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Abstract. Real-world data often involves objects that exhibit multiple
relationships; for example, ‘papers’ and ‘authors’ exhibit both paper-
author interactions and paper-paper citation relationships. A typical
learning problem requires one to make inferences about a subclass of
objects (e.g. ‘papers’), while using the remaining objects and relations
to provide relevant information. We present a simple, unified mechanism
for incorporating information from multiple object types and relations
when learning on a targeted subset. In this scheme, all sources of relevant
information are marginalized onto the target subclass via random walks.
We show that marginalized random walks can be used as a general tech-
nique for combining multiple sources of information in relational data.
With this approach, we formulate new algorithms for transduction and
ranking in relational data, and quantify the performance of new schemes
on real world data—achieving good results in many problems.

1 Introduction

Currently, most text classification and clustering algorithms base their inference
on the co-occurrence statistics of terms appearing in documents by representing
document-term relations via a bipartite graph. Many algorithms have been devel-
oped for clustering in bipartite graphs, i.e., [9, 2, 8, 4, 3]. The underlying intuition
behind these approaches is that the similarities among one type of object can
be used by the other type of object for clustering.

One obvious limitation of existing co-clustering methods is that they can only
deal with two types of data objects, whereas most data sets contain more than
two types of objects. For example, in a paper classification task, beyond the bi-
partite interaction between papers and authors, it is also useful to consider other
sources of relevant information, such as the conferences where the papers were
published. Such additional paper-conference information could help enhance the
classification performance. In this case, one could construct a tripartite graph
G = (〈A, B,C 〉, E), where the vertex sets correspond to authors, papers, and
conferences respectively, and E is the set of edges, as shown in Figure 1–left.
One could consider addressing the problem of higher-order-partite graphs in a
trivial manner by applying co-clustering on each pair of object types; that is,
apply a co-clustering method on A,B, and then on B, C individually. However
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Fig. 1. Left: A tripartite graph. Right: A graph of Web pages and terms.

it is hard to ensure the solutions are consistent at the intersection on B. [1] and
[5] proposed methods for solving clustering with interactive relationships among
multiple object types using ideas from information theory and spectral graph
clustering, but they needed to employ sophisticated and computationally expen-
sive methods like semidefinite programming to keep the partitions consistent.

Beyond tripartite clustering, more complex scenarios arise when one con-
siders relationships among data objects of the same type. Previous work on
clustering with bipartite and k-partite graphs has, for the most part, not taken
the relationships between objects of the same type into account. Obviously, such
information is simply ignored if we present the data as a k-partite graph.

Moving beyond documents and terms, if one considers clustering Web pages,
it is clear that the bipartite graph information between Web pages and terms
ignores significant relevant information encoded in the hyperlink structure [7, 6,
10]. When clustering Web pages, it seems clear that both hyperlink structure and
term co-occurrence are relevant sources of useful information that one would like
to take account of in a unified way. Ideally, one would just model the relationships
between Web pages and terms as vertices in a graph like the one shown in
Figure 1–right. To the best of our knowledge, clustering in data sets with multiple
object types, and multiple relationships between objects of various types has not
been well studied in the graph partitioning literature.

In this paper, we propose a simple, unified mechanism for learning in complex
scenarios, like the ones shown above, in a graph based approach. We model all
data objects as vertices in a graph; e.g., a k-partite graph or a mixed graph as
shown in Figure 1–right. The graph based representation allows a simple mech-
anism for propagating useful information globally throughout a large database
of objects: based on the graph, a natural random walk model can be defined
that communicates information in a Markov chain. To summarize information
from multiple object types and relations when making inferences about one ob-
ject type, we marginalize the transition probability of the random walk onto the
target subset, based on the transition probability of the induced subgraph and
the transition probability between the subset and its complement. In this way,
we obtain a valid, new random walk model on the induced subgraph that sum-
marizes all external sources of relevant information. Two objects in the target
subgraph that share a lot of common external information will be highly linked
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in the induced random walk, even if they share no direct links in the induced
subgraph. Once a valid random walk model has been defined, one can derive
algorithms for transductive classification, clustering and ranking, by performing
random walks over a Markov Chain [10]. The idea of marginalization is a simple
and elegant way of dealing with many types of complex scenarios uniformly. In-
terestingly, when dealing with graphs that happen to be bipartite, the clustering
method implied by marginalization is equivalent to the spectral co-clustering
method proposed in [9, 2]. That is, we recover prominent bipartite graph based
inference methods as a special case.

Furthermore, the marginalization idea can be extended to solve more general
and interesting types of inference problems on graphs than having been com-
monly studied in graph partitoning. Consider the problem of clustering the set
of blog pages on the Web. In a conventional approach, one could use the induced
subgraph on blog pages (namely the subgraph of all the blog pages and their hy-
perlink structure) to classify the blog pages with respect to their common topics.
However, the difficulty with this approach is that there is not much information
in the hyperlinks between blog pages, as the owners of the blogs typically do not
add links to other blogs if they do not know each other. Therefore, the infor-
mation obtained directly from the subgraph is not enough to identify blogs of
common interest. It therefore makes sense to explore the hyperlinks that connect
blog pages to other general web pages. For example, people who are interested
in computer programming might add a link from their blogs to the page “the
art of computer programming” created by Donald Knuth. Although the blogs
themselves may have only a few direct links, the blogs can still be clustered
into identifiable communities by detecting the pages of common interest linked
from the blogs. The scheme we propos can fully exploit all sources of relevant
information in a graph of heterogeneous objects to achieve better performance
on the target subset.

2 Preliminaries

A bipartite graph G = (〈A,B 〉, E) is a graph that consists of two disjoint sets of
vertices, A and B, and a set of edges, E, between A and B. (Typically, the two
sets represent different objects, e.g. documents and terms.) Each edge (a, b) is
associated with a similarity weight w(a, b). One can generalize bipartite graphs
to higher order k-partite graphs, whose vertices are divided into k disjoint sets.

Given an undirected graph, a natural random walk can be defined by the
transition probability p : V × V → <≥0 such that p(a, b) = w(a, b)/d(a) for
all (a, b) ∈ E, where d(a) =

∑
b w(a, b). If the edges have directions, then p is

defined by p(u, v) = w(u, v)/d+(u) for all (u, v) ∈ E and 0 otherwise, where
d+(u) =

∑
u→v w(u, v). The random walk on a connected graph has unique

stationary distribution π that satisfies the balance equation πp = π.
Given a general graph G = (V, E) (directed or undirected), and a subset

S ⊂ V of the vertices, the induced subgraph with respect to S is the subset V of
vertices of G together with any edges whose endpoints are both in V .
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3 Learning on a Ergodic Markov Chain

Before presenting our approach in detail, we briefly review related techniques
for clustering and transductive learning in graphs involved with Markov chain
properties of natural random walks [10]. A graph G = (V, E) can be associated
with a Markov chain defined via a random walk on the graph. The stationary
distribution of this random walk gives a probability distribution over the vertices
v in the graph.

Let H(V ) denote the space of partitions of the vertices V , in that each f ∈
H(V ) maps each v ∈ V into real values between -1 and 1. We assume that
most linked vertices as similar—that is, belong to the same class. This means,
in particular, that all vertices from a densely linked subgraph are likely to have
the same label. This motivates us to define the functional

Ω(f) :=
1
2

∑

[u,v]∈E

π(u)p(u, v)

(
f(u)√
π(u)

− f(v)√
π(v)

)2

that sums the weighted variation of a function on each edge of the directed graph.
The labels are smoothed over the entire graph by minimizing the variation.

There is a equivalent way to express Ω(f). Let Π denote the diagonal matrix
with Π(v, v) = π(v) for all v ∈ V ; let P denote the transition probability matrix;
and let PT the transpose of P . Then

Θ =
Π1/2PΠ−1/2 + Π−1/2PT Π1/2

2
.

Using I for the identity matrix, it can be proved that Ω(f) = fT (I −Θ)f . The
functional Ω(f) can also be derived with respect to a normalized cut criterion
that generalizes the standard spectral clustering criterion to directed graphs [10].

4 Marginalized Random Walks on a Subgraph

We can model many versions of graph-based inference problems as learning on
an induced subgraph. Typical learning tasks in this setting are classification and
clustering on a target subset, where one would like to utilize not only the origi-
nal structure of the subgraph, but also the global structure and the interactions
between the subgraph and its complement. To propagate the information needed
to perform these tasks, the graph based approach depends upon a random walk
model to communicate the relevant information globally throughout the graph.
In the case where the inference problem is to be localized on a focused sub-
set of the graph, we need a new random walk model that communicates the
sources of relevant information to the subset. With an appropriate marginalized
random walk model, we can then derive principled techniques for transductive
classification, clustering and ranking.

Given a graph G = (V, E) (either directed or undirected), and a subset
of vertices A ⊂ V , we are interested in performing a learning task in A, e.g.,
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learning a classification of A’s vertices. We let Ac denote the complement of A.
For example, in the blog example where A is the set of blog pages we want to
classify based on topic, Ac is the set of non-blog Web pages that have connections
to the blog pages. In the example of a tripartite graph for a citation network
including papers, authors and conferences, A is the set of papers and Ac includes
all the authors of the papers and the conferences.

Typically, the transition probability P of a natural random walk model on
the graph can be written as in Section 2. Here we can equivalently rewrite the
transition probability in a blockwise form with respect to A and Ac

P =
(

PAA PAAc

PAcA PAcAc

)

where PAAc denotes the transition probability between vertices in A and Ac, etc.
One could attempt to perform classification in A based only on PAA, by

applying the framework reviewed in Section 3. However this ignores the infor-
mation that connects A and Ac, which could be significant. A extreme case is
that when we have no interactive relationships in either A or Ac but only PAAc

and PAcA; that is, a bipartite graph (when edges between A and Ac are undi-
rected). We will see later in Section 4.1 that co-clustering methods utilize PAAc

and PAcA in an undirected case. Now our goal is to define a new random walk
in A incorporating all relevant information.

Given a vertex u in A, we first assume it has outlinks to a vertex v in A and
a vertex vc in Ac. The random walk has the following two options starting from
u: it can follow the outlink to v (and so stay within A), or to vc (and so leave
A). If it stays in A, the random surfer follows the transition probability PAA.
If the random surfer jumps out of A to Ac, its walk will follow the transition
probability PAAc . Once it enters Ac, there is a non-zero chance it will take any
number of steps in Ac before possibly returning to A. Therefore, we can write
the transition probability between u and v in A, if the surfer re-entered A after
transiting from A to Ac and back to A as,

Pout = PAAc

(
I +

n→∞∑

i=1

P i
AcAc

)
PAcA = PAAc(I − PAcAc)−1PAcA

In addition, define Pin = PAA if the surfer stays within A. Combining these
two transition models yields a new random walk on the subgraph A, whose
transition probability P ∗AA is given by

P ∗AA = Pin + Pout

To ensure Pout and P ∗AA are well defined, we assume P is ergodic. We then
have the following claims.

Claim. I − PAcAc is invertible.
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Proof (of claim). Assume I − PAcAc is singular. Then (I − PAcAc)x = 0 has a
non-trivial solution x = PAcAcx. Taking norms, we have |x| = |PAcAcx| ≤
|PAcAc | |x| < |x|. The last inequality follows because the row sum of PAcAc is
less than 1. Contradiction.

Claim. P ∗AA is a valid transition probability; i.e. the sum of each row equals 1.

Proof. Consider the ways a random surfer can start from a vertex u in A and
return to another vertex v in A. In the first step, u has two choices, either follow
links in A or jump out of A to Ac. If it stays in A, the transition probability is
Pin. If it jumps out of A, then the surfer has an infinite number of paths lenghts
that stay in Ac, before (possibly) returning to A. Here, Pout is the probability
of transiting from u to v via Ac and Pin is the transition probability from u to v
without entering Ac. Thus the sum of these two disjoint transition probabilities
is a valid transition probability.

We let P ∗AA denote the new transition probability on A by marginalizing the
random walk on subset A, taking all sources of information into account. The
similarity among vertices in A is measured by a combination of the transition
probability within A, Pin, and the probability of escaping from A to Ac and then
returning to A, Pout. Therefore, we define a new Markov Chain over the subset
of the graph. We can use the functional (3), to produce graph-based algorithms
for transductive classification, clustering and ranking on complex graphs:

f∗ = argmin
f
{Ω(f) + µ ||f − y||2}

Here y = 〈 yi 〉 is the partially labeled vector; where each labeled data is either 1
or −1, and yi = 0 for each unlabeled data point. For ranking, we label the root
data as 1 and the rest as 0. Also, µ is a tuning parameter; where for clustering
tasks we set µ = 0 since we do not have any label information.

4.1 Learning with a Bipartite Graph

In this section, we will show that the original spectral co-clustering on a bipartite
graph [9, 2] can be equivalently interpreted as defining new random walk models
on each subset of the bipartite graph in our scheme.

Given a bipartite graph G = (〈A,B 〉, E), where A and B are disjoint subsets
of vertices, the transition probability P over G has the following blockwise form:

P =
(

0 PAB

PBA 0

)

Thus, as in the previous section, we can define new random walk in A and B as

PA = PABPBA, (1)

PB = PBAPAB (2)
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Intuitively, such random walks can be also understood as a two step random
walk, motivated by the Hub and Authority model. We take vertices in B as
the evidence of existing similarities between nodes in A. The similarities are
mutually reinforced via the random walk between them, as follows.

First consider the random walk among vertices in A (B will be isomorphic).
If the random surfer is currently at vertex ai ∈ A, it first takes a backward step
along edge (ai, b) to some vertex b ∈ B. Then if b also has an edge connected to
aj , the surfer will visit aj along the edge (b, aj).

The two-step transition probability pA(ai, aj) is determined by the surfer
taking one backward step and one forward step. Therefore,

pA(ai, aj) =
∑

b

p(ai, b)p(b, aj) =
∑

b

w(ai, b)w(b, aj)
d(ai)d(b)

(3)

which is exactly the same as the PA obtained in (1).
The stationary distribution πA of this random walk is

πA(a) =
d(a)

volGA
(4)

where volGA =
∑

a∈A d(a). This means

∑

ai∈A

πA(ai)pA(ai, aj) =
∑

ai∈A

d(ai)
volGA

∑

b∈B

w(ai, b)w(b, aj)
d(ai)d(b)

=
1

volGA

∑

b∈B

w(b, aj)
d(b)

∑

ai∈A

w(ai, b) =
d(aj)
volGA

= πA(aj)

Similarly, we can define the two step transition process among nodes in B,
yielding the transition probability

pB(bi, bj) =
∑

a

p(bi, a)p(a, bj) =
∑

a

w(bi, a)w(a, bj)
d(bi)d(a)

(5)

which corresponds to (2). Moreover, the stationary distribution πB is

πB(b) =
d(b)

volGB
(6)

To obtain classification or clustering results on both subsets simultaneously,
we define a smoothness function f over A from (3) that is measured by

SA(f) =
1
2

∑
ai,aj

PA(ai, aj)π(ai)

(
f(ai)√
π(ai)

− f(aj)√
π(aj)

)2

Similarly, the smoothness function g over B is defined as

SB(g) =
1
2

∑

bi,bj

PB(bi, bj)π(bi)

(
g(bi)√
π(bi)

− g(bj)√
π(bj)

)2
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We can use (3), (4), (5) and (6) to prove that

SA(f) =
1

volGA
fT ∆Af, SB(g) =

1
volGB

gT ∆Bg

where

∆A = I −D
−1/2
A WT D−1

B WD
−1/2
A = I −MMT

∆B = I −D
−1/2
B WD−1

A WT D
−1/2
B = I −MT M

where DA = We, DB = WT e and M = D
−1/2
A WT D

−1/2
B using the all-1 vector

e. W is the weight matrix between A and B. The solutions for f and g are the
eigenvectors of MMT and MT M with second largest eigenvalues.

It is known the solution of spectral co-clustering on A and B is the second
largest left and right singular vectors of M [9, 2]. It is easy to see that from
the singular value decomposition, that the non-zero left singular eigenvalues of
M are the square roots of the non-zero eigenvalues of MMT with the same
eigenvector space. The eigenvector space of M ’s right eigenvectors is the same
as the one of MT M . Therefore, the two solutions are exactly the same, but with
different motivations.

The advantage of having marginalized random walk models on each subset is
that we can treat each set individually while using their mutual relationships. As
expected, the solution is exactly the same as when we considered the combina-
torial cut problem in bipartite graphs. In spectral co-clustering method, the goal
is to define a cut criterion for the weight matrix that minimizes the cut over the
unmatched edges and maximizes the matched vertices in the subgraphs. Such
cuts naturally partition the bipartite graph into two parts in each set. The solu-
tion is not clear though if we want different number of partitions on each subset.
While using our scheme, we can obtain k-cluster results using the first k eigen-
vectors of ∆A and ∆B . Moreover, as discussed in Section 4, this method can
be easily generalized into more complex graphs, which would have been difficult
from graph cut perspective.

5 Experiments

In this section, we demonstrate several problem settings that involve data repre-
sented in complex graph structures. We evaluate our information marginalization
approach by applying it to two datasets; see Sections 5.1 and 5.2.

The first dataset is from WebKB (www.cs.cmu.edu/afs/cs.cmu.edu/
project/theo-20/www/data), which includes pages from four universities: Cor-
nell, Texas, Washington and Wisconsin. After removing isolated pages, the Web
pages have been manually classified into seven categories: student, faculty, staff,
department, course, project and other. We take advantage of the link structure
and page-word relationships for the following two learning tasks.

(1a) Given the link structure of all the pages and the words used in them,
discriminate student (course) pages from non-student (non-course) pages. Here,
A corresponds to the web pages, and Ac to the words. See Figure 1.
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(1b) Given only the link structure, discriminate student pages (labeled as
1) from course pages (labeled as -1). For this task, A corresponds the pages of
students and courses, and Ac to the web pages from other classes.

The second dataset is based on CiteSeer (citeseer.ist.psu.edu/)—a well-
known scientific digital library that catalogues primarily computer and informa-
tion science literature. We construct our citation networks based on paper-paper
and paper-author relationships from CiteSeer. We extract a set of papers P with
authors U . Here, we focus on two kinds of ranking.

(2a) Given some papers (i.e., seed papers) in P labeled as relevant to a specific
topic T , rank the rest of the papers based on their relevance to T . Here, A is P ,
Ac is U .

(2b) Given some authors (i.e., seed authors) in A identified as relevant since
they share similar research interests, rank the remaining authors based on how
much they share the research interests with these seed authors. A is U , Ac is P .

To build citation networks, we scout ahead following the paper citation and
corresponding authors information from the OAI records (citeseer.ist.psu.
edu/oai.html). We start a crawl from a set of pre-selected authors (i.e., root
authors), then collect all their papers and the co-authors of these papers. The co-
authors are added to a growing set of authors that is used in the next iteration.
We repeat this iteration n = 3 times to collect a number of related authors and
papers. In our experiment, we choose the root authors from two different areas:

Root authors # Authors # Papers

“Berhard Scholkopf” + “John Kleinberg” 7156 4979

“Vladimir Vapnik” + “Jianbo Shi” 3048 2097

Therefore, the citation network contains authors with different research subjects,
which is more realistic.

5.1 Results: Web Classification

We compare the performance of two algorithms for Web page classification in
transductive setting. It is well-known that transductive classification typically
outperforms supervised one because it take advantages of unlabled data in the
learning procedure. The first transductive algorithm uses our marginalized ran-
dom walk P ∗, and the second one uses hyperlink structure PAA only. We use
canonical 0-1 weights over the directed hyperlinks. We set the tuning parameter
µ = 2.5 for both algorithms. We increase the size of the labeled data sample at
each iteration. The comparison is based on 0/1 classification error, averaged by
20 iterations.

Figures 2 and 3 show the comparison results for problem (1a), and Figure 4,
for problem (1b). It is clear that the methods using information marginaliza-
tion outperforms the one with only the local hyperlink information from subset.
Specifically, this implies that the marginalized random walk is able to convey
more global information onto the subset, efficiently improving the performance
in classification.s
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Fig. 2. Classification error on discriminating course pages from non-course pages (left)
and student pages from non-student pages (right) from Washington.
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Fig. 3. Classification error on discriminating course pages from non-course pages (left)
and student pages from non-student pages (right) from Wisconsin.

5.2 Results: Ranking in Citation Networks

For problem (2a), Table 1 shows the top 20 results of paper ranking with respect
to the labeled paper “Kernel Principal Component Analysis”; and Table 2 shows
the top 10 papers ranked with respect to “Authoritative Sources in a Hyperlinked
Environment”. We can see that the information maginalization method works
better than only using citation links information as the highly ranked papers
are closer to the labeled paper in information marginalization scheme. If we
only consider citation links, some papers from slightly different domain may be
included in the top ranking list because they may have citations with similar
papers. With the help of author-paper relationships, the relationship between
the labeled paper and other papers become more clear thus lead more accurate
ranking results.

For problem (2b),Table 3 lists the ranking results of authors with respect
to Vladimir Vapnik in the second citation network. The information from the
citation links moves some authors—Chris Burges, Bernhard Scholkopf, Olivier
Chapelle and Alex Smola—to higher ranking positions than only using author-
paper relationships. The reason is that these authors also have many citation
links among their papers that strengthen the similarities with respect to the
labeled author.
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Fig. 4. Classification error on discriminating course pages from student pages.

Table 1. Papers Ranked closest to “Kernel Principal Component Analysis”

marginalized random walk use only citation links

title title

1. Regression Estimation with Support Vector Learning
Machines

1. Model Selection for Support Vector Machines

2. Model Selection for Support Vector Machines 2. SV Estimation of a Distribution’s Support
3. Support Vector Method for Novelty Detection 3. Support Vector Method for Novelty Detection
4. A Generalized Representer Theorem 4. Optimal Hyperplane Classifier with Adaptive Norm
5. Optimal Hyperplane Classifier with Adaptive Norm 5. Inclusional Theories in Declarative Programming
6. Incorporating Invariances in Support Vector Learning

Machines
6. Studies on the Formal Semantics of Pictures

7. Latent Semantic Kernels 7. A Noise-Tolerant Hybrid Model of a Global and a Local
Learning Module

8. Sparse Kernel Feature Analysis 8. Latent Semantic Kernels
9. Extracting Support Data for a Given Task 9. Incorporating Invariances in Support Vector Learning

Machines
10.Support-Vector Networks 10.A Generalized Representer Theorem
11.Kernel Methods: A Survey of Current Techniques 11.Equivalent Conditions for the Solvability of Nonstan-

dard LQ-Problems with Applications to Partial Differ-
ential Equations with Continuous Input-Output Solu-
tion Map

12.A Training Algorithm for Optimal Margin Classifiers 12.Hyperbolic Conservation Laws with a Moving Source
13.Improving the Accuracy and Speed of Support Vector

Machines
13.Extracting Support Data for a Given Task

14.The Connection between Regularization Operators and
Support Vector Kernels

14.Support-Vector Networks

15.Generalization Performance of Regularization Net-
works and Support Vector Machines

15.On Molecular Approximation Algorithms for NP Opti-
mization Problems

16.Statistical Learning and Kernel Methods 16.Kernel Methods:A Survey of Current Techniques
17.The Kernel Trick for Distances 17.CPU Management for UNIX-based MPEG Video Ap-

plications
18.On a Kernel-based Method for Pattern “Recognition,”

“Regression,” “Approximation”
18.Efficient Lossless Compression of Trees and Graphs

19.Advances in Kernel Methods - Support Vector Learn-
ing

19.A Precise Semantics For Vague Diagrams

20.Estimating the Support of a High-Dimensional Distri-
bution

20.Redescription, Information And Access

6 Conclusions

We have proposed a unified mechanism for incorporating information from mul-
tiple object types and relations when making inferences about a targeted subset.
Our technique can be applied to learning problems with data embedded in com-
plex graphs. We quantify the performance of our new schemes on two real world
relational data and achieve good results in challenging inference problems. Fu-
ture work will deeply explore more interesting applications of this method.
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Table 2. Papers Ranked closest to “Authoritative Sources in a Hyperlinked Environ-
ment”

marginalized random walk use only citation links

title title

1. Fast Monte-Carlo Algorithms for finding low-rank ap-
proximations

1. volutionary Strategies For Solving Frustrated Prob-
lems

2. Evolutionary Strategies For Solving Frustrated Prob-
lems

2. Fast Monte-Carlo Algorithms for finding low-rank ap-
proximations

3. The Anatomy of a Large-Scale Hypertextual Web
Search Engine

3. Reconstruction From The Multi-Component Am-Fm
Image

4. Latent Semantic Indexing: A Probabilistic Analysis 4. The Anatomy of a Large-Scale Hypertextual Web
Search Engine

5. Challenges in Web Search Engines 5. Latent Semantic Indexing: A Probabilistic Analysis
6. How to Personalize the Web 6. Learning Decision Strategies with Genetic Algorithms
7. Efficient and Effective Metasearch for Text Databases

Incorporating Linkages among Documents
7. A Model for Sequence Databases

8. The PageRank Citation Ranking: Bringing Order to
the Web

8. Semantically Driven Automatic Hyperlinking

9. New Results for Online Page Replication 9. Applications of a Web Query Language
10.Searching the Web: General and Scientific Information

Access
10.Efficient and Effective Metasearch for Text Databases

Incorporating Linkages among Documents

Table 3. Author ranking result in network 2.

marginalized only author-paper re-
lationships

marginalized only author-paper re-
lationships

name name name name

1.Chris Burges 1.Sayan Mukherjee 11.Mark Stitson 11.Vladimir Vovk
2.Bernhard E.Boser 2.Chris Burges 12.Alex Gammerman 12.Alex Gammerman
3.Isabelle M. Guyon 3.Bernhard E. Boser 13.Vladimir Vovk 13.Mark Stitson
4.Sayan Mukherjee 4.Isabelle M.Guyon 14.Chris Watkins 14.Klaus-Robert Muller
5.Donghui Wu 5.Donghui Wu 15.Partha Niyogi 15.Federico Girosi
6.Bernhard Scholkopf 6.Steven E.Golowich 16.Olivier Chapelle 16.Koh.Sung
7.Heinrich H.Bulthoff 7.Volker Blanz 17.Alex Smola 17.Partha Niyogi
8.Thomas Vetter 8.Bernhard Scholkopf 18.Adnan Aziz 18.Jason Weston
9.Volker Blanz 9.Thomas Vetter 19.Jason Weston 19.Olivier Chapelle
10.Steven Golowich 10.Chris Watkins 20.Koh.Sung 20.Alex Smola
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