379, 2012.

[18] W. Karush. Minima of functions of several variables with inequalities as side constraints. Master’s thesis,
Univ. of Chicago, Chicago, Illinois, 1939.

[19] M. Kearns, S. Suri, and N. Montfort. An experimental study of the coloring problem on human subject
networks. Science, 313:824–827, 2006.

[20] D. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR, abs/1412.6980, 2014.

[21] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Informa-
tion and Computation, 132(1):1–63, 1997.

[22] H. Kuhn and A. Tucker. Nonlinear programming. In Proceedings of 2nd Berkeley Symposium, pages
481–492. University of California Press, 1951.

[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] J. Lee, M. Simchowitz, M. Jordan, and B. Recht. Gradient Descent Only Converges to Minimizers. In
29th Annual Conference on Learning Theory, volume 49, 2016.

[25] N. Littlestone and M. Warmuth. The weighted majority algorithm. Inf. Comput., 108(2):212–261, 1994.

[26] J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine
learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

[27] A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. In Advances
in Neural Information Processing Systems 26, pages 3066–3074, 2013.

[28] N. Ratliff, D. Bagnell, and M. Zinkevich. Subgradient methods for structured prediction. In Eleventh
International Conference on Artificial Intelligence and Statistics (AISTATS-07), 2007.

[29] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In Twenty Second International
Conference on Machine Learning (ICML-06), 2006.

[30] A. Razborov. On small depth threshold circuits. In Algorithm Theory (SWAT 92), 1992.

[31] S. Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2012.

[32] S. Shalev-Shwartz and Y. Singer. Convex repeated games and Fenchel duality. In NIPS 19, 2006.

[33] S. Shalev-Shwartz and Y. Singer. A primal-dual perspective of online learning algorithms. Machine
Learning, 69(2-3):115–142, 2007.

[34] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated sub-gradient solver for
svm. Mathematical programming, 127(1):3–30, 2011.

[35] M. Slater. Lagrange multipliers revisited: A contribution to nonlinear programming. 1950.

[36] N. Srinivasan, V. Ravichandran, K. Chan, J. Vidhya, S. Ramakirishnan, and S. Krishnan. Exponentiated
backpropagation algorithm for multilayer feedforward neural networks. In ICONIP, volume 1, 2002.

[37] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and momentum in
deep learning. In Proceedings ICML, pages 1139–1147, 2013.

[38] V. Syrgkanis, A. Agarwal, H. Luo, and R. Schapire. Fast convergence of regularized learning in games. In
Advances in Neural Information Processing Systems 28, pages 2971–2979, 2015.

[39] O. Tammelin, N. Burch, M. Johanson, and M. Bowling. Solving heads-up limit Texas hold’em. In
International Joint Conference on Artificial Intelligence, IJCAI, pages 645–652, 2015.

[40] V. Vazirani, N. Nisan, T. Roughgarden, and É Tardos. Algorithmic Game Theory. Cambridge Press, 2007.

[41] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In Twentieth
International Conference on Machine Learning, 2003.

[42] M. Zinkevich, M. Bowling, M. Johanson, and C. Piccione. Regret minimization in games with incomplete
information. In NIPS, 2007.

9

A Proofs for Section 2 (One-layer Case)

We assume that ` is convex and differentiable in its first argument.

Fact 6 (OLP Optimality) Since each `t in the definition ofL is convex and differentiable, L is convex
and differentiable, and a necessary and sufficient condition for θ∗ ∈ arg minθ L(θ) is∇L(θ∗) = 0
[4, Equation 4.22]

For the one-layer learning game, OLG, given the simple structure of the utility functions the Nash
equilibria are easy to characterize.

Lemma 7 (OLG Nash Equilibrium) The joint action σ = (θ, {at, bt}) is a Nash equilibrium of
the OLG if and only if `t(θxt) = a>t θxt + bt, at = ∇`t(g)|g=θxt (antagonist best response), and

T−1
∑T
t=1 atx

>
t = 0 (protagonist best response).

Proof: We prove a Nash equilibrium satisfies the two conditions; the converse is similar. The first
condition is easiest: since for any g ∈ Rn, `t(g) ≥ a>t g + bt, `t(θxt) = a>t θxt + bt represents
the highest possible utility for the antagonist. Define zt = θxt. However, since `t is convex and
differentiable everywhere, there is exactly one affine function that equals `t at a point and is less than
or equal everywhere else, namely h(g) = ∇`t(zt)(g − zt) + `t(zt). Thus, at = ∇`t(g)|g=θxt .

Insofar as the protagonist is concerned, given a strategy at, bt for the adversary, the protagonist’s
utility is affine. Specifically, it is Up = −T−1

∑T
t=1(at)

>θxt + bt. Taking the gradient with respect
to θ yields −T−1

∑T
t=1 atx

>
t , and setting it to zero guarantees that the protagonist is playing a best

response.

Lemma 8 For a protagonist action θ, given the best response of the antagonist,∇θUp = −∇L(θ).

Proof (of Theorem 1): (1) From the conditions stated in Lemma 7 we must have L(θ) =
T−1

∑
t a
>
t θxt + bt and at = ∇`t(g)|g=θxt by antagonist best response. By protagonist

best response, T−1
∑T
t=1 atx

>
t = 0, so T−1

∑T
t=1 ∇`t(g)|g=θxt x

>
t = 0. Since ∇L(θ) =

T−1
∑T
t=1 ∇`t(g)|g=θxt x

>
t ,∇L(θ) = 0, and therefore by [4, Equation 4.22], θ is a minimum.

(2) If ∇L(θ∗) = 0 then
∑T
t=1∇Lt(θ∗) = 0. Since Lt(θ

∗) = `t(θ
∗xt), then ∇Lt(θ∗) =

(∇`t(g)|g=θ∗xt)x
>
t . Define at = ∇`t(g)|g=θ∗xt , and bt = `t(θ

∗xt) − a>t θ
∗xt, such that the

antagonist is playing a best response to θ∗. Notice that:

0 = ∇L(θ∗) (2)

= T−1
T∑
t=1

∇Lt(θ∗) (3)

= T−1
T∑
t=1

(∇`t(g)|g=θ∗xt)x
>
t (4)

= T−1
T∑
t=1

atx
>
t (5)

Thus, θ∗ is also a best response, so (θ∗, {at, bt}) is an equilibrium.

For the constrained version of the one-layer neural network, we will temporarily assume that the
constraint set Θ is a polytope. (The set of allowable constraints will be generalized throughout the
remainder of the appendix, but linear constraints allow for a simple exposition to start.) Since a
polytope is an intersection of a finite set of half-spaces, we can define such a Θ using a set J of affine
functions, where θ ∈ Θ iff for all j ∈ J , j(θ) ≤ 0.

To characterize the solutions of the constrained problem, we use the KKT conditions.

Fact 9 (OCP Optimality) Since each `t in the definition ofL is convex and differentiable, L is convex
and differentiable, so necessary and sufficient conditions for θ∗ ∈ arg minθ∈Θ L(θ) is that there exist

10

{µj}j∈J such that for all j ∈ J , µj ≥ 0, µjj(θ∗) = 0, j(θ∗) ≤ 0, and:
∑
j∈J µjj(θ

∗) = −∇L(θ∗).
[4, p. 244].

Lemma 10 (OCG Nash Equilibrium) The joint action σ = (θ, {at, bt}) is a Nash equilibrium of
the OLG if and only if `t(θxt) = a>t θxt + bt, at = ∇`t(g)|g=θxt (antagonist best response), and
there exist {µj}j∈J such that for all j ∈ J , µj ≥ 0, µjj(θ) = 0, j(θ) ≤ 0, and

∑
j∈J µjj(θ

∗) =

−T−1
∑T
t=1 atx

>
t (protagonist best response).

Proof: The antagonist best response proof is nearly identical to the proof of Lemma 7. The
protagonist best response leverages that the gradient of Up with respect to θ∗ is −T−1

∑T
t=1 atx

>
t ,

and then leverages the KKT conditions for a maximum value. Since Up is an affine function with
respect to θ, a point satisfying the KKT conditions is a global maximum (Fact 9), implying it is a best
response for the protagonist. Again, we leave proving the converse as an exercise.

Proof (of Theorem 2): (1) Using the same argument as the proof of (1) in Theorem 1, we can argue
that∇L(θ∗) = −∇Up, as the antagonist best response constraints are the same as before. Using the
protagonist best response constraints, we get that there exist {µj}j∈J such that for all j ∈ J , µj ≥ 0,
µjj(θ

∗) = 0, j(θ∗) ≤ 0, and
∑
j∈J µjj(θ

∗) = −T−1
∑T
t=1 atx

>
t = ∇Up. Thus:∑

j∈J
µjj(θ

∗) = −∇L(θ∗) (6)

Which are the KKT conditions from Fact 9, so θ∗ is globally optimal.

(2) Assume that θ∗ is an optimal solution. Using the same argument as the proof of (2) in Theorem 1,
we construct at and bt in the exact same way, as the antagonist best response property is the same
as before, and as easily satisfied. This also implies that ∇L(θ∗) = −∇Up. Using Fact 9, there
exist {µj}j∈J such that for all j ∈ J , µj ≥ 0, µjj(θ∗) = 0, and:

∑
j∈J µjj(θ

∗) = −∇L(θ∗). So,∑
j∈J µjj(θ

∗) = ∇Up = −T−1
∑T
t=1 atx

>
t . Therefore, the protagonist best response property

holds, and (θ∗, at, bt) is a Nash equilibrium.

B Groups of Nodes

To handle two important extensions of feedforward neural networks (e.g. convolutional neural
networks (Appendix H) and nonconvex activation functions (Appendix I)), we will need to extend the
basic neural network model from the main body of the paper to consider constraints that couple the
parameters defined on different edges. For example, in a convolutional neural network, you may have
two edges e = {u, v} and e′ = {u′, v′} where there is a constraint that θe = θe′ (see Appendix H).
In game theory, if two agents act simultaneously, it is difficult to have one agent’s viable actions
dependent upon the other agent’s action. Thus, if two parameters are jointly constrained, it is best to
have one agent control both parameters. Therefore, throughout the remainder of the appendix we will
use a generalization of the model described in the body of the paper.

Define a partition P of V − I , where for each ρ ∈ P , Eρ = ∪v∈ρEv. Also define Θρ ⊆ REρ , and
Θ =

∏
ρ∈P Θρ. An important constraint is that for any ρ ∈ P , and for any u, v ∈ ρ, if u ≤ v or

v ≤ u, then u = v. We leave the zannis’ and the adversaries’ action spaces unchanged (i.e., there is
still one zanni per node), but each protagonist controls a partition of nodes. Notice that this is a strict
generalization of the earlier model, because one could always define the discrete partition where each
node is its own partition.

C Best Response and KKT Conditions

In this paper, we must analyze partial problems (related to best response in the game) of the form:

Partial problem at ρ ∈ P : For an affine function u : REρ → R, find argmaxθρ∈Θρ u(θρ).

For each ρ ∈ P , we will define Hρ ⊆ RREρ and Jρ ⊆ RREρ to be finite sets of continuous,
differentiable functions. Then, we can define Θρ to be the set of all θρ ∈ REρ where for all h ∈ Hρ,

11

h(θρ) = 0, and for all j ∈ Jρ, j(θρ) ≤ 0. Before we look at the KKT conditions for the partial
problem, we define two variations of constraint qualification:

1. Partial affine constraint qualification: For all ρ ∈ P , all h ∈ Hρ are affine and all j ∈ Jρ
are affine.

2. Partial Slater’s constraint qualification: For all ρ ∈ P , all h ∈ Hρ are affine and all
j ∈ Jρ are convex, and there exists a θρ ∈ Θρ where for all j ∈ Jρ, j(θρ) < 0.

One classic constraint is
∑
e∈Ev |θe| ≤ 1, a bound on the L1 norm of the parameters of a particular

vertex. This can be written as a set of linear inequalities (i.e. affine functions in Jρ). Another is∑
e∈Ev (θe)

2 ≤ 1, a bound on the L2 norm of the parameters of a particular vertex. This can be
written as a convex constraint (i.e. j(θp) =

∑
e∈Ev (θe)

2 − 1).

We will define θρ to be a KKT point for a partial problem at ρ ∈ P if θρ ∈ Θρ and there exists
KKT multipliers µj ≥ 0 and λh ∈ R such that:

∇u(θρ) =
∑
j∈Jρ

µj∇j(θρ) +
∑
h∈Hρ

λh∇h(θρ) (7)

µjj(θρ) = 0 for all j ∈ Jρ (8)

In other words, the gradient points directly out of the feasible Θρ.

Theorem 11 [18, 22, 35, 4] Given either the partial affine constraint qualification, or the partial
Slater’s constraint qualification, any global minimum is a KKT point, and any KKT point is a global
minimum.

Notice that for the partial problem, we have assumed that the utility is an affine function, otherwise a
KKT point would not necessarily be a global minimum. We will not make the same assumption for
the full problem.

D Deep Learning and KKT Conditions

Now we will switch and consider the deep learning problem. In the deep learning problem, we want to
find a global minimum θ∗ ∈ Θ, such that for all θ ∈ Θ, L(θ∗) ≤ L(θ). This global minimum does
not necessarily exist, nor is it necessarily unique. We can also define a distance function over RE ,
where for all θ, θ̄ ∈ Θ, d(θ, θ̄) =

(∑
e∈E(θ(e)− θ̄(e))2

)1/2
. Define N ⊆ Θ to be a neighborhood

of θ if there exists an r > 0 such that for all θ̄ ∈ Θ, d(θ, θ̄) < r. θ is a local minimum if there exists
a neighborhood N of θ such that for all θ̄ ∈ N , L(θ) ≤ L(θ̄). Notice that a global minimum is a
local minimum.

We will define θ ∈ RE to be a KKT point if θ ∈ Θ and there exists KKT multipliers µj ≥ 0 and
λh ∈ R such that:

−∇L(θ) =
∑
j∈J

µj∇j(θ) +
∑
h∈H

λh∇h(θ) (9)

µjj(θ) = 0 for all j ∈ J (10)

In other words, the opposite of the gradient points directly out of the feasible Θ (this is a minimization
problem, not a maximization problem). The KKT conditions explore properties for a point θ ∈ Θ
that are necessary (but not sufficient) for it to be a local minimum of some function L. They specify
Θ by giving a set of constraints which must hold for all θ ∈ Θ.

For all ρ ∈ P , define Πρ : RE → REρ such that for all θ ∈ RE , for all e ∈ Eρ, (Πρ(θ))e = θe. We
can define H =

⋃
ρ∈P {h ◦Πρ}h∈Hρ and J =

⋃
ρ∈P {j ◦Πρ}j∈Jρ . Note that a point θ ∈ RE is in

Θ =
∏
ρ∈P Θρ if and only if, for all h ∈ H , h(θ) = 0, and for all j ∈ J , j(θ) ≤ 0.

1. Full affine constraint qualification: For all ρ ∈ P , all h ∈ H are affine and all j ∈ J are
affine.

2. Full Slater’s Constraint Qualification: For H , J , for all θ ∈ Θ, all h ∈ H are affine, all
j ∈ J are convex, and there exists a θ ∈ Θ where for all j ∈ J , j(θ) < 0.

12

Theorem 12 [18, 22, 35]Given the full affine constraint qualification or the full Slater’s constraint
qualification, any local minimum (and thus, the global minimum) is a KKT point.

The converse is not true. For example, saddle points can be KKT points as well.

Lemma 13 The partial affine constraint qualification implies the full affine constraint qualification.

Proof: For any ρ ∈ P , if f : REρ → R is an affine function, then f ◦ Πρ is an affine function.
Thus, for all ρ ∈ P , for all h ∈ Hρ, h ◦Πρ is an affine function, so all h ∈ H are affine. Similiarly,
all j ∈ J are affine.

Lemma 14 The partial Slater’s Constraint Qualification implies the full Slater’s constraint qualifi-
cation.

Proof: As in the proof of Lemma 13, since Hρ is a set of affine functions, H is a set of affine
functions. For each ρ ∈ P , there exists a θρ ∈ Θρ where for all j ∈ Jρ, j(θρ) < 0. If we define
θ ∈ RE such that for all ρ ∈ P , Πρ(θ) = θρ, then for all j ∈ J , j(θ) < 0. Finally, for every ρ ∈ P ,
for every j ∈ Jρ, since j is convex and Πρ is linear, j ◦Πρ is convex.

E A Simultaneous Move Game

At a high level, in a simultaneous move game[40] there is:

1. a set of players N

2. a set (finite or infinite) of actions for each player Σi. A joint action set Σ =
∏
i∈N Σi.

3. a utility function for each player ui : Σ→ R.

For any i ∈ N , define Σ−i =
∏
j∈N\i Σi. Given a ∈ Σ, we can write σ−i ∈ Σ−i where for all

j ∈ N\i, (σ−i)j = σj . Thus, for σ−i ∈ Σ−i and σi ∈ Σi, we can define σ−i ◦ σi ∈ Σ, where
(σ−i ◦ σi)i = σi and for any j ∈ N\i, (σ−i ◦ σi)j = (σ−i)j .

A strategy σ∗i ∈ Σi is a best response to σ−i ∈ Σ−i if for all σi ∈ Σi, ui(σ−i ◦ σ∗i) ≥ ui(σ−i ◦ σ∗i).
A strategy σ∗i ∈ Σi is also called a best response to a ∈ Σ if it is a best response to σ−i. A joint
action a∗ ∈ Σ is a Nash equilibrium if for all i ∈ N , σ∗i is a best response to σ∗−i.

F Reasonable Actions, Nash Equilibria

Given a joint action for the deep learning game a = (θ, {at, bt}, {qv,t, dv,t}), and some v ∈
V , if fv is convex and differentiable, define the zanni at v to be reasonable for a if for all t ∈
{1 . . . T}, qv,t = f ′v,t(

∑
u:(u,v)∈E ct(u, θ)θ(u, v)), and fv(

∑
u:(u,v)∈E ct(u, θ)θ(u, v))) = dv,t +

qv,t(
∑
u:(u,v)∈E ct(u, θ)θ(u, v)). In other words, the values and the derivatives of fv and dv,t+qv,tx

match for the activation energies present in the graph.

If the loss l is convex and partially differentiable in the first term, then the adversary is reasonable if
for all t ∈ {1 . . . T}, a>t ct(o, θ) + bt = lt(ct(o, θ)) and at = ∇lt(z)|z=ct(o,θ).

It is straightforward to think about strong induction over a partially ordered finite set.

Fact 15 Given a finite set S, a partial ordering ≤ over S, and a set X ⊆ S, then if for all s′ ∈ S,
{s′ ∈ S : s′ < s} ⊆ X ⇒ s ∈ X , then X = S.

Note that in strong induction, the base case is just a case s ∈ S where {s′ ∈ S : s′ < s} = ∅.

Lemma 16 Assume that for all v ∈ V , fv is convex and differentiable. Assume ≤ is the partial
order generated by the directed acyclic graph in the deep network. For any v ∈ V , given a joint
action a = (θ, {at, bt}, {qv,t, dv,t}) where for all u ≤ v, the zanni at u is reasonable for a, then
Ustv(a) = ct(v, θ).

13

Proof: Define U ⊆ V to be the set of all vertices u ∈ V where u ≤ v. Define R ⊆ U to be the set
of nodes v where Ustv(a) = ct(v, θ). We can use the partial order of the graph as a partial order over
U to prove recursively that R = U .

Then, we can prove by strong recursion on this total order that Ustu(a) = ct(u, θ) if for all u′ < u,
Ustu′(a) = ct(u

′, θ).

1. For any u ∈ I (i.e. the base case), Ustu(a) = du,t + qu,t(xt,u), and since the zanni at u is
reasonable, du,t + qu,t(xt,u) = fv(xt,u) = ct(u, θ).

2. For any u ∈ U\I (i.e. the inductive case), for all (u′, u) ∈ E, u′ < u, soUstu′(a) = ct(u
′, θ),

and thus Ustu(a) = du,t+qu,t(
∑
u′:(u′,u)∈E ct(u

′, θ)θ(u′, u)) Since the zanni is u is reason-
able, du,t + qv,t(

∑
u′:(u′,u)∈E ct(u

′, θ)θ(u′, u)) = fu(
∑
u′:(u′,u)∈E ct(u

′, θ)θ(u′, u)) =

ct(u, θ).

Lemma 17 Assume that for all v ∈ V , fv is convex and differentiable, the loss l is convex and
partially differentiable in the first term, and given a joint action a = (θ, {at, bt}, {qv,t, dv,t}) where
all zannis and the adversary are reasonable, then for any example t, Uat (a) = lt(ct(o, θ)).

Proof: The proof is analogous to the proof of Lemma 16.

Lemma 18 Assume that for all v ∈ V , fv is convex and differentiable. Assume ≤ is the partial order
generated by the directed acyclic graph in the deep network. For any v ∈ V , given a joint action
a = (θ, {at, bt}, {qv,t, dv,t}) where for all u ≤ v (except possibly v), the zanni at u is reasonable,
then unique best response for the zanni at v is to be reasonable.

Proof: Since the zanni knows the example (or equivalently, chooses a different strategy based on
the example), fix a specific example t. Define z = xt,v if v ∈ I , or z =

∑
u:(u,v)∈E U

s
tu(a)θ(u, v)

otherwise. Then, the utility of the zanni at v is dv,t+qv,t(z). First, observe that selecting qt,v = f ′v(z)
and dt,v = fv(z)−f ′v(z)z is a legal strategy for the zanni at v: because fv is convex and differentiable,
fv(x) ≥ f ′v(z)(x− z) + fv(z), so by definition fv(x) ≥ dv,t + qv,t(x). Since for any legal strategy
for the zanni at v, fv(z) ≥ dv,t + qv,t(z), then this strategy maximizes utility for the zanni at v,
because fv(z) = dv,t + qv,t(z). Moreover, since fv is convex and differentiable, this affine function,
which is equal to fv at z and less than or equal to fv everywhere else, is unique. Finally, note
that if v ∈ I , z = xt,v, and if v /∈ I , from Lemma 16, we know that for all {u : (u, v) ∈ E},
Ustu(a) = ct(u, θ), so z =

∑
u:(u,v)∈E ct(u, θ)θ(u, v).

Thus, any time all the zannis are playing a best response, they are reasonable, and vice-versa. To
complete the story, we consider the adversary.

Lemma 19 Assume that for all v ∈ V , fv is convex and differentiable, the loss l is convex and
partially differentiable in the first term, and given a joint action a = (θ, {at, bt}, {qv,t, dv,t}) where
all zannis are reasonable, then the unique best response for the adversary is to be reasonable.

Proof: The proof is analogous to Lemma 19.

The above lemmas state that it is easy to determine and reason about the best responses of the
adversary and the zanni. Now, we go deeper into the analysis to reason about the protagonist.

Lemma 20 Assume that for all v ∈ V , fv is convex and differentiable, the loss l is convex and
partially differentiable in the first term, and given a joint action a = (θ, {at, bt}, {qv,t, dv,t}) where
all zannis are reasonable, and the adversary is reasonable, and the protagonists play θ, then if Up is
the utility of the protagonists, then:

∇θUp(a) = −∇θL(θ) (11)

14

Proof: First, we break apart Up into Upt , where Upt is the utility of p conditional on nature selecting
example t.

Upt (a) = −Uat (a) (12)

= −bt −
n∑
k=1

at,k(Ust (ok)) (13)

If we can prove∇θUpt (a) = −∇θlt(ct(o, θ)), the result follows quickly. Taking the partial derivative
above, and relying on the lack of outgoing edges from ok:

∂Upt (a)

∂Ust (ok)
= −akt (14)

Since the adversary is reasonable, akt = ∂lt(ct(o,θ))
∂ct(ok,θ)

, and:

∂Upt (a)

∂Ust (ok)
= −∂lt(ct(o, θ))

∂ct(ok, θ)
(15)

Define X ⊆ V to be the set of all v ∈ V such that ∂Upt (a)
∂Ustv(a) = − ∂lt(o,θ)

∂ct(v,θ)
. We consider the partial

order ≤ over the vertices V in the deep network generated by the directed acyclic graph of the deep
network: however we apply induction on the opposite partial order v. We have shown O ⊆ X above.
We recursively show X ⊇ V \O below.

For some v ∈ V \O, we want to show v ∈ X , and we assume that for all u ∈ V where u < v, u ∈ X .
Notice that:

∂Upt (a)

∂Ustv(a)
=

∑
u:(v,u)∈E

θv,uqu,t
∂Upt (a)

∂Ustu(a)
(16)

Since (v, u) ∈ E, u ∈ V , u < v, and u 6= v, so by the inductive hypothesis:
∂Upt (a)

∂Ustv(a)
= −

∑
u:(v,u)∈E

θv,uqu,t
∂lt(ct(o, θ))

∂ct(u, θ)
(17)

Because a has a reasonable zanni at all u ∈ V , qu,t = f ′u

(∑
u′:(u′,u)∈E θ(u

′, u)ct(u
′, θ)

)
:

∂Upt (a)

∂Ustv(a)
= −

∑
u:(v,u)∈E

θv,uf
′
u

(∑
u′:(u′,u)∈E

θ(u′, u)ct(u
′, θ)

)∂lt(ct(o, θ))
∂ct(u, θ)

(18)

∂Upt (a)

∂Ustv(a)
= −∂lt(ct(o, θ))

∂ct(v, θ)
(19)

Now we know for all v ∈ V , ∂U
p
t (a)

∂Ust (v) = −∂lt(ct(o,θ))∂ct(v,θ)
. We can now consider, for any (u, v) ∈ E, the

partial derivative with respect to θ(u, v):
∂Upt (a)

∂θ(u, v)
=
∂Upt (a)

∂Ustv(a)
qv,tU

s
tu(a) (20)

∂Upt (a)

∂θ(u, v)
= −∂lt(ct(o, θ))

∂ct(v, θ)
qv,tU

s
tu(a) (21)

Because the zannis are reasonable, qv,t = f ′v(
∑
u′:(u′,v)∈E θ(u

′, v)ct(u
′, θ)) and Ustu = ct(u, θ):

∂Upt (a)

∂θ(u, v)
= −∂lt(ct(o, θ))

∂ct(v, θ)
f ′v

(∑
u′:(u′,v)∈E

θ(u′, v)ct(u
′, θ)

)
ct(u, θ) (22)

Since ct(v, θ) = fv(
∑
u′:(u′,v)∈E θ(u

′, v)ct(u
′, θ)), ∂ct(v,θ)

∂θ(u,v) =

f ′v(
∑
u′:(u′,v)∈E θ(u

′, v)ct(u
′, θ))ct(u, θ), hence

∂Upt (a)

∂θ(u, v)
= −∂lt(ct(o, θ))

∂ct(v, θ)

∂ct(v, θ)

∂θ(u, v)
(23)

∂Upt (a)

∂θ(u, v)
= −∂lt(ct(o, θ))

∂θ(u, v)
(24)

Averaging across examples yields the result.

15

For the deep network graph, define P (u, v) to be the set of all paths from u to v, and for any path p,
define |p| to be the number of nodes in the path. Thus, for all p ∈ P (u, v), p1 = u and p|p| = v. The
following lemma establishes the partial derivative with respect to θ(u, v). The key point of the lemma
is that if (u, v), (u′, v′) ∈ Eρ, then the partial derivative of θ(u, v) does not depend upon θ(u′, v′),
and therefore if we restrict ourselves to modifying the weights in θρ, Up is affine.

Lemma 21

∂Up(a)

∂θ(u, v)
= − 1

T

T∑
t=1

n∑
k=1

∑
p∈P (v,ok)

Ustu(a)qt,p|p|akt

|p|−1∏
j=1

θ(pj , pj+1)qt,pj (25)

Proof: Notice that:

∂Up(a)

∂θ(u, v)
=

T∑
t=1

Ustu(a)qt,v
∂Up(a)

∂Ustv(a)
(26)

Thus, the problem can be reduced to proving recursively, starting from O:

∂Up(a)

∂Ustv(a)
= − 1

T

n∑
k=1

akt
∑

p∈P (v,ok)

|p|−1∏
j=1

θ(pj , pj+1)qt,pj+1 (27)

To clarify the decisions of the protagonists, for each ρ ∈ P , define Upρ,a : REρ → R such that
Upρ,a(θρ) is the utility of the protagonist at ρ if she unilaterally deviates from a to play θρ.

Lemma 22 Upρ,a is an affine function.

Proof: Fix a specific a = (θ, {at, bt}, {qv,t, dv,t}). We can define a|ρ : Θρ → Σ such that for any
θ̃ ∈ Θρ, a|ρ(θ̃) is the same as a except the action of the protagonist at ρ is replaced by θ̃. So:

Upρ,a(θ̃) = Up(a|ρ(θ̃)) (28)

This tortured nomenclature allows us to say, for any (u, v) ∈ Eρ:

∂Upρ,a(θ̃)

∂θ̃(u,v)

=
∂Up(a|ρ(θ̃))
∂θ̃(u,v)

(29)

From Lemma 21

∂Up(a|ρ(θ̃))
∂θ̃(u, v)

= − 1

T

T∑
t=1

n∑
k=1

∑
p∈P (v,ok)

Ustu(a|ρ(θ̃))qt,p|p|akt
|p|−1∏
j=1

θ(pj , pj+1)qt,pj (30)

Thus, the function Upρ,a is differentiable everywhere. Moreover, consider Ustu(a|ρ(θ̃)). Notice v ∈ ρ.
Ustu is the output of node u: thus, since for all u′ ∈ ρ\{v}, u′ � v, then neither u nor any ancestor is
in ρ. So, Ustu is unaffected by changing θρ. More specifically, Ustu(a|ρ(θ̃)) = Ustu(a). So:

∂Up(a|ρ(θ̃))
∂θ̃(u, v)

= − 1

T

T∑
t=1

n∑
k=1

∑
ρ∈P (ρ,ok)

Ustu(a)qt,p|p|akt

|p|−1∏
j=1

θ(pj , pj+1)qt,pj (31)

So, the partial derivative is a function only of a, not θ̃. A function with a constant partial derivative
along every coordinate is affine.

We now prove a more general version of Lemma 3.

Lemma 23 Given a fixed protagonist action θ, there exists a unique joint action for all agents
σ = (θ, {at, bt}, {qvt, dvt}) (the joint action expansion) where the zannis and the antagonist are
playing best responses to σ . Moreover, Up(σ) = −L(θ), ∇θUp(σ) = −∇L(θ), and given some
protagonist at ρ ∈ P , if we hold all other agents’ strategies fixed, Up(σ) is an affine function of the
strategy of the protagonist at p.

16

Proof: Most of the insights are in Lemmas 18, 19, 20, and Lemma 22. We know from above that
everyone will be reasonable in the joint action expansion. We just have to carefully construct it
to prove that it exists and is unique. Consider a parameter θ ∈ Θ, and an arbitrary joint action
a0 = (θ, {at, bt}, {qv,t, dv,t}). First of all, given the partial ordering ≤ over V , consider v to be a
linear extension of ≤, such that we construct v1 . . . v|V |, where vk v vk+1. Define ak such that ak is
equal to ak−1, except that the zanni at vk plays a best response to ak−1. Finally, a∗ will be equal
to a|V | except that the adversary plays a best response. We prove recursively that each time a best
response needs to be taken by a zanni, it exists and is reasonable, by Lemma 18. Thus, all the zannis
are reasonable in a|V |, thus a best response for the antagonist exists and is reasonable in Lemma 19.
Therefore, there does exist some joint action a∗ when all zannis and the adversary are playing a best
response. We can then prove that this is unique, again by using Lemma 18 and Lemma 19 guarantee
that the reasonable action is a unique best response, and the reasonable action depends only upon θ.

Now, we have established that the joint action extension exists and is unique. We now want to prove
the other properties described in Lemma 23.

Because the adversary is reasonable, by definition, for all t a>t ct(o, θ) + bt = lt(ct(o, θ)) and
at = ∇lt(z)|z=ct(o,θ). Because the zannis are reasonable, for all t, for all o ∈ O, ct(o, θ) = Usot(a).

Thus, by the definition of the utility of the antagonist:

Uat (a) = bt +

n∑
k=1

aktU
s
okt

(a) (32)

Uat (a) = bt +

n∑
k=1

aktct(o, θ) (33)

Uat (a) = lt(ct(o, θ)) (34)

Therefore, averaging over t, Ua(a) = L(θ). By Lemma 20,∇θUprot(a) = −∇θL(θ). Finally, from
Lemma 22, every protagonist faces an affine utility function if she unilaterally deviates.

Proof (of Lemma 3): Lemma 3 is a special case of Lemma 23.

Lemma 24 Assume that for all v ∈ V , fv is convex and differentiable, the loss l is convex and
partially differentiable in the first term, and given a joint action a = (θ, {at, bt}, {qv,t, dv,t})
where all zannis are reasonable, and the adversary is reasonable, then if the joint action θ for the
protagonists is a KKT point, then the protagonists actions are a best response to a, and a is a Nash
equilibrium.

Proof: To prove that this is a Nash equilibrium, we need to show that for each ρ ∈ P , the protagonist
at ρ is playing a best response (all zannis and adversaries are reasonable, so they are playing a best
response). In other words, we need to show that, if we considered Up(a), as a function of the values
of θ on (u, v) ∈ Eρ, then the current θ in a is a global maximum. We do this in two steps.

1. We translate the KKT conditions for full problem with L to KKT conditions for a partial
problem on Upρ,a, the utility function for the protagonist at v deviating.

2. Because Upρ,a is affine, the KKT conditions for a maximum imply a global maximum (see
Theorem 11).

As we established in Lemma 20:

∇θUp(a) = −∇θL(θ) (35)

Then, the KKT conditions on the loss imply that there exist KKT multipliers µj,ρ and λh,ρ such that:

−∇L(θ) =
∑
ρ∈P

∑
j∈Jρ

µj,ρ∇j(θ) +
∑
ρ∈P

∑
h∈Hρ

λh,ρ∇h(θ) (36)

µj,ρj(θ) = 0 for all ρ ∈ P, j ∈ Jρ (37)

17

Substituting equation 35:

∇θUp(a) =
∑
ρ∈P

∑
j∈Jρ

µj,ρ∇j(θ) +
∑
ρ∈P

∑
h∈Hρ

λh,ρ∇h(θ) (38)

µj,ρj(θ) = 0 for all ρ ∈ P, j ∈ Jρ (39)

These are the necessary KKT conditions for θ to be a local maximum. But it is not sufficient. Choose
a particular ρ ∈ P . Define θρ ∈ Θρ to be the action of the protagonist at ρ in θ. Now, if we restrict
this to the dimensions in Eρ, only the constraints in Jρ and Hρ will vary, so:

∇θρUp(a) =
∑
j∈Jρ

µj,ρ∇j(θ) +
∑
h∈Hρ

λh,ρ∇h(θ) (40)

µj,ρj(θ) = 0 for all j ∈ Jρ (41)

We can replace Up(a) with Upρ,a. For the strategy θρ that is a part of θ, we get:

∇θρUpρ,a(θρ) =
∑
j∈Jρ

µj,ρ∇j(θρ) +
∑
h∈Hρ

λh,ρ∇h(θρ) (42)

µj,ρj(θρ) = 0 for all j ∈ Jρ (43)

These are the KKT conditions for θρ to be a local maximum of Upρ,a in Θρ. Therefore, the protagonist
at ρ cannot gain by deviating. Now, by Lemma 22, we know Upρ,a is affine, and so if the KKT
conditions for a local maximum are satisfied, so are the KKT conditions for a global maximum.
Thus, this implies each protagonist cannot unilaterally4 improve on a, and therefore this is a Nash
equilibrium.

Theorem 25 Assume that for all v ∈ V , fv is convex and differentiable, the loss l is convex and
partially differentiable in the first term. For every KKT point θ ∈ Θ, there is a Nash equilibrium
where the joint action of the protagonists is θ, and for every Nash equilibrium where the joint action
of the protagonists is θ ∈ Θ, θ is a KKT point.

Proof: To prove that the Nash equilibrium exists, consider the joint action extension of θ. This is a
Nash equilibrium by Lemma 24.

To prove the converse, we run the argument of Lemma 24 in reverse. To prove that given a Nash equi-
librium a = (θ, {at, bt}, {qv,t, dv,t}), θ is a KKT point, first observe that for any Nash equilibrium,
the zannis and adversaries are reasonable (because they are playing best responses). In other words,
a is the joint action extension of θ. Therefore, ∇θUp(a) = −∇θL(θ). Because the equilibrium is
an optimal value for the affine function Upv,a, the KKT conditions must hold for each protagonist.
Combining the KKT conditions for each protagonist gives KKT conditions for maximizing Up over
Θ. Since∇θUp(a) = −∇θL(θ), we can translate the KKT conditions for maximizing Up into the
KKT conditions for minimizing L(θ).

Proof (of Theorem 4, DLG Nash Equilibrium): This is a variant of Theorem 25.

G Convexity of Antagonist’s and Zanni’s Strategy Space

This appendix is a side note and thus the notation is mostly disconnected from the rest of the paper.
We do not claim that this is original, but it is important to understand whether antagonists can
minimize regret.

In order to do online convex optimization, we must have a convex strategy space. Suppose you have
a convex, differentiable function f : Rn → R. Consider the set C of all a ∈ Rn, b ∈ R such that for
all z ∈ Rn, a>z + b ≤ f(z).

We want to prove C is convex. Due to various technical issues, it is harder than you think.

Lemma 26 For any a ∈ Rn, if there exists a b ∈ R such that (a, b) ∈ C, then there exists a v ∈ R
such that for all c ≤ v, (a, c) ∈ C, and for all c > v, (a, c) /∈ C.

4Notice that in some cases multiple agents could improve on a KKT point. Thus we are proving that this is a
Nash equilibrium, not a strong Nash equilibrium.

18

Proof: Since (a, b) ∈ C, for all z, f(z) ≥ a>z+b. We can define a function g(z) = f(z)− (a>z+
b) ≥ 0 is bounded from below, and therefore has a greatest lower bound q. v = b+ q. Thus, for all
z ∈ Rn, g(z) ≥ q. Therefore, f(z) ≥ a>z + b+ q = a>z + v for all z ∈ Rn.

1. If c ≤ v, then for all z ∈ Rn, f(z) ≥ a>z + b+ q ≥ a>z + c.

2. For any c > v, then c − b > q, and there exists a z ∈ Rn where c − b > g(z). For this z,
f(z) < a>z + c.

Lemma 27 If (a1, b1) ∈ C and (a2, b2) ∈ C, then for any λ ∈ [0, 1], there exists some b3 ∈ R such
that (λa1 + (1− λ)a2, b3) ∈ C.

Proof: Define g1(z) = (a1)>z + b1 and g2(z) = (a2)>z + b2 Consider the function g(z) =
max(g1(z), g2(z)). By definition, for all z ∈ Rn, g(z) ≤ f(z).

Now, there are three cases for g(z):

1. for all z ∈ Rn, g(z) = g1(z). If this is the case, then a1 = a2 = λa1 + (1 − λ)a2, and
therefore setting b3 = b1 works.

2. for all z ∈ Rn, g(z) = g2(z). Same as above.

3. or there exists z1, z2 ∈ Rn such that g(z1) = g1(z1) and g(z2) = g2(z2). If this is the
case, then there must exist a z3 where g(z3) = g1(z3) = g2(z3). Since g is convex, and
a1 and a2 are subgradients at z3, then since the set of subgradients at a point is convex,
a1λ+ (1− λ)a2 is a subgradient at z3. Therefore, set b3 = g(z3)− (a1λ+ a2(1− λ))>z3.
Since the new function is below g, it is below f .

Theorem 28 The set C described above is convex.

Proof: Consider an arbitrary (a1, b1) ∈ C and (a2, b2) ∈ C, and λ ∈ [0, 1]. For simplicity, define
a3 = λa1 + (1− λ)a2.

From Lemma 27, there exists a b3 such that (a3, b3) ∈ C. Thus, from Lemma 26, there exists a v
such that for all c ≤ v, (a3, c) ∈ C, and for all c > v, (a3, c) /∈ C. Thus, if λb1 + (1− λ)b2 ≤ v, we
have proven the theorem.

Let us prove this by contradiction: namely, assume λb1+(1−λ)b2 > v. Define ε = λb1+(1−λ)b2−v.
Since by definition, supz((a

3)>z + v) − f(z) = 0, then there must exist some z ∈ Rn such that
((a3)>z + v)− f(z) ≥ −ε/2.

Now, for this z, a1z+b1 ≤ f(z), and so (a1)>z+b1 ≤ ((a3)>z+v)+ε/2. Similarly, (a2)>z+b2 ≤
((a3)>z + v) + ε/2. Thus, we can combine these to show

(λa1 + (1− λ)a2)>z + λb1 + (1− λ)b2 ≤ ((a3)>z + v) + ε/2 (44)

By the definition of a3:

(a3)>z + λb1 + (1− λ)b2 ≤ ((a3)>z + v) + ε/2 (45)

λb1 + (1− λ)b2 ≤ v + ε/2 (46)

However, we defined ε = λb1 + (1− λ)b2 − v, so v + ε = λb1 + (1− λ)b2, a contradiction.

H Convolutional Neural Networks

Convolutional networks are an extension of the simple feedforward neural network where edge
parameters are tied in a particular manner. In particular, if we consider a convolutional layer
l ∈ L that has a width wl, height hl, and depth dl, the vertices within the layer can be indexed by

19

Il = {1 . . . wl}×{1 . . . hl}×{1 . . . dl}; that is, an individual vertex in layer l can be denoted vl,i,j,k.
The convolution defined at layer l also has a window: for instance, a window of 5 × 5 for layer l
means that there is an edge between vl−1,i,j,k and vl,i′,j′,k′ if and only if |i− i′| ≤ 2 and |j− j′| ≤ 2.
Moreover, two edges (vl−1,i,j,k, vl,i′,j′,k′) and (vl−1,i′′,j′′,k′′ , vl−2,i′′′,j′′′,k′′′) inE have equal weight
if and only if i− i′ = i′′ − i′′′, j − j′ = j′′ − j′′′, k = k′′, and k′ = k′′′. All of these constraints are
linear equalities and they all occur in the same layer; therefore we can partition the vertices by layer
and obtain a valid partitioning, since no vertex is the ancestor of another vertex within the same layer.
Moreover, the equality constraints are all valid for the local linear inequality constraint qualification.
We can also add an L1 or L2 bound on the weights, either by the terminal vertex of the edge or for the
entire layer. Notice that, in practice, instead of having equality constraints between edges, a single
copy of the weights is sufficient.

I Non-Convex Activation Functions

At first glance, it might appear that the restriction to convex activation functions is too severe, in
the sense that it does not include standard (differentiable) activations such as sigmoid and tanh.
However, the ability to partition vertices and tie weights with linear equalities, as developed above,
allows any activation function that can be expressed as a difference of convex functions to still
be exactly modeled within our framework. For example, note that the sigmoid, σ(z) = 1

1+e−z ,

and tanh(z) = ez−e−z
ez+e−z functions can each be written as a difference of differentiable convex

functions: For the sigmoid we have σ(z) = σ+(z) − σ−(z) for σ+(z) = 1
2 (z + σ(z) − log σ(z))

and σ−(z) = 1
2 (z − σ(z)− log σ(z)), which are both convex and differentiable. For tanh we have

tanh(z) = τ+(z) − τ−(z) for τ+(z) = 2σ+(2z) − 1
2 and τ−(z) = 2σ−(2z) + 1

2 which are also
both convex and differentiable.

In general, at a node v, we can consider any activation function fv that can be written as a difference
of functions, fv = f+

v − f−v , such that f+
v and f−v are both smooth and convex. In such cases, we can

then simulate the contribution of fv to the circuit computation by adding two sub-nodes, v+ and v−,
below v, connecting these to v via two new edges (v+, v) and (v−, v), and replacing each edge (u, v)
by the pair of edges (u, v+) and (u, v−). Also, we assign the differentiable convex activation f+

v to
v+, the differentiable convex activation f−v to v−, and replace fv at v with the identity activation
f̃v(z) = z. Then to ensure f+ and f− receive the same input, we merely add the parameter tying
constraints θ(u,v+) = θ(u,v−) for each pair of corresponding incoming edges (u, v+) and (u, v−). To
simulate the desired output value, we merely add the constraints that θ(v+,v) = 1 and θ(v−,u) = −1

for the parameters on the new edges (v+, v) and (v−, v). Denote the modified edge set by Ẽ. Then
we have

f̃v

θ(v+, v)fv+
(∑
u:(u,v+)∈Ẽ

ct(u, θ)θ(u, v
+)
)

+ θ(v−, v)fv−
(∑
u:(u,v−)∈Ẽ

ct(u, θ)θ(u, v
−)
)

= fv+
(∑
u:(u,v+)∈Ẽ

ct(u, θ)θ(u, v
+)
)
− fv−

(∑
u:(u,v−)∈Ẽ

ct(u, θ)θ(u, v
−)
)

(47)

= fv+
(∑
u:(u,v)∈E

ct(u, θ)θ(u, v
+)
)
− fv−

(∑
u:(u,v)∈E

ct(u, θ)θ(u, v
+)
)

(48)

= fv

(∑
u:(u,v)∈E

ct(u, θ)θ(u, v
+)
)
. (49)

Thus, θ(u, v+) in the new graph is just like θ(u, v) in the old one. That is, the new circuit output
at node v is the same as the original circuit output at node v, but now the neural network only uses
differentiable convex activations at each vertex.

Another solution that works for any differentiable function is that, instead of trying to make the
zanni maximize the output of the node, have zanni try to “guess” the derivative and the offset.
Specifically, given z is the input to the activation function fv for example t, define q∗v,t = f ′v(z), and
d∗v,t = fv(z)− f ′v(z)z, and make the utility of the zanni at v to be

∑
t(qv,t − q∗v,t)2 + (dv,t − d∗v,t)2.

As before, reasonable behavior for the zanni is the unique optimal behavior.

20

J Discussion of [2]

The unpublished manuscript [2] presents a variety of interesting and related ideas. In the “gated game”
and “CoG game” proposed therein, agents similar to our protagonists are introduced at every vertex.
In the gated game, gates are introduced that act as a function of the strategies of the protagonists. In
the CoG game, agents (like zannis) are introduced whose actions are a function of the protagonists’
actions.

However, the game representations proposed here and in [2] are fundamentally different. The utilities
and available information to an agent in a game is crucial in game theory. For instance, Stackelberg
games and simultaneous move games are fundamentally different. In a Stackelberg game, one player
moves first, and the second observes their movement. In a simultaneous move game, both players
must select their strategy independently. For instance, consider a cooperative game, where two
players each get a dollar if they both say “heads” or both say “tails”, but nothing if they say something
different. If one assumes both players move at the same time versus one after the other, these are very
different games. Moreover, there is a difference between an agent that is motivated to take an action,
versus one that is restricted to play a certain action.

The reason that these distinctions are important is that conventional approaches of regret minimization
work in the game developed in this paper but not in [2]: here there is no need to define a new type
of regret that is particular to deep networks. Given that a key contribution of this paper is a way
to think about optimization problems, whether the concept corresponds to a conventional notion of
regret or a new notion of regret is quite important. We leverage the technique in [17] where a game is
played with one agent minimizing regret and the other playing a best response. Such a result is not
magical: in game theory, there is a huge distinction between having a perfect model of your opponent
and prescient knowledge of their actions: the former is still a simultaneous move game, whereas the
latter is a Stackelberg game with different equilibria. If the protagonists use randomness, then their
behavior cannot be predicted perfectly, and [17] cannot be applied. It is also key that zannis and
adversaries observe the example selected by chance: otherwise, they would not be able to model the
utilities experienced by the protagonist.

A further distinction is the quality of the connection between solution concepts in the learning problem
and the proposed game. in this paper, we show that there is a bijection between Nash equilibria and
“KKT points”. KKT points include both true local minima as well as some saddle points. Thus, this
is a more thorough understanding than the one-way implication in [2] about potential games, that
local minima of the potential function are pure Nash equilibria. Since we are viewing the game as
a window into the minimization, not being able to account for all Nash equilibria is a limitation.
Moreover, it is hard to rectify this issue in [2], since there is no standard equivalent to KKT points for
non-differentiable, non-convex functions.

An exact potential game is a game where the utilities are equal. [2] makes references to potential
games: “Moreover, simple algorithms such as fictitious play and regret-matching converge to Nash
equilibria in potential games,” yet the given references have results for two player potential games
with a finite number of actions [16, 14]. For the gated game, it is unclear whether these results
would extend, especially given the complex nature of the loss functions introduced. It is an open
question whether regret minimizers in multiplayer (i.e., more than two) potential games converge
to a Nash equilibrium, and whether those results hold for more complex strategy spaces. Moreover,
for the purposes of the games in this paper, it is important to understand if convergence results hold
for games where only a subset of the agents have utilities that are equal, but one can make strong
statements about the behaviors of the other agents.

In this paper, we have focused on deep networks with differentiable activation functions and losses.
To deal with issues in non-differentiable activation functions, [2] introduces gated games, but these
mean that the games are not in a standard form. The gates are sometimes considered to be dependent
upon the agent’s behaviors (as in when the game is considered as a potential game) and sometimes the
gates are considered to be independent of the agent’s behaviors (as when minimizing regret); this is
partially justified by GRegret, but not the nuances introduced. There are unsupported statements, such
as that minimizing regret guarantees correlated equilibrium (it is actually minimizing internal regret
guarantees correlated equilibria, not external regret, and GRegret is clearly more closely associated
with GRegret). Thus, one cannot use convergence results about games with a finite number of actions
without extending said results to the case of gated games.

21

	Introduction
	One-Layer Learning Games
	Learning Algorithms
	Evaluation

	Deep Learning Games
	Learning Algorithms
	Experimental Evaluation

	Related Work
	Conclusion
	Proofs for Section 2 (One-layer Case)
	Groups of Nodes
	Best Response and KKT Conditions
	Deep Learning and KKT Conditions
	A Simultaneous Move Game
	Reasonable Actions, Nash Equilibria
	Convexity of Antagonist's and Zanni's Strategy Space
	Convolutional Neural Networks
	Non-Convex Activation Functions
	Discussion of balduz16

