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Abstract

Long-range dependence has been shown to be an ubiquitous feature in ag-

gregate network traffic. The degree of long-range dependence is measured by

the Hurst parameter. Several techniques have been proposed for estimating

this Hurst parameter. In this thesis, we demonstrate the drawbacks of these

estimators in the presence of non-stationarities and discuss how some recently

developed tools can be used for working around some of these drawbacks.

Simulations are a widely used technique in the study of network archi-

tectures and protocols. Such simulation studies require generating synthetic

sequences. These synthetic data sets must possess similar features as the orig-

inal traffic. In this thesis, we present a novel technique for generating traffic

traces from a given trace. The technique is based on the use of the stationary

bootstrap algorithm in the wavelet domain. The traces generated by our tech-

nique have been shown to be capable of capturing the Hurst parameter and

the probability distribution function of the parent trace. In addition, we also

demonstrate the superiority of our technique over existing algorithms.

The final part of the thesis is aimed towards detecting a change in the

Hurst parameter of a data set. This is based on detecting a change in the

variance of the wavelet coefficients of the given data set. If a change in the

variance of the wavelet coefficients is detected on more than one level, then a

change in the Hurst value is signalled.
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Chapter 1

Introduction

Measurement based studies in the 1990’s have revealed that traffic behavior
in IP networks is self-similar and that aggregate traffic displays long-range
dependence (LRD). This LRD behavior has been shown to be present in Lo-
cal Area Network (LAN) traffic [47], Wide Area Network (WAN) traffic [61],
World Wide Web (WWW) traffic [14] and Variable Bit Rate (VBR) Video
traffic [9]. Recently, it has been demonstrated that traffic in a broadband
network with a high percentage of peer-to-peer traffic is also self-similar [24].
Thus, it has been shown quite conclusively, that presence of LRD in network
traffic is ubiquitous.

The presence of LRD in a time series indicates that the autocorrelation
function decays hyperbolically. Consequently, while long-term correlations are
individually small, their cumulative effect is non-negligible. This behavior is
quite different from that observed in traditional short range dependent (SRD)
models like the Markovian models in which the autocorrelation function has
an exponential decay. Due to the distinct differences between LRD and SRD
models, their implications on performance estimation may be significantly dif-
ferent. The presence of LRD in network traffic and its differences from SRD
have prompted many researchers to focus on the impact of LRD traffic on
network behavior. Simulation-based studies for evaluating the effects on a
network system have demonstrated that LRD can affect network performance
levels in terms of the network link bandwidth and buffer responses [18, 23]. In
[5, 59], it was demonstrated that LRD has a profound effect on queue length
and packet loss. In contrast to the negative impacts of the existence of LRD,
there are also some positive aspects. For example, in [89], the authors demon-
strated that LRD traffic can be forecasted quite accurately. This predictable
nature of LRD traffic has been used to propose congestion control algorithms
in [32] and [94].

The results above are obtained using simulation based studies. Simula-
tions are also used extensively in the planning process of telecommunication
networks. In order to obtain valid conclusions from the simulations it is nec-
essary to use accurate traffic models. There are a number of traffic models
proposed in the literature that capture the LRD behavior of aggregate net-
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work traffic. The Fractional Gaussian Noise (FGN) and Fractionally Inte-
grated Autoregressive Moving Average (FARIMA) models are currently the
most popular models. However, most of the proposed traffic models are tar-
geted towards generating Gaussian traffic, but it has been established that
aggregate traffic does not always follow a Gaussian distribution [41, 51], and it
is important to account for the Probability Distribution Function (PDF) of the
traffic [28, 67, 31]. There have been some models proposed like alpha-stable
models [25, 40, 29] or Multifractal models [68] that are capable of generating
LRD traffic with the desired PDF. However, most of the techniques are para-
metric and involve a complicated parameter fitting step. Thus, it is necessary
to develop a technique that is automated without the need for any complex
parameter fitting procedure.

All the models proposed for capturing LRD have a corresponding long-
range dependence parameter called the Hurst parameter, which measures the
degree of LRD. There are a number of methods proposed for estimating this
parameter, like the R/S estimator [47, 81], the aggregated variance [47, 81], the
variance of residuals [47, 81], the absolute moments [47, 81], the periodogram
method [47, 81], the Whittle’s estimator [81], the detrended fluctuation anal-
ysis [62] and the wavelet method [4, 84].

A number of algorithms have been proposed in the literature that make
use of the estimates of the Hurst parameter. For example, in [44], the authors
have proposed a congestion control mechanism called as Measurement Based
Congestion Control (MBCC) by monitoring the traffic in real time and reacting
to any changes in the characteristics seen. As previously discussed, one of the
important characteristics of LRD traffic is the Hurst parameter. In [55] a rate
based control algorithm has been proposed that uses the real time estimate
of the Hurst parameter. In [56], the authors propose the use of the Hurst
parameter for computing the bandwidth requirements of the traffic flow by
applying the Norros formula [54] and then use this computed bandwidth for
the Random Early Detection (RED) algorithm. In [96], the authors have
proposed a method for estimating the effective bandwidth for LRD traffic,
which is used to bound the overflow probability. In [97], the authors propose
making a real-time estimate of the autocorrelation structure of the network
traffic for designing network control schemes. They demonstrate that the
precision for the above estimate is linked to the sample length used, which in
turn is related to the Hurst parameter. In [75], the authors have proposed
an admission control algorithm based on prediction of the traffic by fitting a
FARIMA model to traffic at real time.

The estimates of the Hurst parameter required by these algorithms can
be obtained by using any of the previously mentioned estimators. However,
all these estimators are based on the assumption of stationarity of the Hurst
parameter. But real traffic changes its behavior with time; for example, it is
well known that there are diurnal variations in the traffic load and preliminary
investigations in [47] suggest that there is a correlation between the network
load and the Hurst parameter. Thus the Hurst parameter is expected to vary
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over time. In [72], the authors speculate that the Hurst parameter depends
on the type of applications dominating the traffic, which also changes with
time, and thus the Hurst parameter again varies. In [50], the authors use a
recurrence plot scheme to demonstrate that the self-similarity seen in measured
traffic fluctuates with time. In [57], the authors have shown that the LRD
changes with time and also varies with time of day.

Even though the above studies are not able to unambiguously establish
the relationship of the Hurst parameter with the underlying traffic, they prove
beyond doubt that the Hurst parameter changes with time.

Given the number of algorithms that have been proposed to make use of the
Hurst estimate and the demonstrated non-stationarity of the Hurst parameter,
it is necessary to develop techniques that are able to detect changes in the
Hurst parameter. Once the change point is detected, the Hurst estimate can
then be obtained by any of the commonly used techniques.

1.1 Contribution and Outline

The body of this thesis is composed of four chapters. Chapter 2 covers the
background required for the rest of the thesis. We discuss self-similarity and
long-range dependence. We then cover the background of Wavelet transforms
and their use in the analysis of LRD traffic (Section 2.3). In Chapter 3, we
discuss in detail the various estimators that are most commonly used for esti-
mating the Hurst parameter, along with a demonstration of some drawbacks
of these estimators. We also propose the use of some recently developed tools
for working around these drawbacks. In Chapter 4, we propose a novel tech-
nique for generating traffic traces which captures the LRD and PDF of traffic.
This modeling technique uses the power of bootstrapping coupled with the
efficiency of wavelet transforms. The proposed algorithm has been demon-
strated to significantly outperform existing algorithms in capturing various
characteristics of real traffic traces. In Chapter 5, we propose an algorithm for
detecting changes in the Hurst parameter. This algorithm is then compared
with another algorithm recently proposed for change detection. Our algorithm
is shown to be significantly better in terms of the false positive rate and is also
more accurate in detecting the change point. Finally, in Chapter 6, we present
our conclusions and further research directions.
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Chapter 2

Background

2.1 Self-similarity and Long-Range Dependence

2.1.1 What is Self-similarity?

An object is said to be self-similar if it is similar to a part of itself; i.e parts of
the whole can be made to fit to the whole by scaling. Self-similarity, or scale
invariance is an attribute of many laws of nature and is the underlying concept
of fractals. The concept of self-similarity is related to the occurrence of similar
patterns at different time scales. Some examples of self-similar objects are the
Koch snowflake, Mandelbrot set and the Julia set.

2.1.2 Definitions and Properties of Self-similar Processes

The standard definition for self-similarity states that a process Xt is self-similar
if

X(at)
d
= aHX(t), a > 0,

where the equality is in the sense of finite-dimensional distributions, a is a
scaling factor, and the self-similarity parameter H is called the Hurst exponent.

A process X(t) is called second-order self-similar with parameter H =
1− β/2, 0 < β < 1, if

r(k) =
1

2
[(k + 1)2−β − 2k2−β + (k − 1)2−β], k ∈ (1,2,...), (2.1)

where r(k) is the autocorrelation function of X(t). Second order self similarity
describes the property that an aggregated series will have the same correlation
structure (ACF) as the original series. Simply put, a second order self similar
time series ACF is the same for either coarse or fine time scales. In cases that
we study, we deal only with second order self similarity. Second-order self-
similarity manifests itself in a number of ways such as long-range dependence
and slowly decaying variances.
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2.1.2.1 Long-Range Dependence (LRD)

A stationary process is long-range dependent if its autocorrelations decay to
zero so slowly that their sum doesn’t converge, i.e.

∑∞
k=1 |ρ(k)| = ∞. In other

words, the autocovariance function has a slow, power-law like decrease at large
lags which can be given as:

γ(k) ∼ cγ|k|−(2−2H), k →∞, (2.2)

where cγ > 0, 0 < H < 1.
Equivalently in the frequency domain, it can also be defined as the power-

law divergence of its spectrum at the origin,

f(ν) ∼ cf |ν|1−2H , |ν| → 0, (2.3)

where cf > 0 and f(ν) =
∑

k ρ(k)eikν denotes the spectral density function.
Thus in terms of frequency domain analysis, long-range dependence implies
f(0) =

∑
k ρ(k) = ∞, or in other words the series has a spectral density which

tends to ∞ as the frequency ν approaches 0.

Intuitively, memory is built into the process because the dependence among
an LRD process’s widely separated values is significant, even across large time
shifts. It has been shown that H > 0.5 characterizes a series with long range
dependence, H < 0.5 indicates a series with anti-persistence, while H = 0.5
characterizes a series with short range dependence [47]. For our work, we will
be concentrating on the LRD property of second-order self-similar processes.

2.1.2.2 Slowly Decaying Variances

Asymptotically second-order self-similar processes have the property of slowly
decaying variances, since lim

k→∞

(
r(k)/k−β

)
= c. This property states that the

variance of the sample mean decreases slower than the reciprocal of the sample
size m and so

var[X(m)] ∼ cm−β as m →∞ for 0 < β < 1. (2.4)

2.2 Modeling Techniques for LRD

In this section, we discuss various techniques that have been proposed for
generating self-similar traffic. Such techniques can be broadly classified into
two categories; viz. User-oriented models and Black-box models, as described
below.

2.2.1 User-oriented Models

In this modeling technique, the behavior of each user is explicitly modeled.
This modeling technique is also referred as source level modeling. The different
user-oriented models commonly used in the literature are discussed below.
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2.2.1.1 On/Off Models

In this technique, traffic is generated by the superposition of a large number of
independent ON/OFF sources. Each source transmits data at a constant rate
if it is ON and remains silent during the OFF phase. The ON/OFF periods
are independent and alternate. The lengths of the ON periods are identically
distributed as are the lengths of the OFF periods. This motivation for this
technique are the findings in [42, 51, 80, 91, 92], which show that the aggregate
flows of many ON/OFF sources with strictly alternating ON and OFF periods,
and whose ON and OFF periods exhibit the Noah effect (high variability or
infinite variance) can produce aggregate network traffic that exhibits long-
range dependence. The observation in [92] that LAN traffic is consistent with
an ON/OFF modeling assumption for individual source-destination pairs lends
further credibility to this modeling approach. The lengths of the ON and OFF
periods have been shown to have finite means and infinite variances. These
periods have also been shown to be heavy tailed and Pareto-like with a tail
parameter between 1 and 2.

The biggest advantage of this modeling approach is that it is physically
meaningful and also offers parsimonious modeling (only one parameter α is
used to describe the model). Another benefit of this approach is that since the
modeling is at the individual source level, it is possible to use multiple pro-
cessors for generating the traffic according to the ON/OFF model, with each
processor generating the traffic for individual sources with some parameter α
and then adding the outputs of all the processors to get the aggregate traffic.
This leads to a very fast method for generating long traffic traces.

However, the drawback to this approach is that the number of sources
needed for the aggregate traffic to be statistically self-similar is not defined.
In addition, the rate of transmission in the ON periods and the lower cut-off
of the time scale at which this technique can be applied are not defined.

2.2.1.2 Fractal Point Processes

Another technique of generating source-level traffic is by using Fractal Point
Processes (FPPs). These were introduced for traffic modeling in [73], and
they incorporate a parameterization method for controlling the time scales
over which fractal behavior occurs and thus offer a very attractive approach
to modeling packet traffic.

FPPs cover a broad range of stochastic processes which manifest self-
similarity and includes the ON/OFF processes discussed in Section 2.2.1.1
[92]. In [74], the authors discuss 8 FPPs and establish the mathematical re-
lationship for the parameters of each model with, what is referred to as the
Three Fundamental Parameters (TFPs) quantifying the fractal properties of
packet traffic, viz. average arrival rate, Hurst parameter and Fractal Onset
Time Scale (FOTS). The different FPPs can be used for modeling different
phenomena; for example, one of the models can be used for scenarios where
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session or flow arrivals follow a Poisson model and session or flow duration
and/or volume are heavy-tailed. Another model represents the case where the
session arrivals have a fractal nature irrespective of whether session/flow du-
ration/volume is fractal or not. Thus, in a simulation environment, the right
kind of model can be picked, depending on the process to be modeled, and
a combination of the different models can also be used. FPPs also provide
parsimonious and flexible models for generating fractal traffic. Thus, FPPs
seem to possess the required characteristics of a good approach for modeling
user-level traffic.

2.2.2 Black-box Models

In these models, the aggregate traffic generated by users is modeled and no
attempt is made to distinguish individual users within the population. This
modeling technique is also known as aggregate traffic modeling.

In these models, the aggregate traffic of various users is modeled, and no
attempt is made to distinguish individual connections within the population.
The most widely used family of models used for modeling the aggregate traffic
are Gaussian processes with time-stationary increments. The validity of Gaus-
sian processes is justified by the fact that aggregate traffic in the network is
obtained by superimposing the contributions of many connections. Thus, by
virtue of Central Limit theorem (CLT), it can be argued that the superposition
resembles a Gaussian process. Two of the most commonly employed Gaus-
sian processes are Fractional Gaussian Noise (FGN) and Fractional Brownian
Motion (FBM). However, as pointed out by the authors in [41], for CLT to
be applicable, the individual traffic sources should be independent and that
is not always the case. This is specially true when the individual sources are
competing for a fixed capacity. Even if the traffic rate is less than the capacity
of the network (thus assuming that the sources are not influenced, leading to
independence), it has been pointed out in [41], that the use of Gaussian mod-
els is justified only if the aggregation (both in time and number of individual
sources) is sufficiently large. In [51], it has been pointed out that some traffic
measurements do not show an agreement with the Gaussian marginal distri-
bution assumption. The authors show that if connection rates are modest
relative to heavy tailed connection length distribution tails, then stable Levy
motion is a good approach to modeling of aggregate traffic [51]. In the follow-
ing sections, different approaches leading to either Gaussian or non-Gaussian
aggregate traffic are described.

2.2.2.1 Fractional Brownian Motion and Fractional Gaussian Noise

FBM is a widely used self-similar process for the purpose of traffic modeling. It
is a zero mean, non-stationary, Gaussian process, and is commonly represented
as BH = (BH(s), s > 0) and has Hurst parameter H, 0 < H < 1. The
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correlation function for FBM is given as:

corr(s, t) =
1

2
(s2H + t2H − |s− t|2H) (2.5)

The increment process of FBM is stationary as well as self-similar and is called
FGN. It is denoted by XH = (XH(k) = BH(k + 1) − BH(k), k > 0). Its
autocorrelation function is given as:

r(k) =
1

2
(|k + 1|2H − 2|k|2H + |k − 1|2H), k > 0 (2.6)

which can asymptotically be written as

r(k) ∼ H(2H − 1)|k|2H−2

In other words, XH is self-similar. There are a number of methods for gener-
ating either FBM or FGN for the purposes of traffic modeling. Some of the
most common referred techniques are explained below.

1. Random Midpoint Displacement (RMD) Algorithm
This method proposed by Lau et. al. [45] is one of the original methods
proposed for generating FBM with a known Hurst value. The process of
RMD can be briefly explained as follows. Assume that the FBM process
is to be generated in the interval [0,T]. Denoting by X(t), the value
computed at time instant t, the algorithm first sets X(0) = 0, and by
sampling X(T) from a Gaussian distribution with mean 0 and variance
T 2H . Then X(T/2) is computed as the average of X(0) and X(T) plus an
offset D1. Then, the 2 intervals from 0 to T/2 and T/2 to T are further
subdivided, and so on. At each stage a different offset is added. The
whole process can be expressed in terms of equations as follows:

X(1/2) =
1

2
(X(0) + X(T )) + D1

X(1/4) =
1

2
(X(0) + X(1/2)) + D2

X(3/4) =
1

2
(X(1/2) + X(T )) + D2

and so on. Dn is midpoint displacement that has a variance given by:

σ2
n =

s2(1− 22H−2)

22Hn
(2.7)

Dn = (Gn)(σn), where Gn is a Gaussian random number with mean 0
and variance s2. After computing the FBM process, the corresponding
FGN is computed which indicates the number of packets arriving per
time instant. Since, the number of arriving packets cannot be negative,
the method is truncated so that if the increment process has a negative
value at any time instant, it is set equal to 0.
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2. Paxson’s Algorithm
In [60], a method based on the Fast Fourier Transform (FFT) is proposed
for generating paths corresponding to FGN. This method is based on the
generation of a FGN sequence having the same power spectrum as the
original series.

The spectrum of an FGN process is given by:

f(λ; H) = A(λ; H)
[|λ|−2H−1 + B(λ; H)

]
(2.8)

for 0 < H < 1 and −π ≤ λ ≤ π, where:

A(λ; H) = 2sin(πH)γ(2H + 1)(1− cosλ)

B(λ; H) =
∞∑

j=1

[
(2πj + λ)−2H−1 + (2πj − λ)−2H−1

]

The steps followed in this method are as follows:

(a) A signal is generated in the frequency domain that has a power
spectrum equivalent to FGN.

(b) The signal is made random by assigning random phases to each of
the samples.

(c) After randomization, the signal is then made symmetric (even mag-
nitude, odd phase).

(d) The inverse Fourier transform of this signal yields a real signal.

The method is shown to be very efficient and accurate in producing
samples of FGN with the desired value of H. One of the findings in this
paper is that the packet arrival processes in real traffic traces do not
have a normal marginal distribution on time scales less than 10 seconds.
A logarithmic transformation is suggested to get approximate normal
distributions, and then use FGN for modeling the log-transformed pro-
cesses. The paper also discusses two techniques (uniformly distributing
the points in the interval or using the algorithm proposed in [45]) for
converting the packet arrival process to inter-arrival times for it to be
useful in network simulations. In this paper, the authors point out that
their model does not incorporate Short Range Dependence (SRD) that
is seen in network traffic and caution about neglecting SRD, specially on
small time scales (0.01 seconds). It also highlights the need to develop
models incorporating SRD.

3. Wavelet-based Method
In [35], the authors use Daubechies wavelets for the synthesis of frac-
tional Gaussian noise. The algorithm for the generation is quite similar
to the one proposed by Paxson (described above) and has been shown
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to be a fast generator of self-similar traffic, with a reasonable level of
accuracy for Hurst values up to 0.7. In [19], a wavelet-transform based
method is proposed for fast and accurate synthesis of sample paths cor-
responding to a self-similar FBM processes with known Hurst parame-
ters. The wavelet basis used in this paper is the Haar basis, due to its
simplicity. The authors demonstrate that the traffic generated by this
technique is more accurate than the RMD algorithm with respect to the
Hurst parameter. The drawback of this method is the difficulty in the
appropriate selection of the wavelet basis with the appropriate number
of vanishing moments. The problem of choosing the right number of
vanishing moments is exacerbated by the contradictory benefits from
choosing wavelets with more vanishing moments (faster decay of the co-
efficients’ correlation) and that with fewer moments (shorter synthesis
filters).

2.2.2.2 Fractional Autoregressive Moving Average Model (FARIMA)

As suggested in [60], network traffic modeling needs approaches which can cap-
ture both SRD and LRD. The FARIMA family of models are able to model
both the SRD and LRD. In [15], the authors propose a FARIMA model for
VBR MPEG video traffic at frame level. The model is used to generate arti-
ficial traces of traffic which have been tested using the variances test to verify
that they possess the required Hurst value. The autocorrelation function of
the artificial traffic is also compared with that of the real traffic to verify the
goodness-of-fit.

In [77], the authors propose a FFT based approach for simulating a FARIMA
time series for use in modeling the traffic of telecommunication networks.

The marginal distribution of the FARIMA model can be controlled by using
the appropriate innovations while generating the model.

2.2.2.3 Alpha-Stable Processes

Another technique for capturing the non-Gaussianity of network traffic is to
use models based on alpha-stable distributions.

The characteristic function φ(t) of the alpha-stable distribution has the
form:

φ(t) = exp[itµ− |ct|α(1− iβsign(t)θ(t, α))] (2.9)

where

θ(t, α) =

{
tan(απ

2
) if α 6= 1

− 2
π
ln|t| if α = 1

In the distribution, µ is called the shift parameter and gives the location of
the peak of the distribution. β is a measure of asymmetry and is called the
skew parameter. This parameter must lie in the range [-1,1] and when it is
zero, the distribution is symmetric about x = µ. c is a scale factor which
is a measure of the width of the distribution and α is the exponent of the
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distribution. This parameter must lie in the range (0,2]. For α = 2, the
distribution reduces to a Gaussian distribution with variance σ2 = 2c2 and
mean = µ. Thus, the Gaussian distribution is a special case of the α-stable
distribution. Other values of α provide different levels of burstiness to match
that of real data. A random variable X which follows an α-stable distribution
is denoted by X ∼ S

(α)
c,β,µ.

In [40], Karasaridis, et. al. proposed a technique for using α-stable pro-
cesses to model network traffic. Queueing simulations were used to demon-
strate that their model gave more accurate results than those produced by
Gaussian models. Alpha-stable models have also been proposed to be used for
modeling heavy network traffic in [25, 29].

2.2.3 Multifractal Models

The models discussed in Sections 2.2.1 and 2.2.2 are able to capture the self-
similarity of the traffic. Self-similarity can be thought of as monofractal scal-
ing; being characterized by a single scaling law that holds globally in time
and essentially involves only one parameter, the Hurst parameter. For large
time-scales, self-similar models are able to capture the burstiness of traffic.
However, at finer time scales; viz. below milliseconds, traffic possess a more
complex structure.

Recently [69], multifractal scaling has been proposed as a more suitable
technique for modeling network traffic by capturing both the small time scale
as well as the large time scale scaling behavior. Multifractal scaling is an ex-
tension of monofractal scaling obtained by considering properties higher than
second order characteristics. Multifractals allow for time-dependent scaling
laws and hence offer greater flexibility in describing irregular phenomenon
that are localized in time (caused by network specific mechanisms operating
at small time scales).

Multifractality in network traffic was first investigated by Riedi et. al. [69]
by performing a statistical analysis of the high frequency part of TCP-traffic.
Using this approach they show that TCP traffic is not monofractal, but rather
it is multifractal and hence models incorporating monofractality are correct
only up to second order statistics. The multifractal nature of network traffic
has also been demonstrated in [20]. In addition the multifractal approach offers
a parsimonious model that provides a more complete and accurate description
of actual data traffic over a wide range of time scales.

In [68], Riedi et. al. propose a wavelet based approach for the multiscale
modeling of traffic. They use the Haar wavelet transform for their purpose, and
propose a scheme for fitting such models to traffic data. To ensure positive
values for the resultant data, the authors suggest a scaling of the wavelet
coefficients.

In [20] Feldman et al. model the multifractal behavior of traffic by using
cascades, which is a multiplicative process that assigns mass to successively
smaller time intervals according to some distribution. The basis behind the use
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of this model is that transmitted traffic is constructed through fragmentation
at successive network layers, and that the total number of bytes is roughly
preserved during this fragmentation process. Use of cascades for generating
aggregate traffic with multifractal properties in also discussed in [36].

In [66], the authors propose the construction of a multifractal cascade
model for non-Gaussian traffic by using a multiplicative cascade model and
the Haar wavelet transform. The key feature of this model is that it avoids
the generation of negative values for the synthetic traffic, thereby avoiding
artifacts caused by rounding off negative values to zero.

It has been shown in [17], that the fine time scale behavior of multifractal
traffic can have a significant effect on queuing behavior at low and intermediate
utilization levels, whereas self-similarity is important for high utilization levels.
This result strengthens the need to develop traffic models that match the
multifractal characteristics of traffic.

2.3 Wavelet Transforms and LRD

2.3.1 Background on Wavelets

Fourier analysis is a classical signal processing tool which breaks down the
signal into a possibly infinite series of sines and cosines (which are known
as the basis functions). One drawback of Fourier analysis is that it does
not work very well for signals with sharp discontinuities, and in such cases a
different basis function may be more appropriate. Another drawback is that
it has only frequency resolution and no time resolution. As a result, it is
possible to determine the different frequencies present in the signal, but there
is no way to determine when they are present. This presents a problem in
analyzing non-stationary signals. Both these drawbacks can be overcome by
using wavelet transform. Wavelet Transform (WT) does not have any fixed
basis function, and the appropriate basis function can be chosen based upon
the application. In addition, WT presents a time-scale representation of the
signal. In other words, it can tell the user when certain features occurred in
the signal, and about the scale characteristics of the signal. The term scale
is related to frequency and is a measure of the amount of detail in the signal.
Large scale means fine details or the big picture, while small scale generally
means coarse details. Thus going from large scale to small scale is equal to
zooming in. By examining a signal over a range of scales, WT offers a method
for multi-resolution analysis.

Wavelet transform is based on the principle of expanding the input signal
in terms of oscillating functions, called wavelets, which are localized in time
and frequency. The wavelets are obtained by scaling and translating a single,
mother wavelet function. Wavelet transforms can be broadly classified into
the continuous wavelet transforms (CWT) and discrete wavelet transforms
(DWT).
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2.3.2 Continuous Wavelet Transform (CWT)

To further understand the working of the wavelet transform, consider X(t) to
be a square-integrable function (the integral of the square of its absolute value
is finite). Its continuous wavelet transform is given by the inner product

w(a, τ) =

∫ ∞

−∞
X(t)ψ∗a,τ (t)dt, (2.10)

where ∗ indicates complex conjugation and

ψa,τ (t) =
1√
a
ψ

(
t− τ

a

)
, a ∈ <+, τ ∈ < (2.11)

are the basis functions of the transformation, called wavelets. < indicates the
space of real numbers. The variables a and τ are the scaling and translating
parameters respectively. The wavelets ψa,τ (t) are generated from the mother
wavelet ψ(t) is obtained by scaling and translation.

In the above equations, there is no specific basis function specified for the
mother wavelet, which as mentioned before is one of the differences with the
Fourier analysis. Instead, there is freedom of choice of the mother wavelet
within certain constraints that define the behavior of the wavelets. Some of
these constraints are discussed below.

In order for the transformation to be invertible, the mother wavelet must
satisfy the admissibility condition, i.e., the mean value of the mother wavelet
must be zero: ∫ ∞

−∞
Ψ(t)dt = 0. (2.12)

This implies that the mother wavelet must be an oscillating function. In
addition, the mother wavelet has a bandpass frequency spectrum with a zero
at the origin.

Another property of the mother wavelet is that it must have a number of
vanishing moments N , defined as the largest N for which

∫ ∞

−∞
tkΨ(t)dt = 0, k=0,1,...,N-1 (2.13)

holds. Every mother wavelet has at least one vanishing moment. This can be
seen by using k = 0 in Eqn. 2.13 which then gives Eqn. 2.12. The number
of vanishing moments of the mother wavelet indicates the smoothness of the
wavelet function and the flatness of its frequency response. A higher number
of vanishing moments leads to a faster decay rate of the wavelet coefficients,
and therefore wavelets with higher number of vanishing moments lead to a
more compact signal representation. However, the length of filters used to
compute the DWT increases with the number of vanishing moments and the
complexity of computing the DWT coefficients increases with the size of the
wavelet filters. Thus, there is always a tradeoff on the number of vanishing
moments to be selected.
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2.3.3 Discrete Wavelet Transform (DWT)

The CWT discussed above is highly redundant. To overcome this problem, the
discrete wavelet transform has been introduced which is obtained by sampling
the time-scale plane on a dyadic grid: a = 2j, τ = 2jk, j ∈ Z+, k ∈ Z. j is
called octave or scale and k is translation.

The characterizing function for the DWT is a low-pass filter known as the
scaling function, φ(t). It is obtained by solving the recursive equation

φ(t) =
∑

k

ckφ(2t− k), (2.14)

where {ck} is called the scaling sequence. The scaling function is used to create
the mother wavelet function ψ(t) as follows

ψ(t) =
∑

k

(−1)kc1−kφ(2t− k). (2.15)

For special choices of the wavelet and scaling functions, the shifted and trans-
lated version of (2.14) and (2.15) are given by

ψj,k(t) = 2
j
2 ψ(2jt− k)

φj,k(t) = 2
j
2 φ(2jt− k) (2.16)

and form an orthonormal basis.
The orthonormal basis in 2.16 can be used to create a multi-resolution

representation of any signal X(t), by taking the inner product of x(t) with the
wavelet and scaling functions as follows:

dj,k = 〈X(t), ψj,k(t)〉
aj,k = 〈X(t), φj,k(t)〉 (2.17)

where dj,k are the detail or wavelet coefficients, and aj,k are the scaling or
approximation coefficients.

The signal X(t) can now be represented as

X(t) =
∞∑

j=0

∞∑

k=−∞
dj,kψj,k(t). (2.18)

If the sum over j is split in two regions, j > J and 0 ≤ j ≤ J , the above
equation takes the form

X(t) =
∞∑

j=J+1

∞∑

k=−∞
dj,kψj,k(t) +

J∑
j=0

∞∑

k=−∞
dj,kψj,k(t)

=
∞∑

k=−∞
aJ,kφJ,k(t) +

J∑
j=0

∞∑

k=−∞
dj,kψj,k(t). (2.19)

14



The first term in the above equation represents an approximation of the signal
at the scale J and the second term is a sum of details. Thus the signal X(t)
is now represented by a collection of details at different resolutions and a low
level approximation.

For our study we have used the Wavelet toolbox in Matlab [1] to compute
the wavelet coefficients. The mother wavelet that we have used belongs to
the family of Daubechies wavelets. The mother wavelets are referred to as
dbN , where db indicates that the wavelet belongs to the Daubechies family
and N is a positive integer indicating the number of vanishing moments for
the mother wavelet. Thus, db3 indicates that the mother wavelet belongs to
the Daubechies family and has 3 vanishing moments.

2.3.4 DWT of LRD processes

Network traffic data has been shown to possess LRD in LAN [47], WAN [61],
VBR [9], and other kinds of data traffic. In the case of LRD data, traditional
statistical techniques cannot be used as shown in [8]. The DWT is very useful
for studying this kind of data set. This is due to the fact that DWT de-
correlates the long memory data. It has been shown in [22, 82] that the
covariance function of the wavelet coefficients behave as

〈dj,k, dj′,k′〉 ∼ O
(
|2jk − 2j′k′|2(H−M)

)
, (2.20)

where H is the Hurst exponent of the data set. Eqn. 2.20 indicates that the
correlation structure of the wavelet coefficients is not LRD, even though the
original data x(t) has LRD. This de-correlation of LRD data is illustrated in
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Figure 2.1: Decorrelation of LRD data in wavelet domain.

Fig. 2.1 which shows the correlation structure of a FGN data with H = 0.92
and the correlation plot for the wavelet coefficients at scale 1 obtained by us-
ing the db6 wavelet. As can be seen, the wavelet coefficients at scale 1 have
significant correlation only up to a lag of 2, whereas the original data set has
significant correlations even up to lag of 200. Similar results are observed
for wavelet coefficients at other scales as well. In addition, we tested with
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FARIMA data sets, which possess SRD as well as LRD, and the wavelet co-
efficients are seen to only possess SRD. This demonstrates that the LRD is
broken down in the wavelet domain. In addition, it is also shown that the
wavelet coefficients are wide-sense stationary [22]. Once the data is decorre-
lated, traditional statistical techniques can be used.

From (2.20), it is also seen that the correlation structure is controlled by
the number of vanishing moments of the wavelet. It has been shown that
for M ≥ H + 0.5, the wavelet coefficients across scales and within the same
scale are approximately de-correlated [84]. Abry and Veitch propose using
a mother wavelet with at least 3 vanishing moments, i.e. M = 3 to obtain
sufficient decorrelation between the wavelet coefficients within the same level
and across levels. For a FGN data set, the wavelet coefficients at the same scale
are normally distributed with zero mean, and when the number of vanishing
moments are sufficiently high, the wavelet coefficients at the same scale are
independent.

In [4], it has been shown:

log2

(
1

nj

∑

k

|dj,k|2
)

= (2H − 1)j + ĉf . (2.21)

This indicates that the variance of the wavelet coefficients at each level is
related to the Hurst value of the parent series. This result is useful for the
change detection algorithm discussed in Chapter 5.

We finally conclude this chapter by drawing attention to how the LRD in
the time domain is broken down in the wavelet domain by using DWT. This is
a useful property that we use repeatedly through this thesis. In addition, the
FGN technique of modeling LRD traffic, discussed in Section 2.2.2.1 is also
used repeatedly through our thesis.
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Chapter 3

Estimation of the Hurst
parameter

3.1 Hurst Estimators

In this section, we discuss the most commonly used techniques for estimating
the Hurst parameter. For all the techniques discussed below Xt is the original
time series for which we are trying to estimate the Hurst parameter.

3.1.1 Time-domain estimators

3.1.1.1 R/S Estimator

Consider the partial sum of the series, i.e.

Y (n) =
n∑

t=1

Xt

Let

S(n) =

√√√√ 1

n

n∑
t=1

X2
t −

(
1

n

)2

Y (n)2

denote the standard deviation of the sample.

Let

R(n) = max
0≤t≤n

(
Y (t)− t

n
Y (n)

)
− min

0≤t≤n

(
Y (t)− t

n
Y (n)

)

Then the fraction Q(n) = R(n)
S(n)

denotes the rescaled adjusted range or the R/S
statistic.

For fractional Gaussian noise or fractional ARIMA, as n →∞ we have:

E[Q(n)] ∼ CHnH ,
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where CH is a positive, finite constant not dependent on n.

To determine H using the R/S statistic, the following method is used [47, 81]:

1. Given a time series Xt of length N, the whole series is subdivided into
K non overlapping blocks, each of size N/K.

2. For a number of values of n, compute the rescaled adjusted range Q(n)
starting at points ki = (iN/K) +1, i=1,2,... such that ki + n ≤ N . For
each value of n, we obtain a number of R/S Samples, say K. This number
K decreases for larger values of n because of the limiting condition on ki

values mentioned above.

3. Choose logarithmically spaced values of n, i.e. nl+1 = mnl with m > 1,
starting with n0 of about 10 and plot log Q(n) versus log n. This plot is
called the Pox plot for R/S statistic.

4. The parameter H can be estimated by fitting a least squares line to the
points in the Pox plot.

5. Short range dependence results in a transient zone at the low end of the
plot and hence low end of the plot is not used for estmating H, whereas
at the higher end there are very few points on the plot to make it reliable
and hence they should also not be used. The values of n that lie between
the lower and higher cut-off points are used to estimate H.

3.1.1.2 Aggregated Variance

1. Divide the original series into blocks of length m and compute the sample
average within each block.

X
(m)
k =

1

m

km∑

t=(k−1)m+1

Xt, (3.1)

k = 1,2,....,[N/m]

2. For each m, compute the sample variance of X
(m)
k as:

s2
m =

1

N/m

N/m∑

k=1

(X
(m)
k )2 −


 1

N/m

N/m∑

k=1

X
(m)
k




2

3. Repeat this procedure for different values of m with the value being
equidistant on a log scale.

4. Plot log s2
m against log m.

5. For sufficiently large values of m, the slope estimates 2H -2 [47, 81]. The
slope is estimated by fitting a least squares line to the points obtained
from the plots.
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3.1.1.3 Variance of residuals

1. Series is divided into blocks of size m. Within each block, the partial
sums of series are calculated as:

Y (k)(m) =
km∑

t=(k−1)m+1

Xt,

k = 1,2,......,[N/m]

2. Fit a least squares line to the partial sums within each block.

3. Compute the sample variance of the residual s
(m)
r . The variance of the

residuals is proportional to m2H for large m and for finite variance LRD
series. This variance is computed for each block and the average is
computed over the blocks.

4. Plot log s
(m)
r vs log m, and this should give a line with slope of 2H

[47, 81].

3.1.1.4 The Absolute Moments Method

Consider the series of the averages defined in (3.1), and compute its nth abso-
lute moment as:

AM (m)
n =

1

[N/m]

[N/m]∑

k=1

∣∣∣X(m)
k − X̄

∣∣∣ (3.2)

AM
(m)
n is asymptotically proportional to mn(H−1). To find an estimate for

H

1. Compute AM
(m)
n for different values of m.

2. Plot it in a log-log plot against m.

3. The point should be scattered along a line with slope n(H-1) [47, 81].

3.1.1.5 Detrended Fluctuation Analysis (DFA)

The method of Detrended Fluctuation Analysis (DFA) was introduced by Peng
et. al. in [62]. It was introduced as a way of measuring LRD behavior for
non-stationary time series signals. The method is described as follows:

1. Let x(t) be a 1-D stochastic process. Define the integrated signal y(k)
as follows

y(k)−
k∑

i=1

x(i)− µ, (3.3)

where µ is the mean of x(t).
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2. Divide the integrated time series y(k) into boxes of equal length n. Find
a least-squares line that fits the data in each box of length n.

3. y(k) is detrended by subtracting the local trends yn(k) as shown:

F (n) =

[(
1

N

) N∑

k=1

(y(k)− yn(k))2

] 1
2

(3.4)

4. The above computation is repeated across a broad range of scales to
characterize the relationship between the box size n and the average
root-mean-square fluctuation function F (n). A power-law relationship
between them indicates the presence of scaling given by F (n) ∼ Nα,
which means that the process obeys the scaling law characterized by the
scaling exponent α.

5. α corresponds to the value of Hurst parameter, and thus represents the
LRD of the signal.

The main advantage of the DFA method lies in its applicability to non-
stationary LRD time series, and has also been shown to be superior in es-
timating degree of LRD than conventional tools like the R/S analysis [90].

3.1.2 Frequency-domain estimators

3.1.2.1 Periodogram

The periodogram is defined as

I(ν) =
1

2πN

∣∣∣∣∣
N∑

t=1

Xte
−itν

∣∣∣∣∣

2

(3.5)

where i =
√−1, ν is the frequency, and N is the length of the series.

As stated in Section 2.1, a series with LRD will have spectral density pro-
portional to |ν|1−2H for frequencies close to the origin.
Thus, if we plot the log-log plot of the periodogram versus the frequency, it
will display a straight line with a slope 1-2H [47, 81].
For this method, we should only use the lowest 10% of the frequencies for
plotting the line since the proportionality only holds for ν close to the origin.

3.1.2.2 Whittle’s Maximum Likelihood Periodogram

The Whittle estimator is also based on the periodogram [81]. Consider the
function:

Q(η) =

∫ π

−π

I(ν)

f(ν, η)
dν (3.6)
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where I(ν) is given by (3.5)
f(ν, η) is the spectral density function
η is the vector of unknown parameters.

The Whittle estimator is the value of η which minimizes the function Q in
(3.6).

In practice the function which the algorithm tries to minimize is:

Q(η) =

[(N−1)/2]∑
j=1

I(νj)

f(νj, η)

For fractional Gaussian noise or FARIMA(0,d,0), η is the H or d parameter
respectively. For FARIMA(p,d,q), η also includes the unknown coefficients in
the autoregressive and moving average parts.

The main drawback of this method is that it assumes that the parametric
form of the spectral density is known which is very rarely the case.

3.1.3 Wavelet-domain estimators

3.1.3.1 Abry-Veitch Estimator

This method was proposed in [84] and the steps for estimating the parameter
H using this approach are as follows:

1. For each scale j and position k, compute the so-called wavelet detail
coefficients d(j,k) as

d(j, k) =< Xt, Ψj,k(n) >=
∞∑

n=1

XtΨj,k(n) (3.7)

where < .. > in the above equation indicates the inner-product of the
series with the function Ψj,k and

Ψj,k(n) = 2−j/2Ψ0(2
−jn− k)

Ψ0 is the (Daubechies) mother wavelet.

2. The coefficient |d(j, k))|2 measures the amount of energy in the analyzed
signal about the time instant 2jk and frequency 2−jν0, where ν0 is an
arbitrary reference frequency selected by the choice of Ψ0. Compute the
wavelet energy µj for each scale j as

µj =
1

Nj

Nj∑

k=1

|d(j, k)|2 (3.8)
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where Nj is the total number of wavelet coeffients at scale j. Essentially
Nj = 2−jN where N is the length of the data. (3.8) is a measure of
the amount of energy that lies within a given bandwidth around the
frequency ν and can therefore be regarded as a statistical estimator for
the spectrum of series Xt.

3. Make a plot of log2(µj) versus scale j and then plot a least squares line
through the points. While plotting the line, we have to neglect the points
in the lowest part of the plot as well as some points in the higher range
as there will be very few transformed wavelet coefficients in this region
and the estimation of Hurst parameters using those points will be quite
noisy. The slope of this line will be 2Ĥ-1. The range of scales over which
the linear fit is considered valid is denoted as [j1, j2]

4. The confidence interval for the parameter is given by:

Ĥ − σĤzβ ≤ H ≤ Ĥ + σĤzβ (3.9)

where the variance is given by:

σ2
Ĥ

= varĤ(j1, j2) =
2

nj1ln
22

1− 2J

1− 2−(J+1)(J2 + 4) + 2−2J

where J = j2− j1 is the number of octaves involved in the linear fit and
nj1 = 2−j1n is the number of available coefficients at scale j1.
In (3.9), zβ is the 1 - β quantile of the standard Gaussian distribution.

3.2 Drawbacks of Hurst parameter estimators

In this section, we discuss various drawbacks of the Hurst estimators discussed
in the above section.

3.2.1 Single Estimate

All the estimators described in Section 3.1 give an estimate of the Hurst param-
eter for the complete time series. These estimators do not give any indication
of change in the Hurst parameter. However, it is expected that in real life, the
Hurst parameter of the aggregated traffic will not remain constant, instead it
will vary with time, depending upon the traffic content and traffic intensity
[85]. To demonstrate that in such a scenario it is misleading to look at only
the Hurst estimates, we generated a time series of length 32768 points where
the first 16384 points are from a FGN series of Hurst value 0.5777 and the next
16384 points are from a FGN series with Hurst value of 0.8793. On running
the Abry-Veitch estimator on the resultant series, we get a Hurst parameter
of 0.7730.
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Figure 3.1: Time series plots for the two data sets of length 32768 used for our
experiments. The first one has a change in the Hurst parameter at the center
of the series and the second has a constant Hurst parameter.

Next, we generate another FGN series with 32768 points and a Hurst value
of 0.7793. The time series plot for both the data sets are shown in Fig. 3.1.
If we compare the Hurst values of these two series, it will appear that both
the data sets are equivalent. However, that is not the case. Thus, it can be
seen that the estimators discussed above have a serious drawback in the sense
that they give a single estimate for the entire series without accounting for a
change within the series.

The way to get around this issue is to first test if the Hurst parameter is
constant over the data set. One of the ways to achieve this is to study the
multiscaling behavior of the data set. This is achieved by plotting a Linear
Multiscale Diagram (LMD) representing the scaling behavior as a function of
scaling order. In order to study this behavior we have used the Multiscaling
tool developed by Veitch et. al. [86]. We demonstrate the use of this Multi-
scaling tool in Fig. 3.2 where we plot the Multifractal spectrum for the two
series discussed above. From Fig. 3.2, it is clear that the Hurst value is not
constant for the first series. However, this method does not indicate the loca-
tion of the change in the Hurst parameter. We also need to know the location
of the change so that the series can then be broken down into sections over
which the Hurst parameter can be considered to be constant. We discuss such
techniques in Chapter 5.

3.2.2 Impact of non-stationarities

In addition to the drawback of giving a single estimate for the entire series,
the Hurst estimators discussed in Section 3.1 also suffer from presence of non-
stationarities. It has been shown that non-stationarities have an adverse effect
on these estimators [38, 39, 52, 81]. In the sections below, we conduct some
tests to demonstrate the impact of non-stationarities on the Hurst parameter
estimators discussed in Section 3.1.
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Figure 3.2: Comparison of Linear Multifractal Spectrum of two series with
similar Hurst values.

3.2.2.1 Changing Mean

In order to study the impact of changing mean of the series, we generated
several FGN data sets of length 16384 with Hurst values ranging from 0.57
to 0.92 in steps of 0.05. From each series, we generate a new series of length
32768 with the first part of the series (16384 points) identical to the original
series, and the second part of the series also identical to the original series but
with an increase in mean of 100. Thus, the Hurst value for the entire series
is constant, but there will be a step change in the mean of the series at time
instant 16385. Next, we use the SELFIS tool [37] to get the estimated Hurst
values for 7 different estimators; viz. R/S, Aggregated variance, Variance
of residuals, Absolute moments, Periodogram, Whittle’s estimator and Abry-
Veitch estimator. However, for the Abry-Veitch estimator, we do not use the
results reported by this tool, but use the results obtained from the Matlab code
provided by the authors as that allows us to control the number of vanishing
moments and the scale over which the estimation is carried out. We have
tabulated the estimated Hurst values for these series for the different estimators
in Table 3.1.

From Table 3.1, it can be seen that a change in mean by 100 results in
errors for almost all the estimators. Only the Whittle and the Abry-Veitch
(Wavelet) estimator are able to give appropriate estimates. However, these
two estimators fail when the change in mean is of a higher magnitude. This
is clear from Table 3.2 which tabulates the Hurst estimates for series similar
to those used for the previous case, except that the second part of the series
now has a change in mean of 1000.

As can be seen in Table 3.2, all the estimators fail to give appropriate
results. This is a serious drawback of the estimators, as it is expected that in
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Estimation Actual H Value
Method 0.57 0.62 0.67 0.72 0.77 0.82 0.87 0.92

R/S 0.598 0.637 0.675 0.712 0.746 0.776 0.802 0.822
Absolute 0.755 0.751 0.746 0.741 0.736 0.732 0.731 0.738
Moments

Variance of 0.881 0.888 0.895 0.902 0.910 0.918 0.931 0.954
Residuals
Aggregate 0.932 0.927 0.923 0.919 0.915 0.913 0.915 0.922
Variance

Periodogram 1.037 1.062 1.088 1.113 1.138 1.164 1.189 1.214
Whittle 0.631 0.659 0.693 0.733 0.777 0.824 0.873 0.922
Wavelet 0.594 0.639 0.685 0.732 0.781 0.830 0.880 0.929

Table 3.1: Estimated Hurst Value for FGN series with change in mean of 100.

Estimation Actual H Value
Method 0.57 0.67 0.77 0.87 0.92

R/S 0.475 0.553 0.622 0.367 0.368
Absolute 0.773 0.773 0.773 0.692 0.692
Moments

Variance of 1.133 1.151 1.173 1.456 1.483
Residuals
Aggregate 1.017 1.017 1.016 1.019 1.019
Variance

Periodogram 1.036 1.087 1.137 1.187 1.212
Whittle 0.838 0.862 0.898 0.999 0.999
Wavelet 0.7796 0.8189 0.8754 0.9500 0.9977

Table 3.2: Estimated Hurst Value for FGN series with change in mean of 1000.

aggregate traffic traces, the mean might change based on time of day. As a
result, it is necessary to detect points where the mean changes. Methods have
been proposed for detecting changes in mean in the presence of long-range
dependence in [7] and [79].

In [12], the authors propose the use of scale-space techniques to provide
a visual display of the goodness-of-fit of an assumed model to the data set.
The advantages of this method are that it allows studying time series that will
exhibit variations at different scales by carrying out the tests by dividing the
data into separate bins, and changing the bin size to change the scale of study.
It shows the difference between the assumed model and the synthetic traffic
at different scales and across time. The change is detected by checking if the
derivative of the smoothed curve is significantly different from zero. The null
model that the authors use for the SiZer technique is white Gaussian noise.
Since for Internet traffic analysis, white Gaussian noise is not relevant, an
improvement has been proposed in [58]. In this technique, the user specifies
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the correlation structure of the model that will be used as the base for testing
the data set. The tool then tests for changes in the mean of the given data set
on the basis of the specified model. This is a useful tool as it was seen from
Tables 3.1 and 3.2 that changes in the mean lead to inaccurate estimates of
the Hurst parameter, and thus detecting if there is any change in the mean of
the given series would help to obtain reliable estimates. We demonstrate the
use of this tool by using a FGN data set with a constant mean and a Hurst
value of 0.92. Fig. 3.3 gives the Dependent Sizer plot for this series. In the
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Figure 3.3: Using SiZer to test for a change in the mean of a FGN series with
Hurst value of 0.92.

plot, the x-axis represents the bin number and the y-axis corresponds to the
logarithm of the bandwidth of the family of smooths. Each pixel in the plot
indicates a result of a hypothesis test for the slope of the curve at that point.
A red (black) colour indicates that the slope is positive, while a blue (white)
color indicates that the slope is negative. When the slope is not significant,
a purple (grey) colour is used. Most part of Fig. 3.3 is purple (grey) which
indicates that the mean of the series can be considered to be constant.

Next, we use a data set that has a Hurst value of 0.92, with the first 16384
points having a mean of zero and the next 16384 points having a mean of
1000. As was seen in Table 3.2, all the estimators fail to give an accurate
estimate for this data set. The Dependent Sizer plot for this case is shown in
Fig. 3.4. The model supplied for creating the Dependent Sizer plot is a FGN
series with a Hurst value of 0.9977 (estimated Hurst value by using the wavelet
estimator as seen in Table 3.2). From Fig. 3.4, it can be seen the data set is
flagged to be significantly different from the model supplied. This indicates
that the used data set was not generated by a process with constant Hurst
value and/or constant mean. By looking at the figure, it is not possible to
deduct whether the mean or the Hurst parameter of the process has changed.
One way of going about this is to plot the multifractal spectrum for the data
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Figure 3.4: Using SiZer to test for a change in the mean of a FGN series with
Hurst value of 0.92 and change in mean from 0 to 1000.

set and compare it with the multifractal spectrum for a data set with constant
Hurst parameter. Such a plot is shown in Fig. 3.5, where we plot the linear
multifractal spectrum for the data set with changing mean and for a data set
of the same length, but constant mean. From Fig. 3.5, we can conclude that
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Figure 3.5: Comparison of Linear Multifractal Spectrum of two series with
similar Hurst values, but different means.

the linear multifractal spectrum for both the series is nearly similar, and hence
it can be concluded that the Hurst value for the data set that we are testing
is constant. Thus, on the basis of Fig. 3.4 and Fig. 3.5, it can be concluded
that the Hurst value for the data set has remained constant, but the mean has
changed, as expected.

After conducting several experiments with many other data sets, we came
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up with the following series of steps to be employed for estimating the Hurst
parameter of the series:

1. Run one time-domain estimator; say the R/S estimator, the Whittle
estimator and the Wavelet estimator. If these estimators give estimates
that are significantly different from each other, then go to next step, or
else use the average of the three estimates.

2. Plot the linear multifractal spectrum (LMS) of the series, and compare
it with the LMS of a series of the same length with constant mean and
constant Hurst value.

3. Obtain the Dependent Sizer plot for the data set being tested.

4. On the basis of the two above plots, make a decision on whether the
data set being tested can be assumed to be generated by a process with
constant Hurst value and constant mean.

5. If it is found that either the mean or Hurst value or both are changing,
then further investigation will be needed to figure out the location of
change.

3.2.2.2 Impact of Short-Range Dependence

In addition to the non-stationarities discussed above, Internet data also con-
tains SRD coexisting with LRD [15, 75, 76]. In this section, we discuss the
negative impact of SRD on the Hurst estimators.

It is shown in [33] that a FARIMA(p,d,q) process has similar LRD behav-
ior to a FARIMA(0,d,0) process with the same value of d. Since H is only
related to d, the presence of autoregressive (AR) and moving average (MA)
components in the FARIMA model should not impact the estimated H value.

The data sets used in this section were generated by using the “fracdiff”
package of R [65] and consist of 65536 data points in each series. The estimates
of the Hurst parameter were obtained by using the SELFIS tool discussed
earlier.

For the first set of tests, we generated FARIMA(1,d,1) series with the AR
and MA components being 0.2 and -0.4 respectively. The estimates obtained
by the different estimators for a range of value of actual H are given in Ta-
ble 3.3. From Table 3.3 it can be seen that the estimates obtained in the
presence of SRD are different from the actual H values. The worst estimates
are obtained by the Whittle and Wavelet estimator giving approximately 34%
and 39% mean difference respectively from the actual values. In this case, the
Periodogram method performs the best giving only 2.9% mean difference.

Next, we generate FARIMA(1,d,1) series with the AR and MA components
being 0.4 and -0.4 respectively, and the estimates are tabulated in Table 3.4.
From Table 3.4 it is seen that the Variance of Residuals method performs the
best giving a 5.51% mean difference from the actual values. The Periodogram
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Estimation Actual H Value
Method 0.55 0.6 0.7 0.8 0.9 0.95

R/S 0.607 0.629 0.708 0.783 0.820 0.844
Absolute 0.546 0.482 0.671 0.696 0.802 0.807
Moments

Variance of 0.592 0.584 0.729 0.836 0.922 0.962
Residuals
Aggregate 0.570 0.507 0.701 0.716 0.842 0.850
Variance

Periodogram 0.574 0.630 0.728 0.819 0.914 0.953
Whittle 0.908 0.947 0.999 0.999 0.999 0.999
Wavelet 0.860 0.903 0.984 1.072 1.159 1.200

Table 3.3: Estimated Hurst Value for FARIMA(1,d,1) series, AR=0.2, MA=-
0.4.

Estimation Actual H Value
Method 0.55 0.6 0.7 0.8 0.9 0.95

R/S 0.599 0.666 0.710 0.781 0.788 0.772
Absolute 0.531 0.648 0.583 0.750 0.784 0.803
Moments

Variance of 0.592 0.704 0.710 0.835 0.892 0.963
Residuals
Aggregate 0.552 0.672 0.613 0.784 0.828 0.852
Variance

Periodogram 0.599 0.651 0.745 0.850 0.946 1.001
Whittle 0.999 0.999 0.999 0.999 0.999 0.999
Wavelet 0.975 1.015 1.104 1.196 1.271 1.315

Table 3.4: Estimated Hurst Value for FARIMA(1,d,1) series, AR=0.4, MA=-
0.4.

method gives a mean difference of 6.76% from the actual values and is the
second best estimator in this case.

We conducted additional experiments by varying the AR and MA param-
eters for fixed values of d=0.3, p=1, q=1 in order to determine if there is
any relationship between the reliability of the estimators and the AR and MA
parameters. The estimates obtained for different values of AR and MA param-
eters are given in Table 3.5. From Table 3.5, it can be seen that as the absolute
difference between the AR and MA parameters increases, the accuracy of the
estimators reduces. In addition, it is also observed that all the estimators give
a much higher estimate when the MA parameter is negative as compared to
the estimates when the MA parameter is positive.

On the basis of the above experiments, it can be concluded that if the
series has SRD in addition to LRD, then most of the estimators are found to

29



Estimation SRD Parameter Values
Method AR=0.3 AR=0.2 AR=0.2 AR=0.3 AR=-0.3

MA=0.4 MA=0.4 MA=-0.4 MA=-0.4 MA=0.4

R/S 0.753 0.768 0.783 0.785 0.734
Absolute 0.665 0.670 0.696 0.711 0.692
Moments

Variance of 0.724 0.755 0.836 0.807 0.729
Residuals
Aggregate 0.688 0.687 0.716 0.747 0.714
Variance

Periodogram 0.782 0.766 0.819 0.847 0.755
Whittle 0.683 0.632 0.999 0.999 0.500
Wavelet 0.738 0.674 1.072 1.128 0.400

Table 3.5: Estimated Hurst Value for FARIMA(1,0.8,1) series. Estimation
accuracy dependent on difference between AR and MA values.

be highly inaccurate. In addition, it was also seen that in the presence of SRD,
there is no single estimator that consistently gives the best estimates for the
Hurst parameter. It can also be seen that the reliability of the estimators is
dependent on the difference between the AR and MA values. Consequently, if
these estimators are used to get estimates of the Hurst parameter in Internet
traffic, they may give unreliable estimates and the amount of LRD in the traffic
may be incorrectly estimated. In order to avoid this problem, it is possible to
filter out the SRD component from the series before estimating the H value.
One such technique is to shuffle the series [18, 37], so that the SRD is removed
and the LRD is preserved. We tried to employ this technique, but did not
achieve any success with it. An alternative approach is to develop new LRD
estimation techniques that are resilient to the presence of SRD in the series.
We have not found any such techniques in literature and it still remains an
open problem.
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Chapter 4

Traffic Trace Generation using
Bootstrapping

4.1 Approaches for Traffic Trace Generation

As discussed in Section 2.2 the most commonly employed technique for gen-
erating traffic traces is the two step procedure of fitting a stochastic model to
the observed traffic and then using it to generate traffic traces during simula-
tion. However, the step of model fitting requires user intervention and can be
complicated. For instance, for FARIMA models with alpha stable innovations,
there are a number of parameters that need to be estimated using complicated
estimation procedures spanning multiple steps with continuous user involve-
ment [30]. Using simple models like the FGN model [60], allow the LRD to
be matched, but not higher order properties or the marginal distribution. In
this Chapter, we propose a technique for generating aggregate traffic traces
that does not involve any model fitting, thereby avoiding the complexity of
parameter estimation.

4.2 Bootstrapping

The standard bootstrap procedure was introduced in [16] for approximating
the sampling distribution and the variance of many statistics under the as-
sumption of independent and identically distributed (i.i.d.) data. The idea of
bootstrapping is to re-sample the original data with replacements to obtain
a new series. The procedure is repeated a number of times to obtain multi-
ple datasets (which are known as the surrogate series) from the original data.
However, when the observations are not independent, the standard bootstrap
scheme fails to capture the dependency structure of the data [21]. A number of
variants of the original bootstrapping technique have been proposed to address
such dependencies in the data. Some examples are the residual bootstrap, sieve
bootstrap, moving block bootstrap, stationary bootstrap, threshold bootstrap,
etc. (see [21] and the references therein). All the above bootstrap techniques
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work for SRD data but not for LRD data.

4.2.1 Bootstrapping for LRD Time Series

To deal with LRD datasets, it has been proposed to transform the data into
another domain, by using either the Fourier Transform or Wavelet Transform
[63, 83]. In [6], the authors demonstrate that bootstrapping in the wavelet do-
main (also referred as wavestrapping) works better than in the Fourier domain
when attempting to capture the characteristics of non-Gaussian long-memory
processes. Aggregate data traffic also falls in this category of data, and hence
we employ the Wavelet transform for our case.

4.3 Bootstrap Based Algorithm for Generat-

ing Traffic Traces

In this section, we discuss the algorithm that we have proposed for generating
traffic traces possessing LRD by using bootstrapping in the wavelet domain.
In addition, we also discuss previous work which is related to our approach.

4.3.1 Related Work

As stated previously, the general trend for generating aggregate traffic traces
is by fitting a model to the observed data, and then generating traces from
this model to be used for simulation. The most common model used for this
purpose is the FGN model [35, 46, 60]. Like our proposed algorithm, the pro-
cess of generating aggregate traffic traces can be automated when using the
FGN model. However, the FGN model is not useful for most real traffic traces
since they are usually non-Gaussian, whereas our algorithm will be shown to
work well for real traffic traces. Traces generated by using the alpha-stable
models [25, 29, 40, 93] or FARIMA models with alpha-stable distributions [30]
have been shown to perform better than FGN models in capturing the char-
acteristics of Internet data. However, using these models involves complicated
parameter estimation techniques requiring significant time and user interven-
tion. In contrast, as will be demonstrated in Section 4.4, traces generated
by our technique are able to capture the characteristics of real traces, without
any complex parameter estimation process. One model which does not involve
very complex parameter estimation is the multifractal wavelet model (MWM)
that has been proposed for efficient synthesis of non-Gaussian LRD traffic
[68]. This method involves the use of a multiplicative cascade coupled with
the Haar wavelet transform. This method ensures the generation of positive
output, thereby making it appropriate for traffic modeling which always con-
tains positive data. However, it will be demonstrated in Section 4.4 that our
algorithm significantly outperforms this model for real traffic traces in terms
of the multifractal and queueing behavior.
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One approach for generating aggregate traffic traces without using any
specific model has been proposed in [95], where the authors propose a feedfor-
ward neural network architecture for generating aggregate self-similar traffic
traces. However, the proposed technique involves a learning phase where the
number of samples required for training depends on the traffic pattern that is
being modelled, with a possibility of the network performance diverging during
training, instead of converging. Thus, the procedure is quite complicated and
requires a time consuming training phase. This is avoided in our algorithm.

A tool called RAMP, proposed in [43] can be used for the automated gen-
eration of traffic traces from live network measurements. However, it is used
for source-level modelling of Web and FTP traffic, and thus cannot generate
aggregate traffic traces. In addition, this method will also not work with most
of the publicly available traces, in which only the aggregate traffic per time
slot is available. Our algorithm on the other hand, can be used to generate
the traffic traces from direct traffic measurements as well as publicly available
traces (as will be demonstrated in Section 4.4).

The use of bootstrapping in the wavelet domain (referred to as wavestrap-
ping), as used by us was first proposed in [63]. It was subsequently employed
in [11] for testing the nonlinearity of data sets. However, neither of these two
papers on wavestrapping deal with LRD data.

The use of bootstrapping for LRD data was addressed in [27]. In this paper,
the authors propose the use of post-blackening moving block bootstrap to
generate surrogate datasets for testing the effectiveness of some commonly used
estimators of the Hurst parameter. However, in this paper the bootstrapping
technique is applied in the time domain, rather than in the wavelet domain
as we have proposed here. As a result, the AR (auto regressive) model fitted
to the data in [27] has a very high order, making it hard to implement. In
addition, the block size selected also needs to be high enough to capture the
dependency in the data, making the selection of the block length difficult.

The closest resemblance to our work is seen in [21], in which the authors
use the residual bootstrap technique in the wavelet domain to create multi-
ple surrogate series for LRD data. Their algorithm involves fitting a Markov
model to capture the SRD in the wavelet domain, and then modeling the resid-
uals by Efron’s i.i.d bootstrap [16] to generate the bootstrap residuals. The
bootstrap samples of the residuals are then combined with the Markov model
to generate the bootstrap wavelet coefficients, and this model is then used to
produce bootstrap datasets in time domain. The authors demonstrate that
their technique can be used to estimate the sample unit lag autocorrelation
and standard deviation for Gaussian datasets. Another similar technique is
discussed in [49], where the authors propose the use of an independent model
for the wavelet coefficients and capture the variance of these coefficients at
each level of decomposition. They demonstrate that their technique is able to
capture the autocorrelation function and the queue loss rate for heterogenous
traffic possessing both LRD and SRD. In our algorithm, we do not fit any
model to the wavelet coefficients, but use the resampling technique to obtain
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the new wavelet coefficients. In addition, we are interested in capturing the
Hurst parameter, multifractal scaling and the queuing behavior for Gaussian
and non-Gaussian data sets, as will be demonstrated in Section 4.4.

4.3.2 Description of Algorithm

The time series data is converted into the Wavelet domain by using the DWT,
and the bootstrap scheme will be applied to the wavelet coefficients. However,
as evident from Fig. 2.1, the wavelet coefficients within a given level have sig-
nificant correlation up to lag 2. Hence, we cannot use the standard bootstrap
mechanism, which has been designed for independent data. In addition, as
stated earlier, the wavelet coefficients at each scale are stationary and hence it
is necessary to use a bootstrapping scheme that will also produce a stationary
series.

Considering the above factors, the stationary bootstrap algorithm [64] is
selected to be used on the wavelet coefficients dj,k. This bootstrap algorithm
operates as follows.

1. Let the original time series be X1, X2, ..., XT (here X1, X2, ...XT indi-
cate the wavelet coefficients at each level of decomposition).

2. Generate a sequence of i.i.d random variables L1, L2, .... having the ge-
ometric distribution for n = 1, 2, ....., with the density function P (n) =
(1− p)n−1p.

3. Generate another i.i.d sequence I1, I2, ...., IQ with discrete uniform dis-
tribution.

4. The blocks are represented as BIi,Li
= {XIi

, XIi+1, ..., XIi+Li−1}, indicat-
ing a block containing Li observations starting from XIi

.

5. In order to achieve stationarity of the re-sampled time series, the data
is wrapped around in a circle, so that X1 follows XT .

6. The re-sampled time series is them formed by taking a sequence of blocks
BI1,L1 , BI2,L2 , ...... This process is continued until the required number
of data points are generated for the re-sampled series.

We describe the algorithm used to create the surrogate datasets from any
given dataset. One of the key requirements for creating surrogate datasets
from LRD data is to preserve the scaling behavior. It has been pointed out
that re-sampling each wavelet scale independently does not destroy the fre-
quency content and the energy cascade [6]. Therefore, we apply the stationary
bootstrap scheme independently to each wavelet decomposition scale and then
take the inverse wavelet transform to get new datasets. For data possessing
long-tailed distribution, the wavelet coefficients will also possess a long-tailed
distribution [78]. As a result, if the wavelet coefficients are randomly sampled,
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then the long-tailed nature of the wavelet coefficients will be destroyed and the
regenerated series will not possess the long-tailed nature of the parent series;
thereby having a different PDF. In order to avoid this, we employ the Box-Cox
transformation [10] to convert the original data close to a normal distribution.

The algorithm can be summarized as:

1. Compute the DWT of the dataset to obtain the wavelet and scaling
coefficients.

2. Apply the Box-Cox transformation to the wavelet coefficients at each
level.

3. Re-sample the wavelet coefficients at each scale via the stationary boot-
strap technique. The parameter p defining the geometric distribution is
chosen separately for each scale as

pj = 2((−log(Tj)/log(2))/3), (4.1)

where pj is value of p at scale j having Tj wavelet coefficients.

The scaling coefficients obtained at the highest scale of decomposition
are not re-sampled.

4. Take the inverse Box-Cox transformation of the resampled wavelet coef-
ficients.

5. Take the inverse DWT of the resampled and transformed wavelet and
scaling coefficients to obtain the surrogate dataset.

6. Round off the series obtained in the previous step, and change the neg-
ative values to 0 to obtain the required dataset. Since, the scaling coef-
ficients are not re-sampled there is no need to make any adjustments for
the mean. The mean of the surrogate series will be close to that of the
parent series.

7. Steps 3, 4, 5 and 6 are repeated to obtain as many surrogate datasets as
required.

The transformation of the negative values to 0 in Step 6 above might create
an artifact in the surrogate data sets. However, after implementation of our
algorithm, we found that the percentage of data points having a value of zero
ranges from 0.004% to 0.3% which is probably low enough to not cause any
impact on the simulations. This observation was made when modeling FGN
and the real datasets discussed earlier, with one thousand surrogate series
generated for each parent dataset.

There are two variables in our algorithm, for which we need to find ap-
propriate values. The first is the number of vanishing moments of the mother
wavelet and the second is the number of levels of decomposition for the DWT.
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We determine the values for these variables experimentally by using FGN
datasets (generated by using Paxson’s algorithm [60]) as the parent dataset.

To find the appropriate number of vanishing moments, we experiment with
the db3, db6 and db9 mother wavelets (having 3, 6 and 9 vanishing moments
respectively). One thousand surrogate series are created from each FGN series,
using each of the three mother wavelets. Table 4.1 gives the Hurst values of
the parent and surrogate series using the different mother wavelets. As seen

Hurst Value Hurst Value of Surrogate Series
of Parent db3 db6 db9

Series Mean Variance Mean Variance Mean Variance

0.5214 0.5210 0.000094 0.5147 0.000093 0.5173 0.000224
0.6244 0.6153 0.000090 0.6170 0.000102 0.6181 0.000086
0.7263 0.7087 0.000100 0.7181 0.000088 0.7175 0.000080
0.8274 0.8010 0.000104 0.8196 0.000094 0.8171 0.000082
0.9282 0.8932 0.000111 0.9204 0.000095 0.9154 0.000081

Table 4.1: Hurst Value of surrogate series with different mother wavelets

from Table 4.1, using the db6 mother wavelet gives better results than the db3
wavelet in terms of the Hurst value. No substantial improvement can be seen
with the db9 wavelet, and hence the db6 mother wavelet is selected for our
algorithm.

In order to find the appropriate number of decomposition levels, we ex-
periment with the same set of FGN datasets used above, and the db6 mother
wavelet. The results indicate that using between seven to ten levels gives
enough variability between the surrogate series, while keeping the Hurst pa-
rameter of the surrogate series close to the parent series. We use ten levels for
our algorithm.

It is possible that the optimum mother wavelet and number of decompo-
sition levels will depend on the type of traffic pattern and the length of the
parent series. This will involve conducting multiple experiments and estab-
lishing an appropriate criteria for selecting the right values for these variables.
We leave this for future work.

4.4 Performance Evaluation of Algorithm

We use a combination of synthetic and real datasets for evaluating our algo-
rithm. The synthetic traces were generated by using the the FGN generator
proposed by Paxson in [60]. Each dataset is generated to be of length 16384,
with the Hurst value, H ∈ [0.52, 0.97]. The data points generated by the Pax-
son generator contain fractional as well as negative values. We are interested
in representing the aggregate workload (packets or bytes) per time slot, so the
data points must be non-negative integers. To achieve this, we add an integer
value greater than the absolute of the minimum value of the generated series.
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The data points are then rounded to the nearest integer, and this dataset is
used in the analysis.

The real datasets are obtained from publicly available trace repositories
and a trace recorded at the gateway to our university in 2001. The first
two traces belong to the well known set of Bellcore traces analyzed in [47].
From this set, we use the pAug89 and pOct89 traces and generate datasets
representing the number of bytes per 12 ms and 10 ms respectively. Next we
have the 20030424-000000-0 trace obtained from the Cooperative Association
for Internet Data Analysis (CAIDA) [2]. This is a 5-minute trace of packet
headers on an OC48 backbone link, made available to us by CAIDA. We
created two datasets from this trace; the first containing the number of packets
per millisecond for the initial 107622 milliseconds, and the second containing
the number of packets per millisecond for the entire trace. The fourth trace
was collected on April 09, 2002 at 0300 hours by the Network Data Analysis
Study Group at the University of North Carolina at Chapel Hill [3]. This
trace contains the number of packets and bytes per millisecond for 732247
milliseconds. From this we created a dataset of the number of packets per 100
milliseconds giving us 73225 data points. The final trace was collected in 2001
on the outgoing link connecting the University of Alberta’s campus network
to the Internet. The trace is a record of 100000 packets passing the gateway.
From this trace, we formed a dataset of length 71391 representing the number
of packets per millisecond. The details of the series formed from the traces are
summarized in Table 4.2.

Series Data Aggregation Length of
Name Type Period (ms) Series

pAug89 Bytes 12 261902
pOct89 Bytes 10 175962
CAIDA Packets 1 107622

full-length CAIDA Packets 1 300000
UNC Packets 100 73225
UofA Packets 1 71391

Table 4.2: Datasets formed from actual traces

4.4.1 Performance Tests

The criteria we use for evaluation of our algorithm are the Hurst parameter, H,
(measuring the second order scaling properties), the probability distribution
function (PDF) plots, the Linear Multiscale diagram (used to test the higher
order scaling properties) and the queue tail probability.

We compare our algorithm with the FGN model which has been tradition-
ally used for comparison of all traffic models and a multifractal wavelet model
that is one of the latest models proposed to capture the multifractal behavior
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for real traffic data having a non-Gaussian distribution. The FGN datasets
are generated by Paxson’s algorithm [60] and the β-multifractal wavelet model
(MWM) [68] is used as the multifractal model. For each of the three tech-
niques, we generate one thousand datasets and for comparison we randomly
pick one data set generated by each method and run the corresponding tests.

4.4.1.1 Hurst Values

For estimating the Hurst value, we have used the Wavelet based estimator
[84] with three vanishing moments for the mother wavelet (It should be noted
that the number of vanishing moments used for the estimator has no relation
to the number of vanishing moments used in our bootstrap algorithm). The
wavelet estimator gives confidence intervals along with the estimates, however
we report only the point estimates.

The fourth and fifth columns of Table 4.1 illustrate that the surrogate
series generated by using the db6 mother wavelet have H close to that of the
parent series. In addition, it is also necessary to examine if the variation of the
Hurst value for the surrogate series changes with increasing Hurst values of
the parent series. To test this, we computed the difference between the Hurst
value of the parent series and each surrogate series. The boxplots of these
differences are plotted in Fig. 4.1. The difference between the Hurst value of

0.5214 0.6244 0.7262 0.8274 0.9281

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

D
iff

er
en

ce
 b

et
w

ee
n 

H
ur

st
 V

al
ue

s 
of

P
ar

en
t a

nd
 S

ur
ro

ga
te

 S
er

ie
s

Hurst Value of Parent Series

Figure 4.1: Boxplot of difference between Hurst values of surrogate series and
parent series for FGN dataset.

the original and surrogate series remains constant over a wide range of values.
This demonstrates that the accuracy of our algorithm is constant over a wide
range of Hurst values. However, it is observed that there is positive bias in
the Hurst parameter of the surrogate datasets.

Next, we evaluate the results obtained with the real datasets. The Hurst
values for the parent series and the means and variances of the Hurst values
for the surrogate series are reported in Table 4.3. The values in the table
indicate that the Hurst values of the surrogate series closely match those of the
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original dataset; thereby demonstrating that our algorithm is able to capture
the second order self-similarity of the parent dataset (as measured by the Hurst
parameter).

Parent Series Surrogate Series
Hurst Value

Name Hurst Value Mean Variance

pAug89 0.7958 0.7831 0.000052
pOct89 0.7739 0.7630 0.000039
CAIDA 0.5915 0.5869 0.000081
UNC 0.9339 0.9138 0.000563
UofA 0.6112 0.6273 0.000078

Table 4.3: Hurst values for multiple datasets

4.4.1.2 PDF Plots

We examine the match of the distribution for the surrogate series with the
parent series by plotting their PDFs. We plot the PDF for only one surrogate
series in each case, but similar results are obtained for the other surrogate
datasets. Fig. 4.2 is a plot of the PDF for the UofA dataset and one of its
surrogate series. We also plot the PDF for a FGN dataset generated by using
the Paxson’s algorithm. The PDF for both the FGN and surrogate data sets
are close to the parent dataset, but the surrogate dataset generated by our
algorithm is a better match. This is expected because the UofA dataset does
not possess a Gaussian distribution.
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Figure 4.2: PDF of Packets per millisecond of UofA dataset.

In Fig. 4.3, we plot the PDF for the parent series and two bootstrap series;
one generated by using the Box-Cox transformation and the other without
using the transformation. We also plot the PDF for a FGN dataset generated
by the Paxson’s algorithm. The PDF for the surrogate series using Box-Cox
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transformation is much closer to the original PDF than the series generated
without using the Box-Cox transformation, as well as the FGN dataset. This
shows that using the Box-Cox transformation provides a better match to the
distribution of the parent series and surrogate series generated without using
the transformation has a distribution close to that of a FGN dataset.
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Figure 4.3: PDF of Packets per millisecond of CAIDA dataset.

In Fig. 4.4, we plot the PDF for the pAug89 series. The surrogate series
generated by using the Box-Cox transformation provides a closer match to
the PDF of the parent series. However, the PDFs are not as close a match
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Figure 4.4: PDF of Bytes per 12 milliseconds of pAug89 dataset.

as observed for the UofA and CAIDA datasets. For the pOct89 and UNC
datasets, results similar to the pAug89 case are obtained. We are investigating
the reason for this divergence in some of the datasets. One possible reason is
that the first two datasets are close to Gaussian in terms of the PDF (seen
from Fig. 4.2 and Fig. 4.3).

We applied multiple Box-Cox transformations on the original dataset hop-
ing to get a better match of the PDF. However, no improvement was seen even
after applying the Box-Cox transformation three times. Another option ex-
plored was independently applying the Box-Cox transformation to the wavelet
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coefficients at each level. Even this approach does not provide better results.
In fact, the PDF of data sets obtained by using this modification is nearly the
same as that without any transformation.

4.4.1.3 MultiScaling Behavior

As mentioned above, the Hurst parameter is a measure of the second order
scaling properties of the dataset. This is done by studying the variance S2(j)
of the wavelet coefficients at octave j which has the behavior S2(j) ∼ Cjα.
In addition to the scaling in the second order, the dataset will very often also
have scaling for all moments, which can be denoted as:

Sq(j) = E[|d(j)|q] ∼ Cqj
αq , (4.2)

with q signifying the scaling order.
If αq is a linear function, the process is said to be monofractal. However,

if αq is not linear, then the process is said to exhibit multiscaling. It has been
discovered [69] that data traffic in general and WAN traffic in particular possess
multiscaling behavior, and a number of multifractal models have been proposed
for capturing the behavior of such traffic [53, 68]. In order to accurately
characterize our algorithm we study the higher order scaling behavior of the
traces generated by our model and compare them to the original traces as well
as to traces generated by Paxson’s model and the β-MWM model.

The multiscaling behavior is studied by plotting a Linear Multiscale Dia-
gram (LMD) representing αq as a function of q. In order to study this behavior
we have used the Multiscaling tool developed by Veitch et. al. [86].

In Figs. 4.5 and 4.6 we have plotted the LMD for the UofA and CAIDA
datasets respectively. In both the figures, we have plotted the LMD for the
parent dataset, the datasets generated by our algorithm (referred to as Boot-
strap series in the figures), the FGN model and the β-MWM model. In both
the figures, it is seen that the LMD of the dataset generated by our algorithm
has a closer match to the LMD of the original trace, as compared to the β-
MWM model and the FGN model. Similar results were obtained for the UNC,
pAug89 and pOct89 datasets as well.

This demonstrates that our algorithm is able to capture even the higher
order scaling properties of the original datasets.

4.4.1.4 Queueing Behavior

The final test is a simple queueing experiment. The setup consists of a single
server with infinite buffer size, servicing the incoming data at a rate of 1.1 times
the mean arrival rate of the dataset. We then compute the queue length at the
end of each interval and from this series compute the queue tail probability,
as the probability of the queue length exceeding a certain buffer size, i.e. we
compute P (Q > x), where Q is the queue length, and x is the buffer size.
Once again, we use the parent dataset, and a randomly picked data set each
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Figure 4.5: Linear Multiscale diagram for UofA dataset.
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Figure 4.6: Linear Multiscale diagram for CAIDA dataset.

from the set generated by our algorithm (referred to as Bootstrap series) and
the FGN and β-MWM model.

Fig. 4.7 is a plot of the queue tail probability for a FGN dataset with
Hurst value of 0.7263, and one of its surrogate series. The figure shows that
the surrogate dataset has a similar queuing behavior as the parent series.

The queue tail probability for the UofA trace is plotted in Fig. 4.8. It is
seen that the dataset generated by our algorithm has behavior that is almost
similar to the original data set, while the other two datasets show a very
different behavior.

Our algorithm performs better than the other two models even for the
UNC and Caida datasets as seen in Fig. 4.9 and Fig. 4.10 respectively.

For the pAug89 and pOct89 datasets, similar results are obtained for the
queuing behavior of the surrogate datasets. Thus, it is shown that the surro-
gate series generated by our algorithm have queuing behavior that is similar
to the parent dataset for different data sets.

The results reported in this section conclusively demonstrate that our algo-
rithm is able to retain the Hurst parameter of the parent dataset and performs
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Figure 4.7: Queue Tail Probability for FGN dataset.
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Figure 4.8: Queue Tail Probability for UofA dataset.

better than the FGN and β-MWM models, while considering the multifractal
spectrum and the queue tail behavior. This performance is achieved without
using any complex parameter fitting procedure and is completed automated,
thereby making it easy to use.
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Figure 4.9: Queue Tail Probability for UNC dataset.
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Figure 4.10: Queue Tail Probability for CAIDA dataset.
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Chapter 5

Change Detection

5.1 Literature Survey on Change Detection

Techniques

There are two different types of techniques in the literature for addressing the
change point detection problem. In the first technique, a block size is decided
upon and then the estimate of the Hurst parameter over this block is obtained.
The Hurst estimates for adjacent blocks are compared and if the values are sig-
nificantly different, then a change is indicated. The advantage of this method
is that along with change detection, the estimates of the Hurst parameter are
also readily available. However, the drawback is that the resolution of change
detection is limited by the block size. If a very small block size is selected to
improve the resolution, then the estimates of the Hurst parameter obtained
are not so reliable. If a bigger block size is selected, then the resolution for the
change detection is degraded. The second technique is based on monitoring
some parameter on a continuous basis and if this parameter changes, then it
indicates a change in the Hurst parameter.

In [85], the authors proposed a statistical test to study the stationarity
of the scaling exponent over time. Using their test, they have shown that
the Hurst value of a traffic trace does not necessarily remain constant. In
this method, repeated scans of the stored data are performed by breaking the
dataset into different sized blocks and the Hurst parameter estimated for each
block. The estimated Hurst values are then subjected to a statistical test to
check for their constancy. In [13], a Least Square Criterion is used for detecting
changes in the Hurst parameter or the ARMA parameters of a FARIMA model.
In [34], the authors propose the use of a Cumulative Sum (CUSUM) like test
for the on-line detection of changes for Markov Modulated Poisson Process and
Gaussian FARIMA. However, their method works well only when the value of
the parameter before and after the change is known in advance. However, in
practical scenarios, where this is not the case, they propose running a bank of
change detection algorithms with different assumed values for the parameter
after the change. This is computationally quite expensive. In [87], a CUSUM
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technique is used for detecting change in the Hurst parameter of LRD traffic.
However, the drawback of the above method is that it is based on a parametric
model of the traffic. In [88], three tests are proposed for detecting changes in
the Hurst value. Two of the tests depend on using the Whittle estimator for
blocks of non-overlapping data, and the third method is limited to H < 0.75.

In [71], the authors propose decomposing the incoming traffic into different
scales using wavelets and then use the Schwartz Information Criterion (SIC)
to detect when there is a change in the variance of the wavelet coefficients
at different scales. If a change is detected in a sufficient number of scales,
then it says that the Hurst parameter has changed. A further refinement
of this method is proposed in [70], where a combination of the Stationary
Wavelet Transform (SWT) and Discrete Wavelet Transform (DWT) is used to
decompose the data. The change points indicated by the SIC are then clustered
together by the Hough transform to indicate the change point. Their proposal
for using the SWT is based on their claim that SWT decomposes the data in a
similar fashion as the DWT. However, no theoretical basis is provided for the
same. In fact, our experiments indicate that the wavelet coefficients obtained
by using the SWT are not as decorrelated as those obtained by the DWT.
This can be seen clearly from the figure 5.1 where we have plotted the ACF
for the level 2 DWT and SWT coefficients of a FGN series with Hurst value
of 0.92. This figure shows that the ACF for the SWT coefficients is significant
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Figure 5.1: Comparison of ACF for DWT and SWT coefficients of FGN series.

upto a lag of 6, while for the DWT coefficients, it is significant only upto a lag
of 1. This shows that the DWT decorrelates the data better than SWT. In
addition, the wavelet coefficients obtained by SWT do not possess a normal
distribution even for a FGN dataset. To test this, we use the same FGN series
used above, and decomposed it to 10 levels by using both SWT and DWT.
We then test if the wavelet coefficients obtained by both the decomposition
techniques at all levels are normal. It is found that the wavelet coefficients at
all 10 levels obtained by using DWT are normal, while for the SWT case, the
coefficients at only the first three levels are normal, while those at the higher
seven levels are not normal.
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5.2 Proposed Algorithm

Our algorithm is similar to the one proposed by Rincon and Sallent [70]. It is
based on the following equation from [4]:

µj = 2j(2H−1)cfC, (5.1)

where C =
∫ |ν|1−2H |Ψ0(ν)|2dν, and Ψ0(ν) is the Fourier transform of the

wavelet ψ(t). µj is the variance of the wavelet coefficients at level j given by
the equation:

µj =
1

nj

nj∑

k=1

d2
j,k, (5.2)

where nj is the number of available coefficients d(j,.) at level j. Rewriting 5.1
as

log2(µj) = j(2H − 1) + log2(cfC) (5.3)

it is seen that the variance of the wavelet coefficients at any level is proportional
to the Hurst value of the original series. Thus, if the Hurst value of the original
series changes at any point, the variance of the wavelet coefficients around that
location will also change. Thus, by detecting a change in the variance of the
wavelet coefficients we can indicate a change in the Hurst value. In the next
section, we describe the algorithm used for detecting a change in the variance
of the wavelet coefficients.

5.2.1 Variance Change Detection

For detecting a change in the variance of the wavelet coefficients, we have used
the algorithm proposed in [26]. The algorithm can be explained as follows:
Let X1, X2, .... be independent random variables with density f(X; θ, η). We
assume θ ∈ Ω1 ⊂ <d, d ≥ 1, η ∈ Ω2 ⊂ <p, p ≥ 0. The parameter θ is the
parameter of interest, and η will be the nuisance parameter. The following is
the hypothesis to be tested:

H0 : θ = θ0, θ0 and η unknown, for all observations
Ha : X1, ..., Xτ−1 have density f(X; θ0, η), η unknown

Xτ , Xτ+1, .... have density f(X; θa, η), η, θa unknown,
where τ , the change point is also unknown.

For our case, the random variables Xi’s are replaced by the wavelet coeffi-
cients, dj,k for each scale j. The dimension d = 1 and p = 1. The function f

will be the density function of the normal distribution, 1√
2πσ

exp
[
−1
2

(
x−µ

σ

)2
]
,

where µ is the mean and σ2 is the variance. Since, we are interested in moni-
toring the variance, the hypothesis to be tested becomes:

H0 : σ2 = σ2
0, σ2

0 and µ are unknown

H1 : σ2 6= σ2
0, σ2

0 and µ are unknown (5.4)

47



This is similar to Example 2 in [26] in which it has been shown that the test
statistic for this case is

Wk =
k∑

i=1

[
X2

i −
(
σ2

0 + X
2

k

)]
/
(
2σ4

0

)1/2
. (5.5)

As discussed earlier in Section 2.3, the wavelet coefficients have a mean of zero.
Thus, the test hypothesis and the test statistic become:

H0 : σ2 = σ2
0, σ2

0 is unknown

H1 : σ2 6= σ2
0, σ2

0 is unknown (5.6)

Wk =
k∑

i=1

[
X2

i − σ2
0

]
/
(
2σ4

0

)1/2
(5.7)

The limiting distribution of the statistic max1<k<nn
−1/2|Wk| (where n is the

length of the dataset) under the null hypothesis is a Brownian bridge [26].
Using this, the critical values Cα have been found to be [48]

α one-tail two-tail

0.1 1.073 1.224
0.05 1.224 1.358

We conclude that H0 is not supported by the data if

max1<l<nn
−1/2|Wk| ≥ Cα, for any k. (5.8)

If no such k, k ≤ n exists, then H0 is not rejected. For our experiments we
have used Cα = 1.224.

The above discussion applies to a single level of wavelet coefficients. The
same procedure is repeated for all the levels of the wavelet coefficients. We use
the results obtained at the different levels for making a decision if the Hurst
parameter has changed. This decision process is described in the next section.

5.2.2 Decision about Constancy of Hurst Value

By using the algorithm described in the previous section, we are able to find
the locations of the variance change points for the wavelet coefficients at the
different levels of the DWT of the dataset. The easiest method for concluding
that the Hurst value has changed is to test if Eqn. 5.8 is satisfied for any level.
In other words, if a change in variance is detected at any level, then a change
in the Hurst value is indicated.

However, it is possible that the variance change points at different levels of
the DWT might be pointing to different locations in the time domain. Another
point to note is that each point in the wavelet domain actually corresponds to a
range in the time domain, with the range increasing as we increase the level of
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Figure 5.2: Converting change point in variance to Hurst change point.

decomposition. For example, when using the db6 wavelet, each point at level 1
of the DWT representation corresponds to 6 points on the time domain, while
each point at level 2 corresponds to 16 points, and so on. So, it is necessary to
convert each variance change point to its corresponding range along the time
domain. This is demonstrated in Figure 5.2, where we have shown 5 levels
of wavelet decomposition and their corresponding ranges on the time domain.
Thus, a variance change point will actually indicate a range along the time
domain for the Hurst change. As can be seen from the figure, variance change
points have been indicated at levels 1, 2, 4 and 5, labeled as V 1, V 2, V 3 and
V 4 respectively. Note that, there is no change point indicated at level 3. This
happens in many cases, specially when the change in the Hurst value is small.
The mapping of each variance change point to its range along the time domain
is tabulated below.

Variance Change Point Time-domain Range

V1 T5-T7
V2 T4-T8
V3 T1-T3
V4 T2-T6

It can be seen from Figure 5.2, that the ranges indicated by the variance
change points are not always overlapping. In some cases the ranges indicated
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by one level are completely enclosed by the ranges indicated by another level,
as for V 1 and V 2, while in other cases, there is no overlap as for V 3 and
V 2. In other cases like for V 3 and V 4, there is partial overlap. In order to
decide which of the variance change points to select as the change point, we
look at the number of ranges which intersect or enclose the range indicated by
each change point, and then select that point whose range intersects with the
maximum number of ranges. The following is a tabulation of the intersecting
ranges for each change point.

Variance Change Point Change Points for which
its range intersects

V1 V2,V4
V2 V1,V4
V3 V4
V4 V1,V2,V3

As can be seen, the range indicated by V 4 intersects with the maximum
number of ranges, and hence that is selected as the change point. If there
are two possible candidates to be selected as the change point, then we select
the change point at the lower level. One criteria for selecting the variance
change point is that its range must intersect with at least one other range. If
all the variance change points have mutually exclusive ranges along the time
domain, then we consider that as not a valid detection of a Hurst change.
Once, the change point is selected, we need to decide the range along the time
domain. One way to do that, would be to take just the range indicated by
this change point. In this example, that would mean T2 − T6. However, we
select the range which encompasses all the intersecting ranges. In this case,
that becomes T1− T8. Once this “Hurst Change Range” is selected, we take
the midpoint of this range as the “Hurst Change Point”.

Now that our algorithm has been explained, we demonstrate its perfor-
mance in the next section.

5.3 Performance Evaluation of Algorithm

In this section, we perform a number of tests to demonstrate the working of
our algorithm.

5.3.1 Using FGN Datasets

We tested our algorithm by using FGN datasets of different lengths. The FGN
series were generated by using the Matlab function wfbm which generates a
Fractional Brownian Motion series with the given Hurst value. The difference
between adjacent values of this series gives us the FGN series with the desired
Hurst value. For our work, we generated FGN series with the following Hurst
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values: 0.52, 0.57, 0.62, 0.67, 0.72, 0.77, 0.82, 0.87, 0.92 and 0.97 of lengths
10000, 20000 and 30000 for each Hurst value. For every Hurst value of a
specific length, we generated 1000 series.

We then used the FGN series to create datasets having a single or no change
point of the Hurst parameter. The datasets we generated are as follows:

1. Two series of length 20000 each were joined back to back to generate
a dataset of length 40000 (referred as 20000 + 20000, and with change
point at 20001).

2. One series of length 30000 was joined with another series of length 10000
to generate a dataset of length 40000. There were two different combi-
nations used in this:

(a) The series of length 30000 was followed by the series of length 10000
(referred as 30000 + 10000, and with change point at 30001).

(b) The series of length 10000 was followed by the series of length 30000
(referred as 10000 + 30000, and with change point at 10001).

3. One series of length 20000 was joined with another series of length 10000
to generate a dataset of length 30000. There were two different combi-
nations used in this:

(a) The series of length 20000 was followed by the series of length 10000
(referred as 20000 + 10000, and with change point at 20001).

(b) The series of length 10000 was followed by the series of length 20000
(referred as 10000 + 20000, and with change point at 10001).

For each of the above datasets, we tested for all possible combinations of
the following changes of the Hurst parameter: 0 (no change), 0.05, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4 and 0.45. Both increases and decreases in the Hurst
value were tested.

As discussed previously, our algorithm consists of decomposing the time
domain dataset into the wavelet domain by using the DWT. One of the im-
portant features of DWT is selecting an appropriate mother wavelet. The
most commonly used mother wavelets used in the literature for LRD are the
db1 (also known as the Haar wavelet) and the db3. We use these two wavelets
and the db6 wavelet for our experiments. We compare the performance of
these wavelets for our change detection algorithm by using the 20000 + 20000
datasets. The corresponding results are shown in the second, third and fourth
columns of Tables 5.1, 5.2, 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17 and 5.19.
From Tables 5.1 and 5.2, it can be seen that the number of false positives in-
dicated by the change detection algorithm are the least when the db1 wavelet
is used. However, from Tables 5.3, 5.5, 5.7, 5.9, 5.11, 5.13 and 5.15, it is seen
that by using the db6 wavelet gives the best detection results. In order to
obtain a proper balance between the false positives and correct detections, we
decided to use the db3 wavelet for all our experiments.

51



5.3.1.1 False Positives

The first test that we conducted was to check the false positive rate; in other
words the number of changes detected when there was no true change. For this
purpose, we used the datasets which were formed by joining FGN series having
the same Hurst value. The corresponding results are tabulated in Tables 5.1
and 5.2. As seen from Tables 5.1 and 5.2, the number of false positives reduce
as the Hurst value increases. We have not yet found any reason for this
observation.

Hurst Series
Value 20000 + 20000 30000 + 10000 10000 + 30000

db1 db3 db6 db3 db3

0.52 0 189 242 230 257
0.57 2 118 195 164 176
0.62 2 61 121 116 119
0.67 3 23 82 80 90
0.72 0 13 57 74 86
0.77 1 4 37 70 91
0.82 1 8 25 65 63
0.87 5 8 21 63 79
0.92 2 8 13 76 85
0.97 1 4 19 59 66

Table 5.1: Number of false positives detected in 1000 series of length 40000.
Each series is formed by joining two different FGN series. The Hurst parameter
of both the series are the same.

One of the possible reasons for the false positives might be the discontinuity
introduced at the point where we join the 2 FGN series. In order to rule out
this possibility, we plotted the histogram of the locations where the change was
indicated. The histogram for the 20000 + 20000 dataset with the db3 wavelet
is shown in Figure 5.3.

If the discontinuity at the point of joining the two FGN series would be
the cause for the false positives, we expect to see a peak near the center of the
histogram, since that is the point of discontinuity. However, it is seen in Figure
5.3 that this is not the case. In fact, for Hurst values of 0.52, 0.57, 0.62, 0.67
and 0.72, most of the changes are detected in the initial third of the dataset.
Similar results were obtained for the other datasets. This result also proves
that the discontinuity introduced by putting FGN series back-to-back does not
cause a problem for change detection.

Another observation from Tables 5.1 and 5.2 is that the number of false
positives is the least for the 20000 + 20000 dataset. Even for datasets of
the same length; viz. 30000 + 10000 and 10000 + 30000, the number of false
positives are much greater than the first case. This is another phenomenon for
which we have been unable to find any explanation. The worst case behaviors
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Hurst Series
Value 10000 + 20000 20000 + 10000

db3 db3

0.52 310 315
0.57 217 215
0.62 175 164
0.67 143 105
0.72 120 98
0.77 97 94
0.82 104 73
0.87 98 76
0.92 101 92
0.97 87 95

Table 5.2: Number of false positives detected in 1000 series of length 30000.
Each series is formed by joining two different FGN series. The Hurst parameter
of both the series are the same.

are for the 10000+20000 and 20000+10000 datasets with Hurst value of 0.52
giving a False detection rate of 31%.

5.3.1.2 False Negatives

Here, we test how many true changes are missed by our algorithm; or the
number of False Negatives. The results for the three series of length 40000
are tabulated in Tables 5.3, 5.5, 5.7, 5.9, 5.11, 5.13, 5.15, 5.17 and 5.19, and
the results for the two series of length 30000 are tabulated in Tables 5.4, 5.6,
5.8, 5.10, 5.12, 5.14, 5.16, 5.18 and 5.20. For each case, the results for all the
possible transitions of the Hurst parameter are reported in these tables.

From Tables 5.3 and 5.4, it can be seen that the change detection rate by
using the db3 wavelet is not very high. The best case is 52.7% for the transition
0.52− 0.57 for the 20000+ 10000 dataset, with the worst case being 23.2% for
the 10000 + 30000 dataset. By looking at these results, it can be concluded
that our algorithm is not sensitive enough to detect changes of magnitude
0.05. Another observation that can be made from these tables is that when
the change point is not at the center of the dataset, the algorithm has better
performance in detecting an increase in the Hurst value if the change point is
towards the end of the series, while it is the opposite for detecting decreases
in the Hurst value. This is seen for all possible transitions in the Hurst value.

When the change magnitude is 0.1, it can be observed from Tables 5.5
and 5.6 that the algorithm gives reasonably satisfactory results with the best
performance observed when the change point is in the center of the series
(20000 + 20000 dataset). However, when the change point is in the initial
quarter of the series (10000 + 30000 dataset), the algorithm does not have a
very good performance in detecting increases in the Hurst value.
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Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.57 141 478 777 448 354
0.57-0.62 135 456 739 407 324
0.62-0.67 133 410 732 366 259
0.67-0.72 133 419 752 301 232
0.72-0.77 140 408 702 347 205
0.77-0.82 139 425 728 358 209
0.82-0.87 156 452 737 328 227
0.87-0.92 178 462 704 362 267
0.92-0.97 196 463 755 376 232

Decrease
0.57-0.52 166 507 657 358 520
0.62-0.57 192 493 602 322 468
0.67-0.62 183 474 590 302 459
0.72-0.67 190 488 574 259 386
0.77-0.72 185 442 539 253 430
0.82-0.77 218 450 566 255 388
0.87-0.82 218 493 570 265 376
0.92-0.87 201 462 561 258 387
0.97-0.92 219 473 591 270 383

Table 5.3: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.05.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.57 394 526 0.57-0.52 525 486
0.57-0.62 390 520 0.62-0.57 494 394
0.62-0.67 382 466 0.67-0.62 471 390
0.67-0.72 325 438 0.72-0.67 417 379
0.72-0.77 338 422 0.77-0.72 424 328
0.77-0.82 320 438 0.82-0.77 426 381
0.82-0.87 310 442 0.87-0.82 428 366
0.87-0.92 327 429 0.92-0.87 407 345
0.92-0.97 332 448 0.97-0.92 417 353

Table 5.4: Number of changes detected for 1000 series of length 30000 by using
the db3 wavelet. Each series is formed by joining two different FGN series; one
of length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.05.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.62 425 807 969 760 566
0.57-0.67 463 806 978 736 549
0.62-0.72 433 835 981 714 542
0.67-0.77 478 826 972 726 535
0.72-0.82 470 817 978 728 556
0.77-0.87 534 859 979 722 550
0.82-0.92 515 852 967 741 585
0.87-0.97 541 866 981 759 560

Decrease
0.62-0.52 515 848 935 625 794
0.67-0.57 535 862 920 626 797
0.72-0.62 551 864 920 614 751
0.77-0.67 557 866 914 598 746
0.82-0.72 553 861 919 597 771
0.87-0.77 605 866 933 633 747
0.92-0.82 571 890 930 593 770
0.97-0.87 612 883 921 593 747

Table 5.5: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.1.
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Figure 5.3: Histogram of Change Point Locations for the 20000+20000 dataset
using the db3 wavelet.

The observations made from Tables 5.3, 5.5, 5.4 and 5.6 show that our
algorithm’s performance is sensitive to the location of the change point in the
dataset. In addition, the algorithm also performs very differently in detecting
increases and decreases in the Hurst value if the change point is not in the
center of the dataset.

For any transition in the Hurst value with a magnitude of 0.15 or greater,
our algorithm detects changes in more than 90% of the cases as can be seen
from Tables 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18, 5.19
and 5.20. In fact, once the change magnitude is 0.20 or greater changes are
detected in more than 98% of the cases.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.62 727 799 0.62-0.52 813 734
0.57-0.67 723 794 0.67-0.57 809 720
0.62-0.72 676 803 0.72-0.62 785 703
0.67-0.77 667 792 0.77-0.67 777 718
0.72-0.82 655 800 0.82-0.72 776 688
0.77-0.87 689 821 0.87-0.77 772 708
0.82-0.92 692 815 0.92-0.82 816 693
0.87-0.97 693 800 0.97-0.87 787 693

Table 5.6: Number of changes detected for 1000 series by using the db3 wavelet.
Each series is formed by joining two different FGN series; one of length 20000
and the other of length 10000. The Hurst parameter of the 2 series differ by
0.1.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.67 787 975 1000 961 839
0.57-0.72 795 974 1000 929 813
0.62-0.77 815 976 999 938 822
0.67-0.82 809 988 1000 955 841
0.72-0.87 855 989 1000 955 840
0.77-0.92 874 990 999 957 834
0.82-0.97 881 994 999 959 849

Decrease
0.67-0.52 829 975 995 865 965
0.72-0.57 858 986 995 891 952
0.77-0.62 860 990 994 881 960
0.82-0.67 856 990 995 876 950
0.87-0.72 865 990 998 869 956
0.92-0.77 883 987 996 875 959
0.97-0.82 886 993 1000 889 957

Table 5.7: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.15.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.67 918 953 0.67-0.52 948 925
0.57-0.72 887 945 0.72-0.57 957 938
0.62-0.77 904 963 0.77-0.62 958 918
0.67-0.82 913 951 0.82-0.67 965 926
0.72-0.87 921 962 0.87-0.72 948 930
0.77-0.92 925 969 0.92-0.77 961 932
0.82-0.97 942 979 0.97-0.82 975 938

Table 5.8: Number of changes detected for 1000 series by using the db3 wavelet.
Each series is formed by joining two different FGN series; one of length 20000
and the other of length 10000. The Hurst parameter of the 2 series differ by
0.15.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.72 941 999 1000 990 954
0.57-0.77 963 999 1000 996 950
0.62-0.82 956 998 1000 993 962
0.67-0.87 974 1000 1000 996 971
0.72-0.92 972 1000 1000 996 969
0.77-0.97 972 999 1000 997 976

Decrease
0.72-0.52 979 999 1000 965 998
0.77-0.57 958 998 1000 977 994
0.82-0.62 970 1000 1000 981 994
0.87-0.67 971 1000 1000 986 995
0.92-0.72 978 1000 1000 979 998
0.97-0.77 979 1000 1000 979 997

Table 5.9: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.2.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.72 981 990 0.72-0.52 993 989
0.57-0.77 987 994 0.77-0.57 997 990
0.62-0.82 988 998 0.82-0.62 997 987
0.67-0.87 983 998 0.87-0.67 997 993
0.72-0.92 991 997 0.92-0.72 998 998
0.77-0.97 994 999 0.97-0.77 999 990

Table 5.10: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.2.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.77 991 1000 1000 1000 996
0.57-0.82 993 1000 1000 999 996
0.62-0.87 994 1000 1000 1000 994
0.67-0.92 993 1000 1000 1000 994
0.72-0.97 999 1000 1000 999 996

Decrease
0.77-0.52 983 1000 1000 995 999
0.82-0.57 984 1000 1000 997 1000
0.87-0.62 995 1000 1000 997 1000
0.92-0.67 989 1000 1000 999 1000
0.97-0.72 995 1000 1000 997 1000

Table 5.11: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.25.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.77 1000 999 0.77-0.52 999 999
0.57-0.82 998 1000 0.82-0.57 1000 999
0.62-0.87 1000 1000 0.87-0.62 999 998
0.67-0.92 1000 1000 0.92-0.67 1000 999
0.72-0.97 1000 1000 0.97-0.72 1000 1000

Table 5.12: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.25.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.82 996 1000 1000 1000 1000
0.57-0.87 1000 1000 1000 1000 999
0.62-0.92 999 1000 1000 1000 999
0.67-0.97 1000 1000 1000 1000 1000

Decrease
0.82-0.52 996 1000 1000 1000 1000
0.87-0.57 996 1000 1000 1000 1000
0.92-0.62 997 1000 1000 999 1000
0.97-0.67 998 1000 1000 1000 1000

Table 5.13: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.3.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.82 999 1000 0.82-0.52 1000 999
0.57-0.87 1000 1000 0.87-0.57 1000 1000
0.62-0.92 1000 1000 0.92-0.62 1000 1000
0.67-0.97 1000 1000 0.97-0.67 1000 1000

Table 5.14: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.3.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.87 1000 1000 1000 1000 1000
0.57-0.92 999 1000 1000 1000 1000
0.62-0.97 999 1000 1000 1000 1000

Decrease
0.87-0.52 998 1000 1000 1000 1000
0.92-0.57 1000 1000 1000 1000 1000
0.97-0.62 997 1000 1000 1000 1000

Table 5.15: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.35.

Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.87 1000 1000 0.87-0.52 1000 1000
0.57-0.92 1000 1000 0.92-0.57 1000 1000
0.62-0.97 1000 1000 0.97-0.62 1000 1000

Table 5.16: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.35.

61



Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.92 1000 1000 1000 1000 1000
0.57-0.97 1000 1000 1000 1000 1000

Decrease
0.92-0.52 1000 1000 1000 1000 1000
0.97-0.57 999 1000 1000 1000 1000

Table 5.17: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.4.

Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.92 1000 1000 0.92-0.52 1000 1000
0.57-0.97 1000 1000 0.97-0.57 1000 1000

Table 5.18: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.4.

Initial Value - Change Point Location
Final Value 20001 30001 10001

db1 db3 db6 db3 db3

Increase
0.52-0.97 1000 1000 1000 1000 1000

Decrease
0.97-0.52 999 1000 1000 1000 1000

Table 5.19: Number of changes detected for 1000 series of length 40000 each.
Each series is formed by joining two different FGN series. The Hurst parameter
of the 2 series differ by 0.45.
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Initial Value - Change Point Initial Value - Change Point
Final Value location Final Value location

10001 20001 10001 20001

Increase Decrease
0.52-0.97 1000 1000 0.97-0.52 1000 1000

Table 5.20: Number of changes detected for 1000 series by using the db3
wavelet. Each series is formed by joining two different FGN series; one of
length 20000 and the other of length 10000. The Hurst parameter of the 2
series differ by 0.45.
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5.3.2 Comparison with Rincon-Sallent (R-S) Algorithm

In this section, we compare the performance of our algorithm with that of the
Rincon-Sallent (R-S) algorithm discussed previously. This algorithm has been
chosen for comparison because it is the latest algorithm proposed for change
detection of the Hurst parameter.

For our algorithm, we have used the db3 wavelet with 10 levels of decom-
position. The critical value selected was the two-tailed value for significance
levels of 0.1; i.e. 1.224. For the R-S algorithm, we used the code provided by
the authors, and the parameters selected are as follows:

1. Number of levels of decomposition = 8

2. Border scale between the two methods = 3

3. Significance level for DWT = 1E-12

4. Significance level for SWT = 1E-5

5. Minimum segment size = 10000

6. Offset = 0

7. Resolution = 2000

8. Quorum = 3

9. Number of change points = 1

5.3.2.1 False Positives

The “Quorum” selected for the R-S algorithm is the minimum number of levels
on which a change should be indicated for the point to be selected as a Hurst
change point. This is more than what we have used for our algorithm; we have
indicated a change in the Hurst parameter, if a change point is found at any
two levels, as discussed previously. It is expected that using a higher number
of levels for making the decision should give fewer false positives, and thus
the false positive rate of the R-S algorithm should be less than our algorithm.
However, as seen in Table 5.21, the R-S algorithm has a false positive Rate of
more than 90% for all cases. If “Number of change points” is increased to 2,
then the false positive rate further increases. This high false positive rate is a
drawback of the R-S algorithm.

5.3.2.2 False Negatives

In this section, we make a comparison of the performance of our algorithm
and the R-S algorithm in detecting a true change. The results are tabulated
in Tables 5.22, 5.23, 5.24, 5.25, 5.26, 5.27, 5.28, 5.29 and 5.30. In these Tables,
we have given the number of instances in which a change is indicated out
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Hurst Value Our algorithm R-S algorithm

0.52 189 912
0.57 118 935
0.62 61 963
0.67 23 955
0.72 13 977
0.77 4 974
0.82 8 978
0.87 8 972
0.92 8 980
0.97 4 984

Table 5.21: Comparison of the number of false positives indicated by our
algorithm and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series.

of 1000 iterations for each case. We have used the 20000 + 20000 dataset
for our comparisons. The accuracy of the change point detection algorithms
are compared by computing the difference between the actual change point
location (20001) and the indicated change point. The means and standard
deviations of the difference is also shown in those tables.

From Table 5.22, it can be seen that the R-S algorithm has a much higher
detection rate as compared to our algorithm when the change in Hurst param-
eter is 0.05. Our algorithm gives a worst case detection rate of 41% and a best
case detection rate of 50.7%. The R-S algorithm on the other hand has a worst
case detection rate of 98.8% and a best case of 100%. However, on comparing
the deviation of the change point indicated, it can be seen that in the cases
where our algorithm indicates a change, it is much closer to the actual change
location than what is indicated by the R-S algorithm. This can be seen more
clearly in Figure 5.4 and Figure 5.5 which are the plots of the histograms of
the location of the change points indicated by the R-S algorithm and our al-
gorithm. Figure 5.5 shows a sharp peak near 20000 which is the location of
the actual change point, with a few change points indicated in other locations.
The change points seen near 4000 are all invalid change points. However, in
Figure 5.4, it can be seen that change points are indicated over the entire range
of the dataset.

It is seen that the mean of the deviation from the actual change point some-
times has a negative value for our algorithm. This might be considered as an
invalid detection, since the change is indicated before the actual change point.
However, as discussed previously, in our algorithm we decide on the change
point as the mid point of the range along the time domain. For the db3 wavelet
with 10 levels of decomposition, as used in our algorithm, the maximum range
is 5116. Thus, any deviation with an absolute value within this range can be
considered as an accurate detection of change point irrespective of its sign. It
will be seen that in all the cases, the mean deviation has an absolute value
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.57 478 1618.82 7771.58 988 2178.21 9183.79
0.57-0.62 456 846.12 6273.32 992 1961.73 8856.92
0.62-0.67 410 178.11 4151.43 997 1956.37 9527.59
0.67-0.72 419 -405.65 3081.06 997 1740.51 9839.81
0.72-0.77 408 -310.15 2342.02 996 1964.59 9193.01
0.77-0.82 425 -246.79 2429.20 1000 2075.47 9269.57
0.82-0.87 452 -389.66 2148.97 1000 1458.30 9708.35
0.87-0.92 462 -428.09 2430.18 1000 2051.85 9659.23
0.92-0.97 463 -350.27 1732.83 999 1543.21 10334.85

Decrease
0.57-0.52 507 1235.53 6936.02 991 2313.07 9168.09
0.62-0.57 493 935.62 5855.80 995 1840.89 9524.70
0.67-0.62 474 488.15 3606.36 997 2329.58 9446.45
0.72-0.67 488 538.63 2558.10 995 2131.32 9609.31
0.77-0.72 442 615.48 2622.39 995 2328.44 9780.62
0.82-0.77 450 272.06 2227.85 1000 2016.51 9349.48
0.87-0.82 493 270.28 2144.51 999 1354.42 9514.67
0.92-0.87 462 367.71 2053.00 999 1955.62 10059.89
0.97-0.92 473 300.84 2163.54 1000 1274.98 10283.36

Table 5.22: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.05.

less than 5116, thereby showing that on an average our algorithm indicates
the change point quite accurately.

For the case where the Hurst value changes by 0.1, the results are given in
Table 5.23. From the table, it can be seen that once again the change detection
rate is higher for the R-S algorithm as compared to ours. But our algorithm
now has a worst case change detection of 80.7% which can be considered a fair
detection rate. In addition, it can be seen that the mean deviation from the
actual change point and the indicated change point is lower for our algorithm
and also has lower standard deviation as compared to the R-S algorithm.

The above results indicates that our algorithm is not very sensitive to small
changes in the Hurst parameter (0.05 and 0.1), as the change in variance for
the wavelet coefficients is not very significant. However, when the change is
detected, it is much more accurate than the R-S algorithm. The sensitivity
of our algorithm can probably be improved by changing the selected critical
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Figure 5.4: Histogram of location of Change point indicated by R-S algorithm
for an increase in Hurst value by 0.05

value.
Changes in the Hurst value by a magnitude greater than or equal to 0.15

are detected in at least 97.4% cases by our algorithm, as can be seen in Tables
5.24, 5.25, 5.26, 5.27, 5.28, 5.29 and 5.30. Changes greater than or equal to 0.2
are detected in 99.9% of the cases. On comparing the accuracy of the indicated
change point, it can be seen that our algorithm is much more accurate than
the R-S algorithm and also has much lower standard deviation in the difference
from the actual change point. This again proves that our algorithm is much
more accurate than the R-S algorithm in indicating the location of the change
point while having the same level of sensitivity for changes of 0.15 or higher.
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Figure 5.5: Histogram of location of Change point indicated by our algorithm
for an increase in Hurst value by 0.05
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.62 807 352.13 3993.36 998 927.65 6514.20
0.57-0.67 806 -73.34 2647.66 1000 960.80 6503.04
0.62-0.72 835 -183.81 2592.01 1000 962.17 7030.32
0.67-0.77 826 -270.72 1496.24 1000 1174.85 7316.95
0.72-0.82 817 -200.49 1226.12 999 986.06 7185.26
0.77-0.87 859 -239.59 1512.26 1000 1332.77 7374.70
0.82-0.92 852 -207.58 1718.70 1000 862.55 7370.26
0.87-0.97 866 -189.65 1488.46 999 -7.86 7945.05

Decrease
0.62-0.52 848 357.53 3712.78 1000 1797.77 6955.99
0.67-0.57 862 254.26 2424.52 998 2361.35 7153.13
0.72-0.62 864 319.12 1829.32 1000 1889.27 6577.37
0.77-0.67 866 303.89 1801.10 1000 1618.54 7102.65
0.82-0.72 861 267.96 1522.06 1000 1668.61 7524.41
0.87-0.77 866 312.18 1640.39 1000 1466.49 7427.96
0.92-0.82 890 219.46 1504.10 1000 1666.42 7878.45
0.97-0.87 883 306.88 1587.14 1000 922.37 7897.06

Table 5.23: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.10.
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.67 975 40.01 1896.91 1000 685.05 5582.62
0.57-0.72 974 -8.73 1417.72 1000 315.29 5664.47
0.62-0.77 976 -117.52 1170.92 1000 496.91 5826.06
0.67-0.82 988 -135.17 1085.63 1000 664.18 6018.67
0.72-0.87 989 -130.63 1088.36 1000 581.65 5985.20
0.77-0.92 990 -191.53 1185.22 1000 865.71 6046.80
0.82-0.97 994 -194.76 1256.14 1000 415.42 6813.14

Decrease
0.67-0.52 975 172.90 1756.84 1000 1352.59 5994.10
0.72-0.57 986 215.78 1599.02 1000 1444.10 5603.67
0.77-0.62 990 222.69 1085.59 1000 1240.56 6090.68
0.82-0.67 990 225.59 1030.76 1000 1024.49 6197.22
0.87-0.72 990 189.31 1079.73 1000 1443.00 6154.58
0.92-0.77 987 209.06 1077.03 1000 1046.24 6459.13
0.97-0.82 993 198.67 1068.77 1000 1044.52 6203.34

Table 5.24: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.15.
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.72 999 -37.73 1304.96 1000 356.01 4906.57
0.57-0.77 999 -76.68 713.43 1000 94.19 4956.41
0.62-0.82 998 -107.96 758.66 1000 351.32 5076.71
0.67-0.87 1000 -81.75 626.50 1000 506.73 5338.87
0.72-0.92 1000 -88.34 694.52 1000 307.26 5067.95
0.77-0.97 999 -81.79 603.67 1000 451.94 5621.55

Decrease
0.72-0.52 999 151.88 918.11 1000 1434.82 5368.49
0.77-0.57 998 186.75 899.44 1000 1119.38 5196.72
0.82-0.62 1000 130.67 791.02 1000 1162.11 5688.18
0.87-0.67 1000 132.19 723.87 1000 1022.27 5538.30
0.92-0.72 1000 115.32 694.65 1000 820.10 6090.31
0.97-0.77 1000 164.72 833.75 1000 906.07 5680.95

Table 5.25: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.20.
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.77 1000 -75.64 640.78 1000 252.13 4781.00
0.57-0.82 1000 -75.05 568.52 1000 82.14 4660.24
0.62-0.87 1000 -32.40 334.31 1000 365.21 4690.48
0.67-0.92 1000 -32.11 421.65 1000 276.60 5298.52
0.72-0.97 1000 -32.74 346.43 1000 45.07 5341.69

Decrease
0.77-0.52 1000 90.43 590.19 1000 1271.04 5400.51
0.82-0.57 1000 73.80 450.68 1000 1440.06 5456.25
0.87-0.62 1000 87.00 505.81 1000 1233.47 5389.78
0.92-0.67 1000 65.98 449.90 1000 1093.06 5725.81
0.97-0.72 1000 70.92 456.12 1000 533.14 5164.68

Table 5.26: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.25.

Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.82 1000 -18.05 330.01 1000 150.33 5162.04
0.57-0.87 1000 -18.51 330.20 1000 -62.72 4798.96
0.62-0.92 1000 -24.32 379.21 1000 132.32 5070.06
0.67-0.97 1000 -38.33 376.35 1000 -88.12 4960.17

Decrease
0.82-0.52 1000 23.71 301.20 1000 1352.49 5575.78
0.87-0.57 1000 33.23 286.78 1000 1070.43 5039.57
0.92-0.62 1000 66.44 457.48 1000 1183.55 5252.98
0.97-0.67 1000 41.23 346.10 1000 731.70 4841.55

Table 5.27: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.30.
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.87 1000 -5.86 204.14 1000 -22.16 4658.21
0.57-0.92 1000 5.03 137.38 1000 -233.52 4877.48
0.62-0.97 1000 -12.85 233.27 1000 -180.16 5008.24

Decrease
0.87-0.52 1000 27.58 302.62 1000 1255.93 5155.16
0.92-0.57 1000 24.59 282.84 1000 1135.56 5079.73
0.97-0.62 1000 29.02 313.64 1000 544.02 5187.97

Table 5.28: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.35.

Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.92 1000 5.48 121.89 1000 -115.39 4755.69
0.57-0.97 1000 2.12 133.76 1000 -492.24 4899.18

Decrease
0.92-0.52 1000 3.65 115.98 1000 1097.76 5433.80
0.97-0.57 1000 13.57 198.32 1000 904.12 5174.34

Table 5.29: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.40.
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Our algorithm R-S algorithm
Transition Number Deviation Number Deviation

Mean Standard Mean Standard
Deviation Deviation

Increase
0.52-0.97 1000 -1.07 188.01 1000 -326.82 4747.17

Decrease
0.97-0.52 1000 5.65 235.44 1000 1011.33 4837.80

Table 5.30: Comparison of the number of change points indicated and the
deviation of detected change point from actual change point for our algorithm
and Rincon-Sallent (R-S) algorithm for the 20000 + 20000 series with the
difference between the Hurst parameter of the 2 series being 0.45.
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Chapter 6

Conclusions and Future
Directions

6.1 Conclusions

The methods commonly used for estimating the Hurst parameter assume that
it is stationary over the entire range of the data set. However, it has been
demonstrated that this is not always true. We used the tool proposed by Abry
and Veitch to show that it is possible to detect such non-stationarities in the
Hurst parameter. However, their tool is unable to detect the location of any
change, and we propose a solution to this in Chapter 5. From the results,
in this chapter it is seen that the proposed algorithm for change detection
performs quite well when used on FGN data sets. It has very low rate of false
positives, and a high rate of correct detection with high accuracy of the change
point indication when the change magnitude is 0.1 or more.

In addition to the drawback of giving only a single estimate, the estima-
tors also suffer from the presence of non-stationarities like changing mean and
presence of SRD. We have demonstrated how to use some recently proposed
tools like the “Dependent Sizer” and the “Linear Multifractal Spectrum” for
deciding if the given data set has constant mean and constant Hurst value. A
sequence of steps have been proposed to be used for estimation of the Hurst
parameter for practical data sets. In the case of presence of SRD, the estima-
tors are shown to perform quite poorly and there is still no existing technique
for negating its effect on the estimates obtained. This remains an area for
further research.

We also propose a technique for generating multiple traffic traces from a
parent trace by using the bootstrapping technique in the wavelet domain. We
have shown that our technique can produce data sets matching the original
trace in terms of its Hurst parameter and multifractal spectrum both for syn-
thetic and real data sets. The queuing behavior of the traces generated by our
algorithm is also shown to be close to that of the actual trace. The behavior
of our algorithm is compared to that of the traditional FGN model and the

75



more recent β-MWM model and is demonstrated to perform better than both
of them.

6.2 Future Work

The way our change detection algorithm is currently implemented, only one
change point can be detected at a time in a given series. This needs to be
extended to be able to detect multiple change points in a given series. One
way of doing this would be to run the algorithm and if any change point is
found, then the data set is split into two parts around that change point, and
the change detection algorithm is run on both these parts. This process is
repeated recursively till no changes are found.

Secondly, the method used for deciding if a change has occurred based
on results at different DWT levels (Section 5.2.2) needs to be made more
sophisticated. One of the options is to use the Hough Transform as discussed
in [70].

In addition, the proposed technique is useful only when the wavelet coeffi-
cients have a normal distribution. However, if the original data set does not
have a Gaussian distribution, as is the case for most real life traffic traces,
then the wavelet coefficients will also not have a Gaussian distribution and
the algorithm might not give useful results. One of the techniques for using
our change detection algorithm with such data sets is to use the Box-Cox
transformation as used in our trace generation algorithm in Section 4.3.2.

Finally, the algorithm needs to be adapted to be able to be run online for
detecting changes in the Hurst value in real time.
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