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Abstract accomplishes both tasks. Depending on the appli-

Alignment of phonetic sequences is a necessar(]‘,atlo_n,_elther of the results, or both, can be used.
step in many applications in computational phonol- Within the last few years, several different ap-
ogy. After discussing various approaches to phoproa_lches to phonetic allgnmen_t have been reported.
netic alignment, | present a new algorithm that com-Covington (1996) used depth-first search and a spe-
bines a number of techniques developed for secial dlstanc_e function to align words for hlstorl-
quence comparison with a scoring scheme for com¢@l comparison. In a follow-up paper (Covington,
puting phonetic similarity on the basis of multival- 1998), he extended the algorithm to align words
ued features. The algorithm performs better on cogffom more than two languages. Somers (1998) pro-

nate alignment, in terms of accuracy and efficiencyP0sed & special algorithm for aligning children’s ar-

rafsky (1996) applied the DP algorithm to pre-align
1 Introduction input and output phonetic strings in order to im-

Identification of the corresponding segments in seProve the performance of thejlr transducer induction
guences of phones is a necessary step in many appfystem. Nerbonne and Heeringa (1997) employed a
cations in both diachronic and synchronic phonol-Similar procedure to compute relative distance be-
ogy. Usually we are interested in aligning sequence§veen words from various Dutch dialects. Some
that represent forms that are related in some Way::haracfterlstlcs of these implementations are juxta-
a pair of cognates, or the underlying and the surPosed in Table 1. _
face forms of a word, or the intended and the ac- In this paper, | present a new algorithm for the
tual pronunciations of a word. Alignment of pho- alignment of cognates. It combines various tech-
netic sequences presupposes transcription of sounfiues developed for sequence comparison with an
into discrete phonetic segments, and so differs fronfiPPropriate scoring scheme for computing phonetic
matching of utterances in speech redtign. On similarity on the basis of multivalued features. The
the other hand, it has much in common with theN€w algorithm performs better, in terms of accuracy
alignment of proteins and DNA sequences. Manyand effi_ciency, than comparable algorithms reported
methods developed for molecular biology can bely Covington (1996) and Somers (1999). Although
adapted to perform accurate phonetic alignment. the main focus of this paper is diachronic phonol-
Alignment algorithms usually contain two main ©9Y. the techniques proposed here can also be ap-
components: a metric for measuring distance peplied m_other contexts where it is necessary to align
tween phones, and a procedure for finding the opPhonetic sequences.
timal alignment. The former is often calculated on .
the basis of phonological features that encode cer2 Comparing Phones
tain properties of phones. An obvious candidate fofTo align phonetic sequences, we first need a func-
the latter is a well-known dynamic programming tion for calculating the distance between individual
(DP) algorithm for string alignment (Wagner and phones. The numerical value assigned by the func-
Fischer, 1974), although other algorithms can usedion to a pair of segments is referred to as the cost,
as well. The task of finding the optimal alignment is or penalty, of substitution. The function is often ex-
closely linked to the task of calculating the distancetended to cover pairs consisting of a segment and
between two sequences. The basic DP algorithrthe null character, which correspond to the opera-



Algorithm Calculation | Calculation| Dynamic | Phonological
of alignment| of distance| programming| features
Covington (1996) explicit implicit no no
Somers (1998) explicit no no multivalued
Nerbonne and Heeringa (199}) implicit explicit yes binary
Gildea and Jurafsky (1996) explicit implicit yes binary

Table 1: Comparison of alignment algorithms.

tions of insertion and deletion (also calledlely.  a good indication of their proximity. Phonetic seg-
A distance function that satisfies the following ax- ments are represented by binary vectors in which

ioms is called anetric every entry stands for a single articulatory feature.
_ The penalty for a substitution is defined as the Ham-
1. Va,b: d(a,b) > 0 (nonnegative proper}y ming distance between two feature vectors. The

penalty for indels is established more or less arbi-

2. va,b: d(a,b) =0 a=b(zero property trarily.? A distance function defined in such a way

3. Va,b:d(a,b) =d(b,a) (symmetry satisfies all metric axioms.
4. Va,b,c:d(a,b)+d(b,c)>d(a,c) (trianglein- It is interesting to compare the values of Cov-
equality) B ington’s distance function with the average Ham-
ming distances produced by a feature-based met-
2.1 Covington’s Distance Function vs. ric. Since neither Gildea and Jurafsky (1996) nor
Feature-Based Metrics Nerbonne and Heeringa (1997) present their fea-

Covington (1996), for his cognate alignment algo-turle \_/ectorls 'g suffg:ler;t _dletall todpe(rjform t?i;"’gf
rithm, constructed a special distance function. [tcU'ations, | adopted a fairly standard set o I-

was developed by trial and error on a test set of 83"y features from Hartman (1981)The average

cognate pairs from various related languages. Th atu(r;_: distances beltween_palés of segr,neg_ts corre-
distance function is very simple; it uses no phono-3PoNnding to every clause in Covington's distance

logical features and distinguishes only three typeéuncnor_1 a’r1e given In _T_able 2, next to_Covmgton’s
of segments: consonants, vowels, and glides. ManyPenalties”. By definition, the Hamming distance
important characteristics of sounds, such as placBeWeen identical segments is zero. The distance
or manner of articulation, are ignored. For example, etween the segments covered by claus_e #31s "?"50
bothyachtandwill are treated identically as a glide- cOnstant and equal to one (the feature in question

vowel-consonant sequence. The function’s value%’eing [long] or [syllabic]). The remaining average
for substitutions are listed in the “penalty” column eature distances were calculated using a set of most

in Table 2. The penalty for an indel is 40 if it is pre- frequent phonemes represented by 25 letters of the

ceded by another indel, and 50 otherwise. Coving-l-atin alphabet (all budj). In order to facilitate com-

ton (1998) acknowledges that his distance functiof2/1S0n. the rightmost column of Table 2 contains
is “just a stand-in for a more sophisticated, perhap§he average dlstanc_es interpolated bet_vveen the min-
feature-based, systerh” imum and the maximum value of Covington’s dis-

Both Gildea and Jurafsky (1996) and Nerbonn tance function. The very high correlation.998)

and Heeringa (1997) use distance functions base etweer;j Covmgtto? s ﬁerz]nillfcles:[andl;[he a:jverlfge ?'S'
on binary features. Such functions have the abilitytances emonstrates that feature-based phonology

to distinguish a large number of different phones.prOVideS a theoretical basis for Covington’s manu-

The underlying assumption is that the number of bi-aIIy constructed distance function.

nary features by which two given sounds differ is

ICovington’s distance function is not a metric. The zero ~ 2Nerbonne and Heeringa (1997) fix the penalty for indels as
property is not satisfied because the function’s value for twohalf the average of the values of all substitutions. Gildea and
identical vowels is greater than zero. Also, the triangle in- Jurafsky (1996) setit at one fourth of the maximum ditilagon
equality does not hold in all cases; for exampige,i) =30  cost.
andp(i,y) = 10, butp(e,y) = 100, wherep(x,y) is the penalty 3In order to handle all the phones in Covington’s data set,
for aligning [x] with [y]. two features were added: [tense] and [spread glottis].



Clause in Covington’s Covington’s| Average | Interpolated
distance function penalty | Hamming| average
distance | distance

1 | “identical consonants or glides’ 0 0.0 0.0

2 | “identical vowels” 5 0.0 0.0

3 | “vowel length difference only” 10 1.0 12.4

4 | “non-identical vowels” 30 2.2 27.3

5 | “non-identical consonants” 60 4.81 58.1

6 | “no similarity” 100 8.29 100.0

Table 2: The clause-by-clause comparison of Covington'’s distance function (column 3) and a feature-based
distance function (columns 4 and 5).

2.2 Binary vs. Multivalued Features the quality of the alignments. The question of how

Although binary features are elegant and widelyto derive salience values in a principled manner is

used, they might not be optimal for phonetic align-S" °P&"
ment. Their primary motivation is to classify 2.3 Similarity vs. Distance

phonological oppositions rather than to reflect theajthough all four algorithms listed in Table 1 mea-
phonetic characteristics of sounds. In a strictly bi-gyre relatedness between phones by meansiist a
nary system, sounds that are similar often differ in &ancefunction, such an approach does not seem to
disproportionately large number of features. It canpe the best for dealing with phonetic units. The fact
be argued that allowing features to have several poshat Covington’s distance function is not a metric is
sible values results in a more natural and phonetingt an accidental oversight; rather, it reflects certain
cally adequate system. For example, there are manyherent characteristics of phones. Since vowels are
possible places of articulation, which form a near-in general more volatile than consonants, the pref-
continuum ranging from [labial] to [glottal]. erence for matching identical consonants over iden-
Ladefoged (1995) devised a phonetically-basedical vowels is justified. This insight cannot be ex-
multivalued feature system. This system has beepressed by a metric, which, by definition, assigns a
adapted by Connolly (1997) and implemented byzero distance to all identical pairs of segments. Nor
Somers (1998). It contains about 20 features withs it certain that the triangle inequality should hold
values between 0 and 1. Some of them can takeor phonetic segments. A phone that has two dif-
as many as ten different values (e.g. [place])ferent places of articulation, such as labio-velar [w],
while others are basically binary oppositions (e.g.can be close to two phones that are distant from each
[nasal]). Table 3 contains examples of multivaluedother, such as labial [b] and velar [g].
features. In my algorithm, below, | employ an alternative
The main problem with both Somers’s and Con-approach to comparing segments, which is based on
nolly’s approaches is that they do not differenti- the notion osimilarity. A similarity scoring scheme
ate the weights, osaliencesthat express the rel- assigns large positive scores to pairs of related seg-
ative importance of individual features. For ex- ments; large negative scores to pairs of dissimilar
ample, they assign the same salience to the fessegments; and small negative scores to indels. The
ture [place] as to the feature [aspiration], whichoptimal alignment is the one that maximizes the
results in a smaller distance between [p] and [k]overall score. Under the similarity approach, the
than between [p] and [ | found that in order score obtained by two identical segments does not
to avoid such incongruous outcomes, the saliencbave to be constant. Another important advantage of
values need to be carefully differentiated; specifi-the similarity approach is the possibility of perform-
cally, the features [place] and [manner] should beinglocal alignmenbf phonetic sequences, which is
assigned significantly higher saliences than othediscussed in the following section.
features (the actual values used in my algorithm are _ .
given in Table 4). Nerbonne and Heeringa (1997)3 Tree Search vs. Dynamic Programming
experimented with weighting each feature by infor-Once an appropriate function for measuring simi-
mation gain but found it had an adverse effect onlarity between pairs of segments has been designed,



Feature| Phonological Numerical Syllabic 5| Place 40
name | term value \oice 10| Nasal 10
Place | [bilabial] 1.0 Lateral 10| Aspirated 5
[labiodental] 0.95 High 5 || Back 5
[dental] 0.9 Manner 50| Retroflex 10
[alveolar] 0.85 Long 1|l Round 5
[retroflex] 0.8
[palato-alveolar] 0.75 Table 4: Features used in ALINE and their salience
[palatal] 0.7 settings.
[velar] 0.6
[uvular] 0.5 Covington, who uses a straightforward depth-first
[pharyngeal] 0.3 search to find the optimal alignment, provides the
[glottal] 0.1 following arguments for eschewing the DP algo-
Manner | [stop] 1.0 rithm.
[affricate] 0.9 _ _ _ _
[fricative] 0.8 First, the strings being a_lll_gned are rel-
[approximant] 0.6 atively short, so the efficiency of dy-
[high vowel] 0.4 namic programming on long strings is not
[mid vowel] 0.2 needed. Second, dynamic programming
[low vowel] 0.0 normally gives only one alignment for
High [high] 1.0 each pair of strings, but comparative re-
[mid] 05 construction may need the best alter-
[low] 0.0 natives, or all that meet some criterion.
Back | [fron] 1.0 Third, the tree search algorithm lends it-
[central] 0.5 self to modification for special handling
[back] 0.0 of metathesis or assimilation.(Coving-
ton, 1996)

Table 3: Multivalued features and their values. The efficiency of the algorithm might not be rel-

_ o ) ~evant in the simple case of comparing two words,
we need an algorithm for finding the optimal align- pyt if the algorithm is to be of practical use, it will
ment of phonetic sequences. While the DP algohaye to operate on large bilingual wordlists. More-
rithm, which operates in quadratic time, seems tQyyer, combining the alignment algorithm with some
be optimal for the task, both Somers and Covingtorsort of strategy for identifying cognates on the basis
opt for exhaustive search strategies. In my opinionegf phonetic similarity is likely to require comparing
this is unwarranted. thousands of words against one another. Having a

Somers’s algorithm is unusual because the sepolynomially bound algorithm in the core of such a
lected alignment is not necessarily the one thatystem is crucial. In any case, since the DP algo-
minimizes the sum of distances between individ-ithm involves neither significantly larger overhead
ual Segments. |nStead, it recursively selects thﬁor greater programming effort, there is no reason
most similar segments, or “anchor points”, in theto avoid using it even for relatively small data sets.
sequences being compared. Such an approach hasThe DP algorithm is also sufficiently flexible to
a serious flaw. Suppose that the sequences to kzcommodate most of the required extensions with-
aligned ardewosanddivut Even thOUgh the corre- out Compromising its p0|yn0mia| Comp|exity_ A
sponding segments are slightly different, the alignsimple modification will produce all alignments that
ment is straightforward. However, an algorithm thatare withine of the optimal distance (Myers, 1995).
looks for the best matching segments first, will er- By app|y|ng methods from the operations research
roneously align the twts. Because of its recursive |iterature (Fox, 1973), the algorithm can be adapted
nature, the algorithm has no chance of recoveringo deliver then best solutions. Moreover, the basic
from such an errof. set of editing operations (substitutions and indels)

4The criticism applies regardless of the methodtwasing 5Covington does not elaborate on the nature of the modifi-
the best matching segments (see also Section 5). cations.



can be extended to include both transpositions of ad@lgorithm Alignment

jacent segments (metathesis) (Lowrance and Wag-
ner, 1975) and compressions and expansions (Oom-
men, 1995). Other extensions of the DP algorithm
that are applicable to the problem of phonetic align-
ment include affine gap scores and local compari-
son.

The motivation for generalized gap scores arises
from the fact that in diachronic phonology not only
individual segments but also entire morphemes and
syllables are sometimes deleted. In order to take
this fact into account, the penalty for a gap can be
calculated as a function of its length, rather than as
a simple sum of individual deletions. One solution
is to use armaffine function of the formgap(x) =
r +sx wherer is the penalty for the introduction of a
gap, andsis the penalty for each symbol in the gap.
Gotoh (1982) describes a method for incorporating
affine gap scores into the DP alignment algorithm.
Incidentally, Covington’s penalties for indels can be
expressed by an affine gap function witk 10 and
s=40.

Local comparisor(Smith and Waterman, 1981)
is made possible by using both positive and neg-
ative similarity scores.

input: phonetic sequencesandy
output: alignment ofx andy
define S(i, j) =—c wheni< 0orj< 0

fori «+ 0to |x| do
S(i,0)«+0
for j «+ 0Oto |y| do
S(0,j)«+0
fori < 1to |x| do
for j < 1to |y| do
S(i, j) «+ max(
S(i—1, j) + Oskip(Xi )
S(i, j—1) + Oskip(Yj),
S(i—1,j—1) + Osun(Xi, Yj),
S(i—1, j=2) + Oexp(X, Yj-1Yj)
g)(i—Z, j=1) + OexplXi-1%,Yj),

T« (1—¢) x max j S(i,j)

for i+ 1to |x| do
for j« 1to|y| do
if S(i, j) > T then
Retrieve(i, j, 0)

In local, as opposed toFigure 1: The algorithm for computing the align-

global, comparison, only similar subsequences arenent of two phonetic sequences.

matched, rather than entire sequences. This often

has the beneficial effect of separating inflectionaly,ently removed from ALINE. The algorithm has

and derivational affixes from the roots. Such affixespeen implemented in C++ and will be made avail-
tend to make finding the proper alignment more dif-5pe in the near future.

ficult. It_would be unreaso_nable to exp_ect affixes Figure 1 contains the main components of the
to be stripped before applying the algorithm to thealgorithm. First, the DP approach is applied to
data, because one of the very reasons to use an aghmpute the similarity matris using theo scor-
tomatic aligner is to avoid analyzing every word in- jng functions. The optimal score is the maximum
dividually. entry in the whole matrix. A recursive procedure

. Retrieve(Figure 2) is called on every matrix en-
4 The algorithm try that exceeds the threshold scd’reyrhe align-
Many of the ideas discussed in previous sectiongnents are retrieved by traversing the matrix until a
have been incorporated into the new algorithm forzero entry is encountered. The scoring functions for
the alignment of phonetic sequences (ALINE). Sim-indels, substitutions and expansions are defined in
ilarity rather than distance is used to determine &igure 3. Cgkip, Csub andCexp are the maximum
set of best local alignments that fall withenof  scores for indels, substitutions, and expansions, re-
the optimal alignmerft. The set of operations con- spectively. C, determines the relative weight of
tains insertions/deletions, substitutions, and expaneonsonants and vowels. The default value<Gakg
sions/compressions. Multivalued features are em= —10,Csyp = 35,Cexp = 45 andCyy = 10. Thediff
ployed to calculate similarity of phonetic segments.function returns the difference between segments
Affine gaps were found to make little difference andq for a given featuref. SetR, contains fea-
when local comparison is used and they were subsdtires relevant for comparing two vowels: Syllabic,

Nasal, Retroflex, High, Back, Round, and Long. Set

6Global and semiglobal comparison can also be used. In
a semiglobal comparison, the leading and trailing indels are  “They may be necessary, however, when dealing with lan-
assigned a score of zero. guages that are rich in infixes.




procedure Retrieve(i, j, S)

o Oskip(P) = Cskip
if S(i, j) = 0then
print(Out)
print(“alignment score iS") O'sub( p, q) = Csub_ 6( p, Q) —V(p) _V(Q)
else
if S(i_li’lj(?)l)tto-ls'Ub(Xi ) Yj'[)h+ S")Z T then O'exr)( P, ) = Cexp— 3(p,d1) — &(p, o) —
push(Out, “aligng with y; _
Retrieve(i-1, j—1, S +0su(X, Yj)) where V() —maxv(ay). V(a))
pop(Out) o
if S(i, j—1) + Oskiplyj) + s> T then V(p) = { 0  if pisaconsonant
push(Out, “align null withy;") Cwi Otherwise
Retrieve(i, -1, s +0skip(yj))
~_pop(Out)
if S(i—1, j—2) + Oexp(Xi, Yj—1yj) + s> T then d(p,a) = ZRdiff(p,q, f) x saliencéf)
push(Out, “aligrnx; with y;_1y;") €
Retrieve(i-1, j—2, s +0exg(X, Yj-1Yj)) where
pop(Out) Rc if porgis aconsonant
if S(i—1, ) + Oskip(Xj) + s> T then R = { Ry otrl?erw?se

push(Out, “aligr with null”)
Retrieve(i-1, j, s +0skip(X;))

pop(Out) . . .

if S(i—2, j—1) + Texplyj, Xi—1%) + s> T then Figure 3: Scoring functions.
push(Out, “aligrnxxi—1 with y;”)
E()e;?g\a?)(FZ’J_l’ S +0explYj, Xi-1%i)) glish grasswith Latin gramen it is important to

match only the first three segments in each word,;
the remaining segments are unrelated. ALINE obvi-
Figure 2: The procedure for retrieving alignmentsOUsly does not know the particular etymologies, but
from the similarity matrix. it can make a guess because [s] and [m] are not very
similar phonetically. Only local alignment is able to
_ _ distinguish between the essential and non-essential
Rc contains features for comparing other segmentszorrespondences in this case (Table 5).
Syllabic, Manner, Voice, Nasal, Retroflex, Lateral, The operations of compression and expansion
Aspirated, and Place. When dealing with double,roye 10 be very useful in the case of complex cor-
articulation consonantal segments, only the neare%spondences. For example, in the alignment of
places of articulation are used. For a more detaileql 4tin factumwith Spanishhechq the affricate {]]
description of the algorithm see (Kondrak, 1999). spoy|d be linked with both [k] and [t] rather than
ALINE represents phonetic segments as vectoryith just one of them, because it originates from the

of feature values. Table 4 shows the features th%erger of the two consonants. Note that taking a se-
are currently used by ALINE. Feature values are

encoded as floating-point numbers in the range

[0.0,1.0]. The numerical values of four principal g ; I m aee ﬁ
features are listed in Table 3. The numbers are g

based on the measurements performed by Lade- | g r & s |
foged (1995). The remaining features have exactly | g r a m | en
two possible values, .0 and 10. A special fea-

ture ‘Double’, which has the same values as ‘Place’, | g r &= || s
indicates the second place of articulation. Thanks | g r a || men

to its continuous nature, the system of features and

their values can easily be adjusted and augmented.
. Table 5: Three alignments of Engligirassand

5 Evaluation Latin gramenobtained with global, semiglobal, and

The best alignments are obtained when local comlocal comparison. The double bars delimit the

parison is used. For example, when aligning En-aligned subsequences.



Covington’s alignments ALINE’s alignments

three : tres o r iy 6 r iy |

t r e s | t r e || s
blow : flare b I - - o w | b I o | w

f 1 a r e - N f 1 a | re
full : plenus f - - - u | | f u | I

p I e n u s | p - | || enus
fish : piscis f - - - i 3 | f i % |

p i s k i s | p i s | ki
I ego - - oay I ay |

e g o - I e | 9o
tooth : dentis - - - 't u w 6 |t uw 6 |

d e n t i - s den|| t i s |

Table 6: Examples of alignments of English and Latin cognates.

guence of substitution and deletion as compressioperforms better than Covington’s aligner.
is unsatisfactory because it cannot be distinguished Somers (1999) tests one version of his algo-
from an actual sequence of substitution and delerithm, CAT, on the same set of cognates. CAT em-
tion. ALINE posits this operation particularly fre- ploys binary, rather than multivalued, features. An-
quently in cases of diphthongization of vowels (seeother important characteristic is that it pre-aligns
the alignments in Table 6). the stressed segments in both sequences. Since
CAT distinguishes between individual consonants,
Covington's data set of 82 cognates provides an some cases it produces more accurate alignments
convenient test for the algorithm. His EninSh/Latinthan Covington’s a”gner_ However, because of its
set is particularly interesting, because these tW@yre-alignment strategy, it is guaranteed to produce
languages are not closely related. Some of thgyrong alignments in all cases when the stress has
alignments produced by Covington’s algorithm andmoved in one of the cognates. For example, in
ALINE are shown in Table 6. ALINE agcurately the Spanish/French paﬂabeza/cap it aligns [p]
discards inflectional affixes ipiSCisand flare. In with [9] rather than [b] and fails to a”gn the two
fish/piscis Covington’s aligner produces four alter- []'s. The problem is even more acute for closely
native alignments, while ALINE selects the cor- re|ated languages that have different stress files.
rect one. Both algorithms are technically wrongn contrast, ALINE does not even consider stress,
on tOOth/dentIS but this is hal’d|y an error consid- WhiCh, in the context of diachronic phonology, is
ering that only the information contained in the oo volatile to depend on. Except for the single case

phonetic string is available to the aligners. Ongf daughter/thugagt, ALINE produces better align-
Covington's Spanish/French data, ALINE does notments than Somers’s algorithm.

make any mistakes. Unlike Covington’s aligner,

it properly aligns [I] inarbol with the second [r] 6 Future Directions
in arbre. On his English/German data, it selects
the correct alignment in those cases where Covin
ton’s aligner produces two alternatives. In the fi-
nal, mixed set, ALINE makes a single mistake in
d_aUther/thUQair’ in which it posits a dropped Pr€= " 8kor example, stress regularly falls on the initial syllable
fix rather than a syncopated syllable; in all otherin czech and on the petimate syllable in Polish, while in
cases, it is right on target. Overall, ALINE clearly Russian it can fall anywhere in the word.

The goal of my current research is to combine the
new alignment algorithm with a cognate identifica-
tion procedure. The alignment of cognates is possi-




ble only after the pairs of words that are suspected Kruskal, editors,Time warps, string edits, and
of being cognate have been identified. Identification macromolecules: the theory and practice of se-
of cognates is, however, an even more difficult task quence comparisopages 1-44. Reading, Mass.:
than the alignment itself. Moreover, itis hardly fea- Addison-Wesley.

sible without some kind of pre-alignment betweenPeter Ladefoged. 1995A Course in Phonetics
candidate lexemes. A high alignment score of two New York: Harcourt Brace Jovanovich.

words should indicate whether they are related. ArRoy Lowrance and Robert A. Wagner. 1975. An
integrated cognate identification algorithm would extension of the string-to-string correction prob-
take as input unordered wordlists from two or more |em. Journal of the Association for Computing
related languages, and produce a list of aligned cog- Machinery 22:177-183.

nate pairs as output. Such an algorithm would be &ugene W. Myers. 1995. Seeing conserved signals.
step towards developing a fully automated language In Eric S. Lander and Michael S. Waterman, edi-
reconstruction system. tors,Calculating the Secrets of Lifpages 56—89.
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