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Abstract

Over the past two decades, wireless networking has become an enabling technology for

ubiquitous computing and inexpensive Internet access. The demand for wireless networking

has also increased steadily, including a wider range of applications, larger user populations,

and larger network scale. Challenges come from the increasing variety of traffic (such as

data, voice and video), service criteria (e.g. QoS/QoE, reliability, security etc.), as well

as system requirements (e.g. revenue, fairness, aggregate network performance etc.). Fur-

thermore, wireless networks are less stable, tractable and predictable compared with wired

environments, due to physical and management realities. From the physical perspective, the

time-varying soft capacity of wireless channels, as well as co-channel and adjacent-channel

interference degrades transmission quality and reduces their effective capacity. From the

management perspective, uncontrolled resource competition and uneven resource distribu-

tion degrades network performance. Although hardware advances are critical to satisfy

ever-growing user demands, the efficiency of resource management plays an equally (if not

more) important role to push wireless networking to its full potential in terms of satisfying

diverse user and system requirements. In this thesis, we propose an effective framework

of resource management to reduce the gap between diverse user/system demands and lim-

ited delivery capability of wireless networks. Our simulation results demonstrate that this

proposed framework of resource management achieves the lowest packet loss rate, best end-

to-end delay and fairness without compromising network throughput, compared with the

state-of-the-art methods. Additionally, our approach is simple in computation and light in

overhead.
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Chapter 1

Introduction

Over the past two decades, wireless networking has become an enabling technology for

ubiquitous computing and inexpensive Internet access. With more application diversity,

larger user populations, and wider network coverage, the demand for wireless access has

increased quickly and steadily. According to Cisco’s report in [17], traffic from wireless

devices will exceed traffic from wired devices by 2015. Furthermore, the user demand for

finite resources (e.g. bandwidth, frequency and energy etc.) and service criteria (e.g. quality

of service/experience, reliability, security etc.) are diverse, due to the variety of traffic (e.g.

data, voice and video etc.). Besides user demand, different systems also have different

requirements such as maximizing aggregate performance, network utility, system revenue or

fairness.

Against this trend, the limited delivery capability of wireless networking poses unique

challenges to satisfy such diverse user/system demand. Some of these capability limits are:

• Limited Wireless Bandwidth

Bandwidth is scarce in wireless networks. For example, IEEE 802.11a/b/g provides

up to 54 Mbps (megabits per second) data rate [36]. The newest standard, IEEE

802.11n, boosts the maximum data rate to 600 Mbps [39]. Besides IEEE 802.11,

WiMAX offers higher data rate. IEEE 802.16m promises to support data rate up to

1 Gbps (gigabits per second) [40]. IEEE 802.15.4 provides up to 250 Kbps (kilobits

per second) data rate for low-rate wireless personal area networks[37]. Furthermore,

when wireless interference is taken into account, the effective bandwidth available for

use is even less. In comparison, 10 Gigabit Ethernet is standardized in IEEE 802.3ae

[38], and 100 Gbps Ethernet is expected to be on market soon.

• Lossy Wireless Transmission

Wireless networks are less reliable, tractable and predictable compared with wired

environments. Due to interference, transmissions over wireless medium cause collisions

and lead to data loss. Without effective control, dynamic interference scenarios can
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significantly degrade transmission quality and reduce effective capacity.

• Poor Multi-Hop Delivery

Wireless multi-hop forwarding offers a large coverage area and reduces costs com-

pared with installing cables. However, network performance is compromised in terms

of throughput and delay. The co-existence of intra-path and inter-path interference

obstructs data forwarding by causing collisions within the same path and between

different paths. Furthermore, wireless interference contributes to network congestion;

while congestion returns the favor by aggravating collisions. Consequently, the effec-

tive capacity is even smaller in a multi-hop wireless network.

It requires both hardware breakthroughs and management efforts to reduce the gap be-

tween diverse user/system demand and limited wireless delivery capability. On one hand,

hardware advances help to increase bandwidth, improve resistance to interference, and re-

lieve the resource shortage due to fast-growing user demand. On the other hand, effective

resource management plays an equally important role to push a wireless network to its full

potential in terms of satisfying diverse user and system requirements. In this work, we focus

on effective resource management and aim to solve the following problems in both single-hop

and multi-hop wireless networks.

• How to allocate resources despite diverse user/system requirements;

• How to utilize allocated resources efficiently despite the co-existence of conflicts and

waste;

• How to effectively control network behavior despite dynamic interference;

• How to solve these three problems with very low control overhead and computational

complexity.

1.1 Background and Context

In all networks, resources are finite and consumed by multiple users to accomplish various

computation and communication tasks. As the number of users increases, available resources

may not be sufficient to satisfy all user requests. Therefore, resource competition among

multiple users is inevitable. Without appropriate control, aggressive competition may cause

starvation and resource waste. Consequently, the network becomes unstable and users may

experience long delay, significant packet loss and poor throughput. How to manage wireless

resource consumption efficiently is the main goal of this thesis. Before diving into the

solution domain, this section analyzes wireless resources, users and different scenarios of

resource competition.
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1.1.1 Wireless Resources

Wireless networks have different types of resources including transmission bandwidth, chan-

nel frequency, energy, storage, and processing cycles etc. In this work, we focus wireless

bandwidth for two reasons. First, as described earlier on, bandwidth is scarce in wire-

less networks compared to that in wired environments. Uncontrolled competition for such

limited resources among multiple users can significantly degrade network performance. Fur-

thermore, wireless bandwidth possesses distinct properties in time and space, which we will

elaborate in the rest of this section. In the conclusion chapter, we also discuss how to

manage other resources including frequency and energy via the proposed framework.

Definitions

Before analyzing the properties of wireless resources, a number of key definitions are clarified

first.

• Wireless Medium

Wireless communication via radio frequencies relies on radio waves (with a certain

frequency range and wavelength) to transfer information. Due to the shared nature

of this wireless medium, two radio devices may interfere with each other when trans-

mitting at the same frequency or adjacent frequencies. Depending on the strength of

interference signals and tolerance capabilities of radio devices, collisions may or may

not happen.

• Wireless RF Channels

A wireless RF channel is the spectrum block of radio frequencies, and is uniquely

specified by a center frequency and frequency bandwidth [99].

– Frequency bandwidth

In wireless communication, information is transmitted by radio waves over a

certain range of frequencies. Therefore, a transmitted signal often consists of

multiple frequencies. This range of frequency is called the bandwidth of signal

[99]. To accommodate the spectrum of transmitted signals, a wireless channel

has to be wide enough. Otherwise, detection distortion will happen [99]. The

frequency width of a wireless channel is called frequency bandwidth.

– Transmission bandwidth

Unlike frequency bandwidth, transmission bandwidth measures how fast data is

transmitted over a wireless channel during a certain period of time (e.g. 1 second).

The unit of transmission bandwidth is bits per second (bps). However, besides

the differences, there is also a close relation between transmission and frequency
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bandwidth. Specifically, a higher transmission rate requires a wider frequency

bandwidth [99]. In the rest of this thesis, we use transmission bandwidth and

bandwidth as interchangeable terms.

Properties

The properties of wireless resources can be classified as the finite-and-shared nature, time-

varying, mutual exclusiveness, and geographical distribution. These properties are the major

causes of competition among multiple users, and are of great importance to how resource

sharing is done.

• The finite-and-shared nature

Wireless resources are finite and shared by multiple users. First, there is a finite range

of radio spectrum. This fundamentally limits the total number of non-overlapping

channels that can be divided within the spectrum. For instance, IEEE 802.11b offers

14 channels and only a few of them are not overlapping (e.g. 1, 6 and 11)[36]. Al-

though transmitting through non-overlapping channels avoids interference, the grow-

ing demand of wireless access causes the scenario of multiple users sharing a single

channel to be inevitable. Second, there is finite bandwidth of a wireless channel. This

also restricts the rate of data transmission. If a traffic load exceeds the capability of

a channel, congestion will happen.

• The time-varying nature (soft capacity)

There are two major differences between wired and wireless links. First, a wired link

exists physically by connecting two machines via a cable. In comparison, a wireless link

is defined as an abstraction of the transmissions between a pair of sender and receiver.

Second, compared with a wired link, the capacity of a wireless link is time-varying

due to two factors. For one, the Shannon-Hartley theorem characterizes the channel

capacity C of a specified bandwidth B in the presence of noise N as C = B ·log(1+ S
N ),

where S is the average received signal strength [84]. According to this theorem, the

smaller the signal to noise ratio (SNR) is, the lower the channel capacity is. For

another, a wireless channel may be shared by multiple links. The more links are

transmitting over the same channel, the smaller portion of the channel capacity each

link can use. Furthermore, more links also mean stronger interference. Consequently,

more capacity may be wasted on collisions. We call this time-varying capacity of a

wireless link, soft capacity.

• The mutual exclusiveness of channel access

Co-channel interference is the major cause of the competition for channel access in

wireless networks. For each transmission pair (sender and receiver), any simultane-
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ous transmissions within a certain region may cause interference and even collisions.

Depending on the factors including 1) the level of interference tolerance of radio re-

ceivers; and 2) traffic schedules of neighbor nodes, this region may vary over time.

However, within the contention region of a transmission pair, mutual exclusive access

is required.

• The geographical distribution of wireless nodes

Another property of wireless resources is geographical distribution. This property

separates wireless nodes in space and enables parallel transmissions among spatially

separated nodes. Therefore, local temporal competition among wireless transmissions

can be compensated for via spatial separation.

1.1.2 Wireless Users

Users in wireless networks can be defined in various ways. Typically, different layers of the

network protocol stack have different definitions of users. Furthermore, users at different

levels have different concerns and requirements.

• Application-level users can be end-users in the real world (e.g. families, organizations

and companies).

Real-world users may be ranked based on the price of paid services. Users with the

same rank expect the services with equal quality. Users with different ranks expect

service differentiation.

• Network-level users can be end-to-end information sessions (e.g. multi-hop data flows).

End-to-end flows may or may not correspond to real-world users. Different flows may

carry different types of traffic, and each type of traffic has a certain performance

requirement. In addition, depending on the forwarding paths, different flows may

experience different performance in terms of packet loss, delay and throughput.

• Link-level users can be individual nodes or transmission pairs (e.g. between a sender

and receiver).

We define a wireless link as an abstraction of the transmissions between a pair of

sender and receiver. Link-level users compete for resources locally. Local resource

competition varies according to the number of users and traffic demand. Depending

on medium access control policies, aggressive users may monopolize channel access

and bandwidth, which causes starvation and unbalanced consumption of resources.

Despite these differences, users at different levels belong to the same network. Besides

handling their own unique problems, different levels should cooperate to achieve a coherent

objective. In this work, users are identified as end-to-end flows at the network layer. Each

5



flow can be mapped to an application level client and decomposed to flow segments at the

link layer. A special case is the single-hop networks where a network-layer flow directly

corresponds to the flow at the link layer.

1.1.3 Resource Competition

Resource competition is common when finite resources are shared by multiple users. Es-

pecially, in wireless networks, interference, limited bandwidth and imperfect scheduling

contribute to conflicting resource consumption.

• Wireless Interference

Adjacent transmissions that use the same frequency channel cause co-channel interfer-

ence. Consequently, multiple transmissions compete for channel access when a single

channel is shared. Uncontrolled competition for channel access may lead to conflicts,

which needs scheduling to remedy.

• Insufficient resources

Conflicts occur when available resources are insufficient to satisfy user demand. With-

out control, aggressive users may monopolize limited resources and cause other users

to starve. Such unfair competition results in significant performance degradation, and

may lead to system instability.

• Imperfect scheduling

Conflicts may also be caused by imperfect scheduling regardless of the sufficiency of

available resources. This may cause inefficient resource utilization and even waste.

These three causes usually co-exist, resulting in correlated competition for wireless chan-

nels and dynamic interference scenarios in time, space, strength and frequency.

Temporal Interference Dynamics

Temporal interference occurs when interfering signals start at different phases over the

lifespan of a transmission. These phases can be summarized as: before, simultaneous with,

and after the start of a transmission. We call these three scenarios earlier-transmission-

caused, simultaneous-transmission-caused and future-transmission-caused interference.

• Earlier-Transmission-Caused Interference

The first type of interference occurs when two adjacent transmissions A and B start

at different but overlapping times. As shown in Fig. 1.1, transmission A starts ear-

lier. From transmission B’s perspective, the interference is imposed by the earlier

transmission of A.
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Figure 1.1: Earlier-Transmission-Caused Interference
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Figure 1.2: Simultaneous-Transmission-Caused Interference
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Figure 1.3: Future-Transmission-Caused Interference

• Simultaneous-Transmission-Caused Interference

The second interference scenario is caused by simultaneous transmissions. Fig. 1.2

illustrates that two transmissions A and B that start at the same time and cause

interference with each other.

• Future-Transmission-Caused Interference

The third interference scenario occurs when transmission B starts early, and transmis-

sion A starts later in time (Fig. 1.3). From B’s perspective, the interference is imposed

by the later transmission of A. This scenario may occur when A fails to detect B’s

transmission.
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Figure 1.5: Hidden Terminals

Spatial Interference Dynamics

Spatial interference occurs when we consider interference independently of exact timing.

Depending on the distance between the two pairs of transmitter and receiver, there are two

spatial scenarios: exposed and hidden terminal.

• Exposed Terminals

The first spatial scenario occurs when two transmissions do not proceed at the same

time, because they mistake each other as interference. For example, as shown in Fig.

1.4, node 1 starts a transmission to node 2 first. During the transmission period of A,

node 3 also needs to transmit to node 4. Although the simultaneous transmission of

A and B would not cause a collision, node 3 does not start its transmission until node

1 finishes following CSMA. This is because transmission A is treated as interference.

• Hidden Terminals

The second scenario occurs when two transmissions fail due to undetected mutual

interference. For example, as shown in Fig. 1.5, node 1 and 3 cannot hear each other.

When they transmit to node 2 and 4 in an overlapping time period, a collision will

occur at node 2.

Interference Dynamics in Strength and Frequency

Besides temporal and spatial interference dynamics, wireless interference also varies in signal

strength and frequency of occurrence. More specifically, we differentiate signal strength

according to whether destructive network behavior (e.g. collisions) is caused. Depending

on the patterns of adjacent transmissions, some nodes may experience destructive signals

more frequently than others. Depending on the frequency of destructive interference, we

differentiate frequent-destructive interference from infrequent-destructive interference.

• Frequent and destructive interference

This scenario can be identified if the transmission between a source-sink pair expe-
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riences destructive interference more often than a threshold dstr freq thresh. This

scenario has two indications. First, the channel quality is too low to satisfy mini-

mum transmission expectations. Second, fewer transmission opportunities are given

to the source-sink pairs which experience frequent-destructive interference. We can

remedy this situation in two ways: 1) seeking extra resources, e.g. switch to a differ-

ent frequency channel; and 2) re-adjusting resource share among frequent-destructive

and infrequent-destructive scenarios. For example, we can give frequent-destructive

scenarios higher priorities to consume resources. Because multiple channels are not

considered in this work, we choose the second option.

• Infrequent and destructive interference

The second scenario describes the case where a source-sink pair experiences destructive

interference less often than dstr freq thresh.

Besides the diversity of interference scenarios, their random combinations may also ap-

pear and further complicate the situation. Consequently, collisions are hard to eliminate

and lead to significant resource waste in wireless networks. Reducing collisions is critical to

wireless resource management.

1.2 Scope, Assumptions and Limitations

This section defines the scope of our work, including application scenarios, underlying pro-

tocols, traffic model, and hardware limitations etc.

1.2.1 Network Model

We apply the proposed framework of resource management to wireless ad hoc networks. This

type of network does not rely on pre-established infrastructure, such as routers or access

points [33]. Because all nodes are peers in wireless ad hoc networks, they can communicate

with each other directly and participate in routing by forwarding data for other nodes.

Our method takes advantage of this feature to create more generalized network topologies,

which can generate different interference levels and cover various interference scenarios.

Furthermore, our resource management is a generic framework, and can also be applied

to infrastructure-based networks, such as wireless mesh networks. Certain modifications

might be required. For example, the roles of access points and user devices need to be

differentiated. As a first step, we focus on static networks and leave mobility for future

work. Both single-hop and multi-hop forwarding are included.

At the physical layer, we assume that all transmissions share a single channel. Al-

though transmitting through channels with non-overlapping channels avoids interference,

the growing demand of wireless access causes the scenario of multiple users sharing a single
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Figure 1.6: Inter-Frame Space Relationship [36]

channel to be inevitable. This research can be easily extended to multi-channel networks.

We provide more details at the end of this thesis. Additionally, the antenna in our model

is omni-directional, and cannot transmit and receive at the same time, which is consistent

with IEEE 802.11 physical layer specifications [36].

1.2.2 Medium Access Control (MAC)

This research focuses on the MAC layer, because medium access is the major performance

bottleneck in wireless networks [63]. Poor medium access control results in severe packet

collisions, and significantly reduces effective network capacity. We apply G-Local resource

management on top of IEEE 802.11 for two reasons. First, IEEE 802.11 is an industrial

standard widely adopted in practice. Second, this standard offers carrier sense multiple

access with collision avoidance (CSMA/CA) as the basic access mechanism to locally handle

various interference scenarios. In comparison to time division multiple access (TDMA),

CSMA/CA is simple in computation, requires low control overhead, and is adaptable to

dynamic network conditions. IEEE 802.11 also provides an optional mechanism: request to

send / clear to send (RTS/CTS) to improve CSMA/CA. Before diving into protocol details,

we introduce a number of notations.

• Packet types of interest include RTS (request to send), CTS (clear to send), DATA

(data) and ACK (acknowledgment). RTS and CTS packets are used for medium

reservation. Besides carrying the address information of sender and receiver, these

packets also include the duration of an upcoming transmission. A DATA packet carries

application level information. An ACK packet informs a sender that its transmission

was successfully delivered.

• Interframe space (IFS) is the time interval between frames. IEEE 802.11 defines four

IFSs to provide priority levels: short IFS (SIFS), point coordinated function function

IFS (PIFS), distributed control function IFS (DIFS) and extended IFS (EIFS) [36]. We

do not discuss PIFS here, because point coordinated function is a centralized method

and is not considered in this work. SIFS is the shortest among all four IFSs, and gives
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Figure 1.7: Binary Exponential Backoff [36]

the highest priority to the nodes that have seized the medium and need to keep it

for the duration of the frame exchange sequence [36]. DIFS is longer than SIFS and

used by wireless nodes to contend for medium access. To prevent the packet exchange

sequence in progress from being interrupted, IEEE 802.11 forces a wireless node to

wait for the medium to remain idle for the duration of a DIFS period. EIFS is the

longest interval and used after a failed transmission. According to IEEE 802.11b, SIFS

equals 10µs; DIFS equals the duration of SIFS plus two slots (aSlotT ime = 20µs);

EIFS equals the sum of SIFS, DIFS and the transmission time of eight ACK packets.

• Retry limit is the maximum number of attempts, for which a packet can be retrans-

mitted. IEEE 802.11 provides two types of retry limit: short and long. The short

retry limit is used when RTS/CTS transmission fails. The long retry limit is applied

when DATA/ACK transmission fails.

• Contention window (cwin) specifies a range of time slots that a node can randomly

select to back off (CWIN MIN ≤ cwin ≤ CWIN MAX). According to IEEE

802.11b, CWIN MIN = 31 × aSlotT ime and CWIN MAX = 1023 × aSlotT ime.

cwin is initialized with CWIN MIN , and increased by twofold plus one during each

retransmission as shown in Fig. 1.7 [36].

• Physical carrier sensing range specifies the distance within which a transmission can

be detected, but may not be successfully decoded.
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Figure 1.8: Backoff Procedure [36]

• Transmission range is the distance within which a transmission can be successfully

decoded.

CSMA/CA

CSMA/CA is a contention-based method that allows multiple wireless devices to share

medium access. We divide its access control into two phases: collision avoidance and collision

resolution.

First, CSMA/CA uses physical carrier sensing and random access to avoid collisions.

Physical carrier sensing is a hardware solution that a wireless node applies to determine the

state of the medium. If a sender node detects an idle medium via physical carrier sensing, it

transmits immediately. Otherwise, the sender node defers its transmission for the duration

of busy medium plus a DIFS period, as shown in Fig. 1.6. While the medium is busy,

multiple transmissions from different senders may be deferred and wait to start as soon as

the medium becomes idle again. If all of them start at the same time, collisions will occur.

To avoid collisions, random access is invoked after the deferral procedure. Fig. 1.8 shows

the backoff procedure via an example of five competing transmissions. In this example, B,

C and D defer their transmissions because A is transmitting. After A’s transmission ends

and the medium remains idle for a DIFS period, B, C and D select a random time slot

within the contention window cwin and start backing off. As Fig. 1.8 illustrates, C has the

shortest backoff period and becomes the first to transmit. Consequently, B and C suspend

their backoff until C’s transmission ends for a DIFS period. A recently deferred transmission

from E also starts backing off at the same time when B and C resume their backoff. Because

the remaining backoff period of D is shorter than that of B and E, D successfully seizes the

medium to transmit. Similarly, B and E contend for the medium after D’s transmission

based on their remaining backoff periods. E transmits before B, and B finishes the last.

Second, CSMA/CA depends on acknowledgments and retransmissions to resolve a failed

transmission. Although physical carrier sensing and random backoff helps to avoid collisions,
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Figure 1.9: Network Allocation Vector Updates [36]

transmission failures may still occur. This is because interference varies in time, space,

strength and frequency, and it is hard to accurately detect all interference scenarios all

the time (e.g. hidden terminals). Therefore, CSMA/CA requires a receiver to acknowledge

every successful transmission by sending an ACK packet to its sender. If no ACK is received

after the duration of data transmission plus a SIFS period and propagation delay, the sender

interprets it as a failed transmission. To recover from the failure, the sender increases the

contention window according to 2× cwin+1, and invokes the backoff procedure. The same

packet is retransmitted as soon as the backoff period ends and the medium keeps being

idle without interruption for the duration of EIFS. A sender keeps retransmitting the same

packet until it receives an expected ACK or the long retry limit is reached.

RTS/CTS

RTS/CTS is an optional mechanism that can be combined with CSMA/CA to alleviate hid-

den terminals. We describe the phases of collision avoidance and resolution, when RTS/CTS

is in use.

First, RTS/CTS uses virtual carrier sensing, a software solution, to reserve the medium

for an upcoming transmission. After physical carrier sensing determines that the medium is

idle and this state remains for the duration of a DIFS period, a sender broadcasts an RTS

packet as shown in Fig. 1.9. The RTS packet serves two purposes. For one, RTS silences

the neighbors of its sender within the transmission range. If a neighbor node receives

an RTS packet, it retrieves the length of the upcoming transmission from RTS’s duration

field (denoted rts duration), and updates the local network allocation vector (NAV), if

rts duration is greater than the current NAV value. rts duration includes the time to

transmit a CTS, a DATA and an ACK packet plus three SIFSs as shown in Fig. 1.9. For
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Figure 1.10: Extended Hidden Terminals

the second purpose, the RTS packet initiates a conversation with the receiver. If the receiver

correctly decodes the RTS packet, it broadcasts a CTS packet after the period of a SIFS.

Similar to RTS, CTS silences the neighbors of its receiver to reserve the medium at the

receiver’s side. The neighbor nodes update their NAV settings according to the duration

cts duration specified in the CTS packet, if cts duration > NAV . cts duration includes

the transmission period of a DATA and an ACK packet as well as inter-frame spaces, and

therefore is shorter than rts duration. After successfully receiving a CTS packet, the sender

concludes that the medium is available and starts the data transmission.

Second, although RTS/CTS aims to alleviate hidden terminals, collisions may still hap-

pen. For example, as shown in Fig. 1.10, C is sending an RTS to D at time t2, while A is

transmitting CTS to B. Because C is in the transmission mode, it cannot detect A’s CTS.

Likewise, A cannot detect C’s RTS. Consequently, at time t3 A starts its data transmission

to B, and D sends a CTS to C. These two transmissions overlap in time, which results in

a collision at A at time t4. If a collision occurs during the RTS/CTS handshake, the same

RTS packet is retransmitted until a CTS is successfully received, or the short retry limit is

reached. Long retransmissions are invoked if DATA/ACK fails. For example, in the case

that a sender did not receive an ACK packet within an expected period, the sender increases

its long retry limit and re-initiates the RTS/CTS handshake. This procedure is repeated

until an ACK packet is received, or the long retry limit is reached.
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We use CSMA/CA instead of RTS/CTS for two reasons. First RTS/CTS wastes band-

width on frequently exchanging control packets. Second, this method also causes more com-

plicated interference scenarios due to collisions among control and data messages [88][65].

1.2.3 Traffic, Routing and Performance Evaluation

We evaluate the proposed frameworrk of resource management in both single-hop and multi-

hop wireless ad hoc networks. To generate various network topologies in terms of the size

and interference level, we carry out experiments via simulation in Network Simulator version

2 (ns2) [26]. To improve the simulation accuracy, we added a SINR-based collision model

with aggregate interference [20] and a preamble detection function [92] to the IEEE 802.11

implementation in ns2.

In this work, we assume elastic traffic, which has loose time requirements and can adapt

to the available resources [30]. All traffic flows are assumed to have the same bandwidth

demand. Our resource management can be modified to support dynamic traffic demands.

We give more details in the conclusion chapter. For multi-hop networks, we assume traffic

is forwarded via the shortest paths that are pre-determined. We will explore how to jointly

control routing and medium access in future study.

1.3 Thesis Contributions

Uncontrolled competition for finite resources significantly degrades network performance,

and leads to poor user experience. Effective resource management makes wireless networks

more tractable so that limited resources can be allocated to satisfy various user/system de-

mand, and efficiently utilized to provide better network service/experience. In this thesis, we

propose a novel framework: globalized-local (G-Local) resource management to effectively

manage resources in wireless networks. More specifically, our contributions are:

• G-Local resource management offers G-Local optimization, a novel method that 1)

supports different fairness criteria to allocate resource, 2) improves resource utiliza-

tion efficiency by reducing both conflicts and waste; 3) minimizes the gap between

the allocated and utilized resources caused by dynamic interference and imperfect

scheduling; and 4) requires zero control message passing for single-hop applications.

• G-Local resource management provides adaptive multivariable control to improve con-

trol effectiveness. This method differentiates competition scenarios in time, space,

frequency and intensity, and selects control variables that have major impact on these

scenarios. By tuning the selected control variables, the adaptive multivariable control

enables us to manipulate network behavior including: transmissions, collisions and

idling. Guided by the G-Local optimization, adaptive multivariable control can steer
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a network to approach a desired state. Furthermore, the adaptive multivariable con-

trol can be applied to different scheduling algorithms. In this thesis, we demonstrate

its effectiveness on controlling IEEE 802.11b.

• G-Local resource management supports multi-hop forwarding. We propose two unique

methods to handle 1) the co-existence of intra-path and inter-path interference; and

2) correlated congestion and collisions in multi-hop wireless networks. These methods

significantly improve multi-hop forwarding performance by coordinating the internal

transmissions within a path, guiding different paths to compete for their fair share,

and explicitly handling the mutual impact of congestion and collisions. Furthermore,

the proposed algorithms are adaptable to time-varying traffic patterns; require simple

computation; and minimize the requirement for message passing.

1.4 Chapter Summary

Competition for limited wireless resources among multiple users causes severe performance

degradation. Effective mechanisms of resource management are needed to remedy the sit-

uation. In the rest of this thesis, Chapter 2 overviews the main tasks of wireless resource

management, and reviews related work. Chapter 3 outlines the proposed G-Local resource

management framework and formulates its theoretical foundation. In the following chapters,

we present the G-Local resource management for wireless single-hop networks in Chapter

4, and describe the mechanisms proposed for wireless multi-hop networks in Chapter 5. Fi-

nally, Chapter 6 concludes this thesis by summarizing our contributions, describing potential

applications, and outlining future directions.
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Chapter 2

Wireless Resource Management

In a shared-resource system, resource competition without appropriate control leads to

chaotic network performance. Wireless networks, in particular, present very challenging

competition scenarios including the scarcity of bandwidth, temporal and spatial competition,

and soft capacity. Without carefully managing the scarce bandwidth resource and handling

complicated competition scenarios, it is impossible to provide any level of performance

guarantee. An effective resource management mechanism aims to allocate wireless resources

to satisfy a certain metric, and efficiently utilizes the allocated resources. In this chapter,

we analyze these two important tasks of wireless resource management: resource allocation

and utilization; and review existing methods in the literature.

2.1 Resource Allocation

Resource allocation determines the resources that should be assigned to each competing user.

These decisions are made according to a certain allocation criteria. The major advantage of

global allocation is coordinating users to achieve a certain system-wide optimality. However,

due to the complex nature of wireless networks, existing methods adopt various simplified

assumptions to derive mathematically tractable models, which leads to significant resource

waste. Generally, resource allocation can be formulated as an optimization problem to

either maximize network throughput, maximize network utility, or satisfy some fairness

requirement. Please note that we present previous work by using their original symbols and

notations.

2.1.1 Resource Allocation as Network Throughput Maximization

Aggregate network throughput is an important performance metric to evaluate the effective-

ness of bandwidth consumption. There has been tremendous effort for modeling network

throughput. Recently, new methods were proposed to maximize throughput in a distributed

manner without message passing. We review previous work for both wireless local area net-
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works (WLANs) and wireless ad hoc networks. The selected research in WLANs is related to

our work in terms of using local CSMA/CA control to improve global network performance.

Throughput Maximization for Wireless Local Area Networks

In a wireless local area network, multiple wireless devices (e.g. laptops and various personal

digital devices etc.) share the Internet access via an access point under the CSMA/CA

mechanism of IEEE 802.11 standard [36].

Most existing work aims to maximize the throughput of a WLAN by adaptively tuning

CSMA/CA parameters according to two models. The first model was proposed by Cali et

al. in 1998 to characterize channel utilization. Their method relies on an estimation of

the average contention window, which is derived by assuming each node attempts to use

a backoff interval sampled from a geometric distribution [10]. In 2000, Bianchi proposed

a multi-stage Markov Chain model to characterize the binary exponential backoff mecha-

nism of CSMA/CA. Both models assume perfect channel conditions and no hidden/exposed

terminals.

Cali’s Capacity Model Cali et al.[10] aim to maximize the throughput of IEEE 802.11

WLANs. They derive a closed-form expression of network throughput in terms of the channel

utilization ρ based on three assumptions: 1) the backoff window is geometrically distributed;

2) every node transmits with the same probability p; and 3) the channel condition is perfect

and there are no hidden terminals. To achieve the theoretical capacity limit, they proposed

an iterative method to adjust the contention window, CW .

The channel utilization is modeled as ρ = m̄
tv
, where m̄ is the average transmission time

of a packet, and tv is the virtual transmission time (see Eq. 2.1). The virtual transmission

period is the average time that a channel is occupied in transmitting a message. tv consists

of the average contention window (denoted E [CW ]), and the actual transmission time

(denoted E [S]). According to the basic access method of IEEE 802.11 CSMA/CA, E [S]

(expressed in Eq. 2.2) is the sum of propagation time (denoted τ), data transmission time

(denoted m), acknowledgment transmission time (denoted ACK), and short/long inter-

frame space (denoted SIFS/DIFS). When multiple stations are active during a virtual

transmission period, E [CW ] consists of collision intervals (E [Nc] · E [Coll]), idle intervals

((E [Nc]+1)·E [Idle]), and one successful transmission (E [S]). E [Nc], E [Coll] and E [Idle]

are given in Eq. 2.3, where M is the network size.

tv =E [CW ] + E [S]

=E [Nc] · E [Coll] + τ +DIFS + E [Idle] · (E [Nc] + 1) + E [S]
(2.1)

E [S] = 2 · τ +m+ SIFS +ACK +DIFS (2.2)
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E [Nc] =
1− (1− p)M

Mp · (1− p)M−1
− 1

E [Coll] =
tslot

1− (1− p)M −M · p · (1 − p)M−1

E [Idle] =
(1− p)M

1− (1− p)M
· tslot

(2.3)

Adaptive Contention Window Adjustment By solving Eq.2.1, Cali et al.[10] derive

the optimal value of the transmission probability (denoted pmin). Based on the relationship

between pmin and the contention window (denoted CW ) given in Eq. 2.4, CW is updated

according to curr cw = α2 · curr cw + (1 − α2) · (2/pmin − 1). The authors conclude via

simulation that the enhanced protocol is very close to the maximum theoretical efficiency.

E [CW ] =
2

pmin
− 1 (2.4)

In spite of their good simulation results, the assumption of perfect channel condition and

no hidden terminals significantly limits the practical usage of this method. Further, they

assume all nodes transmit with the same probability, which hinders its application when

traffic differentiation is required.

Asymptotically Optimal Backoff Mechanism Based on the same capacity model

that Cali et al. developed [10], Bianchi et al. [5] proposed a simple method to achieve the

theoretical limits on channel utilization via asymptotically adjusting the backoff mechanism

in CSMA.

The proposed method uses a simple metric S U to evaluate the current contention level in

a network via observing the number of busy and available slots periodically. S U is estimated

as S U = Num Busy Slots
Num Available Slots . This metric indicates that the higher S U is, the more likely

collisions will happen. To adapt the transmission attempt of a node to the contention level,

this work introduces a new parameter P T , the probability of transmission. P T depends

on S U according to a heuristic formula P T (S U,N A) = 1 − S UN A, where N A is the

number of attempts already performed by the station for the transmission of the current

frame. When traffic is intense, this simple formula gives a node with multiple transmission

failures a higher priority.

To maximize channel utilization, the optimal contention level (denoted opt S U) is ap-

proximated according to opt S U = M · pmin, where M is the network size, and pmin is

the optimal p-persistence probability. Correspondingly, P T is tuned to achieve opt S U

via P T (opt S U, S U,N A) = 1 − min(1, S U
opt S U )

N A
. The authors also provide a cus-

tomized transmission policy to support traffic differentiation: P T (opt S U, S U,N A) =

1−min(1, S U
opt S U )

N A·prlevel
, where prlevel is the priority level.

The advantages of this method include: 1) no requirement of estimating the network

size M ; 2) asymptotically achieving the theoretical capacity limit; 3) and supporting traffic
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differentiation. However, it shares the same disadvantages of Cali’s work [10] in terms of

not considering channel condition and hidden terminals. Hidden terminals directly mislead

the estimation of S U .

Bianchi’s Model The second capacity model was proposed by Bianchi [5] to characterize

the exponential backoff mechanism in IEEE 802.11 CSMA/CA. A multi-stage Markov Chain

model was proposed for backoff window size with up to m retransmissions. Based on this

model, the authors obtain the stationary probability τ that a station transmits a packet in

a randomly chosen slot time as shown in Eq. 2.5. This probability depends on the collision

probability p, contention window W , and the number of retransmissions m. When m = 0,

Eq. 2.5 becomes τ = 2
W+1 , which is independent of the conditional collision probability p.

τ =
2

1 +W + pW · (1− (2p)m)
(2.5)

The throughput model is expressed in Eq. 2.6. S is the normalized system throughput,

defined as the fraction of time the channel is used to successfully transmit payload bits. In

this equation, Ts is the average transmission time; Tc is the average time of a collision; E [P ]

is the average payload size; and δ is the size of an empty slot. Furthermore, their values

are constant. Ptr (expressed in Eq. 2.7) is the transmission probability, while Ps (Eq. 2.8)

denotes the probability of a successful transmission.

S =
E [P ]

Ts − Tc +
δ(1−Ptr)/Ptr+Tc

Ps

(2.6)

Ptr = 1− (1− τ)n (2.7)

Ps =
n · τ · (1− τ)n−1

1− (1− τ)n
(2.8)

After some mathematical transformation, the author derives the solution to maximize

S of Eq. 2.6 in Eq. 2.9, where T ⋆
c = Tc

δ . According to this equation, τ is only dependent

on the network size n, because T ⋆
c is a constant determined by the physical layer and access

mechanism.

τ =
1

n
√

T ⋆
c /2

(2.9)

Adaptive Contention Window Following the second model, Bianchi et al. proposed

an adaptive algorithm that adjusts the contention window to fulfill Eq. 2.9. By setting m =

0, the optimal contention window depends only on the number of competing transmissions

according to Wopt = n
√

(2T ⋆
c ). To estimate n, this work uses Eq. 2.10, where c(B) is the
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number of slots observed busy due to other stations transmitting over a period of B slots.

For a smooth control, the contention window is adjusted according to Eq. 2.11.

n ≈ 1 +
E [c(B)] · (W + 1)

2B
(2.10)

W =s(n) ·
√
2T ⋆ · n, where

s(n) =1 +
h√
n

(2.11)

Although their performance evaluation claims close-to-optimal performance, hidden ter-

minals are once again not considered. Hidden terminals and complex channel conditions

make accurate estimation of n hard to achieve.

Idle Sense Heusse et. al proposed an optimal access method for high throughput and

fairness, called Idle Sense [35]. This method aims to find the optimal attempt probability,

P out
e that maximizes the throughput (expressed in Eq. 2.12). This objective can be achieved

by reducing the time wasted on collisions and in contention, and increasing the time spent

in transmissions. Therefore, maximizing throughput X(Pe) is the same as minimizing the

cost Cost(Pe).

X(Pe) =
Pt · sd

Pt · Tt + Pc · Tc + Pi · TSLOT
(2.12)

Cost(Pe) =

Tc

TSLOT
· Pc + Pi

Pt
(2.13)

The optimal attempt probability (denoted P opt
e ) is derived by setting the first derivative

of Eq. 2.13 to zero. The optimal value of consecutive slots is n̄opt
i∞ = e−ς

1−e−ς , where ς =

N · P out
e . To approach the theoretical capacity limit, their method lets each host estimate

the number of consecutive idle slots between two transmission attempts (n̄i), and uses it

to compute its contention window CW . By adjusting CW , a host makes n̄i converge to a

common value n̄target
i . To avoid estimating the number of competing hosts, they fix n̄target

i

at a value that is close to optimal value n̄opt
i inf . Besides achieving the maximum throughput,

Idle Sense also improves short-term fairness by enforcing all nodes to converge to the same

n̄target
i via the principle of additive increase and multiplicative decrease. The performance

study shows that Idle Sense achieves similar throughput performance as the asymptotically

optimal backoff method with better short-term fairness.

Maximizing Throughput-Fairness Luis et al. [67] proposed a new method to maxi-

mize network throughput by finding the optimal access probability τ⋆, which is a function

of the network size n. To improve short-term fairness, all nodes use the same τ⋆.

n̂ = argminn∈N

√

(p̃a − (1− τi)n−1)2 (2.14)
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n is estimated according to Eq. 2.14, where p̃a is the probability of finding an idle

slot by observing channel states during the contention period. To obtain a slowly-varying

measurement of p̃a over B slots, an autoregressive moving average filter is used in Eq.

2.15. If slot i is sensed idle, Sloti = 0; otherwise, Sloti = 1. Furthermore, this work uses

a proportional-integral controller to adapt the individual medium access probability τk+1

according to the reference τ̃ and the filter dynamics.

p̃a(k + 1) = α · p̃a(k) +
1− α

B
·

B
∑

i=1

Sloti (2.15)

Control-Theoretical Method Patras et al. [77] proposed a control-theory method

that tunes all nodes in a network to achieve the same desired collision probability pcol.

They developed a distributed algorithm of adaptive control to adjust CWmin of each station

with the goal of driving the WLAN to the optimal point of operation [5]. Without explicitly

modeling CWmin,i as a function of ei, each station runs an independent proportional-integral

controller, which takes as input the error signal ei (see Eq. 2.16) and gives as output the

CWmin,i of the system.

ei = ecollision,i + efairness,i

ecollision,i = pothers,i − pcol

efairness,i = pothers,i − pown,i

(2.16)

In summary, all the methods above ignore the impact of hidden terminals in wireless local

area networks. As demonstrated by A. Zahedi et al. and F. Liu et al., hidden terminals can

degrade network throughput up to 50% in WLANs [66][107]. Furthermore, these methods

assume all nodes transmit with the same transmission probability, which is not suitable

for traffic differentiation. Thirdly, the assumption of independent and constant collision

probabilities is also unrealistic. If a node does not wait long enough upon collisions, the

probability of repeated collisions increases. Additionally, the dynamic occurrence of hidden

terminals causes collision probabilities to change over time and space. Therefore, these

methods can not achieve optimal throughput in practice. At last, these methods are designed

for single-hop wireless local area networks, and do not address special issues of multi-hop

forwarding, such as co-existing intra-path and inter-path interference.

Throughput Maximization for Wireless Ad Hoc Networks

Compared with WLANs, wireless ad hoc networks do not need a shared access point. Wire-

less nodes can talk to each other either via single-hop communication or multi-hop forward-

ing. Two throughput models are widely used to maximize the throughput of a wireless ad

hoc network. The first model was proposed by Tassiulas and Ephremides in 1992, and proves
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that queue-length-based maximum weight scheduling is throughput optimal [95]. The sec-

ond model was proposed by Boorstyn et al. to calculate the throughput of random access

in multi-hop wireless networks based on CSMA [6].

Tassiulas’s Model Tassiulas et al.[95] model a wireless network where links are dynami-

cally activated at each time slot according to the queue length. The optimality of throughput

is defined in the sense that any arrival rate within the capacity region of a network can be

accommodated without causing the network queues to grow infinitely. The authors prove

that a scheduling algorithm is throughput-optimal if it can find a set of maximum weight

independent sets where the weight is a function of the total queue length within an inde-

pendent set. An independent set contains a number of non-conflicting links. However, the

problem of finding maximum weight schedules is NP-hard for general networks [95]. To

reduce computational complexity, many heuristic algorithms have been proposed to achieve

maximal weight scheduling [13] [103]. These methods can only achieve a fraction of the

maximum throughput [49].

Boorstyn’s Capacity Model Instead of using scheduling-based methods, another ap-

proach aims to achieve throughput-optimality via random access. Boorstyn et al.[6] de-

veloped a continuous time Markov Chain to characterize state transitions among different

independent sets, and model network throughput (or service rate) in a product form. Their

model assumes perfect capture and zero propagation delay that theoretically eliminates

hidden terminals. We summarize recent efforts on deriving distributed solutions without

message passing to maximize network throughput based on this model.

Adaptive CSMA Without Collisions Li. et al.proposed a method that adapts

CSMA to achieve optimal throughput in wireless networks [48]. Based on Boorstyn’s CSMA

model and the product-form throughput (or service rate), they formulate the problem of

maximizing throughput as a maximum likelihood function Eq. 2.17. In Eq. 2.17, pi (also

denoted p(xi; r)) is the stationary distribution of any feasible state xi of index i in the

Markov Chain. The expression for pi is given in Eq. 2.18. p̄i is the measured value of

pi obtained from observations. A back-pressure method Eq. 2.19 adjusts the transmission

aggressiveness ri and solves Eq. 2.17. Specifically, link k adjusts the rate rk based on local

information: average arrival rate λ′
k and service rate s′k. Li proved that this method can

theoretically achieve the maximal throughput via slow adaptation by using a small step size

α.

F (r) :=
∑

i

p̄i · log(pi(r)) (2.17)
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p(xi; r) =

exp(
K
∑

k=1

xi
k · rk)

∑

i exp(
K
∑

k=1

xi
k · rk)

(2.18)

rk(t+ 1) = [rk(t) + α · (λ′
k(t)− s′k(t))]+ (2.19)

Adaptive CSMA with Collisions In a consecutive work, Li. et al.remove the as-

sumption of perfect CSMA (zero collision). By introducing probe messages to enable chan-

nel reservation, they assume collisions only happen between probe messages and last for a

short period [47]. A new throughput model is derived after re-designing the Markov Chain

model. Throughput maximization is also formulated as a maximum likelihood function to

accommodate all feasible arrival rates. Instead of adjusting the transmission aggressiveness

rk via the contention window, Li chose to adjust the mean payload length according to

T p
k := T0 · exp(rk).
Although this method takes collisions into account, the assumption that collisions only

occur among probe messages is impractical. As analyzed in [88], when RTS/CTS mode is

used, collisions may happen among RTS/CTS/DATA/ACK in a dynamic manner due to

hidden terminals. In addition, exposed terminals also occur and lead to inefficient channel

utilization. Furthermore, adopting dynamic transmission lengths sacrifices short-term fair-

ness and increases delay. Our performance evaluation in Chapter 5 shows that this method

leads to high collision rates and ultimately degrades network throughput.

Q-CSMA Srikant et al. proposed another method to achieve the same objective as Li’s

adaptive CSMA [48]. They developed a synchronized CSMA scheduling that allows mul-

tiple links to update their states in a single time slot [76]. Based on this basic scheduling

algorithm, the authors model CSMA as a discrete time Markov Chain, and find the sta-

tionary distribution of any feasible state. Q-CSMA is throughput-optimal by choosing an

activation probability pi =
ewi(t)

ewi(t)+1
. The weight wi is a function of link i’s queue length. To

reduce hidden terminals, Q-CSMA uses a synchronized RTD/CTD (request to deliver/clear

to deliver) exchange. The algorithm is as follows.

Algorithm: Q-CSMA (at Link i in Time Slot t)

• Link i selects a random backoff time Ti uniformly in [0,W − 1] and waits for Ti control

mini-slots

• If link i hears an RTD or CTD message from a link in C(i) before the (Ti+1)-th control

mini-slot, i will not be included in m(t) and will not transmit an RTD/CTD message

anymore. Link i will set xi(t) = xi(t− 1)
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• If link i does not hear an RTD/CTD message from any link in C(i) before the (Ti+1)-

th control mini-slot.

– If there is a collision, link i will not be included in m(t) and will set xi(t) =

xi(t− 1).

– If there is no collision, link i will be included in m(t) and decide its state as

follows:

∗ if no links in C(i) were active in the previous data slot

xi(t) = 1 with probability pi, 0 ≤ pi ≤ 1;

xi(t) = 0 with probability p̃i = 1− pi.

∗ else

xi(t) = 0

• If xi(t) = 1, link i will transmit a packet in the data slot

Compared with Li’s adaptive CSMA [48][47], Q-CSMA explicitly handles exposed/hidden

terminals via a synchronized RTD/CTD mechanism. However, this method requires per-

fect synchronization, and incurs constant overhead. A more extensive performance study is

needed to evaluate how well the proposed method can reduce hidden/exposed terminals.

2.1.2 Resource Allocation as Network Utility Maximization

Another trend is to formulate the resource allocation problem as network utility maximiza-

tion [54]. The basic form of network utility maximization is given in Eq. 2.20. U is a utility

function that can be used to characterize user perception behavior models, application traffic

elasticity, efficiency of resource allocation and fairness among competing users [15].

∑

s

Us(xs)

s.t. Rx ≥ c

(2.20)

We are interested in solving Eq. 2.20 without message passing, and therefore describe

two representative methods: utility-optimal random access and utility-optimal CSMA.

Utility-Optimal Random Access Mohsenian et al.designed a distributed contention-

based MAC algorithm to maximize network utility at the link layer without explicit message

passing among users [62]. Their method considers a single-hop wireless ad hoc network with

N sets of wireless links, where a receiver node can overhear all other transmissions. As a

result, a transmission is successful if it is the only transmission in the current time slot.

The network utility maximization problem is formulated in Eq. 2.21, where Ui is a utility

function, ri is the average data rate of link i as shown in Eq. 2.22, and p is the vector of all

users’ transmission probabilities. The task is to find the value p that solves Eq. 2.21.
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max
p∈P

∑

i∈N

Ui(ri(p)) (2.21)

ri(p) = γipi
∏

j∈N−i

1− pj (2.22)

To solve Eq. 2.21 locally, the authors transform this global optimization problem to a

local network utility maximization problem Eq. 2.23, where P−i = pj , ∀j ∈ N − i. Please

not that the authors use −i to denote the set of nodes except i. The optimal pi is derived

by estimating two values: 1) ndecd
i,j the number of time slots between any two consecutive

successful transmissions of another user j in the network; and 2) nidle
i the number of non-idle

time slots that user i observes between any two consecutive idle time slots. They estimate

both locally.

max
pi∈Pi

∑

j∈N

Uj(p,P−i) (2.23)

As a first step toward utility optimal random access without message passing, this al-

gorithm shows good theoretical performance. However, its assumption that a node can

estimate the network topology via signaling is unrealistic. Especially in ad hoc wireless

networks, interference scenarios are dynamic over time and space. Second, this method

requires a user i to estimate ndecd
i,j of every other user j in the network iteratively. Third,

this method ignores dynamic channel quality and hidden/exposed terminals, and therefore

cannot achieve throughput optimality in reality.

Utility-Optimal CSMA Li’s previous work of adaptive CSMA [48] is proved to achieve

throughput optimality theoretically with a perfect CSMA. By perfect CSMA, they assume

CSMA eliminates collisions. Furthermore, they also assumed that arrival rates are within

the capacity region and can be accommodated. In practice, this is hard to determine

because the capacity region of a wireless ad hoc network is often complex and non-convex

[22]. Furthermore, Li’s adaptive CSMA cannot handle saturated traffic. To overcome these

limitations, Li proposed a joint rate and flow control by combining throughput maximization

with network utility maximization. This new problem is formulated in Eq. 2.24, where

−
∑

i ui · log(ui) is the dual problem of maximizing throughput, and
M
∑

m=1
vm(fm) is the

total utility. Specifically, ui is the stationary probability of state i in the CSMA Markov

Chain given the transmission aggressiveness of all links; fm is the rate of flow m; and vm is

the utility function of flow m.
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max
u,s,f

−
∑

i

ui · log(ui) +

M
∑

m=1

vm(fm)

s.t. skm ≥ 0, ∀m, k : amk = 1

skm ≥ sup(k,m), ∀m, k : amk = 1, k 6= δ(m)
∑

i

ui · xi
k =

∑

m:amk=1

skm, ∀k

ui ≥ 0,
∑

i

ui = 1.

(2.24)

After applying the Lagrange transformation and some mathematical manipulation, Li de-

composed the problem of joint throughput and utility maximization into two sub-problems:

1) source rate control, and 2) local scheduling. The algorithm is described below.

Joint Scheduling and Rate Control initially assume that all queues are empty,

and set qkm = 0, ∀k,m. Then iterate:

• Link k transmits the head-of-line packet from a flow with the maximal back-pressure

zk = maxm:amk=1(qkm − qdown(k,m),m) when it gets the opportunity to transmit.

• Link k lets rk = zk in the CSMA operation.

• Rate control: For all flow m, if link k is its source link, then the transmitter of link k

let fm = argmaxf ′
m
β · vm(f ′

m)− qkm · f ′
m.

• The dual variables qkm (maintained by the transmitter of each link) are updated by

a sub-gradient algorithm: qkm ←
[

qkm + α(sup(k,m),m − skm)
]

+
if k 6= δ(m); and

qkm ← [qkm + α(fm − skm)]+ if k = δ(m).

In this algorithm, qkm is the virtual queue of link k belonging to flow m; skm is the

service rate of flow m at link k; and sup(k,m),m is the service rate from the upstream link

k − 1, as well as the receiving data rate at link k of flow m.

Lee et al.[62] extended Li’s method by providing a generalized update policy of the virtual

queue q in Eq. 2.25, where U is a utility function, W is the weight function, V controls the

accuracy of the algorithm, and b ensures convergence. With this method, CSMA is utility

optimal, as long as the product of λl (the transmission intensities) and µl (the transmission

durations) is set to exp(W (ql [t+ 1])).

ql [t] =

[

ql [t] +
b [t]

W ′(ql [t])
· (U ′−1(

W (ql [t])

V
)− Sl [t])

]qmax

qmin

(2.25)

2.1.3 Resource Allocation and Fairness

Fairness is another criteria of resource allocation besides optimizing a certain network metric.

Although every system should guarantee a certain level of fairness, it is a complicated issue
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due to the variety of user/system requirements, the co-existence of elastic and inelastic,

short-term and long-term traffic, as well as dynamic interference and channel qualities.

This section analyzes fairness from two viewpoints: end-to-end and local.

End-to-End Fairness

At the network level, a user is defined as a data flow between a pair of source and destination

nodes via multiple hops. Compared with wired networks, users in wireless networks have a

number of unique properties worth being considered to define fairness criteria.

User Properties Network-layer users can be different in many ways. These differences

impose challenges on fairness criteria definition.

• Differences of traffic load

Different flows may have different requirements of traffic load. These requirements can

be specified by relative concepts: high, medium and low, or real numbers. If a traffic

load is too high, it may over-inject the network and cause significant congestion. How

much traffic can be admitted for each user? Should the load difference be considered

for channel access? These questions need to be considered when defining fairness

criteria

• Differences of multi-hop path properties

Different flows may go through different paths in terms of length and route. Depending

on the distance between the source and destination, network topology, connectivity

and routing strategies, path properties may vary a lot. Flows over long paths tend to

experience poor performance (e.g. longer delay, lower throughput and higher packet

loss).

• Differences of intra- and inter-flow contention

Unlike data flows in wired networks, wireless flows experience interference within flows,

as well as between flows. Intra-flow interference describes the interference between

nodes that are upstream and downstream. Inter-flow interference happens when parts

of two flows share common nodes or contention regions. In addition, contention is

dependent on location [75], the levels of intra- and inter-flow contention varies with

different flows.

Fairness Criteria With the aforementioned differences, how should fairness be defined

in wireless multi-hop networks? There are a few options for reference.

• Throughput fairness vs. temporal fairness

Equal share is a basic type of fairness. There are two forms of fairness based on the
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equal-share criteria. The first criterion is throughput fairness that requires that all

flows achieve the same throughput [8]. This approach may not be appropriate for two

reasons: 1) it is not necessary that all flows have the same throughput, due to the

differences of traffic load and type; 2) throughput fairness is achieved by sacrificing

well-performing flows, simply because flows through channels with poor transmission

quality experience low throughput. The second form of equal share demands that

all users have equal share of channel time [8]. This form is called temporal fairness.

Compared with throughput fairness, temporal fairness achieves more efficient resource

utilization. Flows with better performance will not be punished for flows with poor

performance.

• Proportional fairness vs. max-min fairness

Due to user differences, fairness does not necessarily mean that all users should be

treated equally. Max-min fairness offers an optimal solution when bottlenecks exist.

Instead of equally sharing resources, max-min fairness [96] guarantees that users with

lower requirements (called weaker users) will not be degraded because of higher re-

quirements of other users (called stronger users). Stronger users can only increase

their share of resources without influencing weaker users. This criteria acknowledges

user differences as well as avoiding the starvation of weaker users. However, the dis-

advantage of max-min fairness is that it gives absolute priority to weaker users [54],

even if decreasing a very small amount of weaker users’ resource share can lead to sig-

nificant gain of stronger users. In comparison, proportional fairness [54] allows weaker

users to be sacrificed if it benefits the whole network. Specifically, a vector of rates x⋆

is proportionally fair if it is within the capacity region, and if for any other feasible

vector x, the aggregate of proportional change
∑

i
xi−x⋆

i

x⋆
i

≤ 0 is negative [54]. This is

achieved by assigning each user a utility function log(xi) and solving the correspond-

ing problem of network utility maximization. With proportional fairness, the more

resources a user is assigned, the higher utility the user achieves. But the speed of

utility gain decreases with the increase of resource share.

• α-fairness

α-fairness generalizes the max-min fairness and proportional fairness [71]. A vector of

rates x⋆ is α-fair if it is within the capacity region, and for any other feasible vector x,
∑

i
xi−x⋆

i

x⋆
i
α ≤ 0. Correspondingly, the utility function for α-fairness is (1− α)−1 · x1−α.

When α equals 1, α-fairness is proportionally fair. When α → ∞, α-fairness is max-

min fair.

In summary, the fairness requirements of network-level users vary from system to system,

and application to application. Therefore, our work supports different fairness criteria,
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instead of specifying a certain type.

MAC-Layer Fairness

Situated beneath the network layer, the MAC layer manages when a wireless node is allowed

to access wireless medium. At the MAC layer, users are defined locally. Depending on the

designing objectives, a user at the MAC layer can be defined as a node, a link or a flow

segment. A flow segment is the part of traffic that a flow imposes on each link along its

route.

User Properties MAC-layer users may also differ from each other. These differences are

reflected from the following properties.

• Difference in traffic loads

Because flows may have different traffic loads, carried loads of individual nodes or of

flow segments between a transmission pair may differ.

• Difference in contention levels

Depending on the location of a node or a transmission pair and the number of compet-

ing pairs around it, different nodes or flow segments may experience different levels of

contention. When competing users experience different contention at the MAC layer,

one user may gain more chances of channel access.

• Difference in distance

The third difference is the distance between a transmission pair. Because the power of

received signals is related to distance, a transmission pair with closely-located sender

and receiver may bias neighbor transmission pairs that are more separated in distance.

• Difference in parameter values Due to hardware differences or parameter tuning,

different nodes may have different physical layer configurations. For example, param-

eters including the transmit power, carrier sensing range and contention window can

be adjusted in IEEE 802.11 devices.

Fairness Criteria Besides considering the differences listed above, the time-varying prop-

erty of channel condition and contention scenarios should also be taken into account.

• Per-node fairness vs. per-flow fairness

Because users can be viewed from different angles (such as nodes, links or flow seg-

ments), the same fairness criteria may result in different allocation policies. By per-

node fairness, we mean the competition among contending nodes. Per-node fairness

can be defined to support different concerns, such as equal share, traffic load and
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number of flows. Per-flow fairness is defined at the MAC layer where a flow segment

is viewed as a user. It requires each flow to have an individual queue at the node and

fair queueing is required. In wired networks, nodes do not interfere with each other,

so only per-flow fairness is required. This is not the case in wireless networks.

• Short-term fairness vs. long-term fairness

Depending on the lifespan of a network flow, both short-term and long-term fair-

ness may be required. Compared with long-term fairness, short-term fairness requires

smaller granularity of control, e.g. packet-based or time instant [57].

In summary, fairness requirements at the MAC layer also exhibit huge variety. Besides

supporting such variety, user differences, time-varying quality of wireless channels as well

as the balance between resource utilization and fairness should be considered.

2.2 Resource Utilization

Another mission of resource management is to efficiently utilize resources. Especially when

resources are not sufficient to satisfy user demand, it is important to increase the effective

consumption of available resources and decrease the waste of limited resources. To specify

this requirement in wireless networks, available channel access right and transmission band-

width can also be viewed as transmission opportunities. Transmission opportunities are

consumed by successful transmissions and wasted by failed transmissions. Therefore, the

requirement of efficient resource utilization in wireless networks is to increase the number

of successful transmissions and decrease the number of transmission failures.

Because most of existing resource utilization methods aim to derive local methods that

are effective in reducing resource waste caused by certain types of interference. These

methods are distributed in nature, simple in computation and fast in response. However,

due to the lack of global picture, these methods may lead to user conflicts and jeopardize

system-level objectives.

Due to the properties of mutual exclusiveness and geographical distribution, wireless

resources can be divided in time and space, and shared among multiple users. Seeking

transmission opportunities over time and space helps to improve resource consumption.

2.2.1 Temporal Reuse

The mutual exclusiveness property of wireless-channel access restricts each channel to al-

lowing one transmission at a time, and the nature of the shared medium requires multiple

users to transmit over a single channel in turn. The problem of improving temporal reuse of

a wireless channel is to increase the number of transmissions, as well as to reduce collisions

caused by temporally-correlated interference. Temporally-correlated interference is caused
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by multiple transmissions overlapping in time and contention regions. Depending on how

competing transmissions overlap in time, interference can be caused by earlier, simultane-

ous and future transmissions [68]. Previous solutions aim to improve the temporal reuse of

wireless channels from two perspectives: collision avoidance and resolution.

Collision Avoidance

Collisions are one of the major hurdles for efficient utilization of wireless channels. Due to its

close relation with interference, we differentiate collisions caused by interference from earlier,

simultaneous and future transmissions. Corresponding avoidance strategies are described in

the following.

Avoiding Collisions Caused By Earlier Transmissions As defined in Section 2.2.1,

earlier-transmission-caused interference occurs when a node initiates a transmission and

there is at least one earlier transmission within its contention region. To avoid collisions

caused by interference from earlier transmissions, a node needs to find a way to detect

interfering transmissions that have started earlier. This procedure is called interference

detection. Based on the detection result, a node may either start or defer its transmission

according to certain strategies, which are classified as deferral policies of channel access.

Interference Detection

Earlier transmissions can be detected by both physical and virtual carrier sensing. Physical

carrier sensing is implemented at the physical layer and supported in hardware. It helps

a node to determine whether the wireless medium is busy. In comparison, virtual carrier

sensing is different from physical carrier sensing in two ways. First, it is a soft approach,

which requires message exchanges between a sender and receiver. Second, virtual carrier

sensing considers both the medium state at the sender and receiver side. It is only when both

sender and receiver sides are idle, that a transmission can be initiated. A typical example is

the RTS/CTS protocol applied in IEEE 802.11 MAC [36]. Compared with physical carrier

sensing, virtual carrier sensing improves the accuracy of interference detection. However,

the exchange of RTS and CTS message causes higher overhead. In addition, collisions may

happen among control packets and waste transmission opportunities.

Channel Access Deferral

The policies of deferring channel access control when a node starts transmission and how

long to defer before its next retry, after interference detection. Existing policies include

1-persistent, non-persistent, p-persistent CSMA and access control based on the network

allocation vector.

1. 1-persistent CSMA [56] is a greedy protocol. When a node needs to send a packet,

it first senses the channel. If the channel is idle, the packet is transmitted immedi-
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ately. Otherwise, the node keeps listening until the channel becomes idle again, and

then transmits immediately. The problem with 1-persistent CSMA is that it reduces

collisions caused by interference from earlier transmissions, but results in more colli-

sions caused by interference from simultaneous transmissions. This is because when

the channel is idle, all deferred nodes transmit at the same time.

2. Non-persistent CSMA [56] reduces the greediness of 1-persistent CSMA. When the

channel is busy, instead of listening until the channel becomes idle again, a node waits

for a random period of time, and senses the channel again. If the channel is idle, the

node starts a transmission immediately. Randomization helps to reduce the number

of simultaneous transmissions.

3. p-persistent CSMA [56] compromises between 1-persistent and non-persistent CSMA.

A node monitors the channel state before transmission. If the channel is idle, the node

transmits with a probability of p, or delays its transmission with the probability of

(1−p) for a random time period t. Otherwise, it keeps listening to the channel until it

becomes idle again, and repeats the same procedure. The value of p has to be selected

carefully, because it influences the level of interference, as well as the length of idle

time.

4. Network Allocation Vector [36] differs from the above persistence-based policies

by introducing a network allocation vector. This approach has been applied with

RTS/CTS on top of CSMA/CA in IEEE 802.11. Each node uses this vector to record

the upcoming transmission periods of its neighbor nodes, and remains silent when its

neighbor is transmitting. In comparison with persistence-based approaches, deferral

policies based on the network allocation vector can be more efficient because these

approaches explicitly notify the schedules of interfering transmissions. However, mes-

sage exchanges also increase overhead. In addition, because RTS/CTS suffers from

the collisions of control packets, as well as exposed and hidden terminals, the accuracy

of deferral policies based on network allocation vector is compromised. Another ap-

proach to avoid earlier-transmission-caused interference can be achieved by scheduling.

Approaches based on scheduling are described in Section 2.2.2.

Avoiding Collisions Caused By Simultaneous Transmissions Although interfer-

ence detection and access deferral are effective at alleviating interference from earlier trans-

missions, these approaches are not suitable to avoid collisions caused by interference from

simultaneous transmissions. Because of simultaneous transmissions, this type of interfer-

ence is difficult to detect. Instead of detection, previous work uses randomization to reduce

the chance of simultaneous transmissions. Existing randomization strategies fall into two
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categories: uniform and non-uniform randomization.

Uniform randomization

The first type of randomization is based on generating of random numbers with a uniform

distribution.

1. SEEDEX: A MAC protocol for ad hoc networks [83] observes that random-

number generation is deterministic with an initial seed that is fixed. The state of

each node at a certain slot is determined by the recurrence method used to generate

random numbers. By exchanging the initial seed between two-hop neighbors, each

node can compute the possible state of its neighbors at a certain slot. These states are

specified as “possible transmit” or “listen”. Therefore, a node can deduce the number

of “possible transmit” nodes and “listen” nodes at each slot and adjust its probability

of transmission accordingly. Furthermore, nodes also exchange their current states of

random number generation periodically. Because a node at the “possible transmit”

state may not have data to send, other nodes can adjust the parameter of access

aggressiveness a (according to the traffic load) to achieve optimal access.

2. Adjusting access probability based on collisions [60] is inspired by four obser-

vations: 1) event-driven sensor nodes experience traffic bursts; 2) not all packets need

to be successfully received; 3) energy consumption is important in wireless sensor net-

works; and 4) the chance of collisions increases when the number of active nodes is

larger. Accordingly, in order to reduce the number of simultaneous transmissions, the

probability of channel access of sensor nodes is decreased, when a collision happens.

This is achieved by reducing the wake-up probability of a sensor node.

Non-uniform randomization

The second trend of randomization strategies is to apply a non-uniform distribution to

reduce simultaneous transmissions.

1. Sift: A MAC Protocol for Event-Driven Wireless Sensor Networks [44] is also

proposed for wireless sensor networks based on the same observation that the chance

of simultaneous transmissions increases with the number of active nodes. Instead of

adjusting the channel access probability of a node according to the measurement of

collisions, Sift uses a non-uniform distribution to determine the probability of channel

access by each node. The basic idea is to let a node access the channel with a smaller

probability during the first few slots, because the number of competing nodes is often

large at the beginning of a contention period. With the progression of time, this access

probability increases so that it approaches to 1 at the end.

2. Hashing backoff [91] observes that collision avoidance is similar to the insertion

problem of hash tables in operating systems. The goal is to generate a hash function
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that is orthogonal for each node in the form of bji = aji +m× ran(n), where bji is the

slot number for node i during the contention cycle j, m×n = CW and 0 ≤ aji ≤ m−1.
Upon a collision, aji is reselected. The authors prove that this procedure guarantees

asymptotic convergence to a collision-free state, given that the number of active nodes

is less than or equal to the modulus m.

In summary, approaches based on randomization are simple and efficient in terms of

reducing overhead. However, they may cause idle slots and cannot eliminate collisions.

Avoiding Collisions Caused By Future Transmissions Future-transmission-caused

interference is defined in Section 2.2.1. If a node is currently transmitting, another trans-

mission that arrived later within its contention range causes interference from future trans-

missions. Counter-solutions can be summarized from the viewpoints of the early and future

transmission.

Interference Detection

Because earlier-transmission-caused and future-transmission-caused interference describe

the same scenario from perspectives of the future and earlier transmission respectively,

collisions caused by interference from future transmissions can also be reduced by avoiding

collisions caused by interference from earlier transmissions. Specifically, if a node which

prepares to transmit can detect earlier transmissions, future-transmission-caused interfer-

ence can be avoided by using the solutions described in Section 2.2.1. However, depending

on the ability of interference detection by a wireless node, not all earlier transmissions can

be detected (e.g. if RTS packets collide or the physical carrier sensing range is not large

enough, collisions caused by hidden terminals will still happen).

Collision Detection

From the viewpoint of an ongoing transmission, it is hard to predict the occurrence of a

future transmission. In wired networks, collision detection has been successfully applied

to stop collisions caused by interference from future transmissions. For example, carrier

sense multiple access with collision detection (CSMA/CD) enables a node to terminate its

transmission when another signal is detected [94]. This method helps to reduce collisions

and shorten the time before a retransmission can be made. However, due to hardware

limitation [78], CSMA/CD cannot be used in wireless networks. Despite that, soft collision

detection can still be used.

1. Floor Acquisition Multiple Access With Pauses and Jamming (FAMA-PJ)

[27] is proposed to reduce hidden terminals by floor acquisition, active and passive

jamming in wireless networks with shared channels that are half-duplex. A node

with packets to transmit has to acquire the floor via RTS/CTS. Because a node may

send one or multiple packets, other nodes may have to wait for a long time [27].
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Active jamming is used when a node hears carriers after sending an RTS to notify its

neighbors about the collisions. Passive jamming is used to avoid hidden terminals if

RTS packets collide. This jamming signal is sent by a node in the passive state that

overhears carriers, but cannot hear a complete RTS packet. The detection of RTS

collisions helps to avoid data collisions.

2. Out-of-band control [78] can be used for collision avoidance and detection. The

basic idea is to divide the wireless channel into two bands. A separate narrow band is

used to transmit control pulses (single-frequency waves) and a broader band is used

to transmit data packets. A contention (RTS) pulse has a fixed-active phase and a

random-pause phase. Busy-tone waves are transmitted during the active phase of a

pulse to signal a bursty data channel [78]. Data packets are transmitted on the data

channel along with a contention pause. The pause phase is used for collision detection.

A CTS pulse is used as a clear channel signal and it is relayed to the neighbors of the

receiver for medium reservation. Because the length of a CTS pulse is determined by

the random value specified in the previously received data header, the original sender

can detect collision if a shorter or longer CTS pulse is received. As soon as a collision

is detected, the ongoing data transmission is aborted.

Collision Resolution

Up until now, we have classified the approaches of collision avoidance. The co-existence of

all three types of temporally correlated interference causes very complicated and dynamic

interference scenarios. This makes collision elimination extremely difficult. Even though we

can eliminate all possible collisions, the price will be very high in terms of the amount of

information required for accurate interference detection. Therefore, rather than eliminating

collisions, collisions can be resolved with a lower price. A common approach is to retransmit

a collided packet. However, because retransmissions are also subject to all types of interfer-

ence, the goal is to reduce repeated collisions of the same packet as much as possible. The

basic problems are 1) the waiting duration before the next retransmission; 2) the fairness

issue; and 3) the sequence of re-scheduling all transmissions that have collided.

Fast recovery and fairness improvement Most approaches belonging to this category

are backoff mechanisms based on the contention window. The basic idea of these backoff

mechanisms is to increase the contention window upon collision, and to decrease the con-

tention window upon success. Therefore, it is also called the X increase Y decrease approach

[53]. X indicates the aggressiveness of increasing the contention window and determines the

recovery speed. Y represents the speed of decreasing the contention window and influences

the fairness of channel access by different nodes.
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A commonly-used approach of collision resolution is the binary exponential backoff mech-

anism. The binary exponential backoff mechanism [36] doubles the contention window of

a node when its transmission collides. The doubling of contention window continues if re-

transmissions keep colliding. If the ith retransmission succeeds and i is less than the retry

limit, the contention window is reduced to a minimum pre-determined value. However, this

approach suffers from long delay and severe unfairness. Most previous work focuses on mod-

ifying the binary exponential backoff mechanism by changing the speed of increasing and

decreasing the contention window to either improve fairness or to enable faster adaptation

to external traffic that is frequently changing. For example, linear increase linear decrease

(LILD) [100] helps to reduce collisions when the traffic is light. Multiplicative increase

linear decrease (MILD) [4] enables fast responses to collisions when the traffic is heavy.

Both approaches alleviate the monopolization of channel access by slowly decreasing the

contention window. Exponential increase exponential decrease (EIED) [45] achieves further

improvement by allowing faster responses to collisions and faster recoveries from collisions.

Splitting tree algorithm Besides backoff schemes based on the contention window, the

splitting tree algorithm [11] is another approach to resolve collisions. It sorts the sequence

in which to retransmit packets that have collided in a random and distributed way. The key

idea is to divide transmissions that have collided into two sets: transmit and non-transmit.

This splitting is achieved by letting each node with colliding transmissions randomly select

0 (not to send) or 1 (send). At the end of a slot, some of these retransmissions may succeed

and others may collide again. At the next slot, those new transmissions that have collided

and the set that did not transmit previously merges and regroups into a new transmit and

non-transmit set. The transmit set is retransmitted. This procedure continues until all

nodes successfully re-transmit their colliding packets. Thus, delay can be reduced because a

node does not increase the contention window. However, because the last few nodes have to

experience more than one collision to achieve successful retransmissions, time, energy and

bandwidth are wasted. Various improvements have been proposed [69] [70] to reduce delay

and increase throughput. Theoretical analysis shows that the best solution can achieve close

to 50% of the network capacity.

In summary, accurate and prompt detection of transmission opportunities is required to

improve temporal reuse of wireless channels, as well as the avoidance of all three types of

temporally-correlated interference. However, this is difficult to achieve because 1) accurate

detection requires extra resources and causes higher overhead; 2) temporal interference may

change dynamically and compromises detection accuracy.
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2.2.2 Spatially-Parallel Transmissions

Temporal reuse is one dimension to improve resource utilization under the mutual exclusive

transmission constraint. Geographical distribution provides another opportunity to increase

resource consumption through parallel transmissions.

The basic constraint of parallel transmissions is the contention region. Spatially-parallel

transmission can occur only if simultaneous transmissions do not share an overlapping con-

tention region. However, this is difficult to guarantee due to the following two factors.

• Dynamic contention region

The contention region of a transmission pair (including a sender and receiver) has

neither a fixed range nor a regular shape, because of unstable and asymmetric channel

conditions, capability of radio reception and environmental influences. Accumulated

interference and time-varying transmit power also influence the range of the contention

region.

• Dynamic traffic scenarios

The roles of sender and receiver of a transmission pair may also change due to hand-

shaking procedures (e.g. RTS/CTS, DATA/ACK). The switching of transmission roles

may cause two interference-free transmissions to interfere, and dramatically changes

the patterns of spatial contention.

We summarize previous work to improve the spatial reuse of wireless channels. This

section first reviews existing collision models that are commonly used to characterize the

successful reception criteria of a radio receiver, including the protocol and physical collision

models. Secondly, we describe medium access control mechanisms according to channel

access predictability and traffic load awareness.

The Protocol Collision Model

The protocol collision model is based on the assumption that interfering nodes are within

a certain range of a receiver. Depending on whether it considers the dynamic nature of

spatially correlated interference, this model can be further classified as the fixed and adaptive

interference range models.

The Fixed Interference Range Model Protocols based on the fixed interference range

model can be expressed as |xk − xj | ≥ (1 + ∆) × |xi − xj | [33]. In this equation, x is the

location of a node, i and j are the sender and receiver, k is any simultaneously transmitting

node, and ∆ is the guarding zone. By checking whether all simultaneously transmitting

nodes satisfy the equation, a protocol can determine whether the transmission between xi
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and xj is successful. Existing approaches for interference detection include sender-based,

receiver-based, and sender-receiver-based.

Sender-Based Interference Detection

The sender-based interference detection approach requires a sender node to check whether

there is any ongoing transmission within its interference range, before starting a transmis-

sion. A typical example is CSMA. In CSMA, a sender uses physical carrier sensing to

determine the state of the wireless medium within the pre-set carrier sensing range. If the

medium is idle, the sender starts transmitting after a random backoff period. Another ex-

ample is the graph-based TDMA scheduling. Coloring algorithms are commonly used in

node-based scheduling to assign different colors to interfering nodes (each color corresponds

to a slot), and to assign non-interfering nodes the same color [25] [81]. Link-based schedul-

ing [34] [80] [23] usually converts the network topology graph into a contention graph, in

which a vertex represents a link, and an edge means interference. If two links interfere with

each other, there is an edge between their representative vertices. Maximal matching can

be used to find a collision-free schedule to guarantee all links are scheduled at least once

within every cycle.

The receiver-side interference level is crucial to successful transmissions. However,

sender-based interference detection solutions only consider sender-side interfering nodes.

This approach may cause both hidden and exposed terminal problems.

Receiver-Based Interference Detection

Instead of making a sender detect interference for a receiver, receiver-based approaches

initiate transmissions based on the receiver-side interference level. In Multiple access with

collision avoidance by invitation (MACA-BI) [93], a new transmission starts upon a receiver’s

invitation. A receiver sends a request-to-receive packet to request data from a sender.

After receiving the request-to-receive packet, the target sender starts transmitting data. In

addition, the sender also includes its backlog information in the packet header, so that the

receiver can adjust its polling rate accordingly. However, the drawback of MACA-BI is

the possibility of the request-to-receive packet collisions. To avoid such collisions, receiver

initiated multiple access with simple polling (RIMA-SP) [29] introduces an no-request-to-

receive control packet. An no-request-to-receive packet is sent after a receiver transmits

a request-to-receive packet and detects interference afterward. Receiver initiated multiple

access with dual-use polling (RIMA-DP) [29] supports the same procedure, except it also

allows a receiver to transmit data to a sender.

With the receiver-based interference detection approach, hidden terminals caused by si-

multaneous data transmissions are avoided. However, request-to-receive packets may collide

and exposed terminals still exist because the backoff procedure of a node only depends on

physical carrier sensing.
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Sender-Receiver-Based Interference Detection

The sender-receiver-based interference detection solution is designed to enable sender-initiated

transmissions, and receiver-based interference detection. A data transmission is initiated

by an RTS packet sent by a sender, and established by a CTS packet from the intended

receiver. RTS and CTS packets can also serve as notifications to interfering nodes of both

the sender and receiver to reserve the medium and reduce hidden terminals.

LocalTalk CSMA/CA [52] uses RTS and CTS control packets to establish a connection

between a sender and receiver. The other nodes do not take advantage of these packets to

avoid collisions. In multiple access with collision avoidance (MACA) [52], a sender broad-

casts an RTS to its 1-hop neighbors to defer potential transmissions. After the receiver

receives the RTS packet, it broadcasts a CTS packet to its 1-hop neighbors to defer trans-

missions for collision avoidance. If the CTS packet is successfully received by the sender,

it starts a data transmission right away. However, because MACA does not apply phys-

ical carrier sensing, collisions of RTS and CTS packets can be significant. IEEE 802.11

[36] provides an optional mechanism of RTS/CTS as the virtual carrier sensing on top of

the basic access scheme based on physical carrier sensing. Floor acquisition multiple ac-

cess (FAMA) [28] also addresses the shortcomings of MACA, and combines RTS/CTS with

a non-persistent CSMA. Although physical carrier sensing helps to reduce control packet

collisions, this approach is subject to exposed terminals. Therefore, MACAW (a medium

access protocol for wireless LAN’s)[4] introduces two extra control packets: the data-to-send

and retransmit-RTS packets, to further improve performance. The data-to-send packet lets

exposed terminals with regard to a sender know when the forthcoming data transmission

will start, so that they can decide when to start their own transmissions. Medium access via

collision avoidance with enhanced parallelism (MACA-P) [2] considers switching transmis-

sion and reception roles between a sender and receiver due to the exchanges of RTS, CTS,

DATA and ACK control packets. This role switching causes different hidden and exposed

terminal scenarios. In order to reduce exposed terminals, MACA-P introduces control gaps

before a data transmission and ACK transmission to allow exposed terminals to align their

transmissions with the ongoing RTS-CTS-DATA-ACK sequence. The control gap allows

exposed terminals to exchange RTS and CTS packets after the CTS transmission of an

earlier-started node and before its data transmission. Another gap between the end of data

transmission and the start of ACK transmission is used to align the start of transmitting

time of ACK packets from exposed terminals.

The introduction of RTS/CTS seems to further avoid hidden terminals, but it compli-

cates the exposed-terminal scenarios, which also reduces channel utilization efficiency. In

addition, the RTS-CTS-DATA-ACK sequence complicates interference scenarios and may

cause more collisions among RTS, CTS, DATA and ACK packets.
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The Adaptive Interference Range Model As mentioned before, the model with fixed

interference range suffers from significant hidden and exposed terminal problems, because

it lacks the ability to adapt to dynamic spatially correlated interference. Specifically, an

interference range that is too small causes significant collisions, while an over-sized range

makes wireless nodes too conservative and wastes transmission opportunities. Therefore,

adaptive adjustment of interference range has been proposed to reduce collisions and improve

channel utilization efficiency.

Jiang and Lew [46] describe the extended hidden terminal problem caused by ACK pack-

ets required in CSMA/CA. The authors derive safe distance constraints to enable successful

concurrent transmissions under different circumstances. However, they do not suggest how

to adjust the carrier sensing range to both reduce collisions and avoid sacrificing possible

concurrent transmissions. Deng et al. [21] tune the carrier sensing range to achieve optimal

network throughput. Ma et al. differentiate collision causes and tune carrier sensing range

and transmit power accordingly [68]. They adjust the contention window solely for fairness

tuning, rather than for reducing temporal contention.

The Physical Collision Model

Compared with protocol collision models, physical collision models consider lower level met-

rics to determine when collisions occur. Typical metrics include the received signal strength

(RSS), signal to interference ratio (SIR) and signal to interference plus noise ratio (SINR).

Because SINR also considers environment noise and is more accurate, we do not list the

approaches based on SIR measurement here.

Self-learning collision avoidance (SELECT) [14] demonstrates the correlation between

RSS at both the sender and receiver sides. Based on this observation, SELECT uses the

sender-side RSS versus transmission success ratio mapping as a criteria for transmission. If

a sender senses an idle channel and its RSS value maps to a high transmission success ratio,

it starts a transmission. However, the sender-side RSS does not have a monotonic relation

with the transmission success ratio. Even though a self-learning algorithm helps to improve

performance, RSS from the sender side is not a good metric for collision modeling. In

comparison, SINR is a more accurate metric, because of the direct correspondence between

SINR and the packet error rate (PER). The interference aware MAC protocol(IA-MAC)

[12] proposes to add the receiver-side SINR to the CTS packet. By overhearing a CTS

packet, a potential sender can estimate whether its transmission may collide with the ongoing

transmission. However, this approach does not consider the scenario of multiple senders.

If a number of nodes decide to transmit simultaneously based on their SINR estimation,

collisions will occur. The SINR-based collision model has also been used as a constraint to

form the contention graph in scheduling algorithms [7] [101].
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Predictability of Channel Access

According to the degree of control of channel access, existing approaches can be differ-

entiated as random access, schedule-based and reservation-based. Random access allows

each node to initiate transmissions based on its own traffic schedule. Whether or not a

transmission succeeds depends on the interference imposed in time and space. In compar-

ison, schedule-based access specifies the access time of each transmission based on spatial

transmission constraints to control how interference correlate in time and space in order to

reduce collisions. Reservation-based access schemes combine the strength of both random

and scheduled approaches. They allow each node to initiate its channel access request in a

random way, but schedule transmissions according to spatial constraints.

Random Access The spirit of random access is to allow a node to transmit whenever

it wants. Control protocols of random access can be further classified as the unslotted and

slotted versions.

Unslotted Random Access Unslotted random access is the simplest version of medium

access. A node can start a transmission whenever it is ready. No resources are consumed

for scheduling.

1. ALOHA [1] is the first unslotted random access developed in 1970. There is no

collision model considered; a node can transmit at any time. Collisions are handled

by retransmissions. Due to significant collisions, the theoretical maximum throughput

achieved by ALOHA is only 18.4%.

2. CSMA [36] is proposed to improve ALOHA by using physical carrier sensing to avoid

collision. Various modifications of CSMA are proposed to further reduce collisions.

As we described earlier, p-persistent CSMA adopts probabilistic transmissions after

the medium becomes idle again; CSMA/CA uses random backoff to reduce the possi-

bility of simultaneous transmissions; and CSMA/CD enables a transmitting node to

detect interfering signals and stop transmitting. However, CSMA uses the fixed-range

collision model (Section 2.2.2) and suffers from hidden and exposed terminal problems.

3. RTS/CTS [36] aims to further improves the performance of CSMA/CA by exchanging

RTS and CTS packets to reserve wireless medium. Although this method is supposed

to mitigate the hidden terminal problem, RTS/CTS may achieve worse performance

than CSMA in certain scenarios [88], due to control packet collisions, complex inter-

ference relation, and higher overhead.

With light traffic, unslotted random access can achieve good performance with very low

overhead. However, when the traffic is heavy, a larger portion of resources is consumed for
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collision avoidance and resolution, which leads to lower capacity.

Slotted Random Access

Instead of letting a node start a transmission at any time, slotted random access divides time

into slots, and only allows nodes to compete for medium access at the beginning of each slot.

If a node misses or fails a transmission opportunity in the current slot, it has to wait until the

next slot to retry. The benefit of slotting is the elimination of earlier-transmission-caused

and future-transmission-caused interference.

1. Slotted Aloha [82] divides channel time into slots with length equal to a single

packet’s transmission time. Transmitters are permitted to transmit only at the be-

ginning of each time slot to avoid partial packet overlapping. This results in an

improvement in channel utilization efficiency. However, it also increases the complex-

ity of implementation, because all transmitters have to be synchronized. Under this

protocol, network capacity can reach 36.8%.

2. Slotted CSMA also partitions time into fixed-length slots. At the beginning of each

cycle, a transmitter accesses the channel based on a certain persistence policy, if no

carriers are sensed. Otherwise, it waits for the next slots. Slotted CSMA/CA [104] is

used in the beacon mode of IEEE 802.15.4. A coordinator of a personal area network

broadcasts beacon messages periodically to synchronize all nodes within the personal

area network. A node transfers data during a superframe between the intervals marked

by two beacons. A superframe includes an active and inactive period. The active pe-

riod is composed of a contention access period, and an optional contention free period.

Slotted CSMA/CA is used during the contention access period for data transmissions.

A contention access period consists of a number of backoff periods. Channel access

can only occur at the boundaries between backoff periods. Before sensing the channel

state, a node has to wait for a few backoff periods to avoid collisions. Then it starts

iterative physical carrier sensing, if the channel is idle. Upon detecting any carrier,

the node starts backing off again.

Scheduled Access Although slotted random access mitigates earlier-transmission-caused

and future-transmission-caused temporal interference, collisions caused by simultaneous

transmissions can still be significant, and hidden/exposed terminals are still major threats

to efficient channel utilization. Approaches based on scheduled-access set the time when

a transmission starts, to alleviate interference from simultaneous transmissions. Most of

these approaches are centralized and require global information to make scheduling deci-

sions. Existing scheduling schemes can be organized according to how they respond to

dynamic interference, different traffic demand and topology changes.
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Response to dynamic interference

To determine a set of simultaneous conflict-free transmissions, the basic constraint is the

spatial interference relation among wireless nodes. As described in Section 2.2.2, collision

models can be protocol-based and physical. In scheduling, these models are in the form of

node-based, link-based and SINR-based.

1. Node-based scheduling is also called broadcast scheduling. It represents a network

as a graph, with nodes as vertices and conflicts as edges. Vertex coloring can be used

to assign conflicting nodes different colors (time slots). Conflicting nodes are defined

in terms of the constraints concerned. First, the primary conflict occurs when a node

transmits and receives at the same time. The primary conflict can be avoided by

using the 1-hop model, which considers neighbors within 1-hop distance (transmission

range) as conflicting nodes. The secondary conflict is that a node cannot receive two

transmissions at the same time. By applying the 2-hop model, we can avoid secondary

conflicts because neighbors within two-hop distance cannot transmit at the same time.

Finally, the k-hop model [32] considers interference within k hops.

2. Link-based scheduling treats transmission pairs (the link between a sender and

receiver) as scheduling objects. The graph described in node-based scheduling can be

used here, by representing transmission links with arcs. Edge coloring can be applied

to find conflict-free schedules. Two edges (a,b) and (c,d) are assigned the same color

if they do not share common nodes (primary conflict), and there are no edges between

a and d or c and b (secondary conflict). Contention/conflict graph [108] is another

approach that represents links as vertices and conflicts as edges. The k-hop model can

also be added to control interference from nodes farther away.

3. SINR-based scheduling allows a link to transmit only if the SINR at the receiver

is greater than a threshold. One trivial approach is to select a schedule satisfying the

SINR constraint from all possible candidates. However, due to the large number of

candidates, [72] uses a column generation algorithm to simplify the problem. Another

approach is based on a two-level-graph model [79]. It explicitly adds interference

edges to the second level graph. The first level graph includes the nodes and those

links whose signal to noise ratio (SNR) is greater than a threshold. Those links whose

SNR lower than the threshold, but greater than an interference threshold, are added

to the second level graph as interference edges.

Previous work has made great efforts to develop centralized or distributed polynomial so-

lutions to approximate optimal solutions. However, these approaches offer fixed assignment

without considering traffic demand.
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Response to idle slots

Due to fixed time slot allocation, schedule-based access schemes do not adapt to the offered

load at each node. Therefore, slots are assigned to a node even when it does not have data

to transmit. These idle slots are wasted while other nodes wait for transmissions. The idle

slot reuse scheme [58] [85] helps to solve this problem. It is composed of idle slot detection,

cancellation and reuse. If a node has transmitted all its data and the following slots will not

be used, it sends a cancellation request to a network coordinator. The network coordinator

broadcast a cancellation message. After receiving the cancellation message, all nodes with

data to send compete for reusing the idle slot by random access, such as CSMA. However,

the exchange of cancellation messages may cause high overhead.

Response to topology changes

Another problem of scheduled access is how to reduce the overhead of adapting to network

topology changes. Although we can re-schedule every time the topology changes, if changes

occur frequently, this trivial solution may cause very high overhead and long delay. Here,

we describe existing adaptive approaches.

1. Unifying Dynamic Distributed Multichannel TDMA Slot Assignment Pro-

tocol (USAP) [105] is a unified slot assignment protocol, which divides time into

cycles. Each cycle has N frames, and each frame consists of M slots. The maximum

number of nodes allowed in the network cannot exceed N. By exchanging the net-

manager-operational packet among nodes, each node maintains the slot assignments

of its neighbors. If a new node joins the network, it first collects these net-manager-

operational packets and occupies an unassigned slot, if there are any available. How-

ever, this approach has to make sure that N and M are large enough for all possible

network sizes. Therefore, USAP has very low channel utilization.

2. USAP Multiple Access: Dynamic Resource Allocation for Mobile Multi-

hop Multichannel Wireless Networking (USAP-MP) [106] extends USAP by

introducing the adaptive broadcast cycle. Aided by the adaptive broadcast cycle,

USAP-MP does not need to fix the length (N) of each cycle, and N can adapt to

the change of topology and node movement. If a node discovers an unassigned slot

with smaller number than its current assigned slot number, its current assigned slot

is replaced by the empty slot. As a result, unassigned slots are pushed to the latter

half of a frame cycle, and frame length can be reduced.

3. Dynamic TDMA Slot Assignment for Ad Hoc Networks (ASAP) [51] is an

adaptive time slot assignment approach. When a new node joins the network, it first

collects the slot assignment information from its neighbors. If there are unassigned

slots, the new node selects one for itself. Otherwise, the node that owns the largest
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number of slots releases one to the new node. In the worst case, where no unassigned

slots are available and every node only has one slot, this frame is doubled by appending

a new frame at the end. Because the first slot of each frame is reserved without

assignment, it is allocated to the new node. All previously assigned slots are copied

to the remaining part of the frame. The adaptive TDMA slot assignment protocol

in ad-hoc sensor networks (E-ASAP) [50] improves ASAP by exchanging the frame

length information, which enables more efficient utilization of wireless channel.

4. Topology-independent scheduling [9] is a robust solution to frequent topology

change. Instead of guaranteeing the conflict-free property in each slot, this approach

satisfies a weaker condition, which guarantees a successful transmission of every node

and their neighbor nodes at least one slot in a frame. This requirement is achieved

by applying the mathematical properties of finite (Galois) fields. Therefore, as long

as a bound on the maximum number of nodes and neighbors is known, this approach

guarantees conflict-free operation under any frequency of topology changes.

Reservation-based Access Besides random and scheduled access schemes, reservation-

based access is another method.

Synchronized reservation

Similar to scheduled access, synchronized reservation divides time into slots. A cycle is

composed of multiple slots. Each cycle is divided into a contention and contention-free access

period. During the contention period, ready nodes either send reservation requests through

a handshake procedure [86], or exchange schedules among neighbors [16]. Those nodes with

assigned slots are guaranteed with collision-free transmissions during the contention-free

access period.

Unsynchronized reservation

Instead of synchronizing all nodes to align their transmissions, GAMA-PS [74] uses an

optional mechanism of RTS/CTS and packet sensing for reservation. Channel time is divided

into contention and group transmission periods. A transmission group includes all the nodes

that are allowed for transmission (successful RTS/CTS exchanges). Before a node starts

a data transmission, it first sends a begin-to-transmit packet to notify the other group

members to backoff. By overhearing the RTS/CTS and begin-to-transmit messages, every

node in a transmission group figure out its position in the group and transmits data in turn.

The end of a group transmission is marked by a transmission-request control packet sent by

the last member in the group. The next contention and group transmissions can then start.
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Traffic Demand Awareness

So far, we have described channel access mechanisms with different predictability. Another

transmission constraint is traffic demand. Existing scheduling approaches can be differenti-

ated according to traffic assumptions.

Saturated Traffic Model The medium access control schemes based on fixed assignment

assume all nodes are saturated and derive conflict-free schedules based on a spatial inter-

ference relation. TDMA falls into this category. Scheduling schemes based on saturated

traffic do not consider the offered load imposed on each node, and lead to very low channel

utilization because of resource waste.

Differentiated Traffic Demand Unlike those scheduling schemes based on fixed assign-

ment, traffic-aware scheduling methods consider the traffic demand of each user. Traffic

differences can be reflected by the data rate [31], backlog size [29] or the number of flows

going through a common node [87].

Depending on the traffic load of each user, there are two approaches to divide the channel

bandwidth through scheduling. The first is to divide the channel time into fractions, and

assign each user the amount of time requested. An alternative is to adjust the transmission

rate of each user. These approaches can be implemented in random-access, schedule-based

or reservation-based access schemes. For example, p-persistent CSMA can adjust the prob-

ability of transmissions based on traffic demand. The concept of transmission opportunity

introduced in IEEE 802.11e can be used in random access to adjust the channel occupancy

time of each user [55]. Schedule-based and reservation-based schemes can assign a consecu-

tive number of slots to users with higher traffic load [98].

Intermittent Traffic Demand Although traffic-aware scheduling schemes consider de-

mand differences among users, these approaches either assume long-term static demand or

require frequent control messages to determine varying traffic features. In contrast, ran-

dom access schemes are suitable for intermittent traffic by allowing each user to initiate

transmissions when there are packets to send.

2.3 A Synthesized View

Resource allocation and utilization are two important sub-problems of wireless resource

management. On one hand, resource allocation partitions resources to achieve a certain

global optimality. On the other hand, resource utilization controls local competition and

reduces resource waste. Ideally, solutions to both problems should support each other,

so that the allocated resources can be fully utilized to satisfy user/system requirements.
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However, existing efforts are devoted to solving these problems separately. In Section 2.1

and 2.2, we categorize previous methods into two classes: global resource allocation and local

resource utilization. This section compares the strength and weaknesses of both classes, and

describes a new direction that we pursue to achieve effective resource management.

2.3.1 Global Resource Allocation Analysis

Existing methods of resource allocation share three common features: 1) global objectives;

2) simplified assumptions; and 3) theoretical upper-bounds. Typically, these methods form

an optimization problem to maximize network throughput/utility or achieve fairness. Due

to the complex nature of wireless networks, simplified assumptions are applied to derive

mathematically tractable models. For example, Cali and Bianchi assume that 1) all nodes

can hear each other; 2) all nodes transmit or collide with the same probability; and 3) hid-

den/exposed terminals do not exist in wireless local area networks. Similar assumptions are

also applied to wireless ad-hoc networks. Most derivative works based on Tassiulas’s model

(e.g. Jiang’s adaptive CSMA/CA) assume that the underlying scheduling eliminates colli-

sions. There has been little effort to characterize the stability region when hidden/exposed

terminals exist.

Consequently, allocation policies derived from these theoretical models are over-positive

and difficult to achieve in practice. Furthermore, directly applying these policies to guide

user resource consumption can lead to significant resource waste in terms of aggravated

collisions and congestion. As our simulation results demonstrate in Chapter 5, Jiang’s

adaptive CSMA/CA experiences severe packet loss that is caused by hidden/exposed termi-

nals. Despite these weakness, global resource allocation enables different users to coordinate

resource consumption and achieve a common goal. Although the theoretical upper-bound

is hard to achieve, it can serve as a benchmark to encourage new hardware technologies and

management methods to approach.

2.3.2 Local Resource Utilization Analysis

Resource utilization is often handled locally by medium access control. Typical techniques

include 1) local interference detection; 2) scenario differentiation; and 3) collision avoid-

ance/resolution. For example, existing methods detect interference either based on some

assumption that interference happens within a certain range, or based on physical mea-

surements such as the received signal strength (RSS), signal to interference ratio (SIR) and

signal to interference plus noise ratio (SINR). Different methods are also used to differentiate

dynamic interference in time and space. When interference is detected, a certain method

is applied to avoid collisions (e.g. random access or scheduled access). Resolution methods

are also applied to reduce repetitive collisions.
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Due to the dynamic nature of wireless interference, it is hard to achieve accurate detec-

tion of all interference scenarios. As a consequence, collision avoidance/resolution methods

make false-negative and false-positive decisions, which lead to collisions and unnecessary

idling. Furthermore, local resource utilization can easily cause conflicts among users and

compromise system-level performance without a global view. Despite the limited control

effectiveness and selfish nature of local resource utilization, it is widely adopted because of

the advantages of fast response, distributed control and low control overhead.

In summary, there is a discrepancy between global resource allocation and local resource

utilization. Global resource allocation cannot effectively handle local resource competition,

due to the requirement of frequent message passing and delayed response. In comparison,

local utilization policies are more effective to handle dynamic contention and time-varying

channel conditions. Without the support from local control, global resource allocation leads

to severe resource waste. Conversely, local utilization methods do not have a global view

of the whole network. Without the guidance of global resource allocation, local utilization

policies may jeopardize system-wide objectives. Therefore, effective resource management

should combine the strength of both global resource allocation and local utilization, and

mediate the discrepancy between. In this thesis, we propose a novel method to minimize

the gap between the amount of allocated and utilized resources by enabling global resource

allocation to consider local competition, and maximizing local utilization to approach the

benchmark set by global resource allocation.
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Chapter 3

Globalized-Local Optimal
Resource Management

Uncontrolled competition for limited resources causes unfair resource consumption and de-

grades performance significantly in shared-resource systems. Allocating resources fairly to

users, and using these limited resources efficiently is crucial for improving system perfor-

mance and satisfying user requirements. Particularly, in wireless networks, competition

for finite resources causes severe congestion and collisions. Without effective management,

users may experience very long delay, significant packet loss and poor throughput. In this

chapter, we first present G-Local resource management: a framework for effective resource

management in wireless networks. Compared with existing methods, G-Local resource man-

agement offers novel mechanisms that fairly allocate resources, efficiently utilize resources,

and effectively control network behavior with very low computational and control overhead.

In the rest of this chapter, we present the layered structure of G-Local resource manage-

ment, and overview its major modules in Section 3.1. Section 3.2 presents the formulation of

G-Local optimization, the theoretical foundation of this framework. Finally, we summarize

this chapter in Section 3.3.

3.1 Framework Overview

The overall structure of G-Local resource management is shown in Fig. 3.1. We present

this framework in a layered architecture to ease the separation of different concerns, and to

demonstrate inter-layer interaction. In this framework, we lay the theoretical foundation of

G-Local optimization, and reify this theory with novel control methods at the second layer.

On top of these two layers, in the following chapters we augment and customize G-Local

theory and control to tackle unique challenges in two types of wireless networks: single-hop

and multi-hop.
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3.1.1 Layer One: G-Local Optimization

In this chapter, we introduce G-Local optimization as the fundamental layer of the proposed

framework. It offers a new theoretical foundation that 1) supports configurable and adaptive

fairness, 2) suppresses the co-existence of conflicts and waste, 3) balances the trade-off

between fairness, efficiency and effectiveness, and 4) approaches desired network states via

a local method with zero control-message passing.

1. Adaptive and configurable fairness

Instead of restricting the framework to a pre-defined type of fairness, G-Local opti-

mization can be configured with different fairness criteria. This is because no single

fairness criteria can be generalized to meet diverse user requirements and system differ-

ences. We assume that network managers/operators select a desired fairness criteria,

derive bandwidth fair share for each user, and enter derived fair share to G-Local via

a fairness interface. This assumption is based on the following fact. First, fairness

criteria essentially prioritize users and indicate which group can be compromised when

resources are insufficient. Second, it requires authority, specific knowledge regarding

the types and features of applications that are running in the network, as well as the

demands and classification of users to define these rules. Therefore, protocol design-

ers should support and fulfill, rather than making these subjective and judgmental

decisions. Accordingly, G-Local optimization supports different fairness criteria by

separating the fairness definition from its fulfillment, and simplifies the derivation of

fair share. In addition, conventional fairness criteria are designed for wired networks

where no interference exists and network conditions are more stable. Directly apply-

ing these criteria in wireless systems leads to a gap between resource allocation and

utilization due to the lossy nature of wireless transmissions, imperfect medium access

control (MAC), and time-varying quality of wireless channels. In the rest of this the-

sis, we call the difference between a configured fair share and utilized resource, the

allocation-utilization gap. G-Local optimization explicitly characterizes the impact of

wireless interference and dynamic network conditions on fairness, and re-adjusts the

fair share.

2. Two-way reduction of resource waste

G-Local optimization handles the co-existence of collisions and unnecessary idling,

which are caused by two factors. First, wireless transmissions are lossy due to dynamic

interference and network conditions. Second, MAC-scheduling algorithms such as

TDMA and CSMA are imperfect. Although scheduling is supposed to fully utilize

transmission opportunities and reduce collisions, existing protocols (e.g. CSMA) often

make wrong decisions due to aggressive/conservative policies. Consequently, wireless
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bandwidth is wasted on either collisions or nodes being idle. We call the second

situation unnecessary idling. Both collisions and unnecessary idling add up to the

allocation-utilization gap in wireless networks. G-Local optimization accounts for

these two factors to reduce resource waste.

3. Balanced trade-off among fairness, efficiency and effectiveness

G-Local optimization balances between maximizing network utility by driving the user

consumption toward the configured fair share, and minimizing resource waste caused

by collisions and unnecessary idling. On one hand, due to wireless interference, it may

not be possible to achieve the configured fair share. Instead of continuously pushing

the system toward the configured fair share, G-Local optimization re-evaluates the

fair share to reflect the impact of wireless interference. On the other hand, G-Local

optimization characterizes the impact of wireless interference, dynamic network con-

ditions and imperfect scheduling by calculating a waste cost, so that control methods

can be applied to minimize collisions and unnecessary idling. In addition, the over-

head incurred by reducing collisions and unnecessary idling is also taken into account.

By balancing these two effects, G-Local optimization uses fairness to drive resource

consumption, and re-adjusts the fair share when the selected control method cannot

reduce the waste cost any more.

4. Zero control-message passing

G-Local optimization minimizes control overhead by intelligently exploiting local in-

formation. We enable each node to infer the level of competition, and jointly maximize

resource utilization and minimize resource waste caused by collisions and unnecessary

idling. In the next chapter, our simulation results demonstrate that compared with

a classic global optimization algorithm, G-Local optimization achieves competitive

results with zero message passing.

3.1.2 Layer Two: G-Local Control

Chapter 4 introduces G-Local control, the layer that reifies G-Local optimization. While

G-Local optimization balances the trade-off between allocation fairness and utilization ef-

ficiency, control methods help to reduce the allocation-utilization gap defined in Section

3.1.1. In this layer, we offer two alternative control methods: single-variable and multivari-

able control, and provide two ways: flat or hierarchical, to implement G-Local control.

1. Single-Variable Control vs. Multivariable Control

The single-variable method models network behavior: transmissions, collisions and

idleness as functions of a single control variable. With this method, G-Local control

adjusts the single control variable to reduce collisions and unnecessary idling, and
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re-adjusts the configured fair share by taking into account resource waste. The multi-

variable control method improves control effectiveness and minimizes the gap between

the configured fair share and utilized resource. In this method, we categorize wireless

interference dynamics into four dimensions: time, space, strength and frequency, and

differentiate their causes. Correspondingly, we select a number of control variables

that have strong impacts on each dimension, and model network behavior as mul-

tivariable functions of these control variables. Aided by the multivariable method,

G-Local control drives the system to reach a desired network state via adjusting the

selected control variables.

2. Flat vs. Hierarchical Control

G-Local control can be implemented as two structures: flat and hierarchical. The

basic idea of flat control is to find a desired network state via adjusting the selected

control variables. In contrast, the hierarchical control uses a desired network state to

drive the underlying control method to adjust the selected variables. It constructs a

two-tier hierarchy between G-Local optimization and a selected control method, and

provides a clearer direction for making control decisions.

3.1.3 Layer Three: G-Local Application

Chapter 5 demonstrates the application of G-Local resource management in multi-hop wire-

less networks. We propose three mechanisms to handle the 1) co-existence of intra-path and

inter-path interference, 2) chaotic and unfair competition, and 3) correlated congestion and

collisions.

1. Hybrid TDMA/CSMA

This first mechanism is proposed to mitigate the co-existence of intra-path and inter-

path interference. Our hybrid scheduling scheme eliminates intra-path interference

via time-division-based scheduling, and handles inter-path interference via random-

access-based scheduling. Compared with existing work, which relies on heavy message

passing and complex computation, this method achieves comparable performance with

very simple computation, and fast adaptation to handle dynamic traffic patterns with

minimal message passing. These advantages are achieved by enabling each path to

derive its own schedule locally, promptly adjusting existing schedules upon traffic

pattern changes.

2. Hierarchical MG-Local Control

The second mechanism aims to achieve fair allocation and efficient utilization of wire-

less bandwidth in multi-hop networks. We apply a multivariable version of G-Local

control to guide different paths to compete for their fair share of wireless bandwidth,
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Table 3.1: G-Local Symbols
Parameter Value

Ui network utility
Ci consumption cost
Wi waste cost
Ii non-conflict-caused waste cost
Fi conflict-caused waste cost
xi bandwidth consumed for transmission

xf
i bandwidth fair share

colli bandwidth wasted on collisions
idlei bandwidth wasted on idling
B channel bandwidth
k scaler

and effectively control chaotic inter-path competition in wireless networks. This mech-

anism enforces fairness-driven resource allocation, achieves efficient utilization of allo-

cated bandwidth, and effective control of network behavior.

3. Correlated Congestion-Collision Control

Congestion in multi-hop wireless networks is caused by both traffic overload and wire-

less interference. Correlated congestion-collision control lets each forwarding-node

compute a congestion cost based on its incoming/outgoing traffic, and local interfer-

ence level. This congestion cost is passed back to the upstream node to adjust its

outgoing traffic in order to alleviate congestion at the downstream node. Compared

with conventional congestion control, this method effectively handles the mutual im-

pact of congestion and collisions in wireless multi-hop networks.

3.2 G-Local Optimization

We design G-Local optimization to guide each user to consume a configured fair share of

network bandwidth by increasing the amount of resources being used for successful trans-

missions, and reducing the amount of resources being wasted by collisions and unnecessary

idling. If the configured fair share is not achievable due to dynamic interference, time-varying

network conditions, or imperfect scheduling, G-Local optimization re-adjusts the fair share

to reflect the impact of these negative factors. This section first presents the formulation of

G-Local optimization, and then analyzes how it achieves fair allocation, efficient utilization

as well as a balanced trade-off between fairness and efficiency.

Before diving into the details, we introduce a number of symbols in Table 3.1.

3.2.1 Formulation

G-Local optimization is structured as in Eq. 3.1 with three components: utility (Ui),

consumption cost (Ci) and waste cost (Wi). i is a local user. A user can be specified
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as a node, an abstract wireless link (see definition in Chapter 1), or a network flow. Because

we present the generic formulation of G-Local optimization in this chapter, the generic

concept of user i is used here. In the next two chapters, we specify a user as a wireless link

and reify G-Local optimization with specific control methods. G-Local maximizes utility

and minimizes costs. We elaborate each component of G-Local Optimization as follows:

max k · Ui − (1− k) · (Ci + Wi) (3.1)

• Ui represents the benefit or satisfaction of a local user i when its packet delivery ratio

is xi. We specify Ui = log(xi) so that user satisfaction increases with xi, and so that

the marginal benefit decreases as xi increases.

• Ci is the consumption cost and plays two important roles. First, it controls the greedy

behavior of a local user, by imposing a limit on the resource consumption xi. Thus,

the more a user consumes, the higher the cost it has to pay. Second, Ci drives xi

toward a configured fair allocation xf
i , in the form of Ci =

1

xf

i

· xi.

• Wi is the cost of resource waste and characterizes the impact of network dynamics

including interference and network conditions on the allocation-utilization gap. We

specify Wi =
colli
B + idlei

B , where, colli and idlei are the amount of bandwidth wasted

on collisions and unnecessary idling, and B is the channel capacity.

Eq. 3.2 is the concrete form of G-Local optimization, and is derived by substituting

log(xi),
1

xf

i

· xi and
colli
B + idlei

B for Ui, Ci and Wi respectively in Eq. 3.1. We solve Eq. 3.2

in the next chapter using two specific control methods.

max V (xi, colli, idlei)

V = k · log xi − (1− k) · ( 1

xf
i

· xi +
colli
B

+
idlei
B

)
(3.2)

3.2.2 Fair Allocation

G-Local optimization supports different fairness criteria.

• First, we separate the derivation of fair share from its fulfillment. Specifically, we let

network managers/operators select a fairness criteria that is suitable for the types and

features of applications running in their systems. For example, in Chapter 5 we use

max-min fairness for multi-hop forwarding. In case network operators/managers do

not have a particular preference, we also provide a simple fairness criteria as the default

option. This default criterion specifies that each link shares the channel bandwidth

with interfering links equally.

56



• Second, we simplify the derivation of fair share. Specifically, we allow network man-

agers/operators to assume a simple interference model and stable network conditions.

For example, they can assume interference is only from transmission within a certain

distance and does not change over time. However, the impact of network dynamics is

at lost. It is explicitly handled by adding the waste cost, Wi, to G-Local optimization.

• Third, we provide a configurable fairness interface via xf
i for network managers/operators

to enter the desired fair share. The value entered for xf
i is called the configured fair

share in the rest of this paper. By formulating the consumption cost as Ci =
1

xf

i

· xi,

we ensure that G-Local optimization converges to xi = xf
i if there are no network

dynamics. This is derived by ignoring Wi, and transforming Eq.3.2 to Eq. 3.3.

max Ui − Ci

=>max log(xi)−
1

xf
i

· xi
(3.3)

We call Eq. 3.3 the G-Local utilization control, and it represents the effort to achieve

fair allocation.

3.2.3 Efficient Utilization

G-Local optimization achieves efficient utilization by handling the co-existence of collisions

and unnecessary idling. In wireless networks, there is always a gap between the amount of

resources being allocated, and the amount of resources being used for successful transmis-

sions. This allocation-utilization gap is attributed to two factors: 1) wireless transmissions

are lossy due to dynamic interference and network conditions; and 2) MAC-scheduling algo-

rithms are imperfect and sometimes make incorrect decisions due to aggressive/conservative

policies. Consequently, wireless bandwidth is wasted on either collisions or on nodes being

idle. Therefore, G-Local optimization formulates the non-conflict-caused waste cost Ii and

conflict-caused waste cost Fi in Eq. 3.4.

Ii =
idlei
B

Fi =
colli
B

Wi = Ii + Fi

(3.4)

We call the second aspect of G-Local optimization the G-Local waste control. It repre-

sents the effort to minimize resource waste (Eq. 3.5).

max Ui −Wi

=>max log(xi)− (
colli
B

+
idlei
B

)
(3.5)
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3.2.4 Balanced Trade-off

By combining utilization and waste control, G-Local optimization balances the effort to

achieve the configured fair share, and minimize resource waste. We categorize the trade-offs

into local and global.

1. The local trade-off is characterized as the allocation-utilization gap. The waste costWi

indicates the price of reducing this gap by pushing utilization toward the configured

fair share. As shown in Eq. 3.4, this cost has two properties: 1) it decreases with

more efficient resource utilization, because of decreased collisions and reduced idling;

2) its reduction speed is a non-decreasing function, because smaller resource waste

requires greater effort from the underlying control method. Furthermore, how much

the resource waste can be reduced is determined by the effectiveness of the underlying

control method. In other words, Wi reflects the trade-off between control effectiveness

and control overhead. Therefore, these two properties of Wi guarantee that G-Local

optimization does not keep pushing a user to aggressively consume resources when the

cost exceeds the gain.

2. The global trade-off between fairness and efficiency is reflected as the fact that users

experience interference at different intensity and frequency over time and space. Users

experiencing more frequent destructive interference are heavily punished. We intro-

duce a weight k =
xf

i
−xi

xf

i

, and use it as the weight in the G-Local objective function

Eq. 3.2. This weight gives a user a lower weight if its xi is closer to the ideal fair-share,

so that some bandwidth goes towards the transmissions that are less fortunate.

3.2.5 Zero Message Passing

Because Eq. 3.2 only requires local information xi, colli and idlei, G-Local optimization

requires zero control-message passing. By intelligently exploiting local information, G-Local

enables each user to infer the level of competition, and jointly maximizes resource utilization

and minimizes resource waste caused by collisions and unnecessary idling.

3.3 Chapter Summary

In this chapter, we provided an overview of the layered structure of G-Local resource man-

agement. The first layer of G-Local optimization is the theoretical foundation of this work.

We present its formulation and show how it supports fair allocation and efficient utilization

with a balanced trade-off and zero message passing. The second layer G-Local control reifies

the theory of G-Local optimization with both single-variable and multivariable control. The

third layer is the G-Local application in multi-hop wireless networks.
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Chapter 4

Resource Management in
Single-Hop Wireless Networks

In Chapter 3, we gave an overview of the complete structure of G-Local resource man-

agement, and introduced its first layer G-Local optimization. This chapter focuses on the

second layer: reified G-Local control, and applies it in single-hop environment. The multi-

hop application will be introduced in the next chapter.

Resource competition is inevitable in shared resource systems. In wireless networks,

this problem is aggravated due to dynamic interference and network conditions. With-

out appropriate control, harmful competition causes unfair user consumption of resources

(e.g. starvation), and resource waste due to collisions and idleness. In this chapter, we

focus on resource management in single-hop wireless networks, where a sender node (also

called a source) sends data to its designated receiver (also called a destination) directly

through a shared wireless channel. In single-hop wireless networks, external interference

changes over time and space; causes lossy transmissions; and significantly degrades perfor-

mance. To tackle these challenges, we reify G-Local optimization with two control methods:

single-variable and multivariable control. The reified G-Local optimization is called G-Local

control. We also provide two control structures, flat and hierarchical, to implement G-Local

control. The hierarchical control will be introduced in the next chapter.

1. Single-Variable vs. Multivariable Control

The single-variable method treats three network behaviors: transmissions, collisions

and idleness as functions of a single control variable. With this method, G-Local

control adjusts the control variable to reduce collisions and unnecessary idling, and

re-adjusts the configured fair share by taking resource waste into account. Our perfor-

mance study demonstrates that this method achieves competitive performance com-

parable to a classic algorithm of global optimization. This is achieved with zero

control-message passing.
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The multivariable control method improves control effectiveness and minimizes the

gap between the configured fair share and utilized resource. In this method, we dif-

ferentiate the causes of wireless interference in three dimensions: time, space, and

frequency-intensity. Correspondingly, we select a number of control variables that

have impact on each dimension, and model network behavior as multivariable func-

tions of these control variables. When using the multivariable method, G-Local control

drives the system to reach a desired network state via adjusting the selected control

variables.

2. Flat vs. Hierarchical Control

G-Local control can be implemented in two structures: flat and hierarchical. The

basic idea of flat control is to transform G-Local optimization from a multi-state op-

timization problem into a multi-variable control problem via direct substitution. The

flat control finds a desired network state via adjusting the selected control variables.

In contrast, the hierarchical control separates the multi-state optimization and multi-

variable control into two problems. It first finds a desired network state and uses it

to guide the adjustment of the selected control variables. Therefore, the hierarchical

control constructs a two-tier hierarchy between G-Local optimization and control, and

provides a clearer direction for making control decisions. This chapter introduces the

flat method, and we present the hierarchical method in the next chapter.

In the rest of this chapter, Sections 4.1 and 4.2 introduce the single-variable and multi-

variable methods respectively. We conclude this chapter by summarizing our contributions

in Section 4.3.

4.1 G-Local Optimization with Single-Variable Control

We introduce a single-variable control as the first control method in the G-Local control

layer. This method controls transmissions, collisions, and unnecessary idling by modeling

them as functions of a single control variable. The control method steers the network

toward desired states by adjusting the selected control variable. This single-variable control

is computationally simple and minimizes control overhead. We call the combination of

G-Local Optimization and single-variable control, the SG-Local control.

Before diving into the details, we list a number of symbols that will be used in the rest

of this section in Table 4.1. In this chapter, we specify a user as a wireless link (i, j), which

is defined as an abstraction of the transmissions between a source i and destination j.
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Table 4.1: SG-Local Symbols
Parameter Value

(i, j) link (i, j)
xs
(i,j) bandwidth consumed for transmissions of link (i, j)

xf
(i,j) bandwidth fair share

coll(i,j) bandwidth wasted on collisions
collm(i,j)(t) measured collisions during the t-th control period

idle(i,j) bandwidth wasted on idling
p(i,j) transmission probability
B channel bandwidth
k scaler
h a small disturbance
λ Lagrange multiplier or shadow price

4.1.1 Single-Variable Control

Our method models three basic network behaviors as functions of a single control variable.

These behaviors include: 1) xs
(i,j), the fraction of bandwidth that is consumed for trans-

missions over link (i, j) (s denotes sending rate); 2) coll(i,j), the fraction of bandwidth that

is wasted on collisions; and 3) idle(i,j), the fraction of bandwidth wasted on unnecessary

idling.

Control Variable Selection

The single control variable is p(i,j), the transmission probability. It is used in combination

with ALOHA, and defined as the probability to start a transmission when a node has data to

send. We use ALOHA instead of CSMA/CA for two reasons. First, ALOHA supports a more

direct causality between p(i,j) and the attempted transmissions xs
(i,j). Although CSMA/CA

has better performance than ALOHA, its collision avoidance and resolution mechanisms

blur the relationship between p(i,j) and xs
(i,j). Second, we use ALOHA to demonstrate the

impact of control effectiveness on G-Local optimization: 1) low control effectiveness does not

influence the ability of G-Local optimization to balance allocation fairness and minimizing

resource waste; and 2) low control effectiveness influences the allocation-utilization gap

W(i,j) (e.g. the less effective a control method is, the bigger the gap). For the subsequent

multivariable control, we use CSMA/CA as the underlying MAC.

Single-Variable Model

With p(i,j), we model transmission bandwidth, xs
(i,j), as the fraction of bandwidth that is

consumed for transmissions (Eq. 4.1). The unnecessary idling idle(i,j) is the amount of

bandwidth xf
(i,j) that should be utilized but is not (Eq. 4.2).
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xs
(i,j) =X(p(i,j))

=p(i,j) ·B
(4.1)

idle(i,j) =IDLE(p(i,j)) = xf
(i,j) − xs

(i,j)

=xf
(i,j) − p(i,j) · B

(4.2)

Compared with xs
(i,j) and idle(i,j), coll(i,j) is caused by the interference from other

transmissions. It is hard to find the exact form of coll(i,j) without a model for interfer-

ing transmissions. Instead, we approximate the collision model as shown in Eq. 4.4. In

this approximation, collm(i,j)(t) and coll(i,j)(t) are the measured and estimated collisions of

the t-th control period respectively. p(i,j)(t) is the transmission probability used by node i

to transmit to j, during the t-th period.
(

dCOLL
dp(i,j)

)

p(i,j)=p(i,j)(t)
is estimated via the classic

finite difference method as shown in Eq. 4.5 [73]. h is a small disturbance we use to change

p(i,j) from p(i,j)(t) to p(i,j)(t) + h.

coll(i,j) = COLL(p(i,j)) (4.3)

coll(i,j)(t+ 1) = collm(i,j)(t) +

(

dCOLL

dp(i,j)

)

p(i,j)=p(i,j)(t)

· (p(i,j)(t+ 1)− p(i,j)(t)) (4.4)

(

dCOLL

dp(i,j)

)

p(i,j)=p(i,j)(t)

≈ COLL(p(i,j)(t) + h)− COLL(p(i,j)(t))

h
(4.5)

4.1.2 SG-Local Control

G-Local optimization provides a method to drive a system to achieve fair allocation and

efficient utilization, which requires a control method to fulfill. In this section, we reify G-

Local optimization Eq. 4.6 via the single-variable models Eq. 4.1, 4.2 and 4.3. This reified

G-Local optimization is called SG-Local control (see Eq. 4.7). The SG-Local control adopts

the default fairness criteria, which specifies that each link shares channel bandwidth equally

with interfering links. The fair share xf
(i,j) =

B
nshare
(i,j)

can be derived during the system startup

procedure, before the SG-Local control starts. nshare
(i,j) is the number of links that use the

same wireless channel as link (i, j), including link (i, j) itself.

maxV (xs
(i,j), coll(i,j), idle(i,j)), where

V =k · log(xs
(i,j))− (1− k) · ( 1

xf
(i,j)

· xs
(i,j) +

coll(i,j)

B
+

idle(i,j)

B
)

=k · log(xs
(i,j))− (1− k) · (

nshare
(i,j) − 1

B
· xs

(i,j) +
coll(i,j)

B
+

1

nshare
(i,j)

)

(4.6)

62



max Vf (p(i,j)), where

Vf (p(i,j)) =k · log(X(p(i,j)))− (1− k) · (
nshare
(i,j) − 1

B
·X(p(i,j)) +

COLL(p(i,j))

B
+

1

nshare
(i,j)

)

s.t. 0 ≤ p(i,j) ≤ 1
(4.7)

Because log(xs
(i,j)) is a concave function, and Vf (p(i,j)) is a non-decreasing function of

p(i,j), Eq.4.6 is a strictly concave function, according to the proof (Lemma 3.2) given in [90].

However, whether it has a unique optimal point depends on two conditions: (i)Vf (p(i,j))→
−∞ as p(i,j) → 0; and (ii)Vf (p(i,j)) → −∞ as p(i,j) → ∞. This requirement has been

considered in our formulation by the introduction of k (0 < k < 1). We dynamically set k

as 1− xs
(i,j)·n

shareB(i,j)
so that k decreases when p(i,j) increases.

By applying the Lagrangian transformation, Eq.4.7 is transformed to an unconstrained

format Eq.4.9, where λp1 and λp2 are shadow prices. The corresponding dual problem is

given in Eq. 4.11.

Lf (p(i,j), λp1, λp2)

=Vf (p(i,j)) + λp1 · p(i,j) − λp2 · (p(i,j) − 1)
(4.8)

max Lf (p(i,j), λp1, λp2) (4.9)

Df (p(i,j), λp1, λp2) = max Lf (4.10)

min Df (p(i,j), λp1, λp2) (4.11)

To obtain the shadow prices λp1 and λp2, we solve the dual problem Eq. 4.11 via λp1 =

−h1 · p(i,j) and λp2 = h2 · (p(i,j) − 1). The scalars h1 and h2 are determined experimentally

to both equal 0.1. Specifically, we choose a few possible ranges for h1 and h2, and select the

value that leads to the best convergence speed. Then we solve Eq. 4.9 by applying gradient

descent. The control policy for p(i,j) is derived in Eq. 4.12. Each user applies this control

policy periodically until the algorithm converges.

p(i,j)(t) = p(i,j)(t− 1) + kp ·
∂Lf

∂p(i,j)
(4.12)

4.1.3 Performance Evaluation

In this section, we evaluate the performance of SG-Local control (denoted GL in the fig-

ures), and compare it with three alternative candidates: G-Local utilization control (denoted
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GLU); G-Local waste control (denoted GLW); and Chiang’s global optimization [61] (de-

noted GB). As explained in Chapter 3, GL combines GLU and GLW by maximizing resource

utilization and minimizing waste. G-Local utilization control was introduced in Chapter 3.

This method aims to achieve the configured fair share xf
(i,j) by increasing xs

(i,j). We specify

the single-variable version of G-Local utilization control in Eq.4.13. The GLU control pol-

icy 4.15 is derived by applying the Lagrange transformation Eq. 4.14 and gradient-descent

method.

max Vu(p(i,j)), where

Vu(p(i,j)) = log(X(p(i,j))) −
1

xf
(i,j)

· R(p(i,j))

s.t. 0 ≤ p(i,j) ≤ 1

(4.13)

Lu(p(i,j), λp1, λp2)

= Vu(p(i,j)) + λp1 · p(i,j) − λp2 · (p(i,j) − 1)
(4.14)

p(i,j)(t) = p(i,j)(t− 1) + kp ·
∂Lu

∂p(i,j)
(4.15)

The second alternative, G-Local waste control (Eq. 4.16), aims to minimize resource

waste caused by collisions and unnecessary idling. Similar to the first candidate, we derive

the policy for waste control in Eq. 4.18 via Lagrange transformation Eq. 4.17 and gradient

descent.

max Vw(p(i,j)), where,

Vw(p(i,j)) = log(X(p(i,j)))− (
COLL(p(i,j))

B
+

IDLE(p(i,j))

B
)

s.t. 0 ≤ p(i,j) ≤ 1

(4.16)

Lw(p(i,j), λp1, λp2)

= Vw(p(i,j)) + λp1 · p(i,j) − λp2 · (p(i,j) − 1)
(4.17)

p(i,j)(t) = p(i,j)(t− 1) + kp ·
∂Lw

∂p(i,j)
(4.18)

Chiang’s global optimization [61] (Eq. 4.19) is the third alternative, which aims to maxi-

mize network utility via iteratively adjusting each link (i, j)’s transmission probability p(i,j)

with message passing. We compare our GL with Chiang’s GB because both work share a

similar goal to fairly allocate and efficiently utilize wireless bandwidth. Furthermore, GB

represents the typical method of managing wireless resource via network utility maximiza-

tion. For fair allocation, GB enforces proportional fairness [54]. By maximizing network

utility, their method improves resource utilization efficiency. Specifically, the utility function

is U(i,j)(x(i,j)) = log(x(i,j)) [61]; x(i,j) is the data delivery ratio of link (i, j) and specified as

the amount of channel capacity that (i, j) transmits while all nodes that interfere with link
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(i, j) (denoted N I
to(i, j)) remain silent. A link (i, j) transmits with a probability p(i,j), and

the transmission probability of a node n (denoted Pn) is the total transmission probabil-

ity of its outgoing links (denoted Lout(n)). The more data a link successfully delivers, the

higher utility it achieves. But the marginal gain reduces with an increasing x(i,j). Following

the Lagrange transformation, dual decomposition and subgradient method, they derive the

control policies for p(i,j) and Pn as shown in Eq. 4.20. To enforce these policies, each link

(i, j) sends the shadow price (λ(i,j)(t)) to all of its interfering nodes in N I
to(i, j) so that

they can compute Pn for the next control period. Similarly, each node n sends Pn to all

links that it interferes with (denoted LI
from(n)) so that they can compute p(i,j) for the next

round. The shadow prices are increased if the current data rate of link (i, j) is less than

the desired x′l. Upon the reception of λ(i,j)(t) and Pn(t), node n computes Pn(t + 1),

x′
(i,j)(t+1), p(i,j)(t+1) ,and λ(i,j)(t+1) according to Eq. 4.20. kn(t) is updated according

to
∑

l∈Lout(n)
λ(i,j)(t) +

∑

k∈LI
from

λk(t) and β(t) = 1/t at each iteration. More details of

this global optimization are available in [61].

max
∑

(i,j)

U(i,j)(x(i,j))

s.t. x(i,j) = W · p(i,j) ·
∏

k∈NI
to(i,j)

(1− P k), ∀(i, j)

∑

(i,j)∈Lout(n)

p(i,j) = Pn, ∀n

0 ≤ Pn ≤ 1, ∀n

0 ≤ p(i,j) ≤ 1, ∀(i, j)

(4.19)

Pn(t+ 1) =















∑

(i,j)∈Lout(n)
λ(i,j)(t)

∑

(i,j)∈Lout(n)
λ(i,j)(t)+

∑

k∈Ifrom(n)
λk(t)

, if kn(t) 6= 0

|Lout(n)|

|Lout(n)+LI
from

(n)| , if kn(t) = 0

p(i,j)(t+ 1) =











λ(i,j)(t)
∑

(i,j)∈Lout(n)
λ(i,j)(t)+

∑

k∈LI
from

(n)
λk(t)

, if kn(t) 6= 0

1

|Lout(n)+LI
from

(n)| , if kn(t) = 0

x′
(i,j)(t+ 1) = argmax U ′(x′

(i,j))− λ(i,j)(t) · x′
(i,j)

and

λ(i,j)(t+ 1) =



λ(i,j)(t)− β(t)



c′l + log(p(i,j)(t)) +
∑

k∈NI
to(i,j)

log(1− P k(t))− x′
(i,j)(t)









(4.20)
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Implementation

We implemented all four control methods in Network Simulator version 2 (ns2) [26]. To

improve the simulation accuracy, we added a SINR-based collision model with aggregate

interference [20] to the IEEE 802.11 implementation in ns2. The aggregate interference

experienced by a node at a particular time is computed as the total signal strength it receives

from all active transmissions at that time. Furthermore, a preamble detection function [92]

is also added in ns2. A p-persistent ALOHA is used as the medium access control. In this

protocol, if a node has a packet to send, it transmits with a probability of p and delays for

the propagation delay of one packet with probability (1− p). Each control method updates

p according to its own policy. In this section, we describe the implementation of GL.

GL updates its medium access probability dynamically according to Eq. 4.12. The

update only requires three values: xm
(i,j), coll

m
(i,j) and nshare

(i,j) . The first two values can be

retrieved locally, and nshare
(i,j) can be obtained when the network first starts up. xm

(i,j) is

calculated by dividing the number of packets transmitted (not necessarily delivered) by the

length of a control period. collm(i,j) is calculated as the average number of unacknowledged

packets during a control period. All these values can be easily obtained in real time and

locally.

Experiments

Experiments are carried out for two configurations:a 3-link network and larger random

networks. We use a Poisson model to generate traffic. All traffic flows are assumed to

have the same bandwidth demands. In these experiments, parameters are categorized as

fixed or varied. The fixed parameters are listed in Table 4.2. We vary the offered load and

interference level to study their impact on the control methods according to four metrics.

Furthermore, each experiment is replicated sixteen times and a 95% confidence interval is

computed for each metric.

• Jain’s fairness index is calculated as f(x) =
(
∑

x)2

n·
∑

x2
, and ranks the fairness of a resource

allocation strategy using values between 0 and 1 [43]. Higher values indicate fairer

allocation.

• The throughput is the total rate at which packets are successfully delivered to the

destinations in the network.

• The packet loss rate is the percentage of packets that are lost due to collisions.

• The end-to-end delay is the average time from a packet being generated at a source

node to its successful reception at a destination node.
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Table 4.2: System Parameters
Parameter

Value
Transmission range 200 meters
Transmit power 0.2818 W

Packet size 512 bytes
Channel capacity 1 Mbps

running time 30 minutes

link 1 link 2 link 3

wireless node

transmission link
with direction

Figure 4.1: 3-Link Network Topology

Figure 4.2: 3-Link Network Contention Graph

Three-Link Network

The three-link topology is shown in Fig. 4.1. Fig. 4.2 gives the corresponding contention

graph, in which a vertex represents a link, and a line between two vertices indicates that

two links interfere with each other. As illustrated in Fig. 4.2, link 2 interferes with link 1

and 3, and conversely, link 1 and link 3 interfere with link 2. Based on these contention

relationships, the ideal allocations (denoted ID) for link 1, 2, and 3 are B
2 ,

B
3 and B

2 ,

according to our default fairness criteria (see Chapter 3). The experimental results of per-

link allocation and aggregate network performance are shown in Table 4.3 and Fig. 4.3.

Table 4.3 shows the bandwidth utilized by each link in a saturated network. By satu-

rated, we mean the offered load on each link exceeds its ideal allocation which is derived

according to our default fairness criteria (see Chapter 3). For example, in this experiment,
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Table 4.3: Per-Link Allocation
link 1(pps) link 2(pps) link 3(pps)

ID 122.07 81.38 122.07
GB 67.23 44.45 67.35
GL 68.93 42.65 69.21
GLU 59.18 56.45 72.23
GLW 141.65 17.43 140.63

the source node of each link sends data at 200 pps, and the ideal allocation for all three

links are approximately 122 pps, 81 pps and 122 pps.

First, compared with the ideal allocation (ID in the table), the throughput of the global

optimization (GB in the table) is slightly greater than half of the ideal allocation, at 67 pps,

44 pps and 67 pps. Our SG-Local control (GL in the table) achieves very similar results of

68 pps, 42 pps and 68 pps, and this is without any message passing in contrast to GB.

Second, G-Local utilization control (GLU in the table) achieves similar throughput and

fairness to GL and GB. However, GLU causes more packet loss (see Fig. 4.3). This is because

G-Local utilization control drives the user consumption toward the configured fair-share

without considering the waste cost. In contrast, with G-Local waste control (GLW in Table

4.3), links 1 and 3 utilize more bandwidth because these links experience fewer collisions,

and therefore cause lower waste-cost. Link 2, on the other hand, is subject to more collisions.

Instead of compensating for the bandwidth waste of link 2 to improve fairness, GLW gives

more resources to link 1 and 3 causing link 2 to have very low throughput. By combining

GLU and GLW, the SG-Local control balances the efforts of driving the system toward

configured fair shares and minimizing resource waste caused by collisions and unnecessary

idling.

Fig. 4.3 shows the aggregate performance of the three-link network. First, the aggregate

performance of GL is very close to GB. Both algorithms achieve more than half of the ideal

allocation. Second, GLU achieves higher throughput at the cost of more loss (caused by

collisions). Third, GLW results in the highest throughput and lowest loss, but sacrifices

fairness. Table 4.3 shows that link 2 is nearly starved when GLW is in use.

The Impact of Offered Load The previous experiment uses a fixed offered load of 200

pps. We now examine results from using different levels of traffic load, from very light (50

pps), unsaturated (100 pps), to saturated (200 pps) and over-saturated (400 pps). The

results are shown in Fig. 4.4.

First, when the network is not saturated, the offered load has very little impact on all four

methods. This is simply because there is enough bandwidth for each user. In comparison

to GB and GL, the performance of GLU and GLW is more sensitive to the offered load in

saturated situations. Both GB and GL tend to keep the partitioning of resources the same
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Figure 4.3: Aggregate Performance Comparison

Figure 4.4: Network Aggregate Performance

with an increasing offered load. This is because both methods are driven by fairness, instead

of offered load.

Second, Fig. 4.4 shows that the aggregate performance is consistent with our analysis

of per-link allocation. The packet loss rate and network throughput of GB and GL do not

change with increasing offered load when the network is saturated. The end-to-end delay
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increases significantly because the higher the offered load, the more packets are buffered.

Therefore, the queueing delay increases exponentially. Furthermore, GLU and GLW exhibit

opposite performance. Due to the greedy nature of GLU, the slight increase of network

throughput leads to significant packet loss. On the other hand, GLW increases the through-

put of the links experiencing less competition and therefore reduces packet loss and increases

network throughput by sacrificing fairness. Furthermore, the fairness indices of GL, GB and

GLU change slightly with increased offered load. GLW, on the other hand, achieves fairer

allocation when the offered load is lighter. But with heavier traffic, the fairness index of

GLW decreases much faster than GL, GB and GLU.

In summary, these experiments show that the SG-Local control achieves performance

competitive with Chiang’s global optimization. This performance is achieved by GL in a

“purely” local manner without any message passing. In addition, this very encouraging

result demonstrates that the SG-Local control achieves a desired trade-off between fairness

and efficiency by combining the efforts of driving the system toward a configured fair share

and minimizing resource waste caused by collisions and unnecessary idling.

Larger Random Networks

A key observation from the previous experiments is that GL achieves performance very

close to GB without the cost of message passing. To further test this observation, we carry

out a set of experiments that compare the performance of GL and GB in larger, randomly

generated single-hop networks. We generate different network topologies by deploying 200

nodes in a 800-by-800 m2 field and selecting source-destination pairs randomly.

The Impact of Interference Levels First, we test how interference level influences

these two methods. The interference level is varied by changing the number of active source-

destination pairs (also called links). We test networks with 10, 20 and then 30 links. Each

experiment is replicated 16 times; each replication uses a distinct topology by selecting the

required number of links randomly; each run spans 30 minutes, and all performance metrics

are averaged after transients are removed. All other parameters were fixed, including the

offered load (50 pps) and packet size (512 bytes). Fig. 4.5 shows the average performance

and 95% confidence intervals for each control algorithm over all 16 replications.

We observe that the performance of both GL and GB degrades as the number of links

increases. This is because the interference level is higher when the number of active links

is larger. We note that GL is competitive with GB at all network sizes, and in terms of

all four metrics of aggregate network performance: packet loss rate, throughput, end-to-end

delay and fairness.
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Figure 4.5: The Impact of Interference Level (single-hop)

Figure 4.6: The Impact of Offered Load (single-hop)

The Impact of Offered Load Second, we test GL and GB under the traffic load of 50

pps, 100 pps and 200 pps. The results show that GL is again competitive with GB (see Fig

4.6).

Although SG-Local is tailored for single-hop wireless networks, we also measure its per-

formance in random multi-hop networks. In these experiments, we varied offered load and

71



Figure 4.7: The Impact of Interference Level (multi-hop)

interference levels. Our results show that GL is once more competitive with GB. These re-

sults are shown in Fig. 4.8 and 4.7. In some cases, it appears that GL has higher throughput

and lower delay, however, it is not clear how significant this is due to the variability caused

by different topologies as evidenced by the confidence intervals. In any case, our results

show that GL is once more competitive with Chiang’s method. In Chapter 5, we explicitly

customize G-Local optimization to handle multi-hop forwarding.

In summary, this second set of experiments further demonstrates the effectiveness of the

SG-Local control. We find that GL is competitive with GB, while doing away with the need

for any message passing.

4.2 G-Local Optimization with Multivariable Control

To further improve control effectiveness and minimize the allocation-utilization gap, we pro-

pose adaptive multivariable control. This method differentiates the causes of dynamic inter-

ference scenarios in time, space, and frequency-intensity; selects control variables that have

major impact on each dimension of interference dynamics; and guides network transmis-

sions, collisions and idling toward desired states by adjusting the selected control variables.

To adapt to network condition changes, the multivariable model is updated periodically. We

derive the MG-Local control by reifying G-Local optimization via this adaptive multivariable

control.

Before presenting the details, we introduce a few symbols for the rest of this section in

Table 4.4.
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Figure 4.8: The Impact of Offered Load (multi-hop)

Table 4.4: MG-Local Symbols
Parameter Value

(i, j) link (i, j)
xs
(i,j) bandwidth consumed for transmissions over link (i, j)

xm
(i,j)(t) measured transmissions during the t-th control period

xf
(i,j) bandwidth fair share

coll(i,j) bandwidth wasted on collisions
collm(i,j)(t) measured collisions during the t-th control period

idle(i,j) bandwidth wasted on idling
idlem(i,j)(t) measured idling during the t-th control period

p(i,j) transmission probability
awin(i,j) avoidance window
rwin(i,j) resolution window

B channel bandwidth
k scaler
λ Lagrange multiplier or shadow price

4.2.1 Adaptive Multivariable Control

Our method effectively controls the occurrence of different interference scenarios in time,

space, and frequency-intensity as analyzed in Chapter 1. To characterize the three basic

network behaviors: transmissions, collisions and unnecessary idling, we measure the amount

of bandwidth used for successful data transmissions (denoted x(i,j)), wasted for packet

collisions (denoted coll(i,j)), and unnecessary idling (denoted idle(i,j)) of user i. We model

x(i,j), coll(i,j) and idle(i,j) as functions of three selected control variables, which are explained

next.
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4.2.2 Control Variable Selection

We modify CSMA/CA by introducing three control variables: transmission probability

(p), collision-avoidance window (awin), and collision-resolution window (rwin). We chose

CSMA/CA because it provides the basic structure to handle most interference scenarios. We

avoided time-division-based scheduling because it requires accurate information regarding

how nodes interfere over time and space, complex computation, and lacks flexibility to adapt

to network changes.

1. Transmission Probability (p)

The first variable controls the probability that a node transmits when physical carrier

sensing detects a busy medium. p is manipulated to reduce the occurrence of both

hidden and exposed terminals. These two scenarios coexist, and appear dynamically

in wireless networks. It is very challenging to achieve accurate detection of both

hidden and exposed terminals. For example, physical carrier sensing can detect hidden

terminals by increasing its sensing range. However, at the same time, the increased

carrier sensing range aggravates exposed terminals by treating all overheard signals as

interference. To enable a node to control both hidden and exposed terminals, we fix the

carrier sensing range to twice the transmission range to reduce hidden terminals, and

allow node i to transmit with a probability p(i,j) to j when physical carrier sensing

detects a busy medium to reduce exposed terminals. The transmission probability

used by our method is different from the persistence probability of p-persistent CSMA,

which is designed to reduce hidden terminals, but does not address exposed terminals.

This is because after carrier sensing detects an idle medium, p-persistent CSMA allows

a node to further backoff, instead of transmitting.

2. Contention Avoidance Window (awin)

The second variable specifies the maximum number of slots that a node can randomly

decide to wait before starting its transmission. We use awin to avoid potential col-

lisions caused by simultaneous transmissions. It is similar to the contention window

cwin(i,j) of CSMA, except that awin(i,j) is only used when a packet is transmitted

for the first time (the collision avoidance phase). During this phase, awin(i,j) should

be set to allow potentially simultaneous transmissions to start at different times, as

well as to avoid unnecessary waiting time. In contrast, CSMA/CA sets cwin(i,j) to

its minimum value CWIN MIN for collision avoidance, and exponentially increases

cwin(i,j) upon each collision until either cwin(i,j) is greater than or equal to its maxi-

mum CWIN MAX , or the retransmission limit is reached. Using the single variable

cwin(i,j) for both collision avoidance and resolution forces an unnecessary trade-off

between collisions and delay. For example, if cwin(i,j) is set small because of the lim-
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ited number of simultaneous transmissions, it may not be increased quickly enough to

avoid repeated collisions. Conversely, if cwin(i,j) is set large to reduce the number of

retransmissions, unnecessary waiting time may be incurred for collision avoidance. Be-

cause collision avoidance and resolution are two different phases, we introduce different

control variables to avoid unnecessary trade-off between delay and collisions.

3. Contention Resolution Window (rwin)

The third variable, rwin, is the contention window used to avoid repeated collisions

of a packet. Besides separating collision resolution from avoidance, this variable also

controls collisions caused by future transmissions. Although predicting interference

from future transmissions is difficult, adjusting rwin(i,j) helps to prevent repeated

collisions of the same packet.

Regression Model

To reify G-Local optimization via multivariable control, we model the state variables of its

original form Eq. 4.34: x(i,j) , coll(i,j) and idle(i,j), as functions of the selected control

variables: p(i,j), awin(i,j) and rwin(i,j) via an approximation as shown in Eqs. 4.21, 4.22

and 4.23. This model considers the individual impact of p(i,j), awin(i,j) and rwin(i,j),

as well as their correlation. We denote the coefficients of these three models as E =

{e1, e2, e3, e4, e5, e6, e7}, F = {f1, f2, f3, f4, f5, f6, f7} and L = {l1, l2, l3, l4, l5, l6, l7}.

x(i,j) = X(p(i,j), awin(i,j), rwin(i,j))

= e1 · p(i,j) + e2 · awin(i,j) + e3 · rwin(i,j)

+ e4 · p(i,j) · awin(i,j) + e5 · p(i,j) · rwin(i,j)

+ e6 · awin(i,j) · rwin(i,j) + e7;

(4.21)

coll(i,j) = COLL(p(i,j), awin(i,j), rwin(i,j))

= f1 · p(i,j) + f2 · awin(i,j) + f3 · rwin(i,j)

+ f4 · p(i,j) · awin(i,j) + f5 · p(i,j) · rwin(i,j)

+ f6 · awin(i,j) · rwin(i,j) + f7;

(4.22)

idle(i,j) = IDLE(p(i,j), awin(i,j), rwin(i,j))

= l1 · p(i,j) + l2 · awin(i,j) + l3 · rwin(i,j)

+ l4 · p(i,j) · awin(i,j) + l5 · p(i,j) · rwin(i,j)

+ l6 · awin(i,j) · rwin(i,j) + l7;

(4.23)

Least Square Fitting

To derive the coefficients E, F and L of Eq. 4.21, Eq. 4.22 and Eq. 4.23, we apply

the method of least square fitting [59]. Specifically, given N samples of measured responses
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{xm
(i,j)(t), coll

m
(i,j)(t), idle

m
(i,j)(t)} and N corresponding sets of {p(i,j)(t), awin(i,j)(t), rwin(i,j)(t)},

we formulate three optimization problems to find the best fitting models that have the least

square errors as shown in Eq. 4.24, 4.25 and 4.26. In these equations, p(i,j)(t), awin(i,j)(t)

and rwin(i,j)(t) are the t-th values of p(i,j), awin(i,j) and rwin(i,j); x
m
(i,j)(t), coll

m
(i,j)(t) and

idlem(i,j)(t) are the t-th sample of measured values of x(i,j), coll(i,j) and idle(i,j).

min Jx , where

Jx =
1

N
·

N
∑

t=1

[

(X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t)) − xm
(i,j)(t))

2
] (4.24)

min Jcoll , where

Jcoll =
1

N
·

N
∑

t=1

[

(COLL(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t)) − collm(i,j)(t))
2
] (4.25)

min Jidle , where

Jidle =
1

N
·

N
∑

t=1

[

(IDLE(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))− idlem(i,j)(t))
2
] (4.26)

Please note that E, F and L are coefficients in our models. X(p(i,j), awin(i,j), rwin(i,j)),

COLL(p(i,j), awin(i,j), rwin(i,j)) and IDLE(p(i,j), awin(i,j), rwin(i,j)), and xm
(i,j), coll

m
(i,j),

idlem(i,j) are known measurements. To obtain the least squared error, the coefficients must

yield zero first derivatives as shown in Eq. 4.27. By solving this matrix using inversion, we

derive the coefficients E, F and L.

∂Jx

∂e1
= 2 ·

n
∑

t=1
p(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e2
= 2 ·

n
∑

t=1
awin(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e3
= 2 ·

n
∑

t=1
rwin(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e4
= 2 ·

n
∑

t=1
p(i,j)(t) · awin(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e5
= 2 ·

n
∑

t=1
p(i,j)(t) · rwin(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e6
= 2 ·

n
∑

t=1
awin(i,j)(t) · rwin(i,j)(t) ·

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

∂Jx

∂e7
= 2 ·

n
∑

t=1

[

xm
(i,j)(t)−X(p(i,j)(t), awin(i,j)(t), rwin(i,j)(t))

]

= 0;

(4.27)

Periodic Updating and Noise Processing

The coefficients in Eq. 4.21, 4.22 and 4.23 are periodically updated by replacing old mea-

surements of x(i,j), coll(i,j), and idle(i,j) with fresh ones. We denote these measurements

xm
(i,j), coll

m
(i,j) and idlem(i,j). These periodic updates help the method to capture nonlinear
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system behavior, and adapt to dynamic system conditions. We also apply an exponential

filter to alleviate the negative impact of noise in the measurements [19]. According to Eq.

4.28, a new measurement of xm
(i,j) at the t-th control period (i.e. xm

(i,j)(t)) is linearly com-

bined with the previous measurement at time t− 1 (i.e. xm
(i,j)(t− 1)). w is set to be 0.6 (an

empirical value used in practice). Similarly, collm(i,j) and idlem(i,j) are updated according to

Eq. 4.29 and Eq. 4.30.

xm
(i,j)(t) = w · xm

(i,j)(t) + (1− w) · xm
(i,j)(t− 1); (4.28)

collm(i,j)(t) = w · collm(i,j)(t) + (1− w) · collm(i,j)(t− 1); (4.29)

idlem(i,j)(t) = w · idlem(i,j)(t) + (1− w) · idlem(i,j)(t− 1); (4.30)

We give the pseudo code of least square fitting with periodical updates in Alg. 1.

This algorithm is applied to keep updating Eqs. 4.21,4.22 and 4.23 when it converges.

For example, the mean square error of X varies within a threshold ǫ = 0.01, which is

experimentally determined. The reason we choose seven measurements for each iteration is

because there are seven unknow coefficients.

Algorithm 1 Least Square Fitting With Periodical Updates

// This algorithm is executed for each link (i, j)

Initialize E, F and L for X(), COLL() and IDLE ()
with the full-factorial experiment results

for each control iteration t do
Collect the new measurements xm

(i,j)(t), coll
m
(i,j)(t) and idlem(i,j)(t)

Smooth xm
(i,j)(t) according to w · xm

(i,j)(t) + (1− w) · xm
(i,j)(t− 1)

Smooth collm(i,j)(t) according to w · collm(i,j)(t) + (1− w) · collm(i,j)(t− 1)

Smooth collm(i,j)(t) according to w · collm(i,j)(t) + (1− w) · collm(i,j)(t− 1)

if there are seven new measurements then
Compute and update the coefficients E, F and L
Compute the current mean square error Jx according to Eq. 4.24

if the different between the current and previous mean square errors is less than ǫ
then
break;

else
continue;

end if
end if

end for
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4.2.3 SPSA-Based Multivariable Control

We also introduce an estimation-based multivariable control. Instead of modeling network

behavior explicitly, this method estimates the gradients of Eq. 4.21, 4.22 and 4.23 via the

simultaneous perturbation stochastic optimization (SPSA) proposed by Spall [89]. With this

method, all control variables are simultaneously perturbed twice in a random manner during

each control iteration. This yields two measured responses, the difference between them

(denoted δy), and the distance between the two perturbations of each variable (denoted δθ).

The gradient of each variable is estimated as δy
δθ [89]. Specifically, we estimate the gradients

of X , COLL and IDLE according to Eq. 4.31, 4.32 and 4.33. We use h1 and h2 to denote

the first and second perturbations.

The pseudo code of this algorithm is given in Alg. 2. During each control iteration t,

random delta values are generated for p(i,j), awin(i,j) and rwin(i,j), denoted δp(i,j), δ
awin
(i,j)

and δrwin
(i,j) respectively. These perturbations are used to update control variables in two

steps. First, at the beginning of the first half iteration, control variables p(i,j), awin(i,j) and

rwin(i,j) are perturbed for the first time. at and ct are the gain sequences, and their values

are derived according to at =
a

(t+A)α and ct =
c
tγ . a, c, A, α and γ are non-negative coef-

ficients; Practically effective values for α and γ are 0.602 and 0.101 [89]. We set a = 0.16,

c = 0.1 and A = 100 according to the suggestions given in the same paper. At the end

of the first half iteration, we collect the measurements of xm
(i,j)(t, h1), collm(i,j)(t, h1) and

idlem(i,j)(t, h1). Similarly, the algorithm updates control variables with the second pertur-

bations at the beginning of the second half iteration, and collects new measurements of

xm
(i,j)(t, h2), coll

m
(i,j)(t, h2) and idlem(i,j)(t, h2) at the end of the second half iteration. The

gradients of X, COLL, and IDLE are computed according to Eqs. 4.31, 4.32 and 4.33. The

algorithm converges until xm
(i,j) varies within a threshold ǫ = 0.01, which is also experimen-

tally determined.

(

dX

dp(i,j)

)

p(i,j)=p(i,j)(t)

≈
xm
(i,j)(t, h1)− xm

(i,j)(t, h2)

2 · ct · δp(i,j)
(

dX

dawin(i,j)

)

awin(i,j)=awin(i,j)(t)

≈
xm

(i,j)(t,h1)−xm
(i,j)

(t,h2)

2 · ct · δawin
(i,j)

(

dX

drwin(i,j)

)

rwin(i,j)=rwin(i,j)(t)

≈
xm
(i,j)(t, h1)− xm

(i,j)(t, h2)

2 · ct · δawin
(i,j)

(4.31)
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(

dCOLL

dp(i,j)

)

p(i,j)=p(i,j)(t)

≈
collm(i,j)(t, h1)− collm(i,j)(t, h2)

2 · ct · δp(i,j)
(

dCOLL

dawin(i,j)

)

awin(i,j)=awin(i,j)(t)

≈
collm(i,j)(t, h1)− collm(i,j)(t, h2)

2 · ct · δawin
(i,j)

(

dCOLL

drwin(i,j)

)

rwin(i,j)=rwin(i,j)(t)

≈
collm(i,j)(t, h1)− collm(i,j)(t, h2)

2 · ct · δawin
(i,j)

(4.32)

(

dIDLE

dp(i,j)

)

p(i,j)=p(i,j)(t)

≈
idlem(i,j)(t, h1)− idlem(i,j)(t, h2))

2 · ct · δp(i,j)
(

dIDLE

dawin(i,j)

)

awin(i,j)=awin(i,j)(t)

≈
idlem(i,j)(t, h1)− idlem(i,j)(t, h2))

2 · ct · δawin
(i,j)

(

dIDLE

drwin(i,j)

)

rwin(i,j)=rwin(i,j)(t)

≈
idlem(i,j)(t, h1)− idlem(i,j)(t, h2))

2 · ct · δrwin
(i,j)

(4.33)

Algorithm 2 SPSA-based Multivariable Control

// This algorithm is executed for each link (i, j)

for each control iteration t do
Compute the gain sequences at and ct;
Generate random δvalues :δp(i,j), δ

awin
(i,j) and δrwin

(i,j) ;

Compute the perturbations: h1p as ct · δp(i,j); h2p as −ct · δp(i,j);
h1awin as ct · δawin

(i,j) ; h2awin as −ct · δawin
(i,j)

h1rwin as ct · δrwin
(i,j) ; h2rwin as −ct · δrwin

(i,j)

// At the beginning of the first half iteration
Perturb p(i,j), awin(i,j) and rwin(i,j) from p(i,j)(t), awin(i,j)(t) and rwin(i,j)(t) with
h1p(i,j), h1

awin
(i,j) and h1rwin

(i,j)

// At the end of the first half iteration
Collect measurements: xm

(i,j)(t, h1), coll
m
(i,j)(t, h1) and idlem(i,j)(t, h1)

// At the beginning of the second half iteration
Perturb p(i,j), awin(i,j) and rwin(i,j) from p(i,j)(t), awin(i,j)(t) and rwin(i,j)(t) with
h2p(i,j), h2

awin
(i,j) and h2rwin

(i,j)

// At the end of the second half iteration
Collect measurements: xm

(i,j)(t, h2), coll
m
(i,j)(t, h2) and idlem(i,j)(t, h2)

Compute the gradients according to Eqs. 4.31, 4.32 and 4.33.

if the difference between xm
(i,j)(t, h1) and xm

(i,j)(t, h2) is less than ǫ then
break;

else
continue;

end if
end for
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G-Local Optimization
max V(x_(i,j), coll_(i,j), idle_(i,j))

Multivariable Control
max V_f(p_(i,j), awin_(i,j), rwin_(i,j))

x_(i,j) = X(p_(i,j), awin_(i,j), rwin_(i,j))
coll_(i,j) = COLL(p_(i,j), awin_(i,j), rwin_(i,j))
idle_(i,j) = IDLE(p_(i,j), awin_(i,j), rwin_(i,j))

(x’_(i,j), coll’_(i,j), idle’_(i,j))

Figure 4.9: Flat MG-Local Control

4.2.4 Flat MG-Local Control

In this section, we describe how to implement the MG-Local control in a flat structure (flat

MG-Local control). The basic idea of flat control is to find a desired network state via

adjusting the selected control variables. As shown in Fig. 4.9, there is no intermediate

state adjustment for the flat control. Specifically, this method transforms the original form

of G-Local optimization Eq. 4.34 from a multi-state function of x(i,j), coll(i,j) and idle(i,j)

to a multivariable function of p(i,j), awin(i,j) and rwin(i,j) as shown in Eq. 4.35. This

transformation is derived by substituting x(i,j), coll(i,j) and idle(i,j) with Eq. 4.21, Eq. 4.22

and Eq. 4.23. We call Eq. 4.35 the flat MG-Local control.

max V (x(i,j), coll(i,j), idle(i,j)) , where

V = k · log x(i,j) − (1 − k) · ( 1

xf
(i,j)

· x(i,j) +
coll(i,j)

B
+

idle(i,j)
B

)
(4.34)

max Vf (p(i,j), awin(i,j), rwin(i,j)) , where

Vf = k · log(X(p(i,j), awin(i,j), rwin(i,j)))

− (1− k) · ( 1

xf
(i,j)

·X(p(i,j), awin(i,j), rwin(i,j))

+
COLL(p(i,j), awin(i,j), rwin(i,j))

B
+

IDLE(p(i,j), awin(i,j), rwin(i,j))

B
)

s.t. 0 < p(i,j) ≤ 1;

AMIN ≤ awin(i,j) ≤ AMAX ;

RMIN ≤ rwin(i,j) ≤ RMAX ;

(4.35)

By applying the Lagrange transformation, the constrained optimization problem Eq.

4.35 is converted to an unconstrained format Eq. 4.36, where λp1, λp2, λa1, λa2, λr1 and

λr2 are shadow prices. The corresponding dual problem is given in Eq. 4.39.

Lf (p(i,j), awin(i,j), rwin(i,j), λp1, λp2, λa1, λa2, λr1, λr2)

= Vf (p(i,j), awin(i,j), rwin(i,j)) + λp1 · p(i,j) − λp2 · (p(i,j) − 1)

− λa1 · (AMIN − awin(i,j))− λa2 · (awin(i,j) −AMAX)

− λr1 · (RMIN − rwin(i,j))− λr2 · (rwin(i,j) −RMAX)

(4.36)
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maxLf(p(i,j), awin(i,j), rwin(i,j), λp1, λp2, λa1, λa2, λr1, λr2) (4.37)

Df(p(i,j), awin(i,j), rwin(i,j), {λ}) = max Lf (4.38)

min Df (p(i,j), awin(i,j), rwin(i,j), {λ}) (4.39)

We solve Eq. 4.37 by applying the method of gradient descent. The control policies for

p(i,j), awin(i,j) and rwin(i,j) are derived in Eq. 4.40, Eq. 4.41 and Eq. 4.42. Each user

applies this control policy periodically until the algorithm converges.

p(i,j)(t) = p(i,j)(t− 1) + kp ·
∂Lf

∂p(i,j)
(4.40)

awin(i,j)(t) = awin(i,j)(t− 1) + ka ·
∂Lf

∂awin(i,j)
(4.41)

rwin(i,j)(t) = rwin(i,j)(t− 1) + kr ·
∂Lf

∂rwin(i,j)
(4.42)

Finally, we solve the dual problem (Eq.4.39) to obtain the shadow prices. The solutions

are listed in Eq. 4.43. The variables {h} are scalars and their values are determined

experimentally. We currently use 0.1 for all h scalars.

λp1 = −h1 · p(i,j)
λp2 = h2 · (p(i,j) − 1)

λa1 = h3 · (AMIN − awin(i,j))

λa2 = h2 · (awin(i,j) −AMAX)

λr1 = h4 · (RMIN − rwin(i,j))

λr2 = h5 · (rwin(i,j) −RMAX)

(4.43)

4.2.5 Performance Evaluation

In this section, we evaluate the performance of MG-Local control (denoted AM in the figures)

and compare it with four alternatives: 1) the SPSA-based multivariable control (denoted

SP) [89]; 2) SG-Local control (denoted SVC); 3) Chiang’s global optimization (denoted GB)

[61]; and 4) CSMA/CA.

The SPSA-based multivariable control was introduced in Section 4.2.3. It derives un-

known gradients via simultaneously perturbing all control variables.

Our SG-Local control of p-persistent ALOHA is the same method we introduced in

Section 4.1 to reify G-Local optimization via single-variable control. This comparison helps
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to demonstrate the impact of control effectiveness. We did not apply the single-variable

control method to CSMA/CA because its performance is influenced by multiple factors

(e.g. contention window and physical carrier sensing range), as our previous full-factorial

analysis illustrates [64]. It is obviously incorrect to attribute CSMA/CA performance to a

single factor.

Chiang’s global optimization is the same method used in the previous section, which

aims to maximize network utility by adjusting the transmission probability with message

passing. Each link adjusts local persistence probability based on the shadow price and

the transmission probability of interfering nodes. This information is obtained via message

passing among neighbor nodes.

CSMA/CA is used as a reference to examine whether the selected control variables be-

have as expected. Specifically, the separation of avoidance window (awin(i,j)) and resolution

window (rwin(i,j)) is compared with the single contention window of CSMA/CA in terms

of collision and delay. We further differentiate two CSMA/CA configurations. The first re-

duces hidden terminals by setting the physical carrier sensing range to twice the transmission

range, and is denoted CSMA/CA-HT in Table 4.5.

Implementation

We apply MG-Local to IEEE 802.11b in ns2 by modifying its basic access method CSMA/CA.

First, we add three control variables: per-link transmission probability (p), per-link avoid-

ance window (awin) and per-link resolution window (rwin) to CSMA/CA. Second, in this

modified CSMA/CA if a node i has a packet to send to j, it starts backing off with a prob-

ability p(i,j) for a random period, and waits for the propagation delay of one packet with

a probability (1 − p(i,j)). If it is the first time to transmit a packet, the back-off period is

selected within the avoidance window awin(i,j). Upon a retransmission, resolution window

rwin(i,j) is used to generate back-off period. Third, p(i,j), awin(i,j) and rwin(i,j) are updated

periodically according to Eq. 4.40, 4.41 and 4.42 until MG-Local converges. This update

requires each node to periodically measure the data sending rate (xm
(i,j)), data collision rate

(collm(i,j)), and unnecessary idling (idlem(i,j)). xm
(i,j) is calculated via dividing the number of

transmitted packets by the length of a control period. collm(i,j) is calculated via dividing the

product of the number of unacknowledged packets and retry limit by the length of a control

period. idlem(i,j) is calculated as the difference between data sending rate xm
(i,j) and band-

width fair share xf
(i,j), representing the portion of bandwidth that should be utilized, but

is not. These measurements are used to derive the coefficients (E, F and L) of our multi-

variable functions X(p(i,j), awin(i,j), rwin(i,j)) (Eq. 4.21), COLL(p(i,j), awin(i,j), rwin(i,j))

(Eq. 4.22)and IDLE(p(i,j), awin(i,j), rwin(i,j)) (Eq. 4.23) via least square fitting (Alg. 1).

MG-Local can support dynamic traffic with a simple modification, by requiring the
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iterative least square fitting to keep tracking the difference between estimated and actual

performance after its convergence. If the gap is greater than a certain threshold which needs

to be experimentally determined, the fitting algorithm notifies the system about this change

and starts updating the models (X, COLL and IDLE) until they converge again. The system

invokes MG-Local to adapt to this traffic change. We leave the performance study of how

MG-Local behaves under dynamic traffic to the future work.

Experiments

MG-Local control is implemented on top of IEEE 802.11b with the CSMA/CA mode in ns2.

Similar to our previous experiments for single-variable control, we improve simulation accu-

racy by adding a SINR-based collision model with aggregate interference, and a preamble

detection function to the IEEE 802.11 implementation in ns2. Experiments are evaluated

according to fairness, efficiency, effectiveness and delay.

1. Fairness: We measure the fairness of resource allocation via Jain’s fairness index.

This is calculated as f(x) =
(
∑

x(i,j))
2

n·
∑

x2
(i,j)

, and ranks the fairness of a resource allocation

strategy between 0 and 1. Higher values indicate fairer allocation.

2. Efficiency: We measure the efficiency of resource utilization using the aggregate through-

put. Throughput is the total rate at which packets are successfully delivered to des-

tinations in the network.

3. Effectiveness: We measure the control effectiveness via the packet loss rate. Packet

loss rate is the percentage of packets that are lost due to collisions.

4. Delay: We measure the average time from packet generation to successful reception,

for packets that are not lost due to collision.

Similar to the single-variable experiments, we use two different network topologies. The

first topology is a 3-link network, and is designed to compare all five methods. The second

set of experiments uses larger, randomly-generated networks to evaluate MG-Local control

under the impact of different traffic load and interference levels. By varying the offered load

and number of source-destination pairs in each network. We replicate each experiment 16

times, and show the average performance and 95% confidence intervals. A Poisson model is

used to generate traffic. All traffic flows are assumed to have the same bandwidth demands.

System parameters are categorized into fixed, changing, and control variables. Fixed

parameters are: a packet size of 512 bytes, transmit power of 0.2818 Watt, transmission

range of 200 meters, physical carrier sensing range of 400 meters, and running time of 30

minutes. Changing parameters are offered load and interference level. Control variables

are the transmission probability p(i,j), collision avoidance window awin(i,j) and resolution

window rwin(i,j).
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Figure 4.10: 3-Link Network Topology

Table 4.5: Per-Link Allocation
link 1(pps) link 2(pps) link 3(pps)

ID 122.26 81.38 122.26
MG-AMVC 116.32 61.68 114.54
MG-SPSA 120.71 25.41 121.02
MG-SVC 67.23 44.45 67.35

GB 68.93 42.65 69.21
CSMA/CA-ET 182.10 1.02 182.09
CSMA/CA-HT 65.37 55.55 65.30

Three-Link Networks

With the 3-link topology shown in Fig 4.10, we derive the configured fair share according

to the default fairness criteria. Similar to the single-variable experiments in Section 4.1.2,

the ideal fair share (denoted ID) for link 1, 2 and 3 are B
2 ,

B
3 and B

2 .

Comparative Study The first experiment fixes the offered load for each transmission

pair. The selected offered load is 200 pps, and saturates the whole network. That is, the

total offered load on each link exceeds its ideal fair share. Our comparative results for the

per-link allocation, and aggregate network performance are shown in Table 4.5, and Figure

4.11, respectively.

First, our MG-Local control (AM in Fig. 4.11) achieves a close-to-ideal allocation. As

shown in Table 4.5, the ideal allocation for links 1, 2, and 3 are approximately 122 pps, 81

pps and 122 pps. Our method achieves 116 pps for link 1, 61 pps for link 2, and 114 pps for

link 3. Fig. 4.11 shows that the fairness index of MG-Local control (denoted AM) is very

close to the ideal case. In addition, compared to the other four alternatives, our MG-Local

control utilizes resources more efficiently. This is demonstrated in Fig 4.11, where the gap

between our method and the ideal case is the smallest, for both aggregate throughput and

packet loss rate.
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Second, compared to the SPSA-based multivariable control (SP in Fig. 4.11), MG-Local

control achieves a fairer allocation and higher utilization of resources. As shown in Table

4.5, the per-link allocation of the estimation-based control is 120 pps for link 1, 25 pps

for link 2, and 121 pps for link 3. Its low throughput on link 2 has a negative impact on

both aggregate throughput and fairness. The simultaneous perturbation has an inferior

performance to our method because of its slow convergence.

Third, compared to our SG-Local control (SVC in Fig. 4.11), our MG-Local control

achieves a similar level of fairness as reflected by Jain’s fairness index, and a much higher

aggregate throughput. Moreover, both the SG-Local control, and SPSA-based control have

a higher packet loss rate than our multivariable method. The low resource utilization of

SG-Local control shows that it has a limited ability to deal with the complicated network

behavior, and demonstrates the need for multivariable control.

Fourth, Chiang’s distributed global-optimization (GB in Fig. 4.11) achieves similar

results to the SG-Local control (SVC in the figure), but at the cost of message passing. It

is also a single-variable control, and results in lower throughput and higher packet loss than

our MG-Local control.

Fifth, CSMA/CA-ET aims to prevent links 1 and 3 from becoming exposed terminals

by using a smaller carrier sensing range. However, due to the inferior location of link 2, and

the unfair nature of CSMA/CA [102], the excellent performance of link 1 and 3 comes at

the expense of starving link 2. In contrast, CSMA/CA-HT sets the carrier sensing range to

twice the transmission range to avoid hidden terminals. Although the fairness is improved

over CSMA/CA-HT, links 1 and 2 waste resources because they are exposed terminals. In

comparison, our MG-Local control succeeds in handling both hidden and exposed terminals.

In summary, for the 3-link case, MG-Local control outperforms the other candidates, and

achieves effective resource management, improving both allocation fairness and utilization

efficiency. It does this without message-passing.

The Impact of Offered Load In the previous experiment, we used a fixed offered load

of 200 pps. We now examine results from using different levels of traffic load, from light (50

pps) and unsaturated (100 pps), to saturated (200 pps), and over-saturated (400 pps). The

result of aggregate performance is shown in Fig.4.12. These results show that MG-Local

control maintains its performance advantage at different levels of offered load. Our previous

observation with an offered load of 200 pps holds, even when the network is over-saturated

with an offered load of 400 pps.

When the traffic load is low (50 pps for each link), all methods achieve similar results

because user demands for resources can be satisfied easily. However, at higher load, the

advantage of MG-Local control becomes obvious. Our method achieves lower packet loss
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Figure 4.11: Aggregate Performance Comparison

Figure 4.12: Impact of Offered Load (3-Link Network)

rate and end-to-end delay, and higher aggregate throughput and fairness. This trend holds

even when the offered load increases to over-saturate the network.
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Large Random Networks

The second set of experiments evaluates MG-Local control in larger, randomly generated

single-hop networks. We create different network topologies by deploying 200 nodes in a

800-by-800 m2 field and selecting source-destination pairs randomly.

The Impact of Interference Levels The first experiment tests the influence of interfer-

ence levels. To generate different interference levels, we vary the network size by creating 10,

20 and 30 source-destination pairs. The fixed parameters include the offered load (50 pps)

and packet size (512 bytes). Fig. 4.13 shows the average performance and 95% confidence

intervals for each control algorithm, over all replications.

Fig. 4.13 shows that MG-Local control (AM in Fig. 4.13) achieves excellent performance

consistent with the three-link experiment. At each interference level, our method achieves

the best trade-off between throughput and fairness, without compromising delay. Even

when the interference level is the highest, at 30 links, MG-Local control yields much higher

throughput and shorter delay than the other candidates, while achieving a similar fairness

index to the others.

Our MG-Local control is a significant improvement over CSMA/CA, due to the transmis-

sion probability p(i,j) alleviating the exposed-terminal problem. We attribute the reduction

of packet loss rate to the separate adjustment of the avoidance and resolution windows

awin(i,j) and rwin(i,j). Also, the removal of exponentially increasing cwin(i,j) helps to

reduce the end-to-end delay. In contrast, the SG-Local control (SVC in Fig. 4.13) and

Chiang’s distributed global-optimization (GB in Fig. 4.13) only adjust the transmission

probability. Although exposed terminals can be alleviated, without appropriate adjustment

of other factors (e.g. the contention window), these methods increase the occurrence of

hidden terminals. As a result, they suffer from significant packet loss.

The Impact of Offered Load The second experiment tests performance at offered load of

50 pps, 100 pps, and 200 pps. The results show that our MG-Local control again outperforms

other alternatives. It achieves more efficient utilization, and fairer allocation (see Fig 4.14).

With an increasing offered load, the gap between the throughput of MG-Local control

(AM in Fig. 4.14) and that of other candidates is more distinct, without trading off delay.

In terms of fairness, the worst fairness index achieved by our method is as good as the

SG-Local control (SVC in the figure) and Chiang’s distributed global-optimization (GB in

the figure). MG-Local achieves higher throughput, lower packet loss rate, and shorter delay.

In summary, the performance study demonstrates that MG-Local control improves con-

trol effectiveness by reducing the allocation-utilization gap, while balancing the efforts be-

tween driving consumption toward the configured fair share and minimizing resource waste
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Figure 4.13: Impact of Interference Level (Random 1-Hop Network)

Figure 4.14: Impact of Offered Load (Random 1-Hop Network)

caused by collisions and unnecessary idling. Similar to the SG-Local control, MG-Local

does not require any message passing.
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4.3 Chapter Summary

In this chapter, we reify G-Local optimization via two control methods: single-variable and

multivariable control. The SG-Local control balances the efforts of achieving the config-

ured fair share and minimizing collisions via tuning a single control variable. It achieves

very competitive performance in comparison to a classic method of global optimization.

Additionally, this competitive performance is gained with zero message passing.

To improve control effectiveness, we introduce a multivariable control. This method

differentiates the causes of interference and controlling network behavior via tuning multiple

control variables. Furthermore, the adaptive multivariable control improves CSMA/CAs

capability to handle both hidden and exposed terminals. Consequently, MG-Local control

significantly reduces resource waste and achieves a much smaller allocation-utilization gap

than the SG-Local control, besides supporting different fairness criteria. These benefits are

achieved without message passing. We compare MG-Local with four other methods, and

the experiment results show that MG-Local significantly outperforms all four alternatives.
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Chapter 5

Resource Management in
Multi-Hop Wireless Networks

So far, we have discussed how to apply G-Local optimization in single-hop wireless net-

works with both single-variable and multivariable control. Although G-Local was evaluated

in multi-hop networks in the experiments of the previous chapter, we have not optimized its

design for multi-hop forwarding yet. Compared to single-hop forwarding, wireless multi-hop

forwarding offers ubiquitous and inexpensive Internet access within a wider coverage area.

This method propagates traffic over a long distance via a path composed of multiple geo-

graphically distributed nodes. A multi-hop network is therefore abstracted as a collection of

paths that forward traffic for a number of source and destination pairs. However, multi-hop

forwarding significantly degrades network performance due to 1) co-existing intra-path and

inter-path interference; 2) uncontrolled bandwidth competition; and 3) correlated congestion

and collisions.

Challenges The first challenge of multi-hop forwarding is that it aggravates the impact

of wireless interference on network performance. As elaborated in Chapter 1, wireless inter-

ference is dynamic in time, space, signal strength and frequency. With multi-hop forwarding,

these dynamic interference scenarios have pronounced impact on transmission within the

same path and between different paths, and are abstracted as intra-path and inter-path

interference.

The second challenge is that multi-hop forwarding significantly reduces effective channel

bandwidth that can be used for successful transmissions because of aggravated interference,

and leads to chaotic resource competition between different paths, and within the same

path. For example, depending on routing topologies and traffic patterns, a multi-hop path

may compete with different paths along its trajectory. Additionally, intra-path interference

transforms expected coordination among nodes within the same path into unwanted compe-

tition. Such uncontrolled competition can lead to unfair and inefficient resource consump-

tion. Without carefully managing the scarce bandwidth resource and handling complicated
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competition scenarios, it is impossible to provide any level of performance guarantee.

The third challenge is that multi-hop forwarding leads to correlated congestion and col-

lisions. Interfering transmission causes network congestion, while congestion returns the

favor by aggravating collisions. On one hand, when collisions occur, the effective channel

capacity is reduced because of the bandwidth wasted on failed transmissions and retrans-

missions. Consequently, the reduced capacity leads to slower service rates and aggravated

congestion. On the other hand, when congestion occurs, a node attempts to keep pushing

the backlogged traffic and causes more frequent interference. As a result, collisions occur

more often.

In this chapter, we develop a novel solution by customizing G-Local optimization to

tackle chaotic multi-hop forwarding.

• First, we offer hybrid TDMA/CSMA (time division medium access / carrier sense

medium access) for medium access control that effectively handles co-existing intra-

path and inter-path interference. This method differentiates the causes of various

interference scenarios, and uses appropriate techniques to design counter solutions.

Our results demonstrate that hybrid TDMA/CSMA significantly reduces collisions.

Furthermore, this algorithm is simple in computation, light in control and adaptable

to time-varying traffic patterns.

• Second, we provide hierarchical MG-Local control to effectively control chaotic com-

petition for limited bandwidth within the same path and between different paths.

This mechanism enforces fairness-driven resource allocation, achieves efficient utiliza-

tion of allocated bandwidth, and effectively controls network behavior on top of hybrid

TDMA/CSMA. Our results show improved fairness and significantly reduced collisions

without compromising network throughput. Furthermore, this mechanism makes local

decisions with zero message passing.

• Third, we develop a novel method of correlated congestion-collision control that ex-

plicitly handles the mutual impact of congestion and collisions in wireless multi-hop

networks. This method computes a congestion cost based on its incoming/outgoing

traffic, and local interference level. This congestion cost is used by a hop-based control

method to reduce congestion. Our results demonstrate that this method significantly

reduces end-to-end delay and packet loss.

In the rest of this chapter, we first present hybrid TDMA/CSMA in Section 5.1, then

describe hierarchical MG-Local control in Section 5.2. Section 5.3 introduces correlated

congestion-collision control. Performance evaluation of the complete solution is given in

Section 5.4. Finally, we conclude this chapter by summarizing our contributions in Section

5.5.
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5.1 Hybrid TDMA/CSMA

Hybrid TDMA/CSMA serves as the medium access control layer, and aims to effectively

manage co-existing intra-path and inter-path interference in multi-hop wireless networks.

Our method uses a novel TDMA-like scheduling to take advantage of the predictable scenar-

ios of intra-path interference, and coordinates transmissions within the same path to avoid

collisions. This scheduling algorithm is combined with a slotted CSMA-like contention con-

trol to handle various types of inter-path contention.

Hybrid TDMA/CSMA consists of two parts: 1) intra-path scheduling; and 2) inter-path

contention control. Before presenting the details, we introduce a number of symbols, terms

and prerequisites.

• p(s,d) represents a path, where s and d are the identifications of the source and desti-

nation node.

• hop counti(s,d) is the number of nodes to forward traffic from source s to i for ps,d.

• prev hopi(s,d) is the previous hop of node i on p(s,d).

• next hopi(s,d) is the next hop of node i on p(s,d).

• seed(s,d) is a unique seed used to generate random numbers. It is shared by all nodes

on the same path p(s,d) to resolve schedule conflicts.

• num pathsi is a local variable at a common node i, which keeps the number of paths

that share node i. A common node receives data from and/or forwards data for

multiple paths.

• num sharei(s,d,j) is a local record at node i of the number of paths that share a common

node j (i 6= j). Both node i and j are neighbors within two hops, and forward data

for path p(s,d).

• num share mapi is a local map at node i that records all num sharei(s,d,j). We use

(s, d, j) as the key, because a path may share different common nodes with different

paths.

• max num sharei is the current largest value that is recorded in num share mapi.

We assume that the above information is initialized before the scheduling algorithm starts

via the following method. First, hop counti(s,d), prev hopi(s,d), next hop
i
(s,d) and seed(s,d) can

be easily obtained by sending an initialization message along each path p(s,d) after the rout-

ing phase. Node i keeps monitoring the number of paths it forwards/receives data for/from,

and updates num pathi when a change occurs. The common node map num share mapi
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Figure 5.1: Intra-Path Interference

is initially empty. We describe how to update num sharei(s,d,j), num share mapi and

max num sharei for both fixed and dynamic traffic in Section 5.1.2.

5.1.1 Intra-Path Scheduling

When traffic is forwarded in a multi-hop manner, the transmissions between different nodes

along the same path may interfere. For instance, if node A and C transmit at the same time

for pA,F , collisions will happen at B (see Fig. 5.1). Intra-path scheduling aims to minimize

collisions caused by such self interference. This algorithm takes advantage of the predictable

self-obstructive conflicts within a scope of three hops, and enables a node i to infer its path-

wise transmission schedule schedi(s,d) locally. Specifically, if hop counti(s,d) can be divided

by 3, then schedi(s,d) equals 3; otherwise, sched
i
(s,d) equals hop counti(s,d)%3. For example,

schedi(s,d) for A, B, C, D, E, and F are 1, 2, 3, 1, 2 ,3 (Fig. 5.1). These schedules eliminate

collisions caused by intra-path interference, if the routing algorithm guarantees that nodes

beyond two hops on the same path do not interfere with each other. Otherwise, our algorithm

reduces intra-path collisions by guaranteeing that no self-obstructive transmissions occur

within every three hops, and leaves interference beyond two hops away to be handled by a

slotted CSMA/CA-like algorithm (see Section 5.1.2). Compared with graph-based TDMA

scheduling [25] [81], our intra-path scheduling requires no message passing to infer local

schedules. Furthermore, this algorithm transforms unwanted competition within the same

path to coordinated transmissions.

5.1.2 Inter-Path Contention Control

Compared to intra-path interference, transmission conflicts between different paths is less

predictable in terms of when they occur and where the interference comes from. Depending

on routing topology and traffic pattern, the nodes along a multi-hop path may experience

different levels and scenarios of interference. We categorize inter-path interference into gen-

eral and special types. By general interference we mean that adjacent transmissions between

different paths interfere with each other. General interference is further differentiated into

various temporal and spatial scenarios. The Special interference scenario occurs when differ-

ent paths share a common node. In this section, we first present special conflict resolution,

and then describe our method for general contention control.
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Figure 5.2: Common Node Scheduling with Fixed Traffic

Special Conflict Resolution

When multiple paths share the same common node, transmission conflicts are unavoidable.

With the intra-path scheduling, these transmission conflicts become predictable schedule

conflicts. For example, as shown in Fig. 5.2, node A has three scheduled slots: slot 1 for

path p(A,D), slot 2 for p(E,H), and slot 3 for p(O,R). If node A always transmits according to

these schedules, severe collisions are inevitable within its two hop range. Our method keeps

existing schedules derived from intra-path scheduling without modification, and resolves

schedule conflicts by coordinating paths to equally share their conflicting schedules via

randomization. This resolution algorithm includes two parts: controlled broadcasting and

randomized schedule sharing.

Controlled Broadcasting First, controlled broadcasting aims to update the largest

number of paths that node i has conflicting schedules with, max num sharei. Because

a node may be within the two hop range of more than one common node, we keep a map

num share mapi at node i to record these common nodes and the number of paths they

forward data for and/or receive data from. Because schedule conflicts only occur within the

two hop range of each common node according to intra-path scheduling, we use a two hop

broadcast to reduce overhead.

In the case of fixed traffic, this controlled broadcasting is invoked during system initial-
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ization after routing. Specifically, a common node j broadcasts a message that includes

num pathsj and the identifications of all the paths that share j. To achieve controlled

broadcast, a counter field is included in the broadcast message. This counter is initially set

to two by a common node, and is updated by subtracting one each time it is received. After

receiving this broadcast, a neighbor i first checks whether it belongs to a path p(s,d) that

is included in the message, and either prev hopi(s,d) = j or next hopi(s,d) = j is satisfied. If

these conditions are satisfied, i creates a record of num sharei(s,d,j) = num pathsj for j;

inserts it to num share mapi; subtracts the value of the counter field by one. If the updated

counter value equals one, i broadcasts this message. Otherwise, i discards the message.

For dynamic traffic, the same algorithm is invoked when a new/old path joins/leaves

the network. By monitoring local traffic, an affected common node i detects these changes,

updates num pathi, and starts controlled broadcasting. An affected neighbor j updates the

common node map num share mapj and max num sharej upon receiving such a message.

Randomized Schedule Sharing The second part of special conflict resolution aims to

share conflicting schedules via randomization. Specifically, we assign each node p sharei(s,d),

the schedule probability that node i transmits during its scheduled slot for path p(s,d). If

max num sharei ≥ 1, the transmission schedule of node i for path p(s,d) is conflicting with

(max num sharei − 1) other paths, and should share this conflicting schedule with a prob-

ability of p sharei(s,d) = 1/max num sharei. Otherwise, node i has no conflicting schedules

with any path, and always transmits during its scheduled slot. Therefore, max num sharei

allows randomization among multiple paths that share a common node to reduce conflict.

Furthermore, we use a unique seed(s,d) for each path that allows intra-path scheduling to

keep track of when to transmit, and therefore guarantees that during each round of slot 1,

2 and 3, the common node and its two hop intra-path nodes make non-conflicting decisions

regarding whether to transmit during their designated slots. For instance, for path 1 in

round n, if A does not transmit in slot 1, B, C and D do not transmit in slot 2, 3, and 1

respectively.

General Contention Control

Besides transmission conflicts caused by sharing a common node, general interference be-

tween adjacent transmissions is the fundamental contributor to inter-path competition. We

categorize general interference scenarios into temporal and spatial types. Temporal scenar-

ios include interference caused by earlier, simultaneous and future transmissions. Spatial

scenarios cover both hidden and exposed terminals. Due to the dynamic nature of general

interference, we propose a CSMA/CA-like contention control that is simple in computation,

light in control overhead, and adaptable to dynamic network conditions.
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Temporal Contention Control First, we use a slotted CSMA/CA-like method to avoid

collisions caused by earlier, simultaneous and future transmissions. Specifically, time is

slotted and each slot equals the transmission period of a pair of data and acknowledgment

packets, as well as contention overhead. The contention overhead includes a maximum con-

tention window, interframe spaces and propagation delay. Before starting a transmission, a

node first determines whether the medium is occupied by earlier transmissions via physical

carrier sensing. If yes, the node waits until the occupation is over. Upon an idle medium, a

node avoids simultaneous transmissions by selecting a random period within the contention

window cwini to back off at the beginning of this scheduled slot. cwini will be dynam-

ically adjusted via hierarchical MG-Local (see Section 5.2). Random backoff reduces the

possibility that multiple transmissions start at the same time. Furthermore, no transmis-

sion can start after the maximum contention window expires during each slot. This limits

the period when future-transmission-caused interference may occur. If a collision occurs,

retransmissions are adopted to improve reliability. Unlike CSMA/CA, our method does not

exponentially increase the contention window after a failed transmission. This is because

every retransmission only starts in the next scheduled slot, and the waiting time is longer

than the transmission time of a data packet.

Spatial Contention Control In space, interference scenarios include hidden or exposed

terminals. Hidden terminals occur when two transmissions fail due to undetected mutual

interference. In contrast, exposed terminals occur when two transmissions do not proceed

in parallel due to mistaking each other as interference. Our spatial contention control

handles both scenarios. First, we avoid exposed terminals by setting the carrier sensing

range equal to the transmission range. Upon overhearing a packet pkt ovrd within the

transmission range, node i checks whether the transmission of pkt ovrd and i’s pending

transmission pkt nxt (e.g. the first packet from i’s queue) will form exposed terminals. We

assume each packet carries the location information of its sender and receiver. Specifically,

i retrieves the locations of itself and three other nodes: pkt nxt’s receiver (denoted nxt rcv)

by reading the receiver field of pkt nxt; pkt ovrd’s sender (denoted snd ovrd) and receiver

(denoted rcv ovrd) from the corresponding fields. Based on this information, we estimate

the signal strength at nxt rcv and rcv ovrd, if pkt ovrd and pkt nxt proceed in parallel. If

the signal strength is lower than a commonly used threshold 10 dB, i is allowed to contend

for transmission right away. Otherwise, i waits until the medium becomes idle.

Second, we use a probabilistic contention method to reduce hidden terminals. Because

the carrier sensing range is reduced to help detect exposed terminals, physical carrier sensing

detects an idle medium, even when hidden terminals occur. Therefore, we introduce the

idleness probability (pidlei ) to enable a node to decide not to contend for transmission when
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physical carrier sensing detects an idle medium. pidle can be adjusted according to the

severity of hidden terminals, in terms of the number of collisions over a period. The more

often hidden terminals occur, the higher pidle should be. We dynamically adjust pidle via

hierarchical MG-Local in Section 5.2.

This method overcomes the problem of only adjusting carrier sensing. Because hidden

and exposed terminals co-exist and occur dynamically, physical carrier sensing cannot han-

dle these two cases at the same time. For example, increasing carrier sensing range reduces

hidden terminals, but aggravates exposed terminals. Conversely, decreasing this range re-

duces exposed terminals, but leads to severe hidden terminals. In comparison, our method

effectively handles both hidden and exposed terminals.

5.1.3 The Complete Algorithm and Complexity Analysis

Hybrid TDMA/CSMA combines intra-path scheduling and inter-path contention control to

provide medium access control for multi-hop wireless networks. During system initialization,

the controlled broadcasting is called by each common node. After the system starts, time

is slotted and each slot is assigned a number 1, 2 or 3 according to intra-path scheduling.

Node i contends for medium access at its scheduled slot by following the special contention

control. If i has no schedule conflicts with other nodes or randomized schedule sharing

allows i to transmit, it invokes general contention control to avoid collisions. Otherwise, i

waits for the next scheduled slot.

This algorithm requires computations at two places. First, intra-path schedules are

inferred locally via a modulo operation. Second, special conflict resolution requires that

each node computes a schedule probability via a simple division, and determines whether

to transmit by comparing a random number with the schedule probability. Message passing

is only required for controlled broadcasting. Assuming m common nodes in a network

of size n and the neighbor degree of each node is d, the first hop broadcast requires m

messages. Because not all neighbors of a common node are on affected paths, we assume

k neighbors of each common node are involved in the second hop broadcasting on average

(k ≤ d). Therefore, for average cases, the second hop broadcast requires k messages, and the

message complexity is O(m · k). In the worst case scenario, all d neighbors of each common

node transmit, and the message complexity is O(m · d).

5.2 Hierarchical MG-Local Control

In the previous section, we presented hybrid TDMA/CSMA, the medium access control layer

of our multi-hop solution. It handles co-existing intra-path and inter-path interference, but

does not control how different paths compete for limited wireless bandwidth. To tackle

this challenge, we propose hierarchical MG-Local control to fairly allocate and efficiently
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Table 5.1: Hierarchical MG-Local Symbols
Parameter Value

(i, s, d) identification for transmissions from node i for path ps,d
x(i,s,d) bandwidth consumed for successful transmissions

xm
(i,s,d)(t) measured transmissions during the t-th control period

xf
(i,s,d) bandwidth fair share

coll(i,s,d) bandwidth wasted on collisions
collm(i,s,d)(t) measured collisions during the t-th control period

idle(i,s,d) bandwidth wasted on idling
idlem(i,s,d)(t) measured idling during the t-th control period

pidle(i,s,d) idleness probability

cwin(i,s,d) contention window
B channel bandwidth
k scaler
λ Lagrange multiplier or shadow price

utilize limited bandwidth. Hierarchical MG-Local extends the previous flat MG-Local with

1) a customized adaptive multivariable model; 2) an improved model derivation based on

iterative least square fitting; 3) multi-hop fairness support; and 4) hierarchical control.

Before presenting the algorithms, we first introduce a few symbols for the rest of this

section in Table 5.1.

5.2.1 Customized Adaptive Multivariable Model

Compared with our previous method which is designed for single-hop wireless networks in

Chapter 4, this adaptive multivariable control is different in two ways. First, we select two

different control variables from hybrid TDMA/CSMA scheduling to more effectively han-

dling exposed/hidden terminals. Second, we apply iterative least square fitting to improve

modeling accuracy.

Control Variable Selection

According to the dynamic nature of interference in time and space, we select two control

variables from the algorithms of temporal and spatial contention control presented in Sec-

tions 5.1.2 and 5.1.2.

Contention window cwin is the key parameter to avoid simultaneous-transmission-

caused collisions in our temporal contention control. We control the temporal transmission

aggressiveness of each node by adjusting cwin to differentiate the access priorities among

different transmissions. In the previous chapter, we modify CSMA/CA by using a small

collision avoidance window (awin) when a new packet is transmitted to reduce delay, and

applying a large resolution window (rwin) to enforce a retransmission to wait long enough in

order to avoid repetitive collisions. In comparison, when hybrid TDMA/CSMA scheduling

is in use, a node has to wait for its schedule in the next round to retransmit upon a collision.
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The waiting time equals three slots and is much longer than a packet’s transmission time.

Therefore, we no longer need to differentiate avoidance and resolution windows.

Idleness probability pidle is the major factor to avoid collisions caused by hidden

terminals. Because hybrid TDMA/CSMA requires carrier sensing equal to transmission

range to reduce exposed terminals, the capability to detect hidden terminals of a node is

limited. By enabling a node not to contend for transmission when physical carrier sensing

detects an idle medium, pidle allows us to control the spatial transmission aggressiveness of

a link according to the severity of hidden terminals measured by the number of collisions

over a period.

Regression Model

With the new control variables, we have three customized multivariable models that are

compatible with the hybrid TDMA/CSMA scheduling for successful transmissions Eq. 5.1,

collisions Eq. 5.2 and unnecessary idling Eq. 5.3. These models characterize the impact

of each control variable and their correlations. E = {e1, e2, e3, e4}, F = {f1, f2, f3, f4} and
L = {l1, l2, l3, l4} are the coefficients to estimate.

x(i,s,d) = X(pidle(i,s,d), cwin(i,s,d))

= e1 · pidle(i,s,d) + e2 · cwin(i,s,d) + e3 · pidle(i,s,d) · cwin(i,s,d) + e4;
(5.1)

coll(i,s,d) = COLL(pidle(i,s,d), cwin(i,s,d))

= f1 · pidle(i,s,d) + f2 · cwin(i,s,d) + f3 · pidle(i,s,d) · cwin(i,s,d) + f4;
(5.2)

idle(i,s,d) = IDLE(pidle(i,s,d), cwin(i,s,d))

= l1 · pidle(i,s,d) + l2 · cwin(i,s,d) + l3 · pidle(i,s,d) · cwin(i,s,d) + l4;
(5.3)

5.2.2 Iterative Least Square Fitting

Previously we used least square fitting to estimate the coefficients E, F and L of Eq. 5.1,

5.2 and 5.3. However, this method may not always produce a solution due to the failure

of matrix inversion. To overcome this drawback, we apply iterative least square fitting,

which gradually improves the models by iteratively searching for the minimum square error

in a gradient-descent manner. The initial models are obtained via a set of 22 full-factorial

experiments [42].

First, we formulate three optimization problems Eq. 5.4, 5.5 and 5.6 to minimize the

mean square errors between the proposed models (Eq. 5.1, 5.2 and 5.3) and measured

responses (xm
(i,s,d), coll

m
(i,s,d) and idlem(i,s,d)).

min Jx , where

Jx =
1

N
·

N
∑

t=1

[

(xm
(i,s,d)(t)−X(pidle(i,s,d)(t), cwin(i,s,d)(t)))

2
] (5.4)
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min Jcoll , where

Jcoll =
1

N
·

N
∑

t=1

[

(collm(i,s,d)(t)− COLL(pidle(i,s,d)(t), cwin(i,s,d)(t)))
2
] (5.5)

min Jidle , where

Jidle =
1

N
·

N
∑

t=1

[

(idlem(i,s,d)(t)− IDLE(pidle(i,s,d)(t), cwin(i,s,d)(t)))
2
] (5.6)

Second, we derive the update policies Eq. 5.7, 5.8 and 5.9 for E, F and L by applying

the gradient-descent method to Eq. 5.4, 5.5, and 5.6. We apply these policies to update E,

F and L iteratively, and improve the model accuracy by searching for the minimum least

square error in a gradient-descent manner.

∂Jx
∂eh

=
1

N
·

N
∑

t=1

[

∂X

∂eh
· (xm

(i,s,d)(t)−X(pidle(i,s,d)(t), cwin(i,s,d)(t)))

]

eh = eh + ke ·
∂Jx
∂eh

(5.7)

∂Jcoll
∂fh

=
1

N
·

N
∑

t=1

[

∂COLL

∂fh
· (collm(i,s,d)(t)− COLL(pidle(i,s,d)(t), cwin(i,s,d)(t)))

]

fh = fh + kf ·
∂Jcoll
∂fh

(5.8)

∂Jidle
∂lh

=
1

N
·

N
∑

t=1

[

∂IDLE

∂lh
· (idlem(i,s,d)(t)− IDLE(pidle(i,s,d)(t), cwin(i,s,d)(t)))

]

lh = lh + kl ·
∂Jidle

∂lh

(5.9)

Alg. 3 gives the pseudo-code of iterative least square fitting and model update. In

this algorithm, we first initialize the coefficients of Eq. 5.1, 5.2 and 5.3 with the re-

sults from a 22 full-factorial experiment. Then, after collecting every N measurements

of xm
(i,s,d), coll

m
(i,s,d), idle

m
(i,s,d), we compute the coefficient updates by applying Eq. 5.7, 5.8

and 5.9. This procedure continues until the mean square error of X varies within a threshold

ǫ = 0.05, which is determined experimentally.

5.2.3 Hierarchical MG-Local Control

By combining adaptive multivariable control and G-Local optimization in a hierarchical

manner, we have hierarchical multivariable G-Local optimization. Previously, we intro-

duced flat MG-Local control, which transforms the original form of G-Local optimization

from a multi-state function of (x(i,s,d), coll(i,s,d), idle(i,s,d)) to a multivariable function of

(p(i,s,d), awin(i,s,d), rwin(i,s,d)). In comparison, the hierarchical method separates G-Local
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Algorithm 3 Iterative Least Square Fitting

// This algorithm is executed at each node

Initialize E, F and L for X(), COLL() and IDLE ()
with the full-factorial experiment results

for every N new measurements of xm
(i,s,d), coll

m
(i,s,d) and idlem(i,s,d) do

Update E, F and L according to Eqs. 5.7, 5.8 and 5.9

if the different between the current and previous mean square errors is less than ǫ then
break;

else
continue;

end if
end for

G-Local Optimization
max V(x_(i,s,d), coll_(i,s,d), idle_(i,s,d))

Multivariable Control
max V_h(x’_(i,s,d), coll’_(i,s,d), idle’_(i,s,d), p^idle_(i,s,d), cwin_(i,s,d))

x_(i,s,d) = X(p^idle_(i,s,d), cwin_(i,s,d))
coll_(i,s,d) = COLL(p^idle_(i,s,d), cwin_(i,s,d))
idle_(i,s,d) = IDLE(p^idle_(i,s,d), cwin_(i,s,d))

(x’_(i,s,d), coll’_(i,s,d), idle’_(i,s,d))

Figure 5.3: Hierarchical MG-Local Control

optimization from multivariable control as two problems, and constructs a two-tier hierar-

chy to provide a clear direction for making control decisions. The first tier determines a

set of desired network states via G-Local optimization, and the second tier guides adaptive

multivariable control to reach these desired states.

Tier 1: G-Local Target States

The goal of Tier 1 is to determine the desired network states via the G-Local optimization

as shown in Eq. 5.10. To support fair multi-hop forwarding, we use maxmin fairness to derive

the fair share xf
(i,s,d) [3]. The desired states are expressed as argmaxV (x(i,s,d), coll(i,s,d), idle(i,s,d)),

and denoted
{

x′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)

}

. Although Eq. 5.10 can be solved via multi-

objective optimization, we solve it via a simple method based on the following intuition.
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max V (x(i,s,d), coll(i,s,d), idle(i,s,d)) , where

V = k · log x(i,s,d) − (1− k) · ( 1

xf
(i,s,d)

· x(i,s,d) +
coll(i,s,d)

B
+

idle(i,s,d)

B
)

(5.10)

First, instead of treating Eq. 5.10 as a multi-state function V (x(i,s,d), coll(i,s,d), idle(i,s,d)), we

view it as a single-state function Vh(x(i,s,d)), and consider coll(i,s,d) and idle(i,s,d) as prices.

The transformed objective function is given in Eq. 5.12, where xm
(i,s,d)(t), coll

m
(i,s,d)(t) and

idlem(i,s,d)(t) are the measurements of round t. As shown in Alg. 4, we can easily derive

the conditional optimum of x(i,s,d) according to Eq. 5.11. Second, we aim to reduce the

price of coll(i,s,d) and idle(i,s,d) by explicitly setting coll′(i,s,d) = (1 − α) · collm(i,s,d)(t) and

idle′(i,s,d) = (1−β) · idlem(i,s,d)(t). Currently, we set α and β to 0.1 according to experimental

observations.

x′
(i,s,d) =

xf
(i,s,d) · xm

(i,s,d)(t) ·B
xm
(i,s,d)(t) · B + (collm(i,s,d)(t) + idlem(i,s,d)(t)) · x

f
(i,s,d)

(5.11)

max Vh(x(i,s,d)) , where

Vh = k · log x(i,s,d) − (1− k) · ( 1

xf
(i,s,d)

+
collm(i,s,d)(t)

xm
(i,s,d)(t) · B

+
idlem(i,s,d)(t)

xm
(i,s,d)(t) ·B

) · x(i,s,d)
(5.12)

Tier 2: Guided Adaptive Multivaraible Control

The goal of Tier 2 is to approach the desired network states
{

x′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)

}

by adjusting the control variables pidle(i,s,d) and cwin(i,s,d) in the adaptive multivariable mod-

els X(pidle(i,s,d), cwin(i,s,d)), COLL(pidle(i,s,d), cwin(i,s,d)) and IDLE(pidle(i,s,d), cwin(i,s,d)). This is

achieved by minimizing the gap between {x′, coll′, idle′} and {X,COLL, IDLE}. We for-

mulate this problem in Eq. 5.13.

min Vh(p
idle
(i,s,d), cwin(i,s,d), x

′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)) , where,

Vh = (X(pidle(i,s,d), cwin(i,s,d))− x′
(i,s,d))

2+

(COLL(pidle(i,s,d), cwin(i,s,d))− coll′(i,s,d))
2+

(IDLE(pidle(i,s,d), cwin(i,s,d))− idle′(i,s,d))
2

s.t. 0 < pidle(i,s,d) ≤ 1;

CMIN ≤ cwin(i,s,d) ≤ CMAX ;

(5.13)

The hierarchical control problem is solved by applying the Lagrange transformation,

which transforms Eq. 5.13 to 5.14. In this equation, λp1, λp2, λc1, and λc2 are shadow

prices. The corresponding dual problem is presented in Eq. 5.17.
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Lh(p
idle
(i,s,d), cwin(i,s,d), λp1, λp2, λc1, λc2)

= Vh(p
idle
(i,s,d), cwin(i,s,d), x

′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)) + λp1 · pidle(i,s,d) − λp2 · (pidle(i,s,d) − 1)

− λc1 · (CMIN − awin(i,s,d))− λc2 · (cwin(i,s,d) − CMAX)
(5.14)

minLh(p
idle
(i,s,d), cwin(i,s,d), λp1, λp2, λc1, λc2) (5.15)

Dh(p
idle
(i,s,d), cwin(i,s,d), {λ}) = min Lh (5.16)

min Dh(p
idle
(i,s,d), cwin(i,s,d), {λ}) (5.17)

The shadow prices are obtained by solving the dual problem (Eq.5.17). The solu-

tions are λp1 = −h1 · pi , λp2 = h2 · (pi − 1), λc1 = h3 · (CMIN − cwin(i,s,d)), λc2 =

h4 · (cwin(i,s,d) − CMAX). {h} are scalars and their values are determined experimentally.

We currently use 0.1 for these {h} scalars. The control policies for pidle(i,s,d) and cwin(i,s,d)

are Eq.5.18 and 5.19. They are derived by applying the gradient-descent search to Eq. 5.15.

As shown in Alg. 4, each user applies this control policy periodically until the algorithm

converges. The convergence condition is that the value V from Eq. 5.10 varies within an

experimentally determined threshold ǫ = 0.1

pidle(i,s,d)(t) = pidle(i,s,d)(t− 1) + kp ·
∂Lh

∂pidle(i,s,d)

(5.18)

cwin(i,s,d)(t) = cwin(i,s,d)(t− 1) + ka ·
∂Lh

∂cwin(i,s,d)
(5.19)

Algorithm 4 Hierarchial MG-Local Control

//This algorithm is executed locally for each outgoing link.

for each control iteration t do
Collect new measurements xm

(i,s,d)(t), coll
m
(i,s,d)(t), idle

m
(i,s,d)(t)

if the difference between V (t− 1) and V (t) from Eq. 5.10 is less than ǫ then
// the algorithm converges
break;

end if

Compute Tier 1 conditional optimum (x′
(i,s,d), coll

′
(i,s,d) and idle′(i,s,d))

Update Tier 2: Eq. 5.13
Update pidle(i,s,d) and cwin(i,s,d) according to Eqs. 5.18 and 5.19

end for
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Table 5.2: Correlated Congestion-Collision Control Symbols
Parameter Value

(i, s, d) identification for transmissions from node i for path ps,d
x(i,s,d) bandwidth consumed for successful transmissions

xf
(i,s,d) bandwidth fair share

coll(i,s,d) bandwidth wasted on collisions
idle(i,s,d) bandwidth wasted on idling
xo
(i,s,d) offered load at node i, (i = s)

xr
(i,s,d) received load at node i

pidle(i,s,d) idleness probability

cwin(i,s,d) contention window
B channel bandwidth
k scaler
λ Lagrange multiplier or shadow price

5.3 Correlated Congestion-Collision Control

Wireless interference aggravates congestion by causing collisions and retransmissions. To

tackle this problem, we propose correlated congestion-collision control as the third compo-

nent of our multi-hop solution. This method computes a congestion cost based on a node’s

incoming/outgoing traffic, and local interference level. This congestion cost is used by a

hop-based control method to reduce congestion.

Before presenting the algorithms, we first introduce a few symbols for the rest of this

section in Table 5.2.

5.3.1 Adaptive Multivariable Control

We modify the multivariable model of Section 5.2 to explicitly model the correlated impact

of traffic load and interference on congestion.

Control Variable Selection

The correlated congestion-collision control uses three control variables. The idleness proba-

bility and contention window are kept the same as in Section 5.2. The third variable is the

offered/received load. The offered load (denoted xo
(i,s,d)) represents the traffic load generated

at a source node, and the received load (denoted xr
(i,s,d)) is the traffic load received at an

intermediate forwarding node. xo
(i,s,d)/x

r
(i,s,d) is the major factor that influences congestion.

Regression Model

By characterizing the impact of each factor as well as their interaction on network behaviors

in terms of successful transmissions, collisions and unnecessary idleness, we have Eq. 5.20,

5.21 and 5.22 for source nodes. Eq. 5.23, Eq. 5.24 and Eq. 5.25 are used at intermediate

nodes. The only difference between the models at source and intermediate nodes is the
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usage of xo
(i,s,d) and xr

(i,s,d). Parameters in these models are estimated via iterative least

square fitting.

x(i,s,d) = X(xo
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= e1 · xo
(i,s,d) + e2 · pidle(i,s,d) + e3 · cwin(i,s,d)

+ e4 · xo
(i,s,d) · pidle(i,s,d) + e5 · xo

(i,s,d) · cwin(i,s,d)

+ e6 · pidle(i,s,d) · cwin(i,s,d) + e7;

(5.20)

coll(i,s,d) = COLL(xo
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= f1 · xo
(i,s,d) + f2 · pidle(i,s,d) + f3 · cwin(i,s,d)

+ f4 · xo
(i,s,d) · pidle(i,s,d) + f5 · xo

(i,s,d) · cwin(i,s,d)

+ f6 · pidle(i,s,d) · cwin(i,s,d) + f7;

(5.21)

idle(i,s,d) = IDLE(xo
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= l1 · xo
(i,s,d) + l2 · pidle(i,s,d) + l3 · cwin(i,s,d)

+ l4 · xo
(i,s,d) · pidle(i,s,d) + l5 · xo

(i,s,d) · cwin(i,s,d)

+ l6 · pidle(i,s,d) · cwin(i,s,d) + l7;

(5.22)

x(i,s,d) = X(xr
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= e1 · xr
(i,s,d) + e2 · pidle(i,s,d) + e3 · cwin(i,s,d)

+ e4 · xr
(i,s,d) · pidle(i,s,d) + e5 · xr

(i,s,d) · cwin(i,s,d)

+ e6 · pidle(i,s,d) · cwin(i,s,d) + e7;

(5.23)

coll(i,s,d) = COLL(xr
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= f1 · xr
(i,s,d) + f2 · pidle(i,s,d) + f3 · cwin(i,s,d)

+ f4 · xr
(i,s,d) · pidle(i,s,d) + f5 · xr

(i,s,d) · cwin(i,s,d)

+ f6 · pidle(i,s,d) · cwin(i,s,d) + f7;

(5.24)

idle(i,s,d) = IDLE(xr
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))

= l1 · xr
(i,s,d) + l2 · pidle(i,s,d) + l3 · cwin(i,s,d)

+ l4 · xr
(i,s,d) · pidle(i,s,d) + l5 · xr

(i,s,d) · cwin(i,s,d)

+ l6 · pidle(i,s,d) · cwin(i,s,d) + l7;

(5.25)

5.3.2 MG-Local Optimization with Correlated Congestion-Collision
Control

By combining the new models and G-Local optimization with the two-tier hierarchical struc-

ture, we formulate correlated congestion-collision control. Tier one Eq. 5.26 derives the

target states {x′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)} via the same method introduced in Section 5.2.
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In the second tier, we formulate correlated control for source and intermediate nodes in Eq.

5.27 and 5.28 respectively.

max V (x(i,s,d), coll(i,s,d), idle(i,s,d)) , where

V = k · log x(i,s,d) − (1− k) · ( 1

xf
(i,s,d)

· x(i,s,d) +
coll(i,s,d)

B
+

idle(i,s,d)

B
)

(5.26)

min V s
h (x

o
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), x

′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)) , where,

V s
h = (X(xo

(i,s,d), p
idle
(i,s,d), cwin(i,s,d))− x′

(i,s,d))
2+

(COLL(xo
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))− coll′(i,s,d))

2+

(IDLE(xo
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))− idle′(i,s,d))

2

s.t.XMIN ≤ xo
(i,s,d) ≤ XMAX ;

0 ≤ pidle(i,s,d) ≤ 1;

CWIN ≤ cwin(i,s,d) ≤ CMAX ;

(5.27)

min V r
h (x

r
(i,s,d), p

idle(i,s,d), cwin(i,s,d), x
′
(i,s,d), coll

′
(i,s,d), idle

′
(i,s,d)) , where,

V r
h = (X(xr

(i,s,d), p
idle
(i,s,d), cwin(i,s,d))− x′

(i,s,d))
2+

(COLL(xr
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))− coll′(i,s,d))

2+

(IDLE(xr
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))− idle′(i,s,d))

2

s.t.0 ≤ pidle(i,s,d) ≤ 1;

CMIN ≤ cwin(i,s,d) ≤ CMAX ;

(5.28)

We first apply the Lagrange method to transform these constrained problems Eq. 5.27

and 5.28 into unconstrained problems Eq. 5.30 and 5.33. The shadow prices {λx1, λx2, λp1, λp2, λc1, λc2}
are computed by solving the dual problems Eq. 5.32 and 5.35. Corresponding solutions are

given in Eq. 5.29.

λx1 = h1 · (XMIN − xo
(i,s,d))

λx2 = h2 · (xo
(i,s,d) −XMAX)

λp1 = −h3 · p(i,s,d)
λp2 = h4 · (p(i,s,d) − 1)

λc1 = h5 · (CMIN − cwin(i,s,d))

λc2 = h6 · (cwin(i,s,d) − CMAX)

(5.29)

Ls
h(x

o
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), λx1, λx2, λp1, λp2, λc1, λc2)

= V s
h (x

o
(i,s,d), p

idle
(i,s,d), cwin(i,s,d))− λx1 · (XMIN − xo

(i,s,d))

− λx2 · (xo
(i,s,d) −XMAX) + λp1 · pidle(i,s,d) − λp2 · (pidle(i,s,d) − 1)

− λc1 · (CMIN − awin(i,s,d))− λc2 · (cwin(i,s,d) − CMAX)

(5.30)
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Ds
h(x

o
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), {λ}) = min Ls

h (5.31)

min Ds
h(x

o
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), {λ}) (5.32)

Lr
h(x

r
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), λp1, λp2, λc1, λc2)

= V r
h (x

r
(i,s,d), p

idle
(i,s,d), cwin(i,s,d)) + λp1 · pidle(i,s,d) − λp2 · (pidle(i,s,d) − 1)

− λc1 · (CMIN − awin(i,s,d))− λc2 · (cwin(i,s,d) − CMAX)

(5.33)

Dr
h(x

r
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), {λ}) = min Lr

h (5.34)

min Dr
h(x

r
(i,s,d), p

idle
(i,s,d), cwin(i,s,d), {λ}) (5.35)

With the gradient-descent method, we derive the control policies Eq. 5.36, 5.37, and

5.38 for the source and Eq. 5.39, 5.37, and 5.38 for intermediate nodes. Before introducing

the concept of congestion cost, we have to resolve an issue with current control policies for

xo
(i,s,d) and xr

(i,s,d). A source node has direct control of xo
(i,s,d) by increasing or throttling the

offered traffic according to Eq. 5.36. However, an intermediate node has no direct control

over xr
(i,s,d), the amount of traffic received from its previous hop.

xo
(i,s,d)(t) = xo

(i,s,d)(t− 1) + kx ·
∂Lh

∂xo
(i,s,d)

(5.36)

pidle(i,s,d)(t) = pidle(i,s,d)(t− 1) + kp ·
∂Lh

∂pidle(i,s,d)

(5.37)

cwin(i,s,d)(t) = cwin(i,s,d)(t− 1) + ka ·
∂Lh

∂cwin(i,s,d)
(5.38)

xr
(i,s,d)(t) = xr

(i,s,d)(t− 1) + kx ·
∂Lh

∂xr
(i,s,d)

(5.39)

∆xr
(i,s,d) = kx ·

∂Lh

∂xr
(i,s,d)

(5.40)

In order to enforce Eq. 5.39, we move ∆xr
(i,s,d) (shown in Eq. 5.40), the adjustment of

xr
(i,s,d) from an intermediate node i to its 1-hop upstream node (i − 1). This migration is

based on the fact that xr
(i,s,d) equals xi−1,s,d, which means the amount of received traffic at

node i is the amount of traffic that node (i− 1) successfully delivered to node i. By passing

∆xr
(i,s,d) from node i to (i − 1), we enable the upstream node to increase or decrease its

outgoing traffic according to whether node i can handle more or less traffic. This can be

achieved by explicitely sending a message from node i to (i−1), or piggyback this information
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in the acknowledgement packet. Because ∆xr
(i,s,d) is computed based on the incoming traffic

(xr
(i,s,d)), outgoing traffic (x(i,s,d)), as well as local collision situation (coll(i,s,d)), we call it

the congestion cost.

xo
(i,s,d)(t) = xo

(i,s,d)(t− 1) + kx · (
∂L

∂xo
(i,s,d)

+∆xr
i+1,s,d ·

∂x(i,s,d)

∂xo
(i,s,d)

) (5.41)

pidle(i,s,d)(t) = pidle(i,s,d)(t− 1) + kp · (
∂L

∂pidle(i,s,d)

+∆xr
i+1,s,d ·

∂x(i,s,d)

∂pidle(i,s,d)

) (5.42)

cwin(i,s,d)(t) = cwin(i,s,d)(t− 1) + ka · (
∂L

∂cwin(i,s,d)
+∆xr

i+1,s,d ·
∂x(i,s,d)

∂cwin(i,s,d)
) (5.43)

The new policies for correlated congestion-collision control are given in Eq. 5.41, 5.42

and 5.43. If a node j is a source, it takes into account the congestion cost ∆xr
i+1,s,d when

adjusting xo
(i,s,d), p

idle
(i,s,d) and cwin(i,s,d). Similarly, an intermediate node adjusts pidle(i,s,d) and

cwin(i,s,d) by considering the congestion cost.

Algorithm 5 Hierarchial MG-Local Control

//This algorithm is executed locally at a node i.

for each control iteration t do
Collect new measurements xm

(i,s,d)(t), coll
m
(i,s,d)(t), idle

m
(i,s,d)(t)

if the difference between V (t− 1) and V (t) from Eq. 5.26 is less than ǫ then
// the algorithm converges
break;

end if

Compute Tier 1 conditional optimum (x′
(i,s,d), coll

′
(i,s,d) and idle′(i,s,d))

if node i is the source for path ps,d then
Update Tier 2: Eq. 5.27
Adjust the offered load xo

(i,s,d) according to Eq. 5.41
else
Update Tier 2:Eq. 5.28
Compute the congestion cost ∆xr

(i,s,d) according to Eq. 5.40)

Pass the congestion cost to the previous hop (i− 1)
end if
Adjust pidle(i,s,d) and cwin(i,s,d) according to Eqs. 5.42 and 5.43

end for

5.4 The Complete Solution

We construct the complete solution of multi-hop resource management by combining hybrid

TDMA/CSMA, hierarchical MG-Local control and correlated congestion-collision control.

The structure of this solution is illustrated in Fig.5.20. We also show the system flow

diagram of the complete solution in Fig. 5.21.
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5.4.1 Implementation

We implement the complete solution in ns2 by modifying the basic access method CSMA/CA

of IEEE 802.11b. First, we add the selected control variables: per-link offered load (xo
(i,s,d)),

per-link received load (xr
(i,s,d)), per-link idleness probability (pidle(i,s,d)), and per-link contention

window (cwin(i,s,d)). Second, we divide time into slots. If a node i has a packet for path

p(s,d) to send and the current slot is i’s designated turn according to hybrid TDMA/CSMA

scheduling, node i starts backing off with a probability 1−pidle(i,s,d), and waits for the propaga-

tion delay of one packet with a probability pidle(i,s,d). The back-off period is randomly selected

within the contention window cwin(i,s,d). Third, x
o
(i,s,d), x

r
(i,s,d), p

idle
(i,s,d), and cwin(i,s,d) are

updated according to Eq. 5.41, 5.39, 5.42 and 5.43 until the algorithm converges. This

update requires each node to periodically measure the packet sending rate (xs
(i,s,d)), packet

delivery rate (xm
(i,s,d)), packet collision rate (collm(i,s,d)), and unnecessary idling (idlem(i,s,d)).

All of these are done locally. xs
(i,s,d) is calculated via dividing the number of transmitted

packets by the length of a control period. Similarly, xm
(i,s,d) is the ratio of acknowledged

packet to the control period. collm(i,s,d) is calculated via dividing the product of the number

of unacknowledged packets and retry limit by a control period. idlem(i,s,d) is the difference

between the packet sending rate (xs
(i,s,d)) and bandwidth fair share (xf

(i,s,d)), representing

the portion of bandwidth that should be utilized but actually not. These measurements

are used to derive the coefficients (E, F and L) of our multivariable models X , COLL and

IDLE (Eq. 5.20, 5.23, 5.21, 5.24, 5.22, 5.25) via iterative least square fitting (Alg. 1).

5.4.2 Experiments

We carry out two types of experiments to study the performance of MSC in depth and

breadth. First, the in-depth study compares MSC with its three components: hybrid

TDMA/CSMA (denoted HS), hierarchical MG-Local control (denoted HM), and correlated

congestion-collision control (denoted CC). Second, the in-breadth study compares MSC with

three alternative methods: adaptive CSMA [48] (denoted AC), CSMA/CA-HD (denoted

HC), and CSMA/CA-ED (denoted EC). Similar to our previous experiments, simulation

accuracy is improved by adding a SINR-based collision model with aggregate interference,

and a preamble detection function to the IEEE 802.11 implementation in ns2.

We select adaptive CSMA because it is a comprehensive multi-hop solution and shares

similar objectives to MSC. To achieve fair allocation and efficient utilization of wireless band-

width, AC applies utility-based optimization to control the traffic load at the source node

of each flow, and formulates throughput maximization as a maximum likelihood function

to accommodate all admitted arrival rates. For reducing collisions, AC uses the request-to-

send/clear-to-send protocol (RTS/CTS) to reserve the medium for each transmission. AC

also allows transmission over a link, where collisions occur more often, to transmit with
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a longer period once it seizes the medium. For congestion control, AC throttles excessive

traffic at each source and gives the nodes with more backlogged data higher priority to trans-

mit, so that queueing delay can be reduced. Additionally, we introduce two configurations

of CSMA/CA to represent the scenarios when exposed and hidden terminals dominate re-

spectively. CSMA/CA-ED fixes the physical carrier sensing range to twice the transmission

range to reduce hidden terminals. CSMA/CA-HD reduces exposed terminals by setting the

carrier sensing range equal to the transmission range.

These experiments are carried out under different network topologies, traffic loads and

interference levels. Performance is evaluated according to four metrics: packet loss rate,

Jain’s fairness index, end-to-end delay and aggregate network throughput. We simulate a

800-by-800m2 network with 200 nodes and generate Poisson traffic at each source node. The

fixed parameters include: packet size (512 bytes), channel bit rate (1 Mbps), and transmit

power (0.2818 Watt). Each experiment lasts 15 minutes.

In-Depth Performance Study

We compare our MSC with its three elements: hybrid TDMA/CSMA (HS), hierarchical MG-

Local control (HM) and correlated congestion-collision control (CC). The goal is to show

whether each component fulfills its objective, and how they contribute to MSC’s overall per-

formance. Because CSMA/CA-HD (HC) has no control over hidden terminals, congestion

and unfair resource consumption, we use it as the reference of lower-bound performance.

Experiments With Random Topologies The first set of experiments are carried out

in sixteen different routing topologies with a fixed offered load of 50 pps. Each topology is

generated by randomly selecting fifteen multi-hop paths via Dijkstra’s algorithm [18]. For

visual clarity, we sort each sub-plot in Fig. 5.4 according to the performance of CSMA/CA-

HD. Experiments are repeated with randomly generated Poisson traffic for ten times over

each topology. Because the resulted confidence intervals are small, we did not include

them in the already crowded figure, Fig. 5.4. We do present confidence intervals in the

experiments of controlled topologies in Section 5.4.2. It needs to be noted that we use the

line presentation in Fig. 5.4 only for easier visual comparison. A line, in this case, does

indicate any relation between different topologies.

First, hybrid TDMA/CSMA (HS) reduces the packet loss rate significantly in all sixteen

topologies as shown in Fig. 5.4. This is because HS minimizes collisions within the same

path via intra-path scheduling; and reduces collisions between different paths caused by

scheduling conflicts and various temporal and spatial interference. In comparison, hierar-

chical MG-Local control (HM) reduces collisions slightly because it does not differentiate

intra-path and inter-path interference. Without effective handling of intra-path interference

(e.g. intra-path scheduling), HM is less effective in terms of collision control. Correlated
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Figure 5.4: Random Topologies - In-Depth Experiment

congestion-collision control (CC) reduces the negative impact of congestion on collisions,

and achieves lower packet loss rate than HM. By combining these three components, our

MSC achieves the lowest packet loss rate by handling collisions caused by intra-path, inter-

path interference as well as congestion in all sixteen topologies. CSMA/CA-HD incurs the

highest packet loss rate because its physical carrier sensing range equals transmission range.

Consequently, it experiences significant packet loss caused by hidden terminals as well as

intra-path interference and congestion.

Second, HS improves fairness by transforming unwanted competition within the same

path into coordinated transmission via intra-path scheduling. Furthermore, its randomized

schedule sharing allows multiple paths to share a conflicting schedule with equal chances.

In comparison, although HM is a fairness-driven method, its fairness is compromised by

the high packet loss rate. Besides applying the same fairness-driven allocation as HM, CC

also reduces the mutual negative impact of congestion and collision. Therefore, CC achieves
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higher fairness than HM. Altogether, MSC combines the advantages of HS, HM and CC,

and therefore maintains good fairness in all sample topologies. HC has no fairness policy

for multi-hop networks, and performs poorly in all topologies.

Third, HS incurs the longest delay because of its scheduling overhead. HM ranks second

simply because it has no scheduling component, and therefore incurs shorter delay. CC

reduces the end-to-end delay significantly because it reduces congestion by throttling exces-

sive traffic and reducing the negative impact of collisions. This merit is inherited by MSC

to overcome the long delay drawback of HS. Furthermore, MSC achieves good end-to-end

delay in all sixteen topologies. Although HC achieves short delay in some of the topologies,

this gain is at the price of sacrificing fairness. Specifically, HC gives the transmissions which

experience less intense interference more chances to access the medium, and starves the

others.

At last, throughput varies significantly upon topology changes due to different interfer-

ence levels/scenarios and transmission bottlenecks. As Fig. 5.4 shows, HS achieves higher

throughput than the other methods in most of the topologies due to its lower packet loss

rate. This good throughput is gained at the price of longer delay. Although CC trades off

throughput for shorter delay by reducing source rate, its throughput is higher than HC in

nearly half of the topology samples. As a result, MSC achieves similar throughput as CC,

but with much less packet loss.

Experiments in Controlled Topologies Because throughput varies significantly with

network topology, we select three topologies from the previous set of experiments to represent

the cases where MSC achieves lower, similar and higher throughput than CSMA/CA-HD

(HC), and compare MSC, HS, HM, CC and HC according to packet loss rate, fairness index

and end-to-end delay. These three topologies are denoted Topologies 1, 2 and 3 respectively.

Besides topology, we study the impact of two other factors: offered load and interference

levels.

Two sub-sets of experiments are carried out. First, traffic loads of 10, 50 and 100 pps are

used to address three situations: partially saturated, saturated and over-saturated traffic.

By fixing the interference level at 15 paths, we run MSC, HS, HM, CC and HC with all

three traffic loads in all three topologies. Second, we evaluate the impact of interference

by generating three interference levels of 10, 15 and 20 paths. With a fixed traffic load of

50 pps, MSC, HS, HM and HC are applied under all three interference levels for all three

topologies. Furthermore, each experiment is replicated 10 times with randomly generated

Poisson traffic. A 95% confidence interval is computed for each metric. We summarize these

experiments by presenting representative results as follows.

First, Figs. 5.5, 5.6, and 5.7 show the impact of offered load in Topologies 1, 2 and 3
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respectively.

Packet loss rate: Hybrid TDMA/CSMA (HS) reduces the packet loss rate the most

compared to hierarchical MG-Local control (HM) and correlated congestion-collision control

(CC) under all three loads. This is because its intra-path scheduling significantly reduces

collisions within the same path, and its inter-path contention control offers effective counter-

solutions to schedule conflicts, temporal and spatial interference. HS’s good performance

also holds in all three topologies. When traffic load increases, CC reduces collisions more

effectively and achieves lower packet loss rate than HM, due to its correlated congestion-

collision control. HM achieves better packet loss rate than HC when the load is 50 pps in

all three topologies, but this advantage disappears with a more severe degree of congestion

caused by a higher load of 100 pps. By combining all three elements, MSC achieves the

lowest packet loss rate in all three topologies, and its performance remains at the same level

under all three traffic loads. Fairness: Compared to hybrid TDMA/CSMA and hierarchi-

cal MG-Local control, correlated congestion-collision control is fairer under all three loads

in all three topologies. This is because it applies MG-Local’s fairness-driven fair allocation.

Although HM applies the same method, its fairness is compromised by the high packet loss

rate. HS is fairer than HM because its intra-path scheduling transforms unwanted com-

petition into coordinated transmissions. Additionally, HS’s randomized schedule sharing

allows multiple paths to have equal chances to utilize a conflicting schedule. Combining the

strength of HS and CC, our MSC achieves good fairness despite varying traffic load and

topology. End-to-end delay: Hybrid TDMA/CSMA incurs longer delay than hierarchical

MG-Local control and correlated congestion-collision control because its scheduling over-

head increases queue delay. Furthermore, HS’s delay increases with a higher load because

more severe congestion leads to more backlogged data and longer queueing delay. Without

HS’s scheduling overhead, HM’s delay is shorter than that of HS. Similarly, HM’s delay

increases when congestion is aggravated by more traffic. CC has the shortest delay because

its congestion control reduces both collisions and congestion by throttling excessive traffic.

Due to the CC component, MSC consistently achieves good delay performance with varying

load and topology. The reason that MSC’s delay is longer than CC is because MSC incurs

scheduling overhead for the HS scheduling component. The occasional short delay of HC is

again at the expense of fairness.

Second, Figs. 5.8, 5.9, and 5.10 demonstrate the impact of interference level on MSC,

HS, HM, CC and HC in Topologies 1, 2 and 3 respectively.

Packet loss rate: Under different levels of interference, hybrid TDMA/CSMA reduces

collisions more significantly than hierarchical MG-Local control and correlated congestion-

collision control. This further demonstrates the effectiveness of HS’s intra-path scheduling

and inter-path contention control. HM’s high packet loss is due to its incapability of han-
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Figure 5.5: The Impact of Offered Load (Scenario 1)

Figure 5.6: The Impact of Offered Load (Scenario 2)

dling intra-path interference and congestion. CC reduces collisions more than HM. This

is once again attributed to its correlated congestion-collision control reduces the negative

impact of congestion on collisions. Combining HS, HM and CC, MSC has the lowest packet

loss rate under all three levels of interference in all three topologies. Fairness: Both MSC

and correlated congestion-collision control achieve good fairness under all three interference
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Figure 5.7: The Impact of Offered Load (Scenario 3)

levels due to their fairness-driven resource allocation. HM’s fairness is again compromised

by its high packet loss rate. HS improves fairness by coordinating intra-path transmis-

sions and solving schedule conflicts between different paths. End-to-end delay: MSC

achieves good end-to-end delay by inheriting the capability of throttling excessive traffic at

the source node from correlated congestion-collision control. At the same time, due to its

hybrid TDMA/CSMA scheduling component, MSC also incurs scheduling overhead. But

MSC’s delay is significantly shorter than that of HS. Furthermore, the delay of HS and

hierarchical MG-Local control increase with a higher level of interference. This is because

intense interference aggravates congestion, and results in longer queueing delay.

In summary, Fig. 5.11 shows the results of varying network topologies with an offered

load of 50 pps and interference level of 15 paths. These results further validate our analysis

for the random topology experiments (see Section 5.4.2). This in-depth study demonstrates

that MSC combines the advantages of hybrid TDMA/CSMA, hierarchical MG-Local control

and correlated congestion-collision control, and therefore achieves low packet loss rate, high

fairness, and short end-to-end delay under different traffic load, interference and topologies.

In the next section, we further evaluate MSC’s performance by comparing it with three

alternative methods.

In-Breadth Performance Study

So far, we have evaluated how each component of MSC contributes to the overall perfor-

mance. The in-breadth study compares MSC to adaptive CSMA (AC), CSMA/CA-HD
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Figure 5.8: The Impact of Interference Levels (Scenario 1)

Figure 5.9: The Impact of Interference Levels (Scenario 2)

(HC) and CSMA/CA-ED (EC).

Experiments in Random Topologies We first compare MSC to AC, HC and EC in

sixteen different routing topologies with a fixed offered load of 50 packets per second (pps).

These topologies are the same as those used in in-depth experiments of Section 5.4.2. Fol-
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Figure 5.10: The Impact of Interference Levels (Scenario 3)

Figure 5.11: The Impact of Network Topologies

lowing the same method in Section 5.4.2, we sort the topologies of each sub-plot in Fig.

5.12 according to HC’s performance for visual clarity. This is also because CSMA/CA-HD’s

performance varies significantly with topology changes.

First, MSC consistently outperforms AC, HC and EC by achieving the lowest packet

loss rate among all 16 topologies as shown in Fig. 5.12. This is attributed to intra-path
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Figure 5.12: Random Topologies - In-Breadth Experiment

scheduling coordinating transmission within the same path, and inter-path contention con-

trol resolving schedule conflicts and minimizing collisions caused by various temporal and

spatial interference scenarios. CSMA-ED (EC) ranks second because its larger carrier sens-

ing range helps to reduce collisions caused by hidden terminals. CSMA-HD (HC) is subject

to significant packet loss because its physical carrier sense range equals transmission range,

and therefore cannot detect hidden terminals. Adaptive CSMA (AC) incurs even higher

packet loss than HC in some of the sample topologies. Although AC aims to reduce colli-

sions by applying RTS/CTS to reserve medium before transmitting data, hidden terminals

cause collisions among RTS/CTS/DATA/ACK packets [88]. Furthermore, these collisions

are aggravated because AC allows transmission over a link, which experiences more colli-
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sions, to last longer.

Second, MSC is consistently the fairest method compared with the other three candidates

in all sample topologies. This is because hierarchical MG-Local control drives different

paths to consume their fair share of limited bandwidth. AC ranks second, although it also

aims to achieve fair allocation. Compared to MSC, adaptive CSMA does not consider the

impact of wireless interference on fairness, and sacrifices short-term fairness by allowing

lossy transmission to last longer. Consequently, AC causes more frequent starvation within

a short period. Neither HC nor EC has a fairness policy, and perform poorly in most

topologies.

Third, MSC achieves shorter end-to-end delay in most topologies. This is because corre-

lated congestion-collision control reduces delay by throttling excessive traffic and reducing

collisions. In comparison, AC controls congestion by adjusting source rate without reducing

collisions. Moreover, AC allows transmission over a link, where collisions occur often, with

a longer period and further increases queueing delay. An interesting observation is that HC

achieves shorter or similar delay to MSC in Scenarios 1 to 7. This is because CSMA/CA-HD

gives more transmission opportunities to a few paths that experience less severe interfer-

ence, and starves the other. CSMA/CA-ED has the same problem. Compared to HC, EC’s

incapability of handling hidden terminals causes more collisions and retransmissions, which

results in longer queueing delay than HC.

Finally, throughput varies significantly upon topology changes due to different interfer-

ence levels/scenarios and transmission bottlenecks. As Fig. 5.12 shows, AC achieves higher

throughput in a few scenarios because throughput maximization is its major design objec-

tive. EC achieves similar throughput to AC because it increases transmission aggressiveness

by reducing carrier sensing range. However, EC’s throughput gain is achieved by sacrificing

fairness. In most cases, HC has lower throughput than AC and HC because it is more

conservative in transmission to reduce hidden terminals. Compared to AC and EC, MSC

achieves similar throughput in more than eight topologies. MSC achieves better throughput

than HC in nearly half of the topology samples.

This experiment set demonstrates that MSC maintains consistent performance despite

topology variations. It also shows that network topology does not influence MSC’s capability

to outperform AC, HC and EC in terms of minimizing packet loss, improving fairness and

reducing end-to-end delay, while achieving reasonable throughput. Our future endeavor will

focus on improving MSC’s throughput.

ExperimentsWith Controlled Network Topologies In the second set of experiments,

we use the same three topologies in Section 5.4.2 to represent the cases where MSC achieves

lower, similar and higher throughput than CSMA/CA-HD (HC), and compare MSC, AC,
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Figure 5.13: The Impact of Offered Load (Scenario 1)

HC and EC according to packet loss rate, fairness index and end-to-end delay. These three

topologies are also denoted Topologies 1, 2 and 3 respectively. Besides topology, we study

the impact of two other factors: offered loads and interference levels. Similar to the in-

depth experiments, we use traffic loads of 10, 50 and 100 pps to address three situations:

partially saturated, saturated and over-saturated traffic. By fixing the interference level at

15 paths, we run MSC, AC, HC and EC with all three traffic loads in all three topologies.

For varying interference levels, we generate 10, 15 and 20 paths. With a fixed traffic load of

50 pps, MSC, AC, HC and EC are executed under all three interference levels for all three

topologies.

First, Figs. 5.13, 5.14, and 5.15 show the results of varying offered loads in Topologies

1, 2 and 3.

Packet loss rate: MSC consistently achieves the lowest packet loss rate under dif-

ferent traffic loads, because hybrid TDMA/CSMA significantly reduces collisions by han-

dling various interference scenarios. CSMA/CA-HD (HC) reduces hidden terminals and

ranks second. Similar to our previous analysis, CSMA/CA-ED (EC) incurs higher packet

loss rate than HC because its aggressive transmission leads to more collisions caused by

hidden terminals. Adaptive CSMA (AC) experiences severe packet loss because its dy-

namic transmission length aggravates hidden terminals and causes more collisions among

RTS/CTS/DATA/ACK. Fairness: MSC remains the fairest with different traffic loads,

which is attributed to its fairness-driven bandwidth allocation and coordinated intra-path

transmission. AC has lower fairness index, because its significant packet loss and dy-
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Figure 5.14: The Impact of Offered Load (Scenario 2)

Figure 5.15: The Impact of Offered Load (Scenario 3)

namic transmission period compromises fairness. EC and HC inherit the unfair nature

of CSMA/CA and perform poorly in most cases. End-to-end delay: With saturated

traffic of 50 and 100 pps, MSC exhibits shorter end-to-end delay than AC, HC and EC.

Furthermore, MSC maintains similar delay for all three loads by throttling excessive traffic

and reducing collisions, while the delay of AC, HC and EC increases with higher traffic
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Figure 5.16: The Impact of Interference Levels (Scenario 1)

Figure 5.17: The Impact of Interference Levels (Scenario 2)

loads. Although AC also has source rate control, its significant packet loss requires more

retransmissions and longer waiting time, which increases delay. For HC and EC, there is no

congestion control. Both collisions and traffic overload contribute to longer delay.

Second, Figs. 5.16, 5.17 and 5.18 show the results of varying interference levels without

changing the offered load (50 pps) in Topologies 1, 2 and 3.
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Figure 5.18: The Impact of Interference Levels (Scenario 3)

Packet loss rate: MSC consistently achieves lower packet loss rate than adaptive

CSMA (AC), CSMA/CA-HD (HC) and CSMA/CA-ED (EC) under different levels of in-

terference, which again demonstrates that hybrid TDMA/CSMA is effective for handling

various interference scenarios. Different interference levels do not change the fact that AC

and HC experience more packet loss than EC, because both methods cannot handle hid-

den terminals. Fairness: MSC still remains the fairest among all four methods despite

interference increase, because hierarchical MG-Local guides each path to consume its fair

share of bandwidth. In comparison, AC, HC and EC consistently perform poorly in fairness

with different interference levels. End-to-end delay: MSC achieves shorter end-to-end

delay than AC, HC and EC under different interference levels. Additionally, MSC’s delay

decreases when interference level increases because of correlated congestion-collision control.

In contrast, AC does not consider the impact of collisions on congestion, and therefore in-

creases queueing delay with frequent retransmissions. Although HC’s delay is shorter than

MSC when 10 paths are used, this shorter delay is at the expense of sacrificing fairness.

In summary, Fig. 5.19 shows the results of varying network topologies with an offered

load of 50 pps and interference level of 15 paths. These results further validate our analysis

for the random topology experiments (see Section 5.4.2). This in-breadth study demon-

strates that MSC achieves better packet loss rate, higher fairness, and shorter end-to-end

delay in all three topologies. Adaptive CSMA suffers from high packet loss, which compro-

mises its fairness and end-to-end delay. CSMA/CA-ED is superior to CSMA/CA-HD in

terms of reducing packet loss. Both EC and HC perform poorly in fairness and end-to-end
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Figure 5.19: The Impact of Network Topologies

delay in all three topologies.

5.5 Chapter Summary

Multi-hop forwarding extends wireless coverage at the expense of degrading performance.

To tackle unique multi-hop challenges, we propose a novel solution. This solution first

offers hybrid TDMA/CSMA as a novel medium access control method to handle co-existing

intra-path and inter-path interference. Hybrid TDMA/CSMA introduces a very simple

and pure local per-path schedule algorithm to coordinate transmissions within the same

path; solves schedule conflicts caused by common nodes by coordinating different paths to

share conflicting schedules via randomization and controlled two-hop broadcasting; handles

various temporal and spatial contention by a slotted adjustable CSMA/CA. Second, this

solution effectively manages chaotic resource competition via hierarchical MG-Local. This

method allocates limited bandwidth by taking into account fairness criteria, dynamic inter-

ference and scheduling efficiency; guides each path to efficiently utilize allocated resources

by controlling their behaviors in terms of transmission, collisions and unnecessary idling.

Its hierarchical control structure first determines the target states of G-Local optimization,

and then uses these target states to guide multivariable control in terms of reducing the

difference between a desired state and corresponding multivariable model. Third, we de-

velop correlated congestion-collision control to handle the mutual impact of congestion and

collisions in wireless networks. By throttling excessive traffic and reducing collisions, this

method effectively reduces congestion. Our simulation results demonstrate that this solution
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to pass its congestion cost to the previous hop on the same path. In the future work, we

will explore cross-layer optimization to improve network throughput. The plan is described

in the conclusion chapter.
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Chapter 6

Conclusions

Wireless networking is a key enabling technology to ubiquitous computing and Internet

access. The proliferation of new applications and rapid growth of wireless traffic poses

great challenges for current technologies. To bridge the gap between the increasing user

demand and limited delivery capability of wireless networks, we propose a novel framework

of resource management in this thesis. This section summarizes our contributions, describes

potential applications and outlines future directions.

6.1 Contributions

The proposed G-Local framework makes wireless networks more tractable, so that network

operators/managers can allocate resources according to different user and system require-

ments, improve resource utilization to provide better network service, and reduce overhead

in terms of control message passing and computational complexity. Specifically, our major

contributions are:

• G-Local Optimization is a novel method of resource allocation that drives user

consumption toward a desired fair share. G-Local optimization re-adjusts this level

when it is not achievable due to dynamic interference, or imperfect scheduling. The

re-adjustment is based on two cost functions of collisions and unnecessary idling. By

intelligently exploiting local information, G-Local Optimization enables each user to

derive the level of competition, and jointly maximizes resource utilization and mini-

mizes the total consumption cost. Compared with the state-of-art global optimization

algorithm, G-Local optimization 1) supports different fairness criteria; 2) suppresses

the co-existence of conflicts and waste, 3) provides fine-tunable trade-off between fair-

ness and efficiency, and 4) approaches a global optimum via local optimization with

zero message passing.

• Adaptive Multivariable Control effectively controls network behavior in terms

of transmissions, collisions and idling. It reifies the G-Local optimization to steer a
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network toward its desired state. Our method: 1) categorizes interference scenarios

into five basic types; 2) differentiates dynamic causes of interference in four dimen-

sions: time, space, frequency and intensity; 3) selects key control variables; and 4)

models basic network behaviors as functions of the selected factors. These functions

consider the impact of each factor as well as their correlations, and are obtained via

iterative least square fitting. Compared with deterministic model-based optimization

and stochastic approximation-based optimization, Adaptive Multivariable Control is

adaptable to dynamic network conditions and faster in convergence.

• Hybrid TDMA/CSMA scheduling handles the co-existence of intra-path and

inter-path interference in multi-hop wireless networks. The basic idea includes 1) en-

forcing each path to coordinate internal transmissions to eliminate collisions caused

by intra-path interference via time-division-based scheduling; and 2) applying G-Local

Optimization to guide different paths to a corresponding fair share via random-access-

based scheduling. Compared with existing methods which require complex compu-

tation and frequent control-message passing, our method is simple in computation,

light in overhead, and flexible to traffic/network-condition changes. These advantages

are achieved by enabling each path to derive its own schedule locally, and promptly

adjusting existing schedules upon traffic pattern changes.

• Correlated congestion-collision control explicitly handles the mutual impact of

congestion and collisions in wireless networks. Our method explicitly models and

controls the correlation between congestion and collisions. With this correlation model,

each node computes a congestion cost based on its incoming/outgoing traffic, and local

interference level. This congestion cost is passed back to the upstream node to adjust

its outgoing traffic in order to alleviate congestion at the downstream node. Compared

with the TCP-style congestion control, which tends to under-utilize wireless resources

by solely adjusting source data rate based on some end-to-end feedback information,

our method considers the impact of both traffic overload and collisions. Compared

with back-pressure congestion control, which aggravates interference and leads to more

severe congestion by giving higher priorities to the nodes with more backlogged data,

our method alleviates the negative impact of collisions on congestion.

6.2 Practical Applications

The G-Local framework is a generic method for managing resources in wireless networks. As

a first step, we apply it in both single-hop and multi-hop wireless ad hoc networks with fixed

resource demand. This framework can be customized for different systems and purposes.

We discuss a few areas in which G-Local resource management could be applied.
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6.2.1 Handling Diverse Resource Demand

The G-Local framework can be customized to manage systems where users have different

resource demands, and these demands change over time. Essentially, G-Local provides

a mechanism to drive user resource consumption toward a pre-configured target, and re-

adjust this target when it is not achievable due to interference, imperfect scheduling, or

over-asking/under-asking. To handle dynamic resource demands, user requirements are

used to set the target, and we acknowledge that they may not be reasonable or achievable.

Due to the difficulty of frequently recomputing fair allocations upon demand changes, we

specify a minimum resource guarantee xmin for all users. This minimum bandwidth guar-

antee is used as the baseline to set the fairness cost Cf of resource consumption. Therefore,

this fairness criteria requires that a user has to pay a higher per-unit cost as it requests more

than its minimum resource guarantee, xmin. If a user’s request is lower than the minimum

resource guarantee, the fairness cost is zero. We formulate this demand-oriented G-Local in

Eq. 6.1.

max V (xi, colli, idlei) , where

V = k · (log xi −
1

xd
i

· xi)− (1− k) · (Cf
i +

colli
B
− idlei

B
)

Cf
i =

xd
i − xmin

B
, ifxd

i ≥ xmin

Cf
i = 0, otherwise

(6.1)

In Eq. 6.1, xd
i is the resource demand of user i. Cf

i is the fairness cost and increases

with the xd
i if xd

i ≥ xmin.

6.2.2 Improving Quality of Service (QoS)

The G-Local framework can be applied to improve quality of service by providing differen-

tiated services. Given N classes of traffic (e.g. the traffic categorization specified in IEEE

802.16 [24]), we first assign each class m a unique function U(xm
i ) that characterizes the

user-perceived utility (e.g. the mean opinion score). This helps to control the aggressiveness

of each class’s bandwidth consumption. Second, each class m is associated with a minimum

bandwidth guarantee (denoted xm
min), and a user i in each class m requires a certain amount

of bandwidth (dmi ). Third, we replace xmin in Eq. 6.1 with xm
min and formulate the G-Local

framework for QoS in Eq. 6.2.

max V (xm
i , collmi , idlemi ) , where

V = k · (log xm
i −

1

dmi
· xm

i )− (1− k) · (d
m
i − xm

min

B
+

collmi
B

+
idlemi
B

)
(6.2)

To fulfill the QoS-oriented G-Local given in Eq. 6.2, we need to identify key control

parameters that have major influences on the effective bandwidth consumption, collisions
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and unnecessary idling of a medium access protocol such as IEEE 802.11a/b/g, 802.11e,

802.11n and 802.16 etc. In this thesis we demonstrated how to control IEEE 802.11b. We

describe possible ways to control the other protocols as follows.

IEEE 802.11e

IEEE 802.11e extends IEEE 802.11 medium access control with an enhanced distributed

channel access (EDCA) to support QoS [41]. EDCA differentiates traffic types and maps

them to different priority levels. Each priority level has its own EDCA parameters including

the arbitrary inter-frame space (AIFS), the contention window (CW ), the transmission

opportunity (TXOP ). TXOP specifies the maximum number of multiple packets a node

can transmit. These parameters can be used as control variables to model the network

behavior. According to the method we proposed in Chapter 5, we can derive corresponding

control policies to fulfill Eq. 6.2.

IEEE 802.11n

The recent amendment of IEEE 802.11 is IEEE 802.11n for higher throughput operation

[39]. Besides standardizing enhancements at the physical layer, new mechanisms of medium

access control are also defined including: aggregation, block acknowledgment, and reverse

direction mechanism. Despite various hardware and protocol enhancements to improve

network throughput, the MAC layer is still the performance bottleneck because interference

increases with the number of wireless stations [97]. By selecting key MAC parameters

including the aggregation frame size, contention parameters (if EDCA or DCF is used), we

can develop multivariable control policies for the QoS-oriented G-Local.

IEEE 802.16

IEEE 802.16 supports wireless mesh networks, and offers two communication modes - point

to multipoint (PMP) and mesh [24]. In the mesh mode, the subscriber stations (SS) are

eligible to communicate directly among themselves without any base stations (BS). The

mesh mode of IEEE 802.16 supports two modes of scheduling: centralized and distributed.

Our method can be applied to the distributed scheduling by controlling the transmission

duration, and holdoff time which determines the waiting time between two consecutive

transmissions.

6.2.3 Allocating Multiple Channels

The G-Local framework can also be applied to design a probability-based multi-channel

scheduling algorithm as in Eq. 6.3. We specify an access probability pi,j , where i is the user

and j is the channel.
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max

N
∑

j=1

V (xi,j , colli,j, idlei,j) , where

V = k · (log xi,j −
1

di/N
· xi,j)− (1 − k) · (di/N − xf/N

B
+

colli,j
B

+
idlei,j
B

)

(6.3)

xi,j =R(pi,j)

colli,j =CL(pi,j)

idlei,j =CL(pi,j)

(6.4)

6.2.4 Managing Energy Consumption

Besides channel resources (bandwidth and frequency), another application of the G-Local

framework is to manage energy consumption. Compared with bandwidth, energy in mobile,

battery-based devices decreases over time. Instead of using a pre-configured xf
i , we can

use a pre-configured energy consumption rate efi , which corresponds to the average energy

consumed by successful transmissions and receptions. We also define ecolli to characterize the

energy wasted on collisions. The G-Local optimization for energy consumption is formulated

in Eq. 6.5. We can select transmit power, and sleeping schedule parameters as the control

variables, and model their impact on ei and ecolli via the adaptive multivariable control

method introduced in Chapter 4:

max V (ei, e
coll
i ) , where

V = k · (log ei −
1

efi
· ei)− (1− k) · (e

coll
i

B
)

(6.5)

6.3 Future Direction

In the future, we are interesting in exploring the following two directions.

6.3.1 Cross-Layer Optimization: Incorporating Routing and Agile
Communication Patterns

Cross-layer design is a promising paradigm to bridge the gap between network performance

and interoperability. Many papers have shown that cross-layer design is appropriate to op-

timize wireless networks, where tight interaction exists among the physical, link, network

and transport layers. The recent “layering as network decomposition” theory [15] further

establishes a foundation for cross-layer design in mathematics and control theory. To take

advantage of this methodology, we will incorporate routing and agile communication pat-

terns in the G-Local framework to achieve more efficient utilization of network resources.

Routing is an important network functionality, which finds one or more than one multi-hop

paths between a source-destination pair. Poor routing causes unbalanced load distribution
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and makes fair resource allocation impossible. Furthermore, in real networks, both traffic

and network conditions change dynamically. Frequently recomputing routes to adapt to

these changes can be very costly and incur very long delays. In comparison to frequent

route update, agile communication patterns (e.g. code migration, traffic relay, peer-to-peer

communication etc.) are more flexible and easier to develop local solutions which ultimately

reduce control overhead. Our future plan is to explore the advantages of routing and agile

communication patterns to pursue more practical and effective resource management.

6.3.2 Application to Infrastructure-Free and Infrastructure-Based
Mobile Networks

Resource management is more challenging in mobile networks due to frequent topology

changes, dynamic user-mobility patterns, diverse user QoS (quality of service) requirements,

time-varying traffic patterns and link quality. Extending G-Local resource management to

mobile networks is the second direction. We are interested in both infrastructure-free (e.g.

mobile adhoc networks) and infrastructure-based (e.g. wireless mesh networks) mobile net-

works. Infrastructure-free mobile networks are widely used in emergency scenarios (e.g.

first-responder communication, rescue missions, battlefields, etc.), and require robust, re-

liable and fast transmissions. Furthermore, although the size of such networks is usually

small, frequent topology changes caused by user movement have to be properly handled.

In comparison, infrastructure-based mobile networks has a fixed backbone that connects

mobile users to different gateways. A typical example is where mobile users require Inter-

net services in a municipal mesh network. Despite the fixed backbone, infrastructure-based

networks have to balance traffic loads from a significant number of mobile users and sat-

isfy diverse requirements. Applying the G-Local framework to benefit both types of mobile

networks is a very interesting problem.
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