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Abstract. We propose a technique for identifying latent Web commu-
nities based solely on the hyperlink structure of the WWW, via random
walks. Although the topology of the Directed Web Graph encodes im-
portant information about the content of individual Web pages, it also
reveals useful meta-level information about user communities. Random
walk models are capable of propagating local link information throughout
the Web Graph, which can be used to reveal hidden global relationships
between different regions of the graph. Variations of these random walk
models are shown to be effective at identifying latent Web communi-
ties and revealing link topology. To efficiently extract these communities
from the stationary distribution defined by a random walk, we exploit a
computationally efficient form of directed spectral clustering. The perfor-
mance of our approach is evaluated in real Web applications, where the
method is shown to effectively identify latent Web communities based
on link topology only.

1 Introduction

Increasingly, the World Wide Web is playing an important role in peoples’ lives
as a main destination for information. However, the sheer heterogeneity of Web
users and authors—given diverse backgrounds and interests—hampers tradi-
tional information retrieval approaches that rely on content analysis alone. The
Web is comprised of multiple communities [5] created by different groups of peo-
ple having common interests. The identification of Web communities can help
users with their information retrieval goals, by allowing the construction of pre-
classified directories and the creation of more effective recommendation services.
Random walk models have been successfully used for Web ranking in the past
[12, 11], and have also raised interest in identifying Web communities.

In this paper we investigate how the directed hyperlink information conveyed
via random walks can help one efficiently identify latent Web communities from
the hyperlink topology alone. Our work on identifying Web communities exploits
recent progress on directed spectral clustering [16], and contributes further un-
derstanding to the nature of such clustering techniques. Here, we analyze directed
spectral clustering from a random walk perspective.

Intuitively, a coherent Web community can be identified by a subset of Web
pages that is strongly connected within the subset, while only being weakly
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connected with pages outside the subset. We assume that if two pages are directly
linked, their interests are assumed to be somewhat related [7]. We also take co-

citation [15] and co-reference [9] relations into account to accurately identify
latent Web communities. Such high level connections provide useful relationship
information, since sometimes connections between Web pages might not be as
obvious as such direct links.

For Web community identification, we first examine a one-step random walk
model that captures low level aspects of hyperlink connectivity. We then con-
sider a two-step random walk model with different variations that captures higher
level information by exploiting the existence of co-reference and co-citation rela-
tionships in the link topology. For the two-step model, we introduce a damping
process that samples the entire Web uniformly, which allows the random walk
to be properly applied to general Web graphs.The selection of the damping fac-
tor is essential to both computation and performance. Finally, we examine the
performance of different random walk models and damping factors in identifying
Web communities from pure graph topology. The empirical results demonstrate
that our random walk models are sufficiently flexible to capture different levels
of relationships in the link topology to achieve significant performance in Web
community identification. This provides a practical understanding how various
random models behave in Web community identification.

2 Background

Before analyzing our specific models, we briefly review related work on identify-
ing Web communities in general.

The problem of identifying Web communities is clearly related to the more
fundamental problem of graph partitioning. For general graph partitioning, one
can often resort to straightforward principles such as unrestricted minimal cut,
or the dual principle of maximum flow. However, the graphs used by most such
techniques are undirected, and therefore they ignore the directionality infor-
mation encoded in Web hyperlinks [4, 8]. Another simple approach is to extract
similarity measurements between neighboring vertices (Web pages) directly from
the link structure to perform a generic clustering method [9]. However, the simi-
larity should be measured from the global structure of the graph. A more global
approach to Web graph clustering suggests, therefore, that some sort of aggre-
gate similarity measure be used, such as those based on the spectrum of the
connectivity matrix. For undirected graph clustering, a common suggestion is
to partition by performing a singular value decomposition (SVD) on W [13].
However again, the connectivity matrix W is not symmetric.

By considering the directed links of Web pages, Kleinberg showed that the
HITS ranking algorithm [10] converges to a spectral method that uses the princi-
ple eigenvectors of WT W and WWT —the final weight scores for the authorities
and hubs. Later, it was observed that this technique can in fact be used to iden-
tify web communities, where Web pages with highest authority and hub scores
are used to define the core of a community [6]. However, one can see that this
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approach reduces to SVD on an undirected graph weight matrices WWT and
WT W . In fact, this approach suffers from two drawbacks: first, a straightforward
graph partition method based on simply computing the principle eigenvectors is
not very effective in general; and second, the directed hyperlink information is
significantly diminished through the symmetric transformations. Regarding the
first drawback, a more appropriate way to solve the graph partitioning problem
is to consider it as a balanced minimum cut problem, which usually results in
more accurate clusters being obtained. Although most versions of the balanced
minimum cut are NP-complete, the eigenvectors of graph Laplacians [2] provide
a good approximation to this NP-hard problem. The efficiency and effectiveness
of such balanced spectral clustering methods has been demonstrated in many
domains, e.g. [14]. Unfortunately, these methods have only been developed for
undirected graphs, and do not consider directionality information.

To address these shortcomings, we require a balanced spectral clustering
principle that can take into account the directionality of Web hyperlinks. Re-
cently, a new approach to directed graph clustering has been proposed in [16],
which offers a mathematically clean solution to this problem. It minimizes a
balanced cut criterion for directed graphs that has a very natural interpretation
in a random walk framework. Unfortunately, the work presented in [16] does not
address the specific role of random walks in Web graph clustering. A Web graph
differs from a general directed graph in that it posesses particular topological
properties. It is therefore critical to formulate a proper random walk model that
ensures similar pages are grouped into coherent Web communities. In this paper,
we analyze two random walk models with their variants that are sufficiently flex-
ible to capture important aspects of Web graph topology, and disclose how walk
connectivity is related to page similarity in directed spectral clustering. Below
we investigate the performance of these random walk models in comparison with
standard models of spectral clustering on undirected graphs [6].

3 Directed Spectral Clustering

To identify Web communities in a Directed Web Graph we employ the efficient
spectral clustering technique for directed graphs developed in [16]. The criterion
for directed graph partitioning is given by a combinatorial partition criterion that
generalizes the normalized cut criterion for undirected graphs [14]. It requires
no transformation of the asymmetric adjacency matrix into a symmetric one.

A directed graph G = (V,E) can be associated with a Markov chain defined
by a random walk on the graph. The stationary distribution π of this random
walk gives a probability of occupancy over a vertex v given infinite time. So given
a subset S of vertices in G, we define the probability with which the random walk
occupies vertices in S as P (S) =

∑
v∈S π(v). Let Sc denote the complement of

S. Obviously, P (S) + P (Sc) = 1. Define the probability with which the random
walk jumps to Sc from S as P (S → Sc) =

∑
u∈S,v∈Sc π(u)p(u, v). We then

consider partitioning the directed graph G into two nonempty subsets S and Sc
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by minimizing the following

cut(S) =
P (S → Sc)

P (S)
+

P (Sc
→ S)

P (Sc)
(1)

Intuitively, a good partitioning of a directed graph under this criterion cor-
responds to a cut such that the probability of escaping from one community to
another is small, whereas the probability of remaining in the current community
is high. Note that these escape and retention probabilities are measured with
respect to a long run of the random walk, so the optimal partition is determined
by the global link topology of the graph. Minimizing this objective is NP-hard
[2] but an approximation can be efficiently obtained by solving for the eigenvec-
tors of a directed graph Laplacian ∆ defined as follows [16]. Let Π denote the
diagonal matrix with Π(v, v) = π(v) for all v ∈ V . Let P denote the transition
probability matrix and PT the transpose of P. Then define

Θ =
Π1/2PΠ−1/2 + Π−1/2PT Π1/2

2
. (2)

Then, ∆ = I −Θ, where I denotes the identity. The directed spectral clustering
algorithm is then to compute the eigenvector Φ of Θ corresponding to the sec-
ond largest eigenvalue, and then partition the vertex set V of G into two parts
according to the sign. In practice, for multiple clusters, it is standard to detect
and visualize clusters based on the sorted eigenvalues [1].

4 Random Walks on Digraphs

The random walk model is a free parameter in the directed spectral clustering
framework outlined above. Technically, the only requirement is that the tran-
sition probabilities of the random walk satisfies the balance equation π(v) =∑

u→v π(u)p(u, v) where u→ v ∈ E denotes page v is pointed by page u. How-
ever, for the purposes of identifying latent Web communities in a Directed Web
Graph, we need to specify an appropriate random walk to ensure that tightly
coupled Web pages share a common topic or interest. This provides a practical
understanding of different behavior of random walk models in Web clustering.

One-Step Random Walk

The one-step random walk model we examine initially is the teleporting random

walk model of [12]. Given that the random surfer is currently at a vertex u: (a)
with probability ε it chooses an outlink uniformly at random and follows the
link to the next page; or (b) with probability 1 − ε it jumps to a Web page
uniformly at random over the entire Web (excluding itself). Here, a damping
factor ε (0 < ε < 1) is introduced in the case where the current page has no
outlink. Such a random walk is guaranteed to converge to a unique stationary
distribution which can be computed by numerically solving the balance equation.
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The transition probability ptele(u, v) between u and v under this model can

be written as ptele(u, v) = εw(u,v)
d+(u) + pε(u, v), where pε(u, v) = w(u, v)/ vol G if

d+(u) = 0 and pε(u, v) = (1−ε)w(u, v)/ vol G if d+(u) > 0; vol G =
∑

u(d+(u)+
d−(u)). Here w(u, v) is the weight value along each edge; d−(v) =

∑
u→v w(u, v)

and d+(v) =
∑

u←v w(v, u) are the in-degree and out-degree of v.
This random walk makes the simple assumption that similar pages are di-

rectly linked. The stationary probability of a Web page corresponds to the fre-
quency that a surfer visits the page following forward links. This can be viewed
as an authority effect in the Web page ranking. We refer to this random walk as
the one-step authority model (OneStepA). Conversely, we can consider another
random walk that traverses backward along the hyperlinks [3]. This is equivalent
to the hub effect, since a good hub page should be able to visit many other re-
lated pages. Therefore, we refer to this random walk as the one-step hub model
(OneStepH ).

Two-Step Random Walk

Web pages are “connected” by more than their direct hyperlinks. Intuitively,
commonality between two Web pages is revealed by the presence of common
co-citation or co-reference pages. The random walk we employ should therefore
also consider these implicit connections in Web community identification.

We now consider a two-step random walk model motivated by the Hubs
and Authorities model in [10]. Assume temporarily that each Web page has
inlinks and outlinks. Then, starting from a page u, the random surfer first jumps
backward to an adjacent hub vertex h with probability p−(u, h) = w(h, u)/d−(u),
then it jumps forward to a page v adjacent from h with probability p+(h, v) =
w(h, v)/d+(h). Then the two-step transition probability pA(u, v) between two
authorities u and v is given by

pA(u, v) =
∑

h

p−(u, h)p+(h, v) (3)

The stationary distribution πA of this random walk is πA(u) = d−(u)/ vol G−

where vol G− =
∑

u∈V d−(u). This follows from the fact that

∑

u∈V

πA(u)pA(u, v) =
∑

u∈V

d−(u)

vol G−

∑

h∈V

w(h, u)w(h, v)

d−(u)d+(h)

=
1

vol G−

∑

h∈V

w(h, v)

d+(h)

∑

u∈V

w(h, u) =
d−(v)

vol G−
= πA(v)

This random walk is performed by treating pages as authorities.
Using the same argument, we can define a two-step random walk by treating

pages as hubs. The random walk performs among hubs u and v by first taking
a forward step and then a backward step along the edges u → a and a ← v,
yielding the transition probability between hubs
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pH(u, v) =
∑

a

p+(u, a)p−(a, v) (4)

Similarly, this random walk between hubs has the stationary distribution
πH(u) = d+(u)/ vol G+. The two-step random walk exploits the co-citation and
co-reference effects in the high level Web link topology. The assumption here is
that two similar pages should share more common hubs or authorities. 3

The above two-step random walks require that each Web page has inlinks and
outlinks, but this is not always true for real Web graphs. To be able to handle the
general case, we propose to combine the two-step random walk with a teleporting
step, so that each forward and backward step through an outlink and a inlink has
a damping factor. Therefore, to obtain the mixed two-step random walk, simply
plug the modified transition probabilities p− and p+ into formulas (3) and (4)
to modify pA and pH among authorities and hubs. In our experiments below
we only use the mixed version of the two-step random walks, but for simplicity
we just refer to them as TwoStepA and TwoStepH respectively. Finally, we
consider a convex combination of the two types of two-step random walks that
address the hyperlink structure in a more flexible manner P = βPA+(1−β)PH ,
where β is a tuning parameter that controls the different weights of co-citation
and co-reference effects. The advantage of this combination is that it can help
us determine which effect is dominant in the link structure, based on the results.
Or conversely, given some prior knowledge about the levels of link structure, we
can set a proper value for β that consistently matches the hyperlink topology.

Spectral Clustering with Random Walks

To partition a Directed Web Graph, we can simply use the adjacency matrix A
with unit weights (i.e., a(u, v) = 1 when u→ v). It is interesting to compare the
results of the different random walk models and the symmetrized transformation
models in this case. To demonstrate the differences in a simple toy example, we
computed the second eigenvectors of Θ formulated as in (2) for both the one-
step and two-step random walks on the graph in Figure 1. We set ε = 0.95.
We also obtain the principal eigenvectors of AT A and AAT , corresponding to
the symmetrized authority and hub scores mentioned in the Background section
[10]. We refer to these symmetrized methods as Auth and Hub respectively.

One can partition the directed graph into two clusters by examining the
values in the eigenvector thresholding at zero. Pages within an initial grouping
can then be partitioned further after the first partitioning [1], and so on. In
addition to just partitioning the vertices, however, the eigenvector values can
also be used to assign a weight or confidence that each Web page belongs to its
assigned cluster. That is, the greater the eigenvector value at a page, the more

3 We briefly note that [11] uses the stationary distribution proportional to vertex
in-degrees to perform a simple ranking method and showed similar derivations of
stationary distributions.
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Fig. 1. Left: A toy example of a directed graph. Right: Illustrating partitioning by
sorted values. Here, “|” indicates the threshold value (zero) such that vertices on each
sides are grouped into separate clusters.

likely the page is to belong to the given cluster. We will therefore refer to these
values as the weights of pages below. We visualize the partitioning by assigning
each vertex on a solid line as shown in Figure 1.

In the toy example, the partitions are the same for OneStepA and OneStepH,
which tend to extract highly correlated clusters via direct connections. Moreover
the vertices that have large values (e.g., 1 and 8) are also the vertices that have
the highest stationary distributions under the random walks. It is known that
PageRank ranks Web pages by their stationary distribution, but pages with high
stationary probabilities might be of dissimilar topics. However, besides cluster-
ing, this method can provide rearranged rankings within each cluster which is
very useful to current search engines.

TwoStepA tends to group strong authorities (4, 5, 6, 7) together that are
linked by common pages. TwoStepH extracts the hub vertices (1, 8) that link to
similar vertices directly and/or indirectly, e.g., vertex 1 points to vertices 4 and
5 after passing 2 and 3. Vertex 8 points to vertices 4 and 5 directly. This random
walk tends to group good hubs that link to common pages either implicitly
or explicitly. The partition using the symmetrized authority score is similar to
TwoStepA, but it does not distinguish among the vertices 1, 2, 3 and 8. The
partition using the symmetrized hub score also ignores any differences among
the vertices in each group, and is thereby less meaningful.

Random walks are able to effectively capture the differences between direct
hyperlink and indirect second order hyperlink topologies that have different co-
citation and co-reference patterns in directed spectral clustering. All of these
can be exploited to efficiently identify vertex communities via directed spectral
clustering.
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Table 1. Web graphs statistics

Root queries vertex num edge num

1. “waterloo” 2130 4688

2. “movies”+“olympics” 6634 65536

3. “risk analysis”+“bussiness optimization” 3357 10490

4. “differential geometry”+ “parallel computing” 2575 6844

5. “data mining”+“computer vision” 3907 12416

6. “body arts”+“fashion design” 3091 4122

5 Empirical Results

5.1 Experimental Design

We construct Web graphs of varying degrees of difficulty by either building the
graph from a single topic query, which results in multiple topics that can be
hard to distinguish, or building the graph from multiple queries, which results
in a few more easily distinguishable topics. To obtain Web graphs, we first chose
some root queries, submited these to Google, and retrieved the first t html pages
(not including pdf or ps files). For a given query or set of queries, we then
combined the retrieved pages as roots and perform a one level expansion by
adding pages that are linked from or link to the root pages. Finally, we filtered
out non-informative links that exist among Web pages as follows. We restrict
the number of pages that link to or are pointed to by every root URL to be at
most d pages. This operation was first proposed in [10]. We also filter out all cgi

scripts links. We set t and d equal to 100 and 50 respectively. The collections we
finally obtained were relatively sparse graphs. In our experiments, we use several
groups of root queries. Their statistics are listed in Table 1. The root queries
focus on a variety of interests. Pages retrieved from queries that have significant
overlap intuitively should increase the difficulty of Web page clustering.

5.2 Results

Choosing Parameters Practically, two parameters need to be selected when
defining the random walks on the Web graphs: the damping factor ε in the
one-step and two-step random walks, and the tuning parameter β in the two-
step random walks. We test with 2 root queries using the damping factor ε
set to 0.75, 0.85 and 0.95. Clustering performance is evaluated by counting the
correctly classified pages that have the 30 greatest weights among those ranked
within top 100 by Google.

Figures 2 plot the confusion matrix values corresponding to the numbers of
pages among the 30 with the greatest weight that are classified as “movie” (class
1) and “olympics” (class 2). Ideally, the best result should have corresponding
numbers of 30, 0, 0, 30. Since OneStepA and OneStepH give very similar results
in this experiment, we only show the results of OneStepA. One can see from
these figures that the directed spectral method with OneStepA obtains the best
performance when ε equals 0.85. Thus, we fix this value for OneStepA in later
experiments. For TwoStepA, the results are competitive when ε takes value 0.85
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Fig. 2. OneStepA results(left) and TwoStepA results(right). Plot of confusion matrix
values C11, C12, C21, C22(from left to right of each column block) for ε = 0.75, 0.85, 0.95.

Fig. 3. Left: F scores when β changes in two-step random walk, ε = 0.90. Right: F score
for 4 binary clustering tasks. Blue: TwoStepA, Red: OneStepA, Yellow: Undirected

and 0.95. Since each result has a better performance for one of the communities,
we choose ε = 0.90 as an compromise value in the following experiments.

Next, we consider the tuning parameter β that balances between PA and
PH in the two-step random walk. Figure 3 (left) shows the results when β
changes from 1 to 0 in the “movies+olympic” Web graph. Instead of reporting
the confusion matrix values in detail, we summarize it by the F measure, which

can be derived from the confusion matrix as 2(precision×recall)
(precision+recall) where precision =

C11/(C11 + C21) and recall = C11/(C11 + C12). The Figure shows that the best
performance is obtained when β = 1. This means that the Web page similarities
are most correctly assessed when the transition matrix is PA for this Web graph.
Not surprisingly, this result is consistent with the ranking methods that consider
inlink degree and authority scores from AT A [6, 11]. These studies have already
shown that important pages can be found by evaluating their authority scores
only. Thus, we set β = 1 in our following experiments, although one should point
out that this is not a globally optimal choice.

Single Broad-topic Query Table 2 lists the communities detected by the
directed spectral method using OneStepA. For each community, we list the URLs
with significant PageRanks. We can visulize that using only hyperlink structure,
one can still identify reasonable communities from a Web graph constructed by a
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Table 2. Communities from query “waterloo”

Cluster 1: Pages from universities and schools at Wa-
terloo, Canada

Cluster 2: Pages for the public community service in
Waterloo, Canada

www.uwaterloo.ca/ www.city.waterloo.on.ca/
www.wlu.ca/ www.waterloorecords.com/
www.lib.uwaterloo.ca/ www.therecord.com/
www.math.uwaterloo.ca/ www.wpl.ca/
www.cs.uwaterloo.ca/ www.wrps.on.ca/
www.wcdsb.edu.on.ca/ www.oktoberfest.ca/

Cluster 3: Pages for living at Waterloo, Canada Cluster 4: Pages for life at Waterloo, Canada

www.waterlooinn.com/ www.kwymca.org/
www.waterloochamber.org/ www.waterloo.ca/
www.kwhumane.com/ www.kwag.on.ca/
www.kwsymphony.on.ca/ www.uptownwaterloojazz.ca/

www.kwsc.org/
www.waterloo-biofilter.com/
www.wnhydro.com/

Cluster 5: Pages for Waterloo, Iowa, USA Cluster 6: Pages for Waterloo in the USA

www.wplwloo.lib.ia.us/waterloo/ www.waterloobucks.com/
www.wcfsymphony.org/ www.waterloo.k12.ia.us/
www.waterloocvb.org/ www.waterloo.il.us/
www.waterlooindustries.com/ www.waterlooindustries.com/

Cluster 7: Pages for Waterloo in Europe Clusters 8 and 9: Pages for the history of Waterloo from
public pages and from wiki

www.trabel.com/waterloo/ waterloo-thebattle.htm/ www.garywill.com/waterloo/ history.htm/
www.waterloo.org.uk/ www.bbc.co.uk/history/war/ trafalgar waterloo/
www.trabel.com/waterloo/waterloo.htm/ en.wikipedia.org/wiki/ Battle of Waterloo/
www.napoleonguide.com/ battle waterloo.htm/ en.wikipedia.org/wiki/Waterloo station/
www.waterloo.co.uk/

single broad topic query. The weights of pages in clusters 1 to 4 are closer to each
other than to the pages in other clusters. This discloses that the first 4 clusters are
related within a broader scope: they are mainly pages from Waterloo, Canada,
including academic institutions, social communities and living. The observation
that the weights of clusters 5 and 6 are closer to each other than to the others
identifies they are the pages of Waterloo locales in the US. The sub-topics are
generalized upward to larger common topics. Cluster 9 identifies the pages from
Wikipedia, even though we eliminated links among pages from the same domain.

Multiple Topic Related Queries We also evaluated clustering performance
for 4 Web graphs that are obtained from multiple root queries. We compare
the directed spectral methods using one-step random walk and two-step random
walks to the undirected method that uses the symmetrized authority scores
from AT A (referred to as the undirected method in the results). This undirected
method is more efficient than performing SVD on AT A in undirected graph
clustering which is essentially the method in [6] as been explained in Background.
Therefore our comparison is more challenging.

Figure 3–Right shows the clustering results for 4 Web graphs obtained from
root queries 3, 4, 5 and 6. Not surprisingly, both of the directed spectral methods
outperformed the undirected method in all cases.

We also show some of the clustering results by listing the highly ranked
URLs with the most significant weights in corresponding communities in Tables
3 and 4.“Cat” denotes the ture category for each URL. Once again, we can
see that the directed spectral methods work better than the undirected method
by tending to group pages more correctly. For example, in Table 3, the pages
correctly clustered in the data mining community are about major conferences,
term explanations, and companies in data mining. In Table 4, we see in the
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Table 3. Pages with the top 10 significant weights for Queries of “computer vision”
+ “data mining”

Directed spectral method with OneStepA Undirected method.

URL Cat URL Cat

cmp.felk.cvut.cz/eccv2004/ 1 dms.irb.hr/index.php 2
iris.usc.edu/Vision-Notes/bibliography/contents.html 1 www.comp.leeds.ac.uk/vision/ 2
www.intel.com/research/mrl/research/opencv/ 1 www.comp.leeds.ac.uk/vision/ 1
marathon.csee.usf.edu/ 1 www.statsoft.com/textbook/stdatmin.html 2
vis-www.cs.umass.edu/ 1 lear.inrialpes.fr/people/triggs/events/iccv03/ 1
www.cs.cmu.edu/ cil/vision.html 1 dir.groups.yahoo.com/group/datamining2/ 2
www.sciencedirect.com/science/journal/10773142 1 www.acv.ac.at/ 1
www.cs.cmu.edu/ cil/v-source.html 1 www-ai.ijs.si/SasoDzeroski/RDMBook/ 2
iris.usc.edu/Information/Iris-Conferences.html 1 www.autonlab.org/tutorials/ 2
homepages.inf.ed.ac.uk/rbf/CVonline/ 1 www.cs.columbia.edu/ sal/hpapers/USENIX/

usenix.html 2

itmanagement.webopedia.com/TERM/D/ www.scd.ucar.edu/hps/GROUPS/dm/dm.html 2
data mining.html 2
www.ncdm.uic.edu/ 2 www.kdnuggets.com/ 2
www.kdnuggets.com/ 2 www.spss.com/ 2
www.dmg.org/ 2 www.eco.utexas.edu/ norman/BUS.FOR/course.mat/

Alex/ 2
www.salforddatamining.com/ 2 www.acm.org/sigkdd/ 2
www.spss.com/ 2 www.infogoal.com/dmc/dmcdwh.htm 2
www.acm.org/sigkdd/ 2 www.the-data-mine.com/ 2
www.megaputer.com/ 2 www.thearling.com/text/dmwhite/dmwhite.htm 2
www.cacs.louisiana.edu/ icdm05/ 2 www.ncdm.uic.edu/ 2

olympics community, multiple homepages from the olympic game hosts were
obtained. Although these pages do not have hyperlinks between them, they all
are pointed to by the Olympic Games organization (olympic.org). Thus, the two-
step random walk was able to detect their similarity by identifying a common
hub. Similar observations can be made about the pages classified in the movies
community. In each of these tasks, the undirected method failed to identify pages
from same communities, and tended to mix pages from the different communities.

6 Conclusion

To automatically identify Web communities from hyperlink topology, we ad-
dressed a key component in directed spectral clustering: the random walk model
that should be used to infer relationships between Web pages. In addition to
one-step random walks, we also proposed variations of two-step random walk
models that can detect higher order similarities between pages. The linear com-
bination of two-step random walks suggests a practical approach to inferring
the relationship between link structure and topic similarity by inspecting the
clustering results. The experiments show that the different random walk models
can capture different relationships based on the hyperlink topology in directed
spectral method.
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