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Abstract

Background

Automatic detection of the 1st (S1) and 2nd (S2) heart sounds is difficult, and existing algo-

rithms are imprecise. We sought to develop a wavelet-based algorithm for the detection of

S1 and S2 in children with and without pulmonary arterial hypertension (PAH).

Method

Heart sounds were recorded at the second left intercostal space and the cardiac apex with

a digital stethoscope simultaneously with pulmonary arterial pressure (PAP). We developed

a Daubechies wavelet algorithm for the automatic detection of S1 and S2 using the wavelet

coefficient ‘D6’ based on power spectral analysis. We compared our algorithm with four

other Daubechies wavelet-based algorithms published by Liang, Kumar, Wang, and Zhong.

We annotated S1 and S2 from an audiovisual examination of the phonocardiographic trac-

ing by two trained cardiologists and the observation that in all subjects systole was shorter

than diastole.

Results

We studied 22 subjects (9 males and 13 females, median age 6 years, range 0.25–19).

Eleven subjects had a mean PAP < 25 mmHg. Eleven subjects had PAH with a mean PAP

� 25 mmHg. All subjects had a pulmonary artery wedge pressure� 15 mmHg. The sensitiv-

ity (SE) and positive predictivity (+P) of our algorithm were 70% and 68%, respectively. In

comparison, the SE and +P of Liang were 59% and 42%, Kumar 19% and 12%, Wang 50%

PLOSONE | DOI:10.1371/journal.pone.0143146 December 2, 2015 1 / 22

OPEN ACCESS

Citation: Elgendi M, Kumar S, Guo L, Rutledge J,
Coe JY, Zemp R, et al. (2015) Detection of Heart
Sounds in Children with and without Pulmonary
Arterial Hypertension―Daubechies Wavelets
Approach. PLoS ONE 10(12): e0143146.
doi:10.1371/journal.pone.0143146

Editor: Heye Zhang, Shenzhen institutes of
advanced technology, CHINA

Received: June 25, 2015

Accepted: October 30, 2015

Published: December 2, 2015

Copyright: © 2015 Elgendi et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The heart sounds are
human subject data and will be made available upon
request from appropriate investigators after approval
by their REB.

Funding: This study was supported by
Cardiovascular Medical Research Education Fund for
Pulmonary Hypertension, http://www.ipahresearch.
org/, RES0016083, IA RZ DS. The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0143146&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.ipahresearch.org/
http://www.ipahresearch.org/


and 45%, and Zhong 43% and 53%, respectively. Our algorithm demonstrated robustness

and outperformed the other methods up to a signal-to-noise ratio (SNR) of 10 dB. For all

algorithms, detection errors arose from low-amplitude peaks, fast heart rates, low signal-to-

noise ratio, and fixed thresholds.

Conclusion

Our algorithm for the detection of S1 and S2 improves the performance of existing Daube-

chies-based algorithms and justifies the use of the wavelet coefficient ‘D6’ through power

spectral analysis. Also, the robustness despite ambient noise may improve real world clini-

cal performance.

Introduction
New digital stethoscopes provide opportunities to improve clinical cardiovascular diagnosis. In
particular, the transformation of acoustic data coupled with machine learning algorithms offer
the potential to develop automatic systems for auscultation-based diagnosis [1–4]. Pulmonary
arterial hypertension (PAH) is difficult to diagnose clinically, and many patients complain of
symptoms for 2 years before a diagnosis is made [5]. Definitive diagnosis of PAH often requires
an invasive cardiac catheterization which is not widely available and carries risk especially for
children [6]. Therefore, there would be considerable merit to a non invasive screening tool to
aid in the diagnosis and appropriate referral of children with suspected to PAH to an expert
center. Pulmonary arterial hypertension has characteristic heart sounds that make it an ideal
disease to diagnose noninvasively by auscultation using machine learning algorithms [2]. Prior
to developing an automated diagnostic algorithm, it is important to accurately and reproduc-
ibly detect the first and second heart sounds (S1 and S2), which audibly separate systole from
diastole. The accurate automated detection of S1 and S2 heart sounds remains a difficult prob-
lem in heart sound analysis [7, 8].

Previous attempts to detect S1 and S2 by signal processing have adopted two main approaches,
which are differentiated by whether or not they need a simultaneous electrocardiographic sig-
nal (ECG). The ECG is used as a reference, and the timing between the QRS complex and the
T wave in the cardiac cycle is exploited to identify S1 and S2 [3]. However, in clinical practice,
noisy ECG signals may make automated ECG wave detection difficult. Therefore, many
researchers have tried to identify S1 and S2 without using a reference ECG signal [2, 9]. Sev-
eral signal processing techniques have been attempted, such as artificial neural networks [10],
decision trees [11], envelograms [12], quantified spectrograms [13], self-organizing maps
using Mel frequency cepstrum coefficients [14], and pseudo affine Wigner–Ville distribution
[15, 16]. The most common technique used in heart sound analysis is discrete wavelet trans-
form [17]; in particular, Daubechies wavelet, as researchers with its reported its superiority for
detecting S1 and S2 [3, 8].

As the choice of wavelet type is still debatable [18], we sought to focus only on investigating
the four well-known Daubechies wavelet-based algorithms that claimed better performance in
detecting heart sounds. During our analysis, we developed a novel event-related algorithm for
the automated detection of S1 and S2 without using the ECG as a reference. In addition, we
sought to determine the best algorithm for detecting S1 and S2 in children by quantitatively
comparing the wavelet-based algorithms.
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Materials and Methods

Ethics Statement
The Research Ethics Board of the University of Alberta approved the study. All subjects over
18 years of age gave informed and written consent to participate in the study. The parents,
guardians or caretakers of subjects less than 18 years old gave informed and written consent
for their children to participate in the study. Informed assent was obtained from children with
sufficient neurodevelopmental ability.

Clinical Data Collection
We approached all pediatric subjects who were undergoing right heart cardiac catheterization
that was required for management or investigation of their underlying cardiac condition, for
inclusion in the study. We excluded subjects with congenitally abnormal aortic, pulmonary,
and prosthetic valves.

The heart sounds were recorded using a 3M™ Littmann1 3200 digital stethoscope which
works in conjunction with Zargis Cardioscan™ software (Zargis Medical Corp., Princeton, NJ,
USA) to store recorded heart sounds in �. wav mono audio format. Heart sound recordings
were obtained over 20 seconds with sampling frequencies of 4000 Hz. We recorded the heart
sounds sequentially at the 2nd left intercostal space (2nd LICS) and the cardiac apex for 20 sec-
onds. We used the MATLAB 2010b (The MathWorks, Inc., Natick, MA, USA) programming
environment for signal analysis and optimization. Heart sounds were recorded simultaneously
with the direct pulmonary arterial pressure (PAP) measurements obtained during right heart
catheterization in a standard manner. Other hemodynamic data including heart rate, pulmo-
nary artery wedge pressure or left atrial pressure, right atrial pressure, oxygen consumption
(VO2), and systemic pressure and pulmonary blood flow were collected within 5–10 minutes
of the acoustic recordings.

Pulmonary arterial hypertension (PAH) was defined as a mean pulmonary arterial pressure
greater than or equal to 25 mmHg with a pulmonary artery wedge pressure less than 15 mmHg
according to current guidelines [19]. The heart sounds of subjects with PAH were compared
with subjects undergoing cardiac catheterization but with a mean pulmonary arterial pressure
less than 25 mmHg and a pulmonary artery wedge pressure less than 15 mmHg. The latter
group comprised a control group with normal pulmonary arterial and wedge pressures. The
clinical characteristics of these subjects have been described previously and are described in
Tables 1–7 [1, 2].

Training Set. We recorded the heart sounds in 22 subjects from 2 sites on the chest giving
a total of 44 heart sound recordings, (11 subjects with mean PAP� 25 mmHg and 11 subjects
with mean PAP< 25 mmHg collected from two sites: 2nd LICS and apex), with a total of 1,178
heartbeats. Methods I, II, III, and IV do not require a training phase. However, Method V
requires a training phase, thus, we trained the algorithm on heart sound signals collected at
apex from subjects with mean PAP� 25 mmHg—a total of 11 recordings.

Testing Set. We used all 44 heart sound recordings in Methods I, II, III, and IV. In Method
V, we tested the algorithm on three datasets, heart sound signals collected on the chest at the
2nd LICS from subjects with mean PAP< 25 mmHg, heart sound signals collected at the 2nd

LICS from subjects with mean PAP� 25 mmHg, and heart sound signals collected at the car-
diac apex from subjects with mean PAP< 25 mmHg—a total of 33 recordings.

Annotation of S1 and S2. We demarcated S1 and S2 by identifying events from the acous-
tic recordings that were separated by intervals compatible with the relative duration of systole
and diastole. Two cardiologists identified the timing of S1 and S2 independently. They listened
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to acoustic recordings and marked S1 and S2 on the phonocardiographic tracing. The cardiolo-
gists’ interpretations suggested that in all subjects studied, the duration of diastole was longer
than systole. Thus, the events identified as S1 and S2 occurred such that the interval between
S1 and S2 was shorter than the S2 to S1 interval. Within these demarcated events, we identified
the maximal (positive or negative) normalized amplitude and annotated these as reference

Table 1. Pulmonary arterial hypertension: Subjects #1–11 with pulmonary arterial hypertension (mean pulmonary arterial pressure� 25 mmHg).

Subject ID Age (years) Height (m) Weight (kg) BSA (m2) BMI (kg/m2) Gender Diagnosis

1 0.8 0.66 6.1 0.32 14.0 M Repaired CDH

2 0.9 0.64 5.9 0.31 14.4 F Unrepaired CHD

3 2 0.88 11.9 0.53 15.5 M IPAH

4 3 0.90 12.3 0.55 15.2 M Unrepaired CHD

5 7 1.23 23 0.89 15.2 F IPAH

6 12 1.62 62 1.66 23.6 F Repaired CHD

7 8 1.33 33.2 1.1 18.8 M IPAH

8 9 1.34 29.9 1.06 16.7 F Repaired CHD

9 12 1.62 62 1.66 23.6 F Repaired CHD

10 12 1.49 59 1.53 26.6 M IPAH

11 15 1.30 31.7 1.06 18.8 F IPAH

Median 8 1.3 29.9 1.06 16.7 5M:6F

Minimum 0.8 0.64 5.9 0.31 14.0

Maximum 15 1.62 62 1.66 26.6

Abbreviations: BMI = Body Mass Index, BSA = Body Surface Area, CDH = Congenital Diaphragmatic Hernia, CHD = Congenital Heart Disease,

F = Female, M = Male, m = meters, IPAH = Idiopathic Pulmonary Hypertension, kg = kilograms,

doi:10.1371/journal.pone.0143146.t001

Table 2. Subjects #12–22 with normal pulmonary arterial pressures (mean pulmonary arterial pressure <25mmHg).

Subject ID Age (years) Height (m) Weight (kg) BSA (m2) BMI (kg/m2) Gender Diagnosis

12 0.8 0.71 8.3 0.39 16.5 M Unrepaired CHD

13 2 0.77 9.8 0.44 16.7 M Repaired CHD

14 3 1.01 18.1 0.7 17.7 M Unrepaired CHD

15 0.25 0.52 4.5 0.24 16.6 F Repaired CHD

16 2 0.87 11.4 0.51 15.1 F Unrepaired CHD

17 5 1.17 19 0.79 13.9 F Post heart transplant

18 3 0.89 12.8 0.55 16.2 F Post heart transplant

19 10 1.29 31.5 1.06 18.9 F Post heart transplant

20 17 1.58 59 1.6 23.6 F Repaired CHD

21 17 1.62 42 1.4 16.0 F Repaired CHD

22 19 1.75 59 1.72 19.3 M Post heart transplant

Median 3 1.01 18.1 0.7 16.6 4M:7F

Minimum 0.3 0.52 4.5 0.24 13.9

Maximum 19 1.75 59 1.72 23.6

Abbreviations: BMI = Body Mass Index, BSA = Body Surface Area, CDH = Congenital Diaphragmatic Hernia, CHD = Congenital Heart Disease,

F = Female, M = Male, m = meters, kg = kilograms.

doi:10.1371/journal.pone.0143146.t002
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points for S1 or S2 events, respectively. We superimposed all the events containing S1 and S2
waves with time zero at the reference point of S1 and S2 events (Fig 1).

Wavelet-Based S1 and S2 Detection Algorithms. We evaluated four Daubechies wavelet-
based algorithms that are commonly used in the analysis of heart sound signals [20, 21]. Wave-
lets are closely related to filter banks. The wavelet transform (WT) of the collected heart sound

Table 4. Pulmonary Vascular Hemodynamic data. Subjects #12–22 with normal pulmonary arterial pressures (mean pulmonary arterial pressure
<25mmHg).

Subject ID Mean PAp (mmHg) Systolic PAp (mmHg) Diastolic PAp (mmHg) Mean LAp/PAWp (mmHg) PVRI (WUm2) QPI (L/min/m2)

12 20 29 17 11 2.8 3.2

13 20 32 11 8 3.1 3.9

14 15 25 10 4 0.8 14.4

15 15 25 7 6 2.0 4.4

16 24 34 15 9 4.8 3.1

17 14 27 7 7 N/A N/A

18 20 30 12 10 2.6 3.8

19 8 11 5 5 1.3 2.3

20 17 31 9 7 2.8 3.6

21 12 22 4 5 1.6 4.5

22 14 20 8 10 1.5 2.7

Median 15 27 9 7 2 4

Minimum 8 11 4 4 0.8 2.3

Maximum 24 34 17 11 4.8 14.4

Abbreviations: LAp = Left atrial pressure, L/min/m2 = Liters per minute per meter squared, N/A = Not Available, PAp = Pulmonary arterial pressure,

PAWp = pulmonary arterial wedge pressure, PVRI = pulmonary vascular resistance index, QPI = Pulmonary blood flow index, WUm2 = Wood Units x

meter squared. Note PVRI calculated from pressures at the time of QPI measurement not acoustic recording

doi:10.1371/journal.pone.0143146.t004

Table 3. Pulmonary Vascular Hemodynamic data. Subjects #1–11 with Pulmonary arterial hypertension (mean pulmonary arterial pressure�25 mmHg).

Subject ID Mean PAp (mmHg) Systolic PAp (mmHg) Diastolic PAp (mmHg) Mean LAp/PAWp (mmHg) PVRI (WUm2) QPI (L/min/m2)

1 29 48 13 6 4.8 4.8

2 25 38 12 2 5.2 4.4

3 64 89 34 9 13.1 4.2

4 66 92 47 7 10.7 5.5

5 25 31 19 7 5.5 3.3

6 97 140 66 10 27.2 3.2

7 37 49 26 10 9.3 2.9

8 30 46 14 5 7.4 3.4

9 85 119 57 6 27.2 2.9

10 63 95 37 7 19.3 2.9

11 55 99 37 6 16.7 2.9

Median 55 89 34 7 10.7 3.3

Minimum 25 31 12 2 4.8 2.9

Maximum 97 140 66 10 27.2 5.5

Abbreviations: LAp = Left atrial pressure, L/min/m2 = Liters per minute per meter squared, PAp = Pulmonary arterial pressure, PAWp = pulmonary artery

wedge pressure, PVRI = pulmonary vascular resistance index, QPI = Pulmonary blood flow index, WUm2 = Wood Units x meter squared, Note PVRI

calculated from pressures at the time of QPI measurement not acoustic recording

doi:10.1371/journal.pone.0143146.t003
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signal x(t) is an integral transform defined by

Dða; bÞ ¼
ð1

�1

xðtÞc�
a;bdt; ð1Þ

where D(a, b) is known as the wavelet detail coefficient at scale and location indices (a, b) of
the heart sound signal x(t), ψ� denote the complex conjugate of the wavelet function ψ(t). The

Table 5. Systemic Vascular Hemodynamic and Electrocardiographic data. Subjects #1–11 with pulmonary arterial hypertension (mean pulmonary arte-
rial pressure�25 mmHg).

Subject
ID

Mean BP
(mmHg)

Systolic BP
(mmHg)

Diastolic BP
(mmHg)

Mean RAp
(mmHg)

Heart rate (beats/
min)

QRS duration
(msec)

PR interval
(msec)

1 59 83 41 2 130 62 66

2 68 93 47 1 130 75 91

3 48 70 34 8 99 97 98

4 70 82 56 7 115 77 92

5 70 97 50 3 66 71 88

6 93 122 73 5 107 71 71

7 96 44 67 3 75 110 106

8 62 93 42 4 65 110 88

9 88 106 71 6 90 71 71

10 78 110 56 4 70 77 71

11 68 99 53 3 80 132 110

Median 70 93 53 4 90 77 88

Minimum 48 44 34 1 65 62 66

Maximum 96 122 73 8 130 132 110

Abbreviations: BP = Systemic blood pressure, msec = milliseconds, min = minute, RAp = Right atrial pressure.

doi:10.1371/journal.pone.0143146.t005

Table 6. Systemic Vascular Hemodynamic and Electrocardiographic data. Subjects #12–22 with normal pulmonary arterial pressures (mean pulmo-
nary arterial pressure <25 mmHg).

Subject
ID

Mean BP
(mmHg)

Systolic BP
(mmHg)

Diastolic BP
(mmHg)

Mean RAp
(mmHg)

Heart rate (beats/
min)

QRS duration
(msec)

PR interval
(msec)

12 54 92 36 11 130 77 84

13 60 95 39 6 78 111 116

14 60 71 46 1 111 120 114

15 52 67 37 1 134 99 87

16 63 80 50 8 108 91 97

17 42 63 32 8 82 101 98

18 75 97 53 3 105 101 92

19 55 65 45 1 96 134 80

20 73 108 56 7 78 147 136

21 67 93 51 1 90 108 96

22 116 72 96 1 70 103 116

Median 60 80 46 3 96 103 97

Minimum 42 63 32 1 70 77 80

Maximum 116 108 96 11 134 147 136

Abbreviations: BP = Systemic blood pressure, msec = milliseconds, min = minute, RAp = Right atrial pressure.

doi:10.1371/journal.pone.0143146.t006
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transform yields a time-scale representation similar to the time-frequency representation of the
short-time Fourier transform (STFT). In contrast to the STFT, the WT allows a variable time
and frequency resolution for different frequency bands. The set of analyzing functions—the
wavelet family ψa,b(t)—is deduced from amother wavelet ψ(t) by:

ca;bðtÞ ¼
1ffiffiffi
2

p c
t � b
a

� �
; ð2Þ

a and b are the dilation (scale) and translation parameters respectively. The scale parameter a
of the WT is comparable to the frequency parameter of the STFT. The mother wavelet is a
short oscillation with zero mean; note that we investigated onlyDaubechies mother wavelets.
Fig 2a shows the frequency representation of the detail coefficients for scale a = 6. The

Table 7. Comparison of clinical and hemodynamic data between subjects with pulmonary arterial
hypertension (mean PAp�25mmHg) and normal pulmonary arterial pressure (mean PAp <25
mmHg).

Clinical and hemodynamic variables p-value

Age 0.8

Height 0.6

Weight 0.5

Body Surface Area 0.6

Body Mass Index 0.9

Systolic Pulmonary arterial pressure <0.001**

Diastolic Pulmonary arterial pressure <0.001**

Mean Pulmonary arterial pressure <0.001**

Pulmonary Vascular Resistance Index <0.001**

Pulmonary Blood Flow Index 0.9

Mean Left Atrial Pressure 0.6

Mean Right Atrial Pressure 0.8

Systolic Blood Pressure 0.2

Diastolic Blood Pressure 0.2

Mean Blood Pressure 0.1

Heart rate 0.5

QRS duration V1 0.02*

PR interval lead 2 0.07

The p-values from the Mann-Whitney test, where * and ** indicate p < 0.05 and p < 0.005, respectively.

doi:10.1371/journal.pone.0143146.t007

Fig 1. Demarcation of the 1st (S1) and 2nd (S2) heart sounds. The normalized amplitude (y-axis) is
plotted against time in seconds (x-axis). Time zero second depicts the annotated peaks for S1 and S2 events.

doi:10.1371/journal.pone.0143146.g001
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orthonormal dyadic discrete wavelets are associated with scaling functions and their dilation
equations. The scaling function is associated with the smoothing of the signal and has the same
form as the wavelet, given by ϕa,b(t) = 2-a/2ϕ(2-at−b). However, the convolution of the heart
sound with the scaling function produces approximation coefficients as follows:

Aða; bÞ ¼
ð1

�1

xðtÞ�a;bðtÞdt: ð3Þ

Fig 2b shows the frequency representation of the approximation coefficients for scale a = 6.
The heart sound signal x(t) can then be represented with a combined series expansion using
both the approximation coefficients and the detail coefficients, in discrete representation, as
follows:

xðtÞ ¼
X1
b¼�1

Aða0; bÞ�a0 ;b
ðtÞ þ

Xa0
a¼�1

X1
b¼�1

Dða; bÞca;bðtÞ: ð4Þ

It is clear that the original heart sound signal is expressed as an approximation of itself, at
arbitrary scale index a0, added to a succession of signal details from scales a0 down to negative
infinity.

Fig 2. Power spectrum of ‘db6’wavelet for details (top) and approximations (bottom) at scales a = 2j,
j = 1, .., 6. Note, the sampling frequency of the heart sounds is 4000 Hz.

doi:10.1371/journal.pone.0143146.g002
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The signal approximation at scale a is defined as xaðtÞ ¼
X1
b¼�1

Aða; bÞ�a;bðtÞ while the signal

details at DaðtÞ ¼
X1
b¼�1

Dða; bÞca;bðtÞ. We can write (Eq 4) as

xðtÞ ¼ xa0ðtÞ þ
Xa0
a¼�1

DaðtÞ ð5Þ

xa�1ðtÞ ¼ xaðtÞ þ DaðtÞ ð6Þ

If we add the signal detail at an arbitrary scale (index a) to the approximation at that scale,
we obtain the signal approximation at an increased resolution (i.e., at a smaller scale, index
a−1). The time domain representations of detail and approximation coefficients are shown in
Fig 3.

Method I: 2nd order Shannon energy
Shannon energy emphasizes medium intensity signals and attenuates low energy more than
high intensity signals. It is used to detect the heart sounds and to isolate successive cardiac
cycles. Liang et al. [12, 13] first recommended the use of Shannon energy after comparing its
performance to the Shannon entropy, absolute value, and energy of heart sounds. They devel-
oped a wavelet-based algorithm that detects S1 and S2 based on the architecture shown in
Fig 4a. They calculated the average Shannon energy as follows:

E ¼ � 1

N

XN
i¼1

x̂ðiÞ2logðx̂ðiÞ2Þ; ð7Þ

where x̂ is the extracted heart sound detail D5 of ‘db6’ wavelet normalized to the maximum

absolute value of the signal x̂ ¼ D5

maxðD5Þ, and N is the number of samples in 20 ms segment. Then

the normalized average Shannon energy (Ê) is computed as follows:

Ê ¼ E � m
s

; ð8Þ

where μ is the mean value of E and σ is the standard deviation of E. An example is shown in Fig 5,
the original heart sound data (Fig 5a) and the output signal (Fig 5b) when this step is applied to

detect S1 and S2 followed by a threshold THR ¼ 1

n

Xn

i¼1

ÊðiÞ.

Method II: 2nd order Shannon energy with durational thresholds
Kumar et al. [8, 14] modified Method I by introducing multiple wavelet coefficients and dura-
tional threshold, as shown in Fig 4b. They extracted two wavelet features of the heart sounds:

A5 and D5; and, therefore, Eq 8 is calculated twice: ÊðA5Þ and ÊðD6Þ. An example of the ÊðD6Þ
signal is shown in Fig 5c—when Method II applied to our data. An adaptive threshold THR1 is
then introduced, based on the detail coefficients as follows

THR1 ¼ ÊðD6Þ � lme; ð9Þ

where μe is the mean value of ÊðD6Þ and λ is a fixed value of 3. They used THR1 with ÊðA5Þ to
demarcate S1 and S2. The demarcated areas were selected based on two durational thresholds:
(i) THR2: The duration of S1 and S2 sounds is not more than 250 ms and not less than 30 ms
(ii) THR3: The time interval between S1 and S2 is less than 50 ms. Otherwise, any event that
lies outside of this interval is considered a noisy segment, and, therefore, it will be discarded
from further processing.
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Method III: 3rd order Shannon energy with multiple wavelet coefficients
Wang et al. [22] found Method I sensitive to noise and heart murmurs that may lead to false
segmentation. Therefore, they investigated different wavelet features and introduced 3rd order
Shannon energy to emphasize S1 and S2 and to suppress the noise and murmurs. The flow-
chart of this method is shown in Fig 4c; and the average 3rd order Shannon energy is calculated
over 20 ms segments as

E ¼ � 1

N

XN
i¼1

x̂ðiÞ3logðx̂ðiÞ3Þ; ð10Þ

The normalized average Ê is calculated from Eq 8, followed by a threshold THR that equals

the statistical mean of Ê . However, the x̂ is calculated based on the summation of different
wavelet coefficient features because the coefficients D3, D4, and D5 lead to a better detection

accuracy. Therefore, they calculated the Shannon energy (Eq 9) with x̂ ¼ D3þD4þD5

maxðjD3þD4þD5 jÞ, which

produces the signal shown in Fig 5d—when we tested Method III on our data.
Method IV: Sequential Wavelet Analysis. The idea of detecting S1 and S2 using sequen-

tial wavelet analysis was introduced by Zhong and Scalzo [23]. They developed a Daubechies
wavelet-based algorithm that uses the ‘db5’ wavelet, not the ‘db6’ used in Methods I, II, and III.
The algorithm consists of a two-stage wavelet based on the architecture shown in Fig 4d. At the
first stage, the signal equals x = D3+D4+D5+D6, followed by a threshold THR1 = 0.2, and the
output signal (y) of this stage is a binary signal based on the equality If x[n]<THR1,y[n] = 0;
ELSE y[n] = 1. At the second stage, the signal Z equals the approximation coefficients A6—an
example is shown in Fig 5e when applied to the collected heart sound—of the y signal, followed

Fig 3. Behavior of the ‘db6’wavelet dealing with different morphologies of S1 and S2. (a) Wavelet
details for heart sounds with low S1 amplitude measured at the second intercostal space for a subject with
mean PAp < 25 mmHg, (b) Wavelet approximations for the same heart sounds used in (a), (c) Wavelet details
for heart sounds with low S2 amplitude measured at apex for a subject with mean PAp� 25 mmHg, and (d)
Wavelet approximations for the same heart sounds used in (c).

doi:10.1371/journal.pone.0143146.g003
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by a threshold THR2 = 0.1, and the output signal (r) of this stage is another binary signal based
on the equality If z[n]<THR2, r[n] = 0; ELSE r[n] = 1.

Proposed Method (Method V: Event-Related Moving Averages). We used a novel algo-
rithm adapted from the framework proposed for detecting QRS complexes in ECG signals, sys-
tolic wave, a waves, and c, d, and e in acceleration of photoplethysmogram signals [24–26]. The
same approach was used to detect S1 and S2 events. The method consists of three main stages:
pre-processing (wavelet and squaring), feature extraction (generating potential blocks using

Fig 4. Flowcharts for five methods to detect S1 and S2 waves in heart sounds. (a) Method I, (b) Method II, (c) Method III, (d) Method IV, (e) Method V.

doi:10.1371/journal.pone.0143146.g004
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Fig 5. Features output. (a) Original heart sound signal from a subject with mean pulmonary arterial pressure
of 20 mmHg (b) second-order Shannon energy of D5 wavelet in Method I (c) second-order Shannon energy of
D6 wavelet in Method II (d) third-order Shannon energy in Method III (e) wavelet approximation A6 in Method
IV (f) generating blocks of interest in Method V.

doi:10.1371/journal.pone.0143146.g005
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two moving averages) and classification (thresholding). The structure of the algorithm is given
in Fig 4e.

Wavelet Choice. We selected the Daubechies wavelet base ‘db6’ because it is used most
often in heart sound analysis. However, it was unclear which wavelet coefficients capture the
S1 and S2 areas. Therefore, we compared the power spectrum of S1 and S2 waves with the
power spectrum of the wavelet coefficients of the heart sounds (Fig 6). We found that most of
the energy of S1 and S2 segments lay between 0–60 Hz. This frequency band is covered in the
wavelet approximations A1, A2, A3, A4, or A5 (cf. Fig 2b).

However, it is not completely covered in the wavelet details (cf. Fig 2a). The closest wavelet
detail that contains the S1 and S2 energy is D6, with the frequency range of 20–60 Hz (Fig 6).
Therefore, we investigated D6 as the optimal wavelet representations for S1 and S2 events; thus,
in this method, x = D6.

Squaring. Squaring emphasizes the large fluctuations (or magnitudes) resulting from the
systolic wave, which suppress the small fluctuations arising from the diastolic wave and noise.
This step results in the output

y½n� ¼ x½n�2; ð11Þ

and improves the accuracy with which the systolic wave segment in heart sound signals is
distinguished.

Generating Blocks of Interest. Blocks of interest were generated using two event-related
moving averages that demarcated the S1 and S2 areas. The first moving average (MApeak) is
used to emphasize the S1 and S2 waves area—as shown as dotted signal in Fig 5f when applied
to the collected data—and is given by

MApeak½n� ¼
1
W1

ðy½n� ðW1 � 1Þ=2� þ ::::þ y½n� þ ::::þ y½nþ ðW1 � 1Þ=2�Þ ð12Þ

Here,W1 represents the window size of the S1-peak or S2-peak duration. The resulting
value is rounded to the nearest odd integer. The exact value forW1 of 130 ms is determined
after a brute force search, which is explained in the results section. The second moving average
(MAwave) emphasizes the beat area to be used as a threshold for the first moving average,
shown as a dashed signal (Fig 5f), and is given by

MAwave½n� ¼
1
W2

ðy½n� ðW2 � 1Þ=2� þ ::::þ y½n� þ ::::þ y½nþ ðW2 � 1Þ=2�Þ ð13Þ

Fig 6. Power spectrum of S1 and S2 segments compared to the power spectrum of wavelet details
used in all methods at the second intercostal space (left) and apex (right). A total of 284 heart beats
used in this analysis for subjects with mean PAp > = and < 25 mmHg. Note, the sampling frequency of the
heart sounds is 4000 Hz.

doi:10.1371/journal.pone.0143146.g006
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Here,W2 represents the window size of approximately one heart sound (S1 or S2) duration.
Its value is rounded to the nearest odd integer. The exact value forW2 of 270 ms is explained
later in the results section.

Thresholding. The equation that determines the offset level (α) is b�y , where β = 0.03, is
discussed later in the results section. The �y is the statistical mean of the squared filtered heart
sound signal. The first dynamic threshold value is calculated by shifting the MAwave signal with
an offset level α, as follows:

THR1 ¼ MAwave þ α: ð14Þ

In this stage, the blocks of interest are generated by comparing the MApeak signal with
THR1, in accordance with lines 8–15 shown in the pseudocode of algorithm V (Table 8). Many
blocks of interest will be generated, some will contain the heart sound feature (S1 and S2
waves), and others will contain primarily noise. Therefore, the next step is to reject blocks that
result from noise. Rejection is based on the anticipated S1/S2-peak width. In this paper, the
undesired blocks were rejected using a threshold called THR2, which rejects the blocks that
contain diastolic wave and noise. By applying the THR2 threshold, the accepted blocks contain
S1 and S2 waves only,

THR2 ¼ BlockSize: ð15Þ

The threshold THR2 corresponds to the anticipated S1/S2 block duration. If a block is wider
than or equal to THR2, it is classified as S1 and S2 waves. If not, it will be classified as noise.
The last stage is to find the maximum absolute value within each block to detect the S1 and S2
waves; the code lines of this step are lines 17–24 in the pseudocode of algorithm V.

Consecutive heart sounds are shown in Fig 5f to demonstrate the use of two moving aver-
ages to generate blocks of interest. Not all of the blocks contain potential S1 and S2 waves;
some blocks are caused by noise and need to be eliminated. Blocks that are smaller than the
expected width for the S1 and S2 wave duration are rejected. The rejected blocks are considered
to be noisy blocks, and the accepted blocks are considered to contain either S1 or S2 waves.

The last step is to determine S1 and S2 from the detected waves, which correspond to code
lines 25–32 in Table 8. We differentiated the detected waves to determine S1 and S2 based on
the duration among them (line 25, Table 8). To distinguish S1 from S2 blocks, another thresh-
old is used, based on the observation that, in our subjects, diastole is longer than systole. The
detected S1 and S2 waves are compared to the annotated S1 and S2 waves to determine whether
they were detected correctly. The search range for the true S1 and S2 waves is fixed to ± 5 ms
for all algorithms, to ensure consistency of comparison.

Results
We evaluated the performance of S1 and S2 wave-detection algorithms using two statistical
measures: SE = 100×(TP/(TP + FN)) and +P = 100×(TP/(TP + FP)), where TP is the number
of true positives (S1 and S2 waves detected as S1 and S2 waves), FN is the number of false nega-
tives (S1/S2 waves which have not been detected), and FP is the number of false positives (non-
S1/S2 waves detected as S1/S2 waves). The sensitivity SE reports the percentage of true beats
that were correctly detected by the algorithm. The positive predictivity +P reports the percent-
age of beat detections that were true beats. The function of the S1 and S2 wave detector (cf.
pseudocode of algorithm V) has five inputs: the heart sound signal (HSsignal), event-related
durationsW1 andW2, anticipated block width (BlockSize), and the offset (β). Any change in
these parameters will affect the overall performance of the proposed algorithm. These parame-
ters are interrelated and cannot be optimized in isolation. A rigorous optimization via brute-
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force search, over all parameters, is conducted (cf. Table 9). As discussed in the training subsec-
tion, the data used in this training phase were heart sound signals collected at the apex from
subjects with a mean PAP� 25 mmHg. During the optimization phase, the window size of the
first moving average (W1) varies from 20 ms to 200 ms, whereas the window size of the second
moving average (W2) varies from 30 ms to 400 ms. The offset α was tested over the range
0–10% of the mean value of the squared filtered heart sound signal. According to our investiga-
tion (Fig 1), the duration of S1 and S2 waves is roughly 120 ± 30 ms. The algorithm uses an
optimal value ofW1 (130 ms) corresponding to the duration of S1 and S2. The optimal values
for the moving-average window sizes and offset areW1 = 130 ms,W2 = 270 ms, BlockSize = 60
ms, and α = 0.03 z�(Table 9). The S1 and S2 detection algorithm was adjusted with these

Table 8. Pseudocode of Method V. The function that detects the first heart sound (S1) and the second
heart sound (S2) waves has five inputs: the heart sound signal (HSsignal), event-related durationsW1,W2,
anticipated block width (BlockSize), and the offset (β). Daubechies 'db6' wavelet is used for filtering the signal
and the wavelet detail D6 represents the heart sounds in the analysis.

Algorithm V: Detector (HSsignal, W1, W2, BlockSize, β)

1 S1 = {}, S2 = {}

2 x = Wavelet (HSsignal, 'db6', D6)

3 y = square(x)

4 MApeak = MA(y, W1)

5 MAwave = MA(y, W2)

6 �y = mean(y)

7 α = b�y

8 THR1 = MAwave + α

9 for n = 1 to length(MApeak) do

10 if MApeak[n] > THR1 then

11 BlocksOfInterest[n] = 0.1

12 else

13 BlocksOfInterest[n] = 0

14 endif

15 endfor

16 Blocks = onset and offset from BlocksOfInterest

17 set THR2 = BlockSize

18 for j = 1 to number of Blocks do

19 if width(Blocks[j]) � THR2 then

20 S1,2 = index of max. value within the block

21 else

22 ignore block

23 endif

24 endfor

25 S = Diff(S1,2)

26 for k = 1 to number of waves in S step 2 do

27 if S[k] < S[k + 1] then

28 S1 = S[k], S2 = S[k + 1]

29 else

30 S1 = S[k + 1], S2 = S[k]

31 endif

32 end for

33 return (S1, S2)

doi:10.1371/journal.pone.0143146.t008
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optimal parameters. Then, the detector was tested on the three datasets mentioned in the train-
ing subsection without further adjustment. No adjustments were made after the detector was
tested. The algorithm is fully automated and runs without the need for any human guidance.

We collected recordings from 22 subjects (9 males and 13 females) with a median age of 6
years (range: 3 months to 19 years). Eleven subjects had a mean PAP< 25 mmHg (group 1)
(range 8–24 mmHg). Elven subjects had a mean PAP� 25 mmHg (group 2) (range 25–97
mmHg).

Table 10 demonstrates the performance of the described algorithms on the data collected
with various mean PAP in terms of SE and +P. It also compares the advantages of each algo-
rithm through the used wavelet coefficients, feature extraction, and thresholds. Method I intro-
duced by Liang et al., which detects S1 and S2 peaks in heart sounds based on wavelet D5

feature, provides the highest detection rate after Method V. However, it is not optimal for
detecting S1 and S2 peaks in heart sounds under varying conditions. Method I generates many

Table 9. A rigorous optimization over all parameters of Method V: event-related durationsW1,W2, anticipated block width (BlockSize), and the off-
set (β). All possible combinations of parameters (46,376 iterations) have been investigated and sorted in descending order according to their overall accu-
racy. The data used in this training phase was heart sounds measured at apex for all subjects with mean PAp� 25 mmHg. The overall accuracy is the
average value of SE and +P.

Iterations W1 (sec) W2 (sec) BlockSize (sec) β (%) Overall Accuracy (%) (%)

1 0.13 0.27 0.06 3 80

2 0.15 0.23 0.08 1 80

3 0.16 0.24 0.08 1 80

4 0.10 0.28 0.06 4 80

5 0.13 0.24 0.07 2 80

6 0.12 0.22 0.06 2 80

7 0.14 0.22 0.06 2 80

8 0.13 0.24 0.06 2 80

9 0.11 0.24 0.06 3 80

10 0.13 0.23 0.06 2 79

11 0.13 0.28 0.06 3 79

12 0.12 0.25 0.06 3 79

13 0.11 0.27 0.07 3 79

14 0.09 0.30 0.05 5 79

15 0.09 0.31 0.02 6 79

16 0.09 0.32 0.02 6 79

17 0.12 0.26 0.06 3 79

18 0.08 0.23 0.06 4 79

19 0.09 0.29 0.04 6 79

20 0.13 0.26 0.07 2 79

. . . . .

. . . . .

. . . . .

. . . . .

46,372 0.06 0.1 0.06 0 21

46,373 0.02 0.03 0.01 0 21

46,374 0.05 0.085 0.05 0 20

46,375 0.04 0.06 0.04 0 13

46,376 0.02 0.03 0.02 0 8

doi:10.1371/journal.pone.0143146.t009
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FPs and FNs in detecting both S1 and S2 peaks after applying a fixed threshold THR, as shown
in Fig 7a.

Method II was the least accurate of the five algorithms, mainly because of the three thresh-

olds. The first threshold (THR1 ¼ ÊðD6Þ � lme) shifts the feature, in most of the cases, above
the A5 signal as shown in Fig 7b; thus, it provided the largest number of FPs and FNs. It seems
that the use of a dynamic threshold that depends on the processed heart sound is a better idea
than using a fixed threshold, as used in Method I. However, the application of the THR1 was
unsuccessful and needs more investigation. Method III and Method IV generally incurred the
same set of errors as Method I in our study, but with a smaller number of FNs, using fixed
thresholds, as shown in Fig 7c and 7d. However, the proposed algorithm (Method V) scored
the highest sensitivity and positive predictivity rates among the five algorithms. Two event-
related moving averages, as shown in Fig 7e, may be more efficient than the THR1 threshold
introduced in Method II and the fixed thresholds introduced in Methods I, III and IV. The pro-
posed algorithm appears to be more robust against effects of non-stationarity, fast heart rate,
and low SNR. However, the algorithm failed if S1 or S2 were low amplitude. In such cases,
applying a simple level threshold is not an effective approach. The proposed Method V, how-
ever, handles varied amplitudes better than the other four algorithms and may be more ampli-
tude-independent.

Discussion
The purpose of our research is to develop a non-invasive screening tool for use by inexperi-
enced clinical staff so that PAHmay be detected early and result in more timely and appropri-
ate referral to a specialist center for further evaluation by echocardiography and cardiac
catheterization.

The main findings of our investigation were that a new Daubechies-based algorithm using
event-related moving averages detected S1 and S2 robustly and accurately. The developed algo-
rithm performed better than the fixed threshold methods. Moreover, it is apparent (cf. Figs 2
and 6) that the other methods did not focus on the frequency range of S1 and S2, which consid-
erably reduced the overall performance. The sensitivity and positive predictivity of our algo-
rithm were 69.84% and 67.87% respectively. In comparison, the sensitivity and positive
predictivity of Liang’s algorithm were 58.91% and 41.82%, Kumar’s algorithm 18.88% and
11.93%, Wang’s algorithm 49.80% and 44.86%, and Zhong’s algorithm 42.68% and 52.49%. In

Table 10. Comparison of the first (S1) and second heart sound (S2) detection algorithms. To evaluate the performance of the detectors, two statistical
measures were used: SE = 100×(TP/(TP+FN))and +P = 100×(TP/(TP+FP)), where TP is the number of true positives (S1/S2 detected as S1/S2), FN is the
number of false negatives (S1/S2 has not been detected), and FP is the number of false positives (non-S1/S2 detected as S1/S2).

Method WT WT
Coefficients

Feature Extraction Threshold(s) SE
(%)

+P
(%)

Method I db6 D5 2nd Shannon energy
THR ¼ 1

n

Xn

i¼1

ÊðiÞ 59 42

Method II db6 D6 2nd Shannon energy and wavelet
approximation A5

THR1 ¼ ÊðD6Þ � lme, 250 ms > THR2 > 30 ms, and
THR3 = 50ms

19 12

Method
III

db6 D3+D4 +D5 3rd Shannon energy
THR ¼ 1

n

Xn

i¼1

ÊðiÞ 50 45

Method
IV

db5 D3+D4+D5+D6 Wavelet approximation A6 THR1 = 0.2 and THR2 = 0.1 43 53

Method V db6 D6 Generating blocks of interest THR1 = MAwave+α and THR2 = BlockSize 70 68

doi:10.1371/journal.pone.0143146.t010
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Fig 7. Methods performance in detecting first (S1) (left column) and second S2 (right column) heart sound waves. The black circle represents the
annotated S1/S2 wave, and the green star represents the detected S1/S2 wave using each algorithm. If the black circle is empty it means a false negative,
while the red circle means a false positive.

doi:10.1371/journal.pone.0143146.g007
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addition, our algorithm outperformed the discussed methods up to a signal-to-noise-ratio
(SNR) of 10 dB.

Our main objective was to evaluate the robustness of the algorithms against the low SNR
and high heart rates of children with a mean PAP� 25 mmHg. The heart sounds analysis was
difficult because heart sound amplitudes varied with time, and simple level thresholds did not
optimally detect S1 and S2 waves. This reduced the algorithm detection performance. Also,
heart sounds may be distorted with low and high frequencies because of breathing, muscle
movements, and ambient noise; however, choosing the most appropriate wavelet coefficients
may minimize these confounding effects.

All of the algorithms failed to some degree. Possible reasons for this included false-negative
detection of the heart sounds because of tachycardia or the fixed search range of 5 milliseconds.
Alternatively there may have been false-positive detection of the heart sounds because of a
decrease in amplitude (S1 has a lower amplitude than S2 or vice versa) or a low SNR.

The robustness of the five algorithms was tested against additive white Gaussian noise
contamination. All heart sounds were tested against varying signal-to-noise ratios. The white
noise was added above the noise collected during the heart sound measurement. Fig 8 shows
the performance of the five algorithms at varying noise levels. As expected, the performance
of the algorithms degraded with a decrease in signal-to-noise ratio. However, the study
showed that Method II is very sensitive to noise while the proposed algorithm (Method V)
outperformed the other methods up to SNR of 10 dB. The accuracy of the reported algo-
rithms, when applied to our clinical data, is lower than has been reported in the literature.
There are many factors that might account for this including the sensor, sampling frequency,
and algorithm implementation. For example Kumar et al. used a Meditron stethoscope,
which has a good signal to noise ratio and an extended frequency range digitized using a
16-bit analogue to digital converter at 44.1 kHz [8, 14]. Liang et al. used a customized elec-
tronic stethoscope with 16-bit accuracy using 11025 Hz sampling frequency [7, 12, 13]. Per-
haps their sensors were more robust to noise compared to ours, and, therefore, the S1 and S2
waves were clearer. In addition, our stethoscope sensor has a lower sampling frequency of
4000 Hz. One of the main reasons behind the relatively low accuracy may be the implementa-
tion of the discussed algorithms. The last step of each algorithm, which determines if the
detected peak could be considered as an S1 or S2 wave has not undergone robust discussion
in the literature. Based on the training and testing phases (cf. 9 and 10), the proposed algo-
rithm performed better than the other algorithms at detecting S1 and S2 peaks in all subjects
with mean PAP� 25 mmHg and mean PAP < 25 mmHg at both the cardiac apex and 2nd

LICS.
All of the algorithms we evaluated do not impose an extensive computational overhead

while avoiding the manual segmentation and patient-specific modifications that are often
required in biosignal analysis.

As far as we are aware the comparison of different algorithms and their performance on a
single data set has not been reported.

Although our long-term goal is to non-invasively detect PAH this was not the main focus of
the work described in the current manuscript. In this paper we attempted to evaluate the auto-
matic detection of S1 and S2 in subjects with and without PAH. Our next step would be to use
the heart sounds in particular the characteristics of S2 to diagnose PAH in a similar manner to
clinicians who determine the presence of PAH by the behavior of the 2nd heart sound. How-
ever, an open question for future studies is to explore the minimum number of accurately iden-
tified S1 and S2 events for automatic detection of PAH from the acoustic behavior of the heart
sounds.
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Conclusion
A Daubechies-based algorithm using event-related moving averages detected S1 and S2 with
robustness and accuracy. The developed algorithm performed better than the fixed threshold
methods. An algorithm to detect S1 and S2 waves in heart sounds measured from children
with and without pulmonary arterial hypertension has not been addressed in the literature. We
have developed a robust algorithm for detecting S1 and S2 peaks in the heart sounds of children
with low amplitude, non-stationary effects, and high heart rates. The algorithm was evaluated
using 44 records, containing 1,178 heartbeats, with an overall sensitivity of 69.84% and positive
predictivity of 67.87%. Based on our spectral analysis, we recommend the use of wavelet ‘D6’

detail for detecting S1 and S2 waves because it captured most of the energy contained within S1
and S2.

Fig 8. Performance at different signal-to-noise ratio (SNR) levels. It is clear that the overall accuracy of Method V increases when the SNR increases
compared to the other methods.

doi:10.1371/journal.pone.0143146.g008
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