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Abstract—Protein phosphorylation/dephosphorylation is

the central mechanism of post-translational modification

which regulates cellular responses and phenotypes. Due

to the efficiency and resource constraints of the in vivo

methods for identifying phosphorylation sites, there is

a strong motivation to computationally predict potential

phosphorylation sites. In this work, we propose to use

a unique set of features to represent the peptides sur-

rounding the amino acid sites of interest and use feature

selection support vector machine to predict whether the

serine/threonine sites are potentially phosphorylable, as

well as selecting important features that may lead to phos-

phorylation. Experimental results indicate that the new

features and the prediction method can more effectively

predict protein phosphorylation sites than the existing

state of the art methods. The features selected by the our

prediction model provides biological insights to the in vivo

phosphorylation.

Index Terms—Protein Phosphorylation, Support Vector

Machine, Sparse Learning, Feature Selection, Position-

Specific Scoring Matrix.

I. INTRODUCTION

Protein phosphorylation happens in the post-

translational stage of prokaryotes and eukaryotes in

which a protein kinase modifies a protein by adding a

covalently bound phosphate group to a residue (usually

serine, threonine or tyrosine). The protein regulation

by phosphorylation, also known as phosphoregulation,

is one of the most common regulations of protein

function. A protein switches between a phosphorylated

and an unphosphorylated form in almost all cases of

phosphoregulation, and if one of these two is an active

form, the other one is inactive. The phosphoregulation,

which is essentially the transportation of energy groups,

plays a central role in the regulation of almost all cellular

behaviors [29], such as apoptosis [36], regulation of

transcription [30], DNA repair [34], metabolism [2],

cellular differentiation [15], environmental stress

response [32], cellular mobility [24], and immune

response [11]. Whether a protein has phosphorylized

sites is mostly addressed, while which sites on a protein

that are phosphorylated still remains challenging [21].
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In vivo, researchers discovered novel phosphorylation

sites mostly through low-throughput biological tech-

niques. For example, many labs used the site-directed

mutagenesis based technique to characterize specific

phosphorylation events [19]. Such techniques are usually

time-consuming and costly. More recently, the high-

throughput mass spectrometry based technique has sig-

nificantly accelerated the identification of novel sites

[7]. Nonetheless, this technique also has limitations,

and requires very expensive instruments and specialized

expertise that are not available in typical laboratories

[29].

Due to the limitations of both low-throughput and

high-throughput in vivo techniques for phosphorylation

site discovery, researchers are paying much attention

on the in vitro approaches. These in vitro approaches

usually only require a protein sequence as input, and

output some quantified measurement that indicates how

likely a serine, threonine or tyrosine (S/T/Y) residue in

that sequence is phosphorylated. Many computationally

predicted phosphorylation sites have been experimentally

validated in vivo [1], [4], [27].

Previous researches indicate that only when the amino

acids surrounding a given S/T/Y residue fit certain

patterns, the residue’s phosphorylation can be catalyzed

by a protein kinase [3]. However, sequence motifs that

describe these patterns are neither sensitive nor specific

(i.e., many patterns may occur at random) [1], [26].

Therefore, advanced machine learning methods that can

identify more complex and subtle patterns are required.

Many machine learning methods have been proposed

which use position-specific scoring matrices (PSSMs),

decision trees, genetic algorithms, artificial neural net-

works (ANNs), and support vector machines (SVMs). As

the simplest technique, PSSM is a matrix in which rows

represent amino acids and columns represent positions in

a multiple sequence alignment; PSSM gives a weighted

match to any given substring of fixed length. More

complex PSSM variations are also developed in practice

[12], [14]. However, PSSMs are not able to detect

combinations of multiple amino acids patterns which

may be important in practice [1]. The two most popular

machine learning techniques, ANNs and SVMs, have

proven to capture more complex patterns [1], thus are

more widely adopted in phosphorylation site prediction,

with the tradeoff of increasing computational complexity.

In ANN classifiers, the classification function are usually

implicit due to multiple neural layers and nonlinear

weight functions [1], [9], [21]. In most SVM classifiers

for protein phosphorylation site prediction, due to the

adopted input usually being sparse coding of the peptides

surrounding amino acid sites of interest, it is usually

not clear which features essentially lead to the phospho-

rylation [5], [6], [10], [31], [33]. Some other methods

employ the secondary structure [8] or 3D structural

information [10], [16], [22], [25], [28].

After reviewing most machine learning methods in

protein phosphorylation prediction, Trost et al. raise an

important question: do they model the actual biological

mechanisms underlying protein kinase recognition, or do

they merely recognize patterns [29]? Trost et al. argue

that the latter is more or less the case and propose that
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while pattern recognition has resulted in much success,

it is plausible that more closely modeling the underlying

biology of substrate recognition will result in the greater

gains in predictive performance.

In this paper, we use 26 explicit sequence-based

features for the phosphorylation site prediction. Mean-

while, to select important features that may provide

insights to the phosphorylation mechanism, we use the

L1 norm support vector machine classifier. The rest of

this paper is organized as follows: In Section II the

detailed features and the classification models will be

introduced; in Section III, we will introduce the dataset

we used, the other methods we compare our method

to, the evaluation criteria, and the experimental results;

Section IV concludes the paper after discussion.

II. METHODS

A. Features

Rather than using sparse coded peptides as the input

for a classifier, we use 26 explicit features for the

peptides surrounding the amino acid of interest. The

first 20 features are the 20 amino acid composition

of the peptide, which is the occurrence of each amino

acid divided by the peptide length. Although we lose

some ordering information by treating each amino acid

composition separately, considering the peptides we use

are very short (e.g., 9-15 in length) and that the PSSM

score will be used later, the information loss is not sig-

nificant. Then we use the average hydrophobicity score

and the average relative surface accessibility (RSA) score

of the given peptide, that is, we sum up each individual

amino acid’s hydrophobicity (or RSA) score and divide

it by the peptide length. The hydrophobicity scores and

RSA scores are predicted by NetSurfP [23] using the

whole protein sequence as inputs. The next 3 features

are the percentage of the 3 predicted secondary structure

composition, i.e., alpha helix, beta sheet, and random coil

as they are believed to be important features in previous

study [8]. Similar to the previous two scores, these three

scores are also calculated based on NetSurfP’s secondary

structure predictions. The last feature we use is the

position-specific scoring matrix (PSSM) score of a given

peptide with respect to the positive training data [12],

[14]. To calculate the PSSM score, we first construct

the PSSM matrix based on the positive training data so

that each row represents a symbol of the 20 amino acid

alphabet and each column represents a position in the

peptide. Each element of the matrix is the frequency of

certain amino acid appearing in certain position. For a

target peptide, its PSSM score is the sum of its amino

acid in corresponding positions in the matrix. Note that

the PSSM considers amino acid ordering information

explicitly.

B. L1 norm SVM

We use both L2 norm SVM and L1 norm support

vector machines for predicting/classifying a given amino

acid site’s phosphorylation. The advantage of using L2

norm SVM is that the original feature space can be

mapped to higher dimensional space through kerneliza-

tion, while the advantage of using L1 norm SVM is that

it can perform feature selection as well as classification.
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The L1 norm SVM is thus what we mainly recommend

to use for this work since we aim to not only do the

phosphorylation site prediction but also aim to discover

important features that are biologically relevant to the

protein phosphorylation.

The primal form of L1-norm SVM is:

min
w,b,ξ

β∥w∥1 + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − 1b),

ξ ≥ 0.

(1)

where △(y) denotes putting the vector y on the main

diagonal of a square matrix. X ∈ Rn×p, y ∈ Rn, n is

the number of peptides, and p is the number of features.

Since

∥w∥1 = min
γ≥0

1

2

∑
j

(
w2
j

γj
+ γj)

= min
γ≥0

1

2
(wTG−1w + γT1)

[20], where G = △(γ), (1) becomes

min
w,b,ξ,γ

β

2
(wTG−1w + γT1) + 1T ξ

s.t. : ξ ≥ 1−△(y)(Xw − 1b),

ξ ≥ 0, γ ≥ 0.

(2)

By applying Lagrangian multipliers and setting the

partial derivative equal to 0, (2) becomes

min
γ

max
λ

λT1− 1

2β
λT△(y)XGXT△(y)λ+

β

2
γT1

s.t. : 0 ≤ λ ≤ 1,

λTy = 0,

γ ≥ 0.

(3)

Crucially, (3) is convex and can be solved globally

[13]. Hence it provides an optimal form of feature

selection that can be efficiently obtained in conjunction

with SVM training.

III. EXPERIMENTAL RESULTS

A. Dataset

We used the dataset collected and compiled by Miller

et al. [21]. This dataset contains only serine and threo-

nine phosphorylation sites in bacteria and the positive

data points are obtained from the three sources: 14

sites from the Phosphorylation Site Database [35], 71

sites from B. subtilis [18] and 102 sites from E. coli

[17]. The negative data points that do not contain serine

and threonine phosphorylation are verified by the Mass

Spectrometry techniques. After homology reduction us-

ing CD-HIT with default values and 90% sequence

identity threshold in both full protein length and 13-mer

peptide level, Miller et al. randomly downsampled the

negative set to include about six negative examples per

positive example to balance the number of positive data

points and negative data points since machine learning

methods work poorly on unbalanced datasets. Figure

1 demonstrates the frequency logos of the 20 amino

acid composition in overall positive dataset (including

both Serine and Threonine) and Serine-, Threonine-only

positive dataset, while Figure 2 demonstrates logos of

the negative datasets, respectively.

B. Comparison Methods and Evaluation

To compare our methods to existing methods, we

choose two widely recognized and representative meth-
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Fig. 1. The frequency logo of the 20 amino acid composition in
overall positive dataset (including both Serine and Threonine) and
Serine-, Threonine-only positive dataset.

ods NetPhosBac [21] and NetPhos. NetPhosBac is de-

signed specifically for predicting phosphorylation in bac-

teria data, while NetPhos is designed for Eukaryotic data.

All the methods are performed under the 4-fold cross

validation scheme described in [21] and are repeated

100 times. We also did the experiments on leave-one-

out (LOO) cross validation, but since NetPhosBac and

NetPhos were originally evaluated in 4-fold cross vali-

dation and the LOO results are not available, we only

compare L1 norm SVM and L2 norm SVM (both linear
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Fig. 2. The frequency logo of the 20 amino acid composition in
overall negative dataset (including both Serine and Threonine) and
Serine-, Threonine-only negative dataset.

kernel and RBF kernel) under the LOO cross validation

setup.

We use various criteria to evaluate the effectiveness

of different methods, including area under ROC curve

(AROC), area under precision-recall curve (AUPR), F-

measure, precision, and recall. The AROC and AUPR are

appropriate performance measures for binary classifica-

tion because it is not necessary to choose an arbitrary

threshold for defining if a score signifies a positive or

negative prediction. The precision and recall scores of
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each method are obtained at the cutoff threshold where

the F-measure score is maximized.

C. Results

Tables I and II demonstrate the evaluation scores

AROC, AUPR, FMeasure, Precision, and Recall, of the

L1 norm SVM, linear kernel L2 norm SVM, RBF kernel

L2 norm SVM, NetPhosBac, and NetPhos prediction

methods, under 4-fold and LOO cross validation setup

respectively. The corresponding ROC curve plot and

precision-recall curve plot are shown in Figures 3, 4, 5,

and 6. The AROC, AUPR, and FMeasure scores indicate

that the L1 norm SVM is the most effective method for

classification based on the 26 features we use, followed

by linear kernel L2 norm SVM and RBF kernel L2 norm

SVM. The NetPhosBac method performed less effective

than the three SVM based approaches. Usually, the RBF

kernel L2 SVM is believed to have better performance

than linear kernel L2 norm SVM, especially on datasets

that have a small number of features, but it is not the

case on this dataset.

Table III lists the values of the feature selection vector

w obtained from training the L1 norm SVM on the whole

dataset (140 positive data points and 841 negative data

points). In principle, the greater the absolute value of

a feature’s w value is, the more it is connected to the

phosphorylation in vivo. For example, by investigating

both Figures 1 and 2 and Table III, we can see that

Arginine and Histidine have the largest w values and

indeed their frequencies are very different between their

positive logo profiles and negative logo profiles. These
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Fig. 3. The ROC curves of the prediction results of the L1 norm
SVM, linear kernel L2 norm SVM, RBF kernel L2 norm SVM,
NetPhosBac, and NetPhos methods based on 4-fold cross validation
setup.
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Fig. 4. The ROC curves of the prediction results of the L1 norm
SVM, linear kernel L2 norm SVM, and RBF kernel L2 norm SVM
based on leave-one-out cross validation setup.

discoveries are consistent with the biochemistry principle

as Arginine and Histidine both contain chemical group

NH+ , which is an essential component in a phosphory-

lation process, because SN2 reaction in phosphorylating

an -OH group requires the help of electron-neutralizing

group, i.e., NH+. Methionine has the largest negative
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Methods AROC AUPR FMeasure Precision Recall
L1SVM 0.7833 0.3598 0.4259 0.3151 0.6571

L2SVM Linear 0.7708 0.3426 0.4152 0.3019 0.6643
L2SVM RBF 0.7566 0.3401 0.4092 0.3017 0.6357
NetPhosBac 0.7416 0.3340 0.4116 0.2997 0.6571

NetPhos 0.5606 0.2369 0.2610 0.1785 0.4857

TABLE I
THE EVALUATION SCORES AROC, AUPR, FMEASURE, PRECISION, AND RECALL, OF THE L1 NORM SVM, LINEAR KERNEL L2 NORM
SVM, RBF KERNEL L2 NORM SVM, NETPHOSBAC, AND NETPHOS PREDICTION METHODS, UNDER 4-FOLD CROSS VALIDATION SETUP.

Methods AROC AUPR FMeasure Precision Recall
L1SVM 0.8242 0.4353 0.4651 0.3448 0.7143

L2SVM Linear 0.7965 0.3606 0.4289 0.2981 0.7643
L2SVM RBF 0.7571 0.3174 0.4027 0.2932 0.6429

TABLE II
THE EVALUATION SCORES AROC, AUPR, FMEASURE, PRECISION, AND RECALL, OF THE L1 NORM SVM, LINEAR KERNEL L2 NORM

SVM, RBF KERNEL L2 NORM SVM, NETPHOSBAC, AND NETPHOS PREDICTION METHODS, UNDER LEAVE-ONE-OUT CROSS
VALIDATION SETUP.
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Fig. 5. The precision-recall curves of the prediction results of the L1

norm SVM, linear kernel L2 norm SVM, RBF kernel L2 norm SVM,
NetPhosBac, and NetPhos methods based on 4-fold cross validation
setup.

value and indeed it appears much more frequently in

negative data points than in positive data points. Also,

according to the w values, hydrophobicity score isn’t

a very significant feature; relative surface accessibility
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Fig. 6. The precision-recall curves of the prediction results of the
L1 norm SVM, linear kernel L2 norm SVM, and RBF kernel L2

norm SVM methods based on leave-one-out cross validation setup.

(RSA) score is fairly important; Alpha helix and random

coil appear more in negative data points than in positive

data points; the PSSM score is an important feature

which is in accord with common sense. Table III also

lists the correlation coefficient between each individual
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feature and the training label. We can see that the

correlation coefficient scores associated with the features

are strongly connected to the trained w values. We

calculated the correlation coefficient score between the

w vector and coef. vector, which is 0.75 and re-affirms

their connections. Based on these, we may argue that

our L1 norm SVM can not only predict the protein

phosphorylation sites more accurately, but also select the

important features that are connected to the underlining

biological reasons that cause protein phosphorylation.

IV. DISCUSSION AND CONCLUSION

In this work, we propose to use a unique set of features

to represent the peptides surrounding the amino acid

sites that may be potentially phosphorylated. We use L1

norm feature selection support vector machine to predict

whether the sites are phosphorylable, as well as selecting

important features that may cause the phosphorylation.

The feature selection functions in our prediction model

were never investigated before to the best of our knowl-

edge, making our method a novel approach in protein

phosphorylation prediction area. Experimental results

indicate that the features and the prediction method can

more effectively predict protein phosphorylation than

existing state of the art methods. The features selected

by the our prediction model provide insights into the

biochemical cause of protein phosphorylation in vivo.
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