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Abstract

We consider the problem of learning Bayesian
network classifiers that maximize the margin
over a set of classification variables. We find
that this problem is harder for Bayesian networks
than for undirected graphical models like maxi-
mum margin Markov networks. The main dif-
ficulty is that the parameters in a Bayesian net-
work must satisfy additional normalization con-
straints that an undirected graphical model need
not respect. These additional constraints compli-
cate the optimization task. Nevertheless, we de-
rive an effective training algorithm that solves the
maximum margin training problem for a range
of Bayesian network topologies, and converges
to an approximate solution for arbitrary network
topologies. Experimental results show that the
method can demonstrate improved generaliza-
tion performance over Markov networks when
the directed graphical structure encodes relevant
knowledge. In practice, the training technique al-
lows one to combine prior knowledge expressed
as a directed (causal) model with state of the art
discriminative learning methods.

1 Introduction

When training probability models for classification tasks
it is often recommended that the model parameters be opti-
mized under a discriminative training criterion such as con-
ditional likelihood (Friedman et al., 1997; Lafferty et al.,
2001; Lafferty et al., 2004). However, general Bayesian
network classifiers have rarely, if ever, been trained to max-
imize the margin—arguably the most discriminative crite-
rion available. Recently, it has been observed that undi-
rected graphical models can be efficiently trained to maxi-
mize the margin, even simultaneously, over a set of classi-
fication variables (Taskar et al., 2003; Taskar et al., 2004;
Altun et al., 2003; Tsochantaridis et al., 2004). However,
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these training algorithms have adopted the Euclidean nor-
malization constraint of support vector machines (SVMs),
which can be accommodated in their frameworks because
they rely on an undirected graphical model representation
which allows a single arbitrary normalization.

In this paper we consider applying the maximum margin
methodology to Bayesian networks; that is, directed graph-
ical models. Unlike Markov network models, Bayesian
networks require that additional normalization constraints
be satisfied; namely that the local clique potentials rep-
resent conditional probability distributions. These con-
straints are very different from the standard Euclidean nor-
malization constraints of SVMs. Nevertheless, they do not
preclude the possibility of learning large margin classifiers.
Our goal is simply to exploit the benefits of learning max-
imum margin classifiers, while still being able to represent
the learned classifier as a Bayesian network.

There are several motivations for attempting to maintain
a Bayesian network representation. First, the classifica-
tion model being learned could be a fragment of a much
larger probabilistic causal model. In this case, maintaining
a Bayesian network representation could allow one to in-
tegrate the learned model with a pre-existing background
model without additional effort. Second, the normalization
constraints asserted by a directed graphical structure cap-
ture nonparametric causal knowledge about the domain.
Therefore, respecting these constraints allows one to ex-
ploit the advantages of Bayesian networks for capturing in-
tuitive causal structure. Note that removing the normal-
ization constraints would turn the Bayesian network into
a Markov network, and this would necessarily remove the
causal knowledge that was originally encoded by the local
normalization constraints.

To understand both the prospects and limitations of learn-
ing maximum margin Bayesian network classifiers we pro-
ceed as follows. First, after preliminary definitions in Sec-
tion 2, we investigate the notion of classification margin for
Bayesian network classifiers in Section 3, and relate this to
the common conditional likelihood criterion of graphical
models. We then present a convex relaxation in Section 4



that can be used to derive an effective training algorithm
(Section 5). The algorithm solves a wide range of prob-
lems exactly and otherwise provides an effective heuristic
for finding approximate solutions (Section 6). In Section 7
we then present experimental results which show that the
causal information in Bayesian networks can yield effec-
tive generalization performance when the directed graphi-
cal structure captures relevant causal knowledge. Finally,
we extend the approach to multivariate classification in
Section 8 and present further experimental results in Sec-
tion 9.

2 Bayesian networks

We assume we are given a Bayesian network which is de-
fined by a directed acyclic graph over variables X1, ..., X,,,
where the probability of a configuration x is given by
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Here 6 denotes the parameters of the model; j ranges over
conditional probability tables (CPTs), one for each variable
Xj; 1.y denotes the indicator function; x; denotes the local
subconflguratlon of x on (z;,%.(;)); a denotes the set of
values for child variable x;; and b denotes the set of con-
figurations for z;’s parents x ;). The form (1) shows how
Bayesian networks are a form of exponential model

exp (¢(x) " w) (@3]

using the substitution w,ab =In ejab, where ¢(x) denotes
the feature vector (...1(x,—ab)-- )T over j,a,b. The key
aspect of the exponential form is that it expresses p(x|w)
as a convex function of the parameters w, which would
seem to suggest convenient optimization problems. How-
ever, Bayesian networks also require the imposition of ad-
ditional normalization constraints over each variable

> emer = 1forallj,b (3)

P(x|w)

Unfortunately, these constraints are nonlinear, even though
the log-objective is linear in w. Removing these constraints
greatly reduces the computational challenge of training,
but also removes the causal interpretability of the model.
Therefore, our goal in this paper is to maintain the Bayesian
network constraints while investigating the consequences.

3 Discriminativetraining criteria

We initially assume there is a single classification variable
Y taking on values y € {1,..,K}. (We will extend this
to multiple classification variables in Section 8 below.) To

make predictions, one usually considers the maximum con-
ditional probability prediction arg max,, P(y|x). Note that
for graphical models the conditional probability depends
only on variables that share some common function (CPT)
with Y (the Markov blanket of Y), and therefore we will
restrict attention to this set of variables henceforth.

We are interested in learning the parameters for a
Bayesian network classifier given training data of the form
(x'yh), ..., (xTyT). Two standard training criteria to maxi-
mize during training are the joint loglikelihood and the con-
ditional loglikelihood, given respectively by

T
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Much of the literature suggests that the latter objective is
better suited for classification (Lafferty et al., 2001; Fried-
man et al., 1997), although conditions have been identi-
fied where the former is advantageous (Ng & Jordan, 2001;
Raina et al., 2003).

In this paper we investigate an alternative criterion based on
the large margin criteria of SVMs. In particular, we adopt
the multiclass margin definition of (Crammer & Singer,
2001). In our context, this objective can be cast maximiz-
ing the minimum conditional likelihood ratio (MCLR)

T Py'x',0)
MCLR() = minmin ————=
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Thus our goal is to find a set of parameters 8 that maximizes
the minimum margin between the target classification la-
bel against the best alternative under the probability model.
(We introduce slack variables to obtain a soft margin ver-
sion of the criterion below.)

To see the connection to SVMs more clearly, note that one
can substitute the exponential form of P(x,y|w) into the
MCLR objective, to obtain

T . . . T

log MOLR(w) = minmin [$(x',3") ~ $(x',y)] w
=1 y#y*
T
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where A(i,y) = [¢(x',y") — ¢(x',y)] . Here the row
vector A(i,y) plays the role of the feature vector for train-
ing example 7 and class label y, and therefore we can
write the entire set of feature vectors as a matrix A of size
(T K)x (number of features).



Thus, starting with the training objective (6), through a
change of parameters, we are led to a training problem that
can be cast as a conventional maximum margin problem

max vy subjectto Aw >4, |w| <1 (8)
where 6(; ) = 1(,,+). Notice that here we have added the
normalization constraint || w|| < 1. Obviously some form
of normalization is necessary to avoid making Aw large in
a trivial manner just by making w large. Euclidean normal-
ization happens to yield a weight vector that maximizes the
Euclidean margin (Schoelkopf & Smola, 2002). The result-
ing constrained optimization problem corresponds to the
standard version of multiclass SVMs proposed in (Cram-
mer & Singer, 2001) (ignoring slacks), here expressed over

features determined by the Bayesian network.

In fact, this is the connection between probabilistic and
large margin classifiers that is one of the main observations
of (Taskar et al., 2003; Altun et al., 2003), who then pro-
ceed to use standard SVM training criteria over these fea-
tures. Note however that the solution weight vector for (8)
cannot be substituted into the Bayesian network represen-
tation, because it will not satisfy the proper normalization
constraints (3). The previous techniques of (Taskar et al.,
2003; Altun et al., 2003) were able to proceed by using an
undirected graphical model which could accommodate un-
normalized weights in the potential function. However, for
Bayesian networks this is not sufficient, and there is usu-
ally no way to represent the same classifier in the original
Bayesian network structure.

The alternative approach we consider, therefore, is to maxi-
mize the same objective, but subject to constraints that pre-
serve representability as a Bayesian network

max 7y Subjectto Aw > ~4, Ze“’f'“b =1V5b (9
W,y -

Unfortunately, these natural constraints on w are nonlinear
and this yields a difficult optimization problem. Attempts
to reformulate the problem according to standard transfor-
mations also fail. For example, the probability function
(1) is neither concave nor convex in the parameters 6, even
though the equality constraints (3) are linear in . The
standard trick of removing the normalization constraints
via the transformation 6., = e“i*® /" e“ie> also does
not work in this case, since it creates terms of the form
2 jab Ag,ab) (i, Y) [Wiap —log 3, e*7«2] which are nei-
ther convex nor concave in w. Thus, if we hope to solve
the maximum margin Bayesian network training problem
exactly, we require a more subtle approach.

4 Convex relaxation

Although solving for the maximum margin Bayesian net-
work parameters appears to be a hard problem, we can de-

rive a practical training algorithm that still solves the prob-
lem for a wide range of graph topologies, and otherwise
provides a useful foundation for approaches that seek local
maxima. The main idea is to try to exploit convexity in the
problem as much as possible, and identify situations where
the solutions to a convex subproblem can be maintained.

First note that the objective in (9) is a linear function of
w. Unfortunately, the normalization constraints are nonlin-
ear equalities on w, which eliminates the convexity of the
problem. However, our basic observation is that the prob-
lem can be made convex simply by relaxing these equality
constraints to inequality constraints, thus yielding a simple
relaxation

max v Subjectto Aw > ~4, Ze“’j“b <1 Vj4,b (10)
W,y

The solution to this problem will of course be subnormal-
ized. The key fact about the relaxed problem (10) however,
is that it is convex in w and this will permit effective algo-
rithmic approaches (Boyd & Vandenberghe, 2004).

It is interesting to compare the two convex optimization
problems (8) and (10), which correspond to maximum
margin Markov networks and Bayesian networks respec-
tively. These problems have identical objectives and mar-
gin constraints on w, but differ only in the normalization
constraints—one global constraint for Markov networks
versus multiple local constraints for Bayesian networks.
The solutions to the two problems will obviously be dif-
ferent. Intuitively, the Bayesian network constraints might
regularize the weights more comprehensively in the sense
that each local CPT is constrained to have identical maxi-
mum influence, whereas a Markov network could concen-
trate its weight in a single local function.

4.1 Slack variables

Before tackling real problems we need to introduce slack
variables, since it is obviously not practical to use a hard
margin formulation on real data. To this end, we consider
the standard soft margin formulation of SVMs

1 .
mi? 5|\w||2 + C¢"e subjectto Aw > — 5S¢ (11)

where £ are the slack variables; e denotes the vector of all
1 entries; S is a TK x T sparse matrix with nonzero en-
tries S((4,y),%) = 1 (which enforces the constraint that
A(i,y)w > v, — & forall 4,y); and C'is a parameter

!Note that the inequality form of the norm constraints in (8)
and (9) is not vacuous: In either case, reducing the magnitude
of the weights only has the effect of reducing the inner products
in the margin constraints (Aw), which can only yield a smaller
margin . The maximization objective naturally forcesthe weight
magnitudes overall to become large as possible, subject to the nor-
malization constraints.



that controls the slack effect (Crammer & Singer, 2001).2
For our purposes, we need to state this objective explicitly
in terms of the margin ~. It can be shown that (11) is equiv-
alent to (Lanckriet et al., 2004)

1 .
min — +C¢'e subjectto Aw > (8 — S¢),
w,v.€ 27

[wil <1 (12)

Thus, by replacing the Euclidean constraint with the
Bayesian network subnormalization constraint, we obtain

1 .
min — +C&'e subjectto Aw > (8 — S€),
w,v.€ 27

S, e <1 Vib o (13)

The two problems, (12) and (13), specify the soft margin
formulations of maximum margin Markov and Bayesian
networks respectively. Unfortunately, neither formulation
is convex because the quadratic term (é — S€) is honcon-
vex in the optimization variables ~ and & (Boyd & Van-
denberghe, 2004). For Markov networks one can simply
convert (12) back to (11) and thus convexify the problem.®
For Bayesian networks we can instead solve the following
problem with alternative slack variables € and parameter B
1

min — + Be'e

5 subjectto Aw > ~d — Se,
W,Y,€ 2'}/

v>0, Y, e% <1 Vjb (14)

Provided v > 0—which we henceforth assume—the prob-
lem formulation (14) is convex and is equivalent to (13).
Thus, this formulation yields a convex version of the soft
margin training problem for Bayesian networks.

Proposition 1 Assuming v > 0, (w,,&) is an optimal
point for C' in (13) if and only if (w,~, €) is an optimal
point for B in (14) withe =& and B = C/~.

So if one chooses an optimal regularization parameter B
for (14), then the optimal solution (w, ) will be preserved,
while the slacks & can be recovered by € = €/~.

We now proceed to develop algorithmic approaches for
solving the convex training problem (14), with the goal of
ultimately comparing maximum margin Markov networks
trained under (11) versus Bayesian networks trained under
(14).

5 A training algorithm

To solve (14) first consider the Lagrangian
L(wﬂ ,‘Y’ 67 n? A? I/)

2Note that & > 0 is already implied, because A (i, y*) = 0
and §(i,y") = 0 for all i.

3|t is of course no surprise that optimization problems can be
converted between convex and nonconvex formulations without
affecting the location of the optimal solution.

1/(29%) + Be'e +n' (70 — Se — Aw)
+D_Aib (Z et — 1) —vy (15)
7,b a

The saddle point condition gives us an equivalent problem
to (14)

min max L(w,v,€,n, A, v)subjectton, A\,v >0 (16)
W,Y,€ N,V

Unfortunately, this Lagrangian is not nearly as convenient
as the one for the SVM formulation (11), and a closed form
solution for the dual is not readily obtainable in this case.
For example, one cannot easily eliminate the primal vari-
ables from this problem: taking the partial derivative with
respect to wj,p, yields

oL
8wjab

Ajb €97 — 0T Ajap (17)

where A 45 denotes the jab column of A. The difficulty
with (17) is that one cannot set this derivative to zero be-
cause ' A, can be negative (A has negative entries).
Nevertheless, the problem remains convex.

Rather than use a Lagrangian approach to solve this prob-
lem, we instead consider a standard barrier approach. In
fact, barrier methods are among the most effective tech-
niques for solving convex constrained optimization prob-
lems (Boyd & Vandenberghe, 2004; Vanderbei, 1996). In
this approach one simply replaces the constraints with log
barrier functions.

1
min — + DBe'e
w,y,E 2792
— Y log (A(,y)w — ¥y + i)
(4,y)

— ,uZlog (1 — Z ewj“b>
j,b a
- plog(v) (18)

The parameter 1 is initially set to a reasonable value to en-
sure numerical stability, and then successively reduced to
sharpen the barriers. In general, it can be shown that for
convex inequality constraints, the resulting unconstrained
objective (18) is also convex, while the solution to (18) con-
verges to (14) as 4 — 0 (Boyd & Vandenberghe, 2004). In
the standard path following technique, an optimal solution
(w,~, €) is obtained for the current value of p (usually us-
ing a second order method to ensure fast convergence), af-
ter which p is decreased, until a small value of 1 is reached.

In our case, for the inner optimization loop, we imple-
mented a Newton descent based on computing the gradient
and Hessian of (18) with respect to (w,~,€). We found
that 7 outer iterations, p**+% = u* /10, u() = 1, and
fewer than 20 inner Newton iterations were required to ob-
tain accurate solutions. In principle, the runtime of a barrier



iteration method is not dramatically slower than solving a
quadratic program (Boyd & Vandenberghe, 2004). How-
ever, our Matlab implementation is currently an order of
magnitude slower than the quadratic program solver we
used (CPLEX). Our largest runtimes in the experiments be-
low are a few minutes, versus a few seconds for CPLEX.

6 Exact case: Locally moralized graphs

Before presenting experiments, we first consider when the
solutions to the relaxed problem (14) correspond to the so-
lutions to the exact problem; i.e., satisfying (3). Our main
concern is that the solutions obtained to (14) may not be
representable in a Bayesian network because the parame-
ters w are subnormalized, not normalized. This leaves us
with the question of determining when these subnormal-
ized solutions can be converted into properly normalized
Bayesian networks obeying the correct equality constraints

@3).

It turns out that a wide range of network topologies admit
a simple procedure for renormalizing the local functions so
that they become proper CPTs, without affecting the con-
ditional probability of y given x. In fact, this observation
has been previously made by (Wettig et al., 2002; Wettig
et al., 2003). We present a simpler view here. In fact, it is
easy to characterize when an unnormalized Bayesian net-
work classifier can be renormalized to preserve P(y|x).

Proposition 2 An unnormalized directed graphical model,
defined by the Markov blanket of y, can be renormalized
to preserve the decision function P(y|x) if and only if the
parents of all children of y are moralized.

The intuition behind this result is fairly straightforward.
Consider an unnormalized local function f(z,z) in a
Bayesian network structure and assume we want to normal-
ize it over z. Such a function can always be multiplied by a
factor p, for each z, as long as there is another local func-
tion f(z, q) that can be divided by the same factor. (That is,
alocal function that contains all the parents z of x.) That is,
if an accompanying f(z, q) always exists, as in Figure 1,
we can always renormalize f(z,z). Since the functions
and variables follow an acyclic ordering in a Bayesian net-
work, child variables can be sequentially renormalized bot-
tom up without affecting previous normalizations. Finally,
the factor containing the y variable can be renormalized to
preserve P(y|x).

This renormalization strategy only fails if, at any stage, the
parent variable set z is not contained in a single local func-
tion, but is instead split between separate local functions,
as in Figure 2. In this case, there would be no way to co-
ordinate the compensation for p, (without adding a new
local function over z). Thus, in the end, we are left with
an intuitive sufficient condition for when a Bayesian net-
work can be renormalized: Any graph can be normalized

Figure 1: llustration of renormalizable graphs

Figure 2: A graph that cannot be renormalized

without affecting P (y|x) if the child variables can be elim-
inated without adding any new edges. In these cases, we
can recover a normalized model without affecting the opti-
mality of the solution to (14), and thus we obtain a global
maximum of (7) with respect to (3).

Corollary 1 For a directed graphical model satisfying
Proposition 2, (14) is equivalent to satisfying (3) in addi-
tion.

Note that the renormalization procedure can be applied to
any set of parameters defining the decision rule P(y|x) in
such a network structure, even if the parameters were pro-
duced by a Markov network training procedure. However,
this does not imply that the resulting model P(y|x) is opti-
mal under the Bayesian network criterion (14).

7 Experimental results

To evaluate the utility of learning maximum margin
Bayesian networks, we conducted some simple experi-
ments on both real and synthetic data sets. In the syn-
thetic experiments, we fixed a Bayesian network structure
and parameters, and used it to generate training and test
data. The goal of the synthetic experiments is to run a

Figure 3: Two Bayesian network models. The classifica-
tion variable y is shaded.
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Figure 4: Average error results for Figure 3 (top).
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Figure 5: Average error results for Figure 3 (bottom).
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Figure 7: Average error comparison between M2BN and
MCL on UCI data sets.

controlled comparison of maximum margin Bayesian ver-
sus Markov networks, to determine the effects of having
a correct Bayesian network structure. We experimented
with several network topologies and parameterizations, and
compared maximum margin Bayesian networks (M2BN)
trained according to (14) against maximum margin Markov
networks (M3N) trained according to (11), and also against
maximum conditional likelihood (MCL). The results are
for 100 repetitions of the training sample. For each method,
on each model, the regularization parameters, B and C' re-
spectively, were optimized on one train/test split and then
fixed for the duration of the experiment.

The first synthetic experiments were conducted on the net-
works shown in Figure 3. Here we fixed a network structure
and then defined the generative model by selecting param-
eters from a skewed distribution. We used a parameter 3
to control the skewness of the conditional distributions of
each child, where a value of 3 = 1 makes each child a
deterministic function of the parents, and 5 = 0.5 gives
each child a uniform distribution, rendering them effec-
tively independent of their parents. Figure 4 shows a the
comparison of the three strategies, M2BN, M3N, and MCL
for the first network topology shown in Figure 3. This net-
work topology satisfies the conditions of Proposition 2, and
therefore M2BN computes a globally optimal solution in
this case. Here we see that for a range of generative mod-
els defined by 3 and several training sample sizes, M2BN
demonstrates a systematic advantage over both M3N and
MCL, although MCL is clearly stronger than M3N in this
case. Figure 5 shows the same comparison using the second
network topology from Figure 3. This network no longer
satisfies the conditions of Proposition 2, and therefore our
training algorithm is no longer guaranteed to produce an
optimal normalized solution (only an optimal subnormal-
ized solution). Nevertheless, we see that M2BN holds a
slight advantage over M3N in this case. MCL proves to be
slightly better here. M2BN appears to have an advantage in
cases where it is exact (Proposition 2), but the advantage is
diminished in the subnormalized case.

For a more realistic comparison, we also experimented with
real data from the UCI repository. Specifically, we used
17 data sets: australian*, breast, chess, cleve, diabetes*,
flare*, glass, glass2*, heart, hepatitis*, iris*, lymphogra-
phy, mofn*, pima*, vehicle*, vote, and waveform. In each
case, we formulated a Bayesian network topology that was
intended to capture the causal structure of the domain, but
in this case had no guarantee that the presumed structure
was correct. The network structures we used were automat-
ically generated using the “PowerConstructor” technique
discussed in (Cheng & Greiner, 1999). These networks are
much larger and cannot be easily visualized here. Never-
theless, in 9 of the 17 cases the network topologies satisfied
the conditions of Proposition 2 (marked * above), and 8 of
the 17 data sets did not. For each data set we considered 5



different training sample sizes, ¢ =10, 20, 30, 40, 50. For
each ¢t we sampled 5 different training sets (disjoint where
possible), tested on the remainder, and report average re-
sults. Interestingly, Figure 6 shows that M?BN obtains an
overall advantage over M3N. Perhaps surprisingly, M2BN
also shows a slight overall advantage over MCL on these
data sets; see Figure 7.

8 Multivariate case

Finally, we consider the key extension of (Taskar et al.,
2003; Altun et al., 2003; Collins, 2002) to multivariate
classification. In this setting, we observe training data
(xh,y1), ..., (xT,yT) as before, but now the targets y* are
vectors of correlated classifications. The first main issue
is to adapt the training criterion (8) to the multivariate pre-
diction case. Following (Taskar et al., 2003) we scale the
margin between a target class vector y* and an alternative
vector y proportional to the number of misclassifications.
That is, we simply set

Siw) = D Lwizwe (19)
k

for multivariate predictions. This immediately yields mul-
tivariate versions of the training problems (11) and (14).

The primary difficulty in dealing with the multivariate form
of these problems is coping with the exponential number
of constraints in Aw > vd — Se. That is, one now has to
assert A(i,y)w > vd;y) — ¢ for all training examples
1, over all possible label vectors y. Such a constraint set
is too large to handle explicitly, and an approach must be
developed for handling them implicitly.

One of the key results in (Taskar et al., 2003) is show-
ing that, for maximum margin Markov networks (11),
the constrained optimization problem can be factored and
re-expressed in terms of “marginal” Lagrange multipliers
Uiy jan) = Day\ysan Hiiy)r WHere yjqp denotes the sub-
configuration of y that matches the local function j on pat-
tern ab. This allows a compact reformulation of an equiv-
alent convex problem that can be solved efficiently as a
compact quadratic program (Taskar et al., 2003). Unfortu-
nately, this approach does not work readily in our case be-
cause the Lagrangian (15) does not permit a simple closed
form expression of the dual.

Instead we have to follow a log-barrier approach to solving
this problem (18). Since Aw > ~vd — Se is too large to
handle explicitly, an approach must be developed for han-
dling the constraints implicitly. Unfortunately, a direct fac-
torization approach is not readily available for reducing the
exponential sum in -, ) log (A(i,y)W — ¥0(y) + €).
Nevertheless the constraint generation strategy of (Altun
et al., 2003) can be usefully applied in this case.

To solve (14) in the multivariate case we implemented a

cutting plane method, where initially only a small subset
of constraints in Aw > vd — Se were considered. Given
a current set of constraints, a solution (w,, €) was com-
puted using the barrier method outlined above. Then for
each training example (x, y*) one new labeling y was gen-
erated to maximize the degree of constraint violation

max Y y) — € — A(l,y)w
y

= m;}x exp (75(1',3,) + d)(xi,y)TW) (20)

This is in fact an inference problem that can be solved by
conventional methods. For example, if y forms a Markov
chain, then the optimal constraint can be generated by a
Viterbi algorithm run on the probability model defined by
(20).

Once the new constraints have been generated, they are
added to the problem and the solution (w,~,€) is re-
computed using the barrier method. In our experiments we
found this constraint generation scheme to be quite effec-
tive, requiring at most 10 to 50 generation iterations to be
executed before solving the problem to within small toler-
ances.

9 Experimental results

We implemented this approach and tested it on both syn-
thetic and real data using HMM models for classification,
where the classification variables y play the role of the hid-
den state sequence, and the input variables x play the role
of the observations. Generally we considered models of the
form depicted in Figure 8, where each y variable has mul-
tiple (disjoint) z-children. In our synthetic experiment, we
sampled (x,y) from a sequence of length 5 (5 y variables
with 4 z-children each, for a total of 20 x variables). We
then used a generative model based on the same skewed pa-
rameters used in the synthetic single-variable experiments
above; here with 3 = 0.85. We repeated the experiment
20 times to obtain the final results. Figure 9 shows that
MZ2BN again outperforms M3N and MCL in controlled ex-
periments where the correct Bayesian network structure is
known.

We also conducted an experiment on a protein secondary
structure database (Cuff & Barton, 1999). Here the goal is
to predict the sequence of secondary structure labels given
an observed amino acid sequence. Figure 8 shows the pre-
diction model we used. Basically, the secondary structure
tag v, for a location & in the amino acid sequence is pre-
dicted based on a sliding window of 7 adjacent locations,
as well as the neighboring secondary structure tags. We
trained on a subset of the data and tested on 1000 remain-
ing locations disjoint from the training data. The experi-
ment was repeated 20 times. Figure 10 shows that M2BN
is competitive with M3N and MCL on this data set.



Figure 8: Structure of the protein secondary structure prediction model
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Figure 9: Average error results for M2BN and M3N on syn-
thetic multi-variable networks.
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10 Conclusion

We have investigated what we feel is a very natural ques-
tion; whether a Bayesian network representation can be
combined with discriminative training based on the max-
imum margin criterion of SVMs. We have found that train-
ing Bayesian networks under the maximum margin cri-
terion is a hard computational problem—harder than the
standard quadratic program of SVM training. However,
reasonable training algorithms can be devised which op-
timize the margin exactly in special cases, and provides a
reasonable heuristic in general cases. Our preliminary ex-
periments show that there might be an advantage to respect-
ing the causal model constraints embodied by a Bayesian
network, if indeed these constraints were present during the
data generation. In this sense, maximum margin Bayesian
networks offer a new way to add prior knowledge to SVMs.

The main directions for future research are to improve the
training procedure and add kernels. As in (Taskar et al.,
2003), it is possible to consider adding kernels to our lo-
cal feature representation. The results of (Altun et al.,
2004) show that it is possible to represent our local func-
tions in terms of weighted combinations of training fea-
tures. Therefore, one extension we are working on is to
formulate hybrid classifiers with general kernelized poten-
tial functions between y and x, but standard conditional
probability tables between classification variables to pre-
serve their causal relationships.
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