
Computing Word Similarity and Identifying Cognates
with Pair Hidden Markov Models

Wesley Mackay and Grzegorz Kondrak
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{wesleym,kondrak }@cs.ualberta.ca

Abstract

We present a system for computing sim-
ilarity between pairs of words. Our sys-
tem is based on Pair Hidden Markov Mod-
els, a variation on Hidden Markov Mod-
els that has been used successfully for the
alignment of biological sequences. The
parameters of the model are automatically
learned from training data that consists
of word pairs known to be similar. Our
tests focus on the identification of cog-
nates — words of common origin in re-
lated languages. The results show that our
system outperforms previously proposed
techniques.

1 Introduction

The computation of surface similarity between pairs
of words is an important task in many areas of nat-
ural language processing. In historical linguistics
phonetic similarity is one of the clues for identi-
fying cognates, that is, words that share a com-
mon origin (Oakes, 2000). In statistical machine
translation, cognates are helpful in inducing transla-
tion lexicons (Koehn and Knight, 2001; Mann and
Yarowsky, 2001), sentence alignment (Melamed,
1999), and word alignment (Tiedemann, 2003). In
dialectology, similarity is used for estimating dis-
tance between dialects (Nerbonne, 2003). Other
applications include cross-lingual information re-
trieval (Pirkola et al., 2003), detection of confusable
drug names (Kondrak and Dorr, 2004), and lexicog-
raphy (Brew and McKelvie, 1996).

Depending on the context, strong word similarity
may indicate either that words share a common ori-
gin (cognates), a common meaning (synonyms), or
are related in some way (e.g.spelling variants). In
this paper, we focus on cognates. Genetic cognates
are well-suited for testing measures of word simi-
larity because they arise by evolving from a single
word in a proto-language. Unlike rather indefinite
concepts like synonymy or confusability, cognation
is a binary notion, which in most cases can be reli-
ably determined.

Methods that are normally used for computing
word similarity can be divided into orthographic
and phonetic. The former includes string edit dis-
tance (Wagner and Fischer, 1974), longest common
subsequence ratio (Melamed, 1999), and measures
based on shared charactern-grams (Brew and Mc-
Kelvie, 1996). These usually employ a binary iden-
tity function on the level of character comparison.
The phonetic approaches, such as Soundex (Hall
and Dowling, 1980) and Editex (Zobel and Dart,
1996), attempt to take advantage of the phonetic
characteristics of individual characters in order to
estimate their similarity. All of the above meth-
ods are static, in the sense of having a fixed defi-
nition that leaves little room for adaptation to a spe-
cific context. In contrast, the methods proposed by
Tiedemann (1999) automatically construct weighted
string similarity measures on the basis of string seg-
mentation and bitext co-occurrence statistics.

We have created a system for determining word
similarity based on a Pair Hidden Markov Model.
The parameters of the model are automatically
learned from training data that consists of word



pairs that are known to be similar. The model
is trained using the Baum-Welch algorithm (Baum
et al., 1970). We examine several variants of the
model, which are characterized by different training
techniques, number of parameters, and word length
correction method. The models are tested on a cog-
nate recognition task across word lists representing
several Indo-European languages. The experiments
indicate that our system substantially outperforms
the most commonly used approaches.

The paper is organized as follows. Section 2 gives
a more detailed description of the problem of word
similarity. Section 3 contains an introduction to Pair
Hidden Markov Models, while section 4 describes
their adaptation to our domain. Sections 5 and 6 re-
port experimental set-up and results.

2 Word Similarity

Word similarity is, at its core, an alignment task. In
order to determine similarity between two words, we
look at the various alignments that can exist between
them. Each component of the alignment is assigned
a probability-based score by our trained model. The
scores are then combined to produce the overall sim-
ilarity score for any word pair, which can be used to
rank the word pairs against each other. Alternatively,
a discrete cut-off point can be selected in order to
separate pairs that show the required similarity from
the ones that do not.

Before we can align words, they must be sep-
arated into symbols. Typically, the symbols are
characters in the orthographic representation, and
phonemes in the phonetic representation. We also
need to put some restrictions on the possible align-
ments between these symbols. By adopting the fol-
lowing two assumptions, we are able to fully ex-
ploit the simplicity and efficiency of the Pair Hidden
Markov Model.

First, we assume that the basic ordering of sym-
bols remains the same between languages. This does
not mean that every symbol has a corresponding one
in the other language, but instead that word transfor-
mation comes from three basic operations:substitu-
tion, insertionanddeletion. Exceptions to this rule
certainly exist (e.g.metathesis), but are sufficiently
infrequent to make the benefits of this constraint far
outweigh the costs.

Second, we assume that each symbol is aligned
to at most one symbol in the other word. This as-
sumption is aimed at reducing the number of param-
eters that have to be learned from limited-size train-
ing data. If there is a many-to-one correspondence
that is consistent between languages, it would be
beneficial to change the word representation so that
the many symbols are considered as a single sym-
bol instead. For example, a group of characters in
the orthographic representation may correspond to a
single phoneme if the word is written phonetically.

3 Pair Hidden Markov Models

Hidden Markov Models have been applied success-
fully to a number of problems in natural language
processing, including speech recognition (Jelinek,
1999) and statistical machine translation (Och and
Ney, 2000). One of the more intangible aspects of
a Hidden Markov Model is the choice of the model
itself. While algorithms exist to train the parameters
of the model so that the model better describes its
data, there is no formulaic way to create the model.
We decided to adopt as a starting point a model de-
veloped in a different field of study.

Durbin et al. (1998) created a new type of Hid-
den Markov Model that has been used for the task
of aligning biological sequences (Figure 1). Called
a Pair Hidden Markov Model, it uses two output
streams in parallel, each corresponding to a se-
quence that is being aligned.1 The alignment model
has three states that represent the basic edit opera-
tions: substitution (represented by state “M”), inser-
tion (“Y”), and deletion (“X”). “M”, the match state,
emits an aligned pair of symbols (not necessarily
identical) with one symbol on the top and the other
on the bottom output stream. “X” and “Y”, thegap
states, output a symbol on only one stream against
a gap on the other. Each state has its own emission
probabilities representing the likelihood of produc-
ing a pairwise alignment of the type described by
the state. The model has three transition parame-
ters: δ, ε, andτ. In order to reduce the number of
parameters, there is no explicit start state. Rather,
the probability of starting in a given state is equal to

1Pair Hidden Markov Models have been used in the area of
natural language processing once before: Clark (2001) applied
PHMMs to the task of learning stochastic finite-state transduc-
ers for modeling morphological paradigms.



Figure 1: A Pair Hidden Markov Model for aligning
biological sequences.

the probability of going from the match state to the
given state.

Durbin et al. (1998) describe several different al-
gorithms that can be used to score and rank paired
biological sequences. Two of them are based on
common HMM algorithms. The Viterbi algorithm
uses the most probable path through the model to
score the pair. The forward algorithm computes the
total overall probability for a pair by summing up the
probabilities of every possible alignment between
the words. A third algorithm (thelog oddsalgo-
rithm) was designed to take into account how likely
the pair would be to occur randomly within the two
languages by considering a separately trainedran-
dom model(Figure 2) in conjunction with the sim-
ilarity model. In the random model, the sequences
are assumed to have no relationship to each other, so
there is no match state. The log odds algorithm cal-
culates a score for a pair of symbols by dividing the
probability of a genuine correspondence between a
pair of symbols (the similarity model) by the proba-
bility of them co-occurring by chance (the random
model). These individual scores are combined to
produce an overall score for the pair of sequences
in the same way as individual symbol probabilities
are combined in other algorithms.

4 PHMMs for Word Similarity

Because of the differences between biological se-
quence analysis and computing word similarity, the
bioinformatics model has to be adapted to handle the
latter task. In this section, we propose a number of
modifications to the original model and the corre-

Figure 2: The random Pair Hidden Markov Model.

sponding algorithms. The modified model is shown
in Figure 3.

First, the original model’s assumption that an in-
sertion followed by a deletion is the same as a sub-
stitution is problematic in the context of word simi-
larity. Covington (1998) illustrates the problem with
an example of Italian “due” and the Spanish “dos”,
both of which mean “two”. While there is no doubt
that the first two pairs of symbols should be aligned,
there is no historical connection between the Italian
“e” and the Spanish “s”. In this case, a sequence of
an insertion and a deletion is more appropriate than
a substitution. In order to remedy this problem, we
decided to a add a pair of transitions between states
“X” and “Y”, which is denoted byλ in Figure 3.

The second modification involves splitting the pa-
rameterτ into two separate values:τM for the match
state, andτXY for the gap states. The original biolog-
ical model keeps the probability for the transition to
the end state constant for all other states. For cog-
nates, and other word similarity tasks, it may be that
similar words are more or less likely to end in gaps
or matches. The modification preserves the symme-
try of the model while allowing it to capture how
likely a given operation is to occur at the end of an
alignment.

4.1 Algorithm Variations

We have investigated several algorithms for the
alignment and scoring of word pairs. Apart from
the standard Viterbi (abbreviatedVIT ) and forward
(FOR) algorithms, we considered two variations of
the log odds algorithm, The original log odds al-
gorithm (LOG ) functions much like a Viterbi algo-



Figure 3: A Pair Hidden Markov Model for aligning
words.

rithm, looking at only the most probable sequence
of states. We also created another variation, forward
log odds (FLO ), which uses a forward approach in-
stead, considering the aggregate probability of all
possible paths through both models.

4.2 Model Variations

Apart from comparing the effectiveness of different
algorithms, we are also interested in establishing the
optimal structure of the underlying model. The sim-
ilarity model can be broken up into three sets of pa-
rameters: the match probabilities, the gap probabil-
ities, and the transition probabilities. Our goal is to
examine the relative contribution of various compo-
nents of the model, and to find out whether simplify-
ing the model affects the overall performance of the
system. Since the match probabilities constitute the
core of the model, we focus on the remaining emis-
sion and transition probabilities. We also investigate
the necessity of including an explicit end state in the
model.

The first variation concerns the issue of gap emis-
sion probabilities. For the log odds algorithm,
Durbin et al. (1998) allow the gap emission prob-
abilities of both the similarity and random models to
be equal. While this greatly simplifies the calcula-
tions and allows for the emphasis to be on matched
symbols, it might be more in spirit with the word
similarity task to keep the emissions of the two mod-
els separate. If we adopt such an approach, the simi-
larity model learns the gap emission probabilities us-
ing the forward-backward algorithm, just as is done
with the match probabilities, but the random model

uses letter frequencies from the training data instead.
A similar test of the effectiveness of trained gap pa-
rameters can be performed for the Viterbi and for-
ward algorithms by proceeding in the opposite direc-
tion. Instead of deriving the gap probabilities from
the training data (as in the original model), we can
set them to uniform values after training, thus mak-
ing the final scores depend primarily on matches.

The second variation removes the effect the tran-
sition parameters have on the final calculation. In the
resulting model, a transition probability from any
state to any state (except the end state) is constant,
effectively merging “X”, “Y”, and “M” into a sin-
gle state. One of the purposes of the separated states
was to allow for affine gap penalties, which is why
there are different transition parameters for going to
a gap state and for staying in that state. By making
the transitions constant, we are also taking away the
affine gap structure. As a third variant, we try both
the first and second variation combined.

The next variation concerns the effect of the end
state on the final score. Unlike in the alignment
of biological sequences, word alignment boundaries
are known beforehand, so an end state is not strictly
necessary. It is simple enough to remove the end
state from our model after the training has been com-
pleted. The remaining transition probability mass is
shifted to the transitions that lead to the match state.

Once the end state is removed, it is possible to
reduce the number of transition parameters to a sin-
gle one, by taking advantage of the symmetry be-
tween the insertion and deletion states. In the result-
ing model, the probability of entering a gap state is
equal to1−x

2 , wherex is the probability of a transi-
tion to the match state. Naturally, the log odds algo-
rithms also have a separate parameter for the random
model.

4.3 Correcting for Length

Another problem that needs to be addressed is the
bias introduced by the length of the words. The prin-
cipal objective of the bioinformatics model is the
optimal alignment of two sequences. In our case,
the alignment is a means to computing word simi-
larity. In fact, some of the algorithms (e.g. the for-
ward algorithm) do not yield an explicit best align-
ment. While the log odds algorithms have a built-in
length correction, the Viterbi and the forward do not.



These algorithms continually multiply probabilities
together every time they process a symbol (or a sym-
bol pair), which means that the overall probability of
an alignment strongly depends on word lengths. In
order to rectify this problem, we multiply the final
probability by 1

Cn , wheren is the length of the longer
word in the pair, andC is a constant. The value ofC
can be established on a held-out data set.2

4.4 Levenshtein with Learned Weights

Mann and Yarowsky (2001) investigated the induc-
tion of translation lexicons via bridge languages.
Their approach starts with a dictionary between two
well studied languages (e.g. English-Spanish). They
then use cognate pairs to induce abridge between
two strongly related languages (e.g. Spanish and
Italian), and from this create a smaller translation
dictionary between the remaining two languages
(e.g. English and Italian). They compared the per-
formances of several different cognate similarity (or
distance) measures, including one based on the Lev-
enshtein distance, one based on the stochastic trans-
ducers of Ristad and Yianilos (1998), and a varia-
tion of a Hidden Markov Model. Somewhat surpris-
ingly, the Hidden Markov Model falls well short of
the baseline Levenshtein distance.3

Mann and Yarowsky (2001) developed yet an-
other model, which outperformed all other simi-
larity measures. In the approach, which they call
“Levenshtein with learned weights”, the probabil-
ities of their stochastic transducer are transformed
into substitution weights for computing Levenshtein
distance: 0.5 for highly similar symbols, 0.75 for
weakly similar symbols, etc. We have endeavored to
emulate this approach (abbreviatedLLW ) by con-
verting the log odds substitution scores calculated
from the fully trained model into the substitution
weights used by the authors.

2Another common method to correct for length is to take
thenth root of the final calculation, wheren is the length of the
longest word. However, our initial experiments indicated that
this method does not perform well on the word similarity task.

3The HMM model of (Mann and Yarowsky, 2001) is of dis-
tinctly different design than our PHMM model. For example,
the emission probabilities corresponding to the atomic edit op-
erations sum to one foreachalphabet symbol. In our model, the
emission probabilities for different symbols are interdependent.

5 Experimental Setup

We evaluated our word similarity system on the task
of the identification of cognates. The input consists
of pairs of words that have the same meaning in dis-
tinct languages. For each pair, the system produces a
score representing the likelihood that the words are
cognate. Ideally, the scores for true cognate pairs
should always be higher than scores assigned to un-
related pairs. For binary classification, a specific
score threshold could be applied, but we defer the
decision on the precision-recall trade-off to down-
stream applications. Instead, we order the candidate
pairs by their scores, and evaluate the ranking us-
ing 11-point interpolated average precision(Man-
ning and Schutze, 2001).

Word similarity is not always a perfect indicator
of cognation because it can also result from lexical
borrowing and random chance. It is also possible
that two words are cognates and yet exhibit little sur-
face similarity. Therefore, the upper bound for aver-
age precision is likely to be substantially lower than
100%.

5.1 Data

Training data for our cognate recognition model
comes from the Comparative Indoeuropean Data
Corpus (Dyen et al., 1992). The data contains
word lists of 200 basic meanings representing 95
speech varieties from the Indoeuropean family of
languages. Each word is represented in an ortho-
graphic form without diacritics using the 26 letters
of the Roman alphabet. All cognate pairs are also
identified in the data.

The development set4 consisted of two language
pairs: Italian and Serbo-Croatian, as well as Polish
and Russian. We chose these two language pairs
because they represent very different levels of re-
latedness: 25.3% and 73.5% of the word pairs are
cognates, respectively. The percentage of cognates
within the data is important, as it provides a sim-
ple baseline from which to compare the success of
our algorithms. If our cognate identification process

4Several parameters used in our experiments were deter-
mined during the development of the word similarity model.
These include the random model’s parameterη, the constant
transition probabilities in the simplified model, and the constant
C for correcting the length bias in the Viterbi and forward algo-
rithms. See (Mackay, 2004) for complete details.



were random, we would expect to get roughly these
percentages for our recognition precision (on aver-
age).

The test set consisted of five 200-word lists repre-
senting English, German, French, Latin, and Alba-
nian, compiled by Kessler (2001). The lists for these
languages were removed from the training data (ex-
cept Latin, which was not part of the training set), in
order to keep the testing and training data as sepa-
rate as possible.5 We converted the test data to have
the same orthographic representation as the training
data.

5.2 Significance tests

We performed pairwise statistical significance tests
for various model and algorithm combinations. Fol-
lowing the method proposed by Evert (2004), we
applied Fisher’s exact test to counts of word pairs
that are accepted by only one of the two tested al-
gorithms. For a given language pair, the cutoff level
was set equal to the actual number of cognate pairs
in the list. For example, since 118 out of 200 word
pairs in the English/German list are cognate, we con-
sidered the true and false positives among the set of
118 top scoring pairs. For the overall average of
a number of different language pairs, we took the
union of the individual sets. For the results in Ta-
bles 1 and 2, the pooled set contained 567 out of
2000 pairs, which corresponds to the proportion of
cognates in the entire test data (28.35%).

6 Experimental Results

In this section, we first report on the effect of model
variations on the overall performance, and then we
compare the best results for each algorithm.

6.1 Model Variations

Table 1 shows the average cognate recognition pre-
cision on the test set for a number of model vari-
ations combined with four basic algorithms,VIT ,
FOR, LOG , and FLO , which were introduced in
Section 4.1. The first row refers to the fully trained

5The complete separation of training and testing data is diffi-
cult to achieve in this case because of the similarity of cognates
across languages in the same family. For each of the removed
languages, there are other closely related languages that are re-
tained in the training set, which may exhibit similar or even
identical correspondences.

Model Algorithm
Variation VIT FOR LOG FLO
full model 0.630 0.621 0.656 0.631
gaps const 0.633 0.631 0.684 0.624
trans const 0.565 0.507 0.700 0.550
both const 0.566 0.531 0.704 0.574
no end state 0.626 0.620 0.637 0.601
single param 0.647 0.650 0.703 0.596

Table 1: Average cognate recognition precision for
each model and algorithm combination.

model without changes. The remaining rows con-
tain the results for the model variations described in
Section 4.2. In all cases, the simplifications are in
effect during testing only, after the full model had
been trained. We also performed experiments with
the model simplified prior to training but their results
were consistently lower than the results presented
here.

With the exception of the forward log odds algo-
rithm, the best results are obtained with simplified
models. The model with only a single transition
parameter performs particularly well. On the other
hand, the removal of the end state invariably causes
a decrease in performance with respect to the full
model. If a non-essential part of the model is made
constant, only the Viterbi-based log odds algorithm
improves significantly; the performance of the other
three algorithms either deteriorates or shows no sig-
nificant difference.

Overall, the top four variations of the Viterbi-
based log odds algorithm (shown in italics in Ta-
ble 1) significantly outperform all other PHMM
variations and algorithms. This is not entirely unex-
pected asLOG is a more complex algorithms than
both VIT andFOR. It appears that the incorpora-
tion of the random model allowsLOG to better dis-
tinguish true similarity from chance similarity. In
addition, the log odds algorithms automatically nor-
malize the results based on the lengths of the words
under examination. However, from the rather dis-
appointing performance ofFLO , we conclude that
considering all possible alignments does not help the
log odds approach.



Languages Proportion Method
of Cognates LCSR LLW ALINE VIT FOR LOG FLO

English German 0.590 0.895 0.917 0.916 0.932 0.932 0.930 0.929
French Latin 0.560 0.902 0.893 0.863 0.916 0.914 0.934 0.904
English Latin 0.290 0.634 0.713 0.725 0.789 0.792 0.803 0.755
German Latin 0.290 0.539 0.647 0.706 0.673 0.666 0.730 0.644
English French 0.275 0.673 0.725 0.615 0.751 0.757 0.812 0.725
French German 0.245 0.568 0.591 0.504 0.556 0.559 0.734 0.588
Albanian Latin 0.195 0.541 0.510 0.618 0.546 0.557 0.680 0.541
Albanian French 0.165 0.486 0.444 0.612 0.505 0.530 0.653 0.545
Albanian German 0.125 0.275 0.340 0.323 0.380 0.385 0.379 0.280
Albanian English 0.100 0.245 0.322 0.277 0.416 0.406 0.382 0.403

AVERAGE 0.2835 0.576 0.610 0.616 0.647 0.650 0.704 0.631

Table 2: Average cognate recognition precision for various models and algorithms.

6.2 Comparison

Table 2 contains the results of the best variants,
which are shown in boldface in Table 1, along with
other methods for comparison. The results are sepa-
rated into individual language pairs from the test set.
For the baseline method, we selected the Longest
Common Subsequence Ratio (LCSR), a measure of
orthographic word similarity often used for cognate
identification (Brew and McKelvie, 1996; Melamed,
1999; Koehn and Knight, 2001). The LCSR of
two words is computed by dividing the length of
their longest common subsequence by the length
of the longer word.LLW stands for “Levenshtein
with learned weights”, which is described in Sec-
tion 4.4. We also include the results obtained
by the ALINE word aligner (Kondrak, 2000) on
phonetically-transcribed word lists.

Because of the relatively small size of the lists,
the differences among results for individual lan-
guage pairs are not statistically significant in many
cases. However, when the average over all language
pairs is considered, the Viterbi-based log odds al-
gorithm (LOG ) is significantly better than all other
algorithms in Table 2. The differences between
the remaining algorithms are not statistically signifi-
cant, except that they all significantly outperform the
LCSR baseline.

The fact thatLOG is significantly better than
ALINE demonstrates that given a sufficiently large
training set, an HMM-based algorithm can automat-
ically learn the notion of phonetic similarity, which

is incorporated into ALINE. ALINE does not in-
volve extensive supervised training, but it requires
the words to be in a phonetic, rather than ortho-
graphic form. We conjecture that the performance
of LOG would further improve if it could be trained
on phonetically-transcribed multilingual data.

7 Conclusion

We created a system that learns to recognize word
pairs that are similar based on some criteria provided
during training, and separate such word pairs from
those that do not exhibit such similarity or whose
similarity exists solely by chance. The system is
based on Pair Hidden Markov Models, a technique
adapted from the field of bioinformatics. We tested a
number of training algorithms and model variations
on the task of identifying cognates. However, since
it does not rely on domain-specific knowledge, our
system can be applied to any task that requires com-
puting word similarity, as long as there are examples
of words that would be considered similar in a given
context.

In the future, we would like to extend our system
by removing the one-to-one constraint that requires
alignments to consist of single symbols. It would
also be interesting to test the system in other ap-
plications, such as the detection of confusable drug
names or word alignment in bitexts.



Acknowledgments

This research was funded in part by the Natural Sci-
ences and Engineering Research Council of Canada
(NSERC), and the Alberta Informatics Circle of Re-
search Excellence (iCORE).

References
Leonard E. Baum, Ted Petrie, George Soules, and Nor-

man Weiss. 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic function
of Markov chains.The Annals of Mathematical Statis-
tics, 41(1):164–171.

Chris Brew and David McKelvie. 1996. Word-pair ex-
traction for lexicography. InProceedings of the 2nd
International Conference on New Methods in Lan-
guage Processing, pages 45–55.

Alexander Clark. 2001. Learning morphology with Pair
Hidden Markov Models. InProceedings of the Student
Workshop at ACL 2001.

Michael A. Covington. 1998. Alignment of multiple lan-
guages for historical comparison. InProceedings of
COLING-ACL’98, pages 275–280.

Richard Durbin, Sean R. Eddy, Anders Krogh, and
Graeme Mitchison. 1998.Biological sequence analy-
sis. Cambridge University Press.

Isidore Dyen, Joseph B. Kruskal, and Paul Black. 1992.
An Indoeuropean classification: A lexicostatistical ex-
periment.Transactions of the American Philosophical
Society, 82(5).

Stefan Evert. 2004. Significance tests for the evaluation
of ranking methods. InProceedings of COLING 2004,
pages 945–951.

Patrick A. V. Hall and Geoff R. Dowling. 1980. Approxi-
mate string matching.Computing Surveys, 12(4):381–
402.

Frederick Jelinek. 1999.Statistical Methods for Speech
Recognition. The Massachusetts Institute of Technol-
ogy Press.

Brett Kessler. 2001. The Significance of Word Lists.
Stanford: CSLI Publications.

Philipp Koehn and Kevin Knight. 2001. Knowledge
sources for word-level translation models. InProceed-
ings of the 2001 Conference on Empirical Methods in
Natural Language Processing, pages 27–35.

Grzegorz Kondrak and Bonnie Dorr. 2004. Identification
of confusable drug names: A new approach and evalu-
ation methodology. InProceedings of COLING 2004,
pages 952–958.

Grzegorz Kondrak. 2000. A new algorithm for the
alignment of phonetic sequences. InProceedings of
NAACL 2000, pages 288–295.

Wesley Mackay. 2004. Word similarity using Pair Hid-
den Markov Models. Master’s thesis, University of
Alberta.

Gideon S. Mann and David Yarowsky. 2001. Multipath
translation lexicon induction via bridge languages. In
Proceedings of NAACL 2001, pages 151–158.

Christopher D. Manning and Hinrich Schutze. 2001.
Foundations of Statistical Natural Language Process-
ing. The MIT Press.

I. Dan Melamed. 1999. Bitext maps and alignment
via pattern recognition. Computational Linguistics,
25(1):107–130.

John Nerbonne. 2003. Linguistic variation and compu-
tation. InProceedings of EACL-03, pages 3–10.

Michael P. Oakes. 2000. Computer estimation of vocab-
ulary in protolanguage from word lists in four daugh-
ter languages. Journal of Quantitative Linguistics,
7(3):233–243.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. InProceedings of ACL-
2000, pages 440–447.

Ari Pirkola, Jarmo Toivonen, Heikki Keskustalo, Kari
Visala, and Kalervo Jarvelin. 2003. Fuzzy transla-
tion of cross-lingual spelling variants. InProceedings
of SIGIR’03, pages 345–352.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learn-
ing string edit distance.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(2):522–532.

Jörg Tiedemann. 1999. Automatic construction of
weighted string similarity measures. InProceedings
of the Joint SIGDAT Conference on Empirical Meth-
ods in Natural Language Processing and Very Large
Corpora, College Park, Maryland.

Jörg Tiedemann. 2003. Combining clues for word align-
ment. InProceedings of the 10th Conference of the
European Chapter of the ACL (EACL03).

Robert A. Wagner and Michael J. Fischer. 1974. The
string-to-string correction problem.Journal of the
ACM, 21(1):168–173.

Justin Zobel and Philip Dart. 1996. Phonetic string
matching: Lessons from information retrieval. InPro-
ceedings of SIGIR’96, pages 166–172.


