
There are three kinds of death in this world. There’s heart death, there’s brain death, and
there’s being off the network.

– Guy Almes

University of Alberta

EXPLOITING PERIODICITY WITHIN MOBILE DATA FOR ROUTING IN DELAY
TOLERANT MOBILE NETWORKS

by

Zhiyu Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

c©Zhiyu Wang
Fall 2013

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of
this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

Where the thesis is converted to, or otherwise made available in digital form, the University of
Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the
thesis, and except as herein before provided, neither the thesis nor any substantial portion thereof
may be printed or otherwise reproduced in any material form whatever without the author’s prior

written permission.

To my beloved aunt Ming Wang, I miss you.
To my parents Xing Wang and Jufeng Yang, aunt Liang Wang and my wife Lin Li.

I love you all.

Abstract

Delay Tolerant Mobile Networks (DTMNs) provide communication despite the occasional

presence of disconnected subnetworks. They rely on finding a set of sequential opportunis-

tic encounters between pairs of mobile nodes. In this context, understanding mobile node

behaviour is essential to design effective and efficient network protocols. Previous studies

aimed to predict future encounters where predictions depend on exploring the probabil-

ity/age of encounters and integrated interactions in the mobile data. However, those pre-

vious solutions suffer from unstable predicted encounters with lack of routing information

such as encounter times. As an alternative to prediction, we propose to exploit periodicity

within mobile data to find stable (periodic) encounters for routing in DTMNs. In this the-

sis, we first present a generic methodology to model and find periodic encounter patterns by

using the auto-persistence function and detection techniques derived from it. Secondly, we

propose a novel graph model to capture periodic encounter patterns where routing problems

can be modelled and solved as optimization problems. Lastly, to connect disconnected sub-

networks that are strongly connected inside, e.g., by periodic encounters, in the networks we

introduce stationary relay nodes whose deployment is modelled as various k-connectivity

problems. Taking advantage of our studies, the experimental results demonstrate that in the

environment of DTMNs with the presence of disconnected sub-networks, message delivery

can benefit greatly from the underlying periodicity within mobile data. In addition, exploit-

ing periodicity opens up new research frontiers in several aspects such as designing novel

routing protocols, query dissemination and collection, and preserving privacy and security

in environments with the presence of periodic behaviours.

Acknowledgements

I am grateful for the assistance and help from many people over the last several years.

First of all, I would like to give my sincere thanks to my supervisors Dr. Mario Nasci-

mento and Dr. Mike MacGregor for their guidance, patience and extensive support. I not

only benefited from their knowledge but also the opportunities they provided me with. In

addition, they were always more than happy to help me with my personal issues. Without

their support, this work would be impossible for me. No word can express my gratitude and

appreciation to them.

I must thank some faculty members and graduate students for their help during my Ph.D

program. I would like to thank Dr. Lorna Stewart for all genuine and valuable discussions

regarding graph problems. The course I took from her inspired me to the graph related prob-

lems in this thesis. In addition, I would like to thank Dr. Janelle Harms, Dr. Ehab Elmallah

and Dr. Martha Streenstrup for their valuable comments and feedback at our research group

meetings. My thanks also go to Dr. Israat Tanzeena Haque, Ke Li, Sheehan Khan, Kather-

ine Chen, Rick Valenzano, Levi Santana, Shahab Jabbari, Dr. Zachary Friggstad, Dr. Babak

Behsaz, Siamak Ravanbakhsh for fruitful discussions.

I really appreciate the financial support from the Computing Science Department at

the University of Alberta, from NSERC’s DIVA Strategic Network and from NSERC’s

Discovery Grant program.

Finally, I would like to thank my parents and my aunts for their long-term understand-

ing, encouragement and love. My utmost gratitude goes to my wife Lin Li for her uncondi-

tional love through my entire Ph.D journey.

Table of Contents

1 Introduction 1
1.1 Delay tolerant mobile networks . 1
1.2 Routing protocols in delay tolerant mobile networks 3

1.2.1 Mobility-unaware routing . 3
1.2.2 Mobility-aware routing . 4
1.2.3 Social-aware routing . 9
1.2.4 Periodicity-aware routing . 11

1.3 Periodic behaviours within mobile data 13
1.3.1 Applications . 14
1.3.2 Opportunities and challenges in periodicity detection and utilization 16

1.4 Thesis contributions . 21
1.5 Thesis organization . 23

2 Finding periodic encounter patterns within mobile data 24
2.1 Introduction . 24
2.2 Periodicity detection . 25
2.3 Proposed methodology . 28

2.3.1 Auto-persistence function . 29
2.3.2 Pre-processing . 33
2.3.3 Periodic pattern recognition . 36

2.4 Experimental results . 37
2.4.1 Experiments using synthetic encounter series 37
2.4.2 Experiments using real mobility traces 42

2.5 Analysis of results . 47
2.5.1 The persistence of periodicity within real mobility traces 47
2.5.2 Network connectivity . 52
2.5.3 Small world structure . 53

2.6 Future work . 55
2.7 Summary . 57

3 A graph model for periodic encounter patterns 58
3.1 Introduction . 58
3.2 Existing graph models . 59
3.3 Proposed graph model . 60

3.3.1 The encounter graph for unicast routing 62
3.3.2 The encounter graph for multicast routing 63
3.3.3 Domain constraint . 69

3.4 Mathematical optimization and algorithms 69
3.4.1 Binary integer programming . 70
3.4.2 Optimal and approximate algorithms 74
3.4.3 Unicast and broadcast versus multicast 83

3.5 Performance evaluation . 84
3.5.1 Evaluation metrics . 84
3.5.2 Experiments using synthetic traces 84
3.5.3 Experiments using real mobile traces 89

3.6 Future work . 91

3.7 Summary . 94

4 Relay node deployment 95
4.1 Introduction . 95
4.2 Related work . 97

4.2.1 Message ferrying . 97
4.2.2 Relay node deployment . 98

4.3 Extended graph model . 99
4.3.1 Mobile data with logical locations 100
4.3.2 Mobile data with physical locations 102

4.4 Relay deployment problem . 104
4.4.1 k-connectivity problems . 104
4.4.2 Mathematical optimization . 107
4.4.3 Heuristic algorithms . 109

4.5 Experiments . 115
4.5.1 Experiments using networks derived from real mobility traces . . . 115
4.5.2 Experiments using synthetic networks 118

4.6 Simulations . 123
4.6.1 Simulation settings . 123
4.6.2 Evaluation metrics . 125
4.6.3 Results . 126

4.7 Future work . 133
4.8 Summary . 135

5 Conclusion and future directions 136
5.1 Conclusion . 136
5.2 Future directions . 137

5.2.1 A real-time routing protocol . 138
5.2.2 A graph model capturing the probabilities of periodic encounters . . 138
5.2.3 Coordination among relays . 138

Bibliography 139

List of Tables

2.1 Real-world traces . 43
2.2 ∆ = 0, projected persistence by varying θ 51
2.3 θ = 0.9, projected persistence by varying ∆ 51
2.4 Small-world statistics from different mobility traces 56

3.1 Encounter matrix for node O0. 61
3.2 Encounter matrix for node O1. 61
3.3 Encounter matrix for node O2. 61
3.4 Encounter matrix for node O3. 61
3.5 Combinations of edge values to identify i ∈V R 73
3.6 Real user traces . 89
3.7 Periodic patterns with different period length 91
3.8 Extended periodic patterns . 92

4.1 AP associations . 100
4.2 Derived encounters . 100
4.3 Approximation results . 105
4.4 Real-world traces . 115
4.5 Relay deployment in Dartmouth college traces 116
4.6 The number of relays returned to form 2-element connected networks in

each round of simulation . 127
4.7 Number of relays selected to form k-element connected networks in each

round of simulation . 132

List of Figures

1.1 Routing with opportunistic encounters . 2

2.1 Encounter series . 29
2.2 General procedure of our proposed method 29
2.3 APG graphs for two series with encounters of period 10 31
2.4 Encounter patterns . 32
2.5 A series with two periodic encounter patterns 33
2.6 APG for a real trace [57] . 34
2.7 APG filtering . 35
2.8 APG simplification . 35
2.9 Pattern recognition . 36
2.10 A noisy series . 37
2.11 Effects of pα and pβ . 39
2.12 Varying m and calibration . 40
2.13 Varying T with 50% calibration . 41
2.14 Encounter history of mobile node A . 43
2.15 Number of patterns detected . 45
2.16 Detected period length using different calibrations 45
2.17 Accuracy using different calibrations . 46
2.18 Accuracy distributions using different calibrations 46
2.19 Number of patterns detected . 47
2.20 Accuracy with different thresholds . 47
2.21 Effects of segments . 49
2.22 Accuracy with different thresholds . 50
2.23 Connectivity in different network types from Nokia MDC traces 52
2.24 The integrated network from Figure 2.23 53
2.25 Comparison between datasets for small-world structure in log-log scale . . 55
2.26 The effects of using different thresholds by varying constant K 56

3.1 Encounters during four consecutive intervals 58
3.2 An unicast graph model reflecting the encounter patterns in Figure 3.1 . . . 62
3.3 A multicast graph model reflecting the encounter patterns in Figure 3.1 . . . 64
3.4 Graph model for the minimum delay problem 67
3.5 Graph model for the minimum energy consumption problem 68
3.6 Illustrations for edge notations . 70
3.7 Binary Integer program for routing in our graph model 72
3.8 Partial tree T1 and T OPT . 80
3.9 Partial tree T2 and T OPT . 81
3.10 Partial tree T3 and T OPT . 81
3.11 Unicast performance regarding delay and energy cost 86
3.12 Multicast performance regarding delay and energy cost 87
3.13 Unicast and multicast performance regarding delay and energy cost in real

mobile traces . 90
3.14 The encounter graph adopting extended patterns 92
3.15 The compact encounter graph . 93

4.1 The graph model . 101
4.2 Relay nodes deployment . 101
4.3 Trajectories and the corresponding graph 102
4.4 Graph models to capture different deployment approaches 103
4.5 A sample graph . 104
4.6 A sample scenario to the k-element connectivity problem 106
4.7 The difference between the set covering problem and the relay deployment

problem . 111
4.8 An example of failure of the set covering 113
4.9 Varying n while m = 400, p =20% and k = 3 119
4.10 Varying m while n = 200, p =20% and k = 3 120
4.11 Varying p while n = 200, m = 400 and k = 3 121
4.12 Varying k while n = 200, m = 400 and p =20% 122
4.13 Varying radio range . 127
4.14 Varying the message generation rate . 129
4.15 Varying buffer size . 130
4.16 Varying relay buffer size . 131
4.17 Varying connectivity . 132
4.18 The difference in network connectivity between two deployment approaches 134

List of Acronyms

AP Access point

APF Auto-persistence function

APG Auto-persistence graph

APL Average path length

DFT Discrete Fourier Transform

DTMN Delay Tolerant Mobile Network

DTN Delay Tolerant Network

ETS Edmonton Transit System

GCC Global clustering coefficient

LCC Local clustering coefficient

MANET Mobile ad-hoc network

MAP Mobile Access Points

NOT NO reTransmissions during the same phase

ONE Opportunistic Networking Environment

WSN Wireless Sensor Network

VANET Vehicular ad hoc network

VDTN Vehicular Delay Tolerant Network

List of Symbols

Chapter 2
Sx,y An encounter series for a unique pair of nodes x and y
n The length of an encounter series
Rx,y The encounter rate for a unique pair of nodes x and y
m The period length of a periodic encounter pattern
Pm

x,y An encounter pattern with a period length m
pi A data point in an encounter pattern
di A data point in an encounter series
T The user-defined threshold where T ∈ [0,1]
k A lag in a graph
mu least common multiple of different pattern length
Pmu

x,y The fundamental encounter pattern of an encounter series
m The mean value of APG values from an encounter series
σ The standard deviation of APG values from an encounter series
K A constant
pα The probability of missing the periodic encounter at a data point
pβ The probability of an unexpected/occasional encounter at a data point
Ti The timestamp of an encounter within mobile data
T AV G The average inter-contact time
Ii An interval corresponding to one period of a periodic encounter pattern
θ The matching probability of periodic encounters within an Ii

∆ The acceptable number of intervals with missing periodic encounters
N The number of nodes in a network
d The average node degree

Chapter 3
m The period length of a periodic encounter pattern
Pm

x,y An encounter pattern with a period length m
pi A data point in an encounter pattern
Mk The encounter matrix for mobile node ok
mk

jt An encounter between o j and ok at time t
V R A set of receiving vertices in a graph
vR

t,i The receiving vertex for node oi at time t
V T A set of transmitting vertices in a graph
vT

t,i The transmitting vertex for node oi at time t
V D A set of destination vertices in a graph

vD
i The destination vertex for node oi

EH A set of horizontal edges in a graph
eH

t,i The horizontal edge connecting vertices vR
t,i and vR

t,i+1
EV A set of vertical edges in a graph
eV

t,i, j The vertical edge connecting vertices vT
t,i and vR

t, j
EI A set of internal edges in a graph
eI

t,i The internal edge connecting vertices vR
t,i and vT

t,i
ED A set of destination edges in a graph
eD

t,i The destination edge connecting vertices vR
t,i and vD

i
D A set of desired destinations in multicast routing
di A desired destinations where di ∈ D
d The total number of desired destinations where d = |D|
s The source vertex in the multicast routing
T OPT The optimal directed Steiner tree for multicast routing
V OPT

i A vertex on T OPT where V OPT
i ∈ T OPT

n The total number of nodes in a graph
r The radio range

Chapter 4
k A value for connectivity in a graph
T A set of terminals
ti A terminal
Ci, j The commodity in a network between terminals ti and t j

R A set of relays
ri A relay
f i j
uv The flow in a commodity Ci, j along an edge eu,v

dri The degree of a relay ri in a network
d The degree constraint
n The number of terminals in the network
m The number of relays in the network
p The percentage of terminals in average each relay connects
r The radio range
s The message generation rate
b The buffer size of nodes in the network
br The buffer size of relays

Chapter 1

Introduction

1.1 Delay tolerant mobile networks

The increasing popularity of wireless mobile devices such as sensors, laptops, tablets and

smart-phones has created demand for novel techniques for effective and efficient commu-

nications in mobile networks. Mobile ad-hoc network (MANET) is one type of mobile

network that has been studied extensively for the past decade. A MANET is a highly dy-

namic network that is established amongst mobile devices, without any need from other

supporting infrastructure [90]. Each node participating in the network acts as both an end-

host and a relay. Even though wireless devices are mobile within MANET, they are typi-

cally assumed to constitute a connected network where at least one path between any pair

of nodes always exists. In addition, MANET has continuous bidirectional end-to-end con-

nectivity with symmetric communications and a relatively short propagation delay. Thus,

communications are possible if routing protocols adjust the routes in response to mobility.

In general, logical structures such as paths and trees on top of the physical topology are used

to guarantee optimal (or near-optimal) costs between sources and destinations. However, in

some application domains the physical topology may change often and nodes (or entire sub-

networks) may not always be connected. Disconnections in the network are possible due to

various forms of node movement as well as energy management or interferences [34].

Previous studies have shown that node movement does impact the connectivity of mo-

bile networks [20, 83, 125]. Mobile movements may lead to a situation called network

partition where an end-to-end path may never exist because the network is divided into sev-

eral isolated sub-networks from time to time. In addition, nodes travelling at high speeds

in some environments, e.g., vehicular ad-hoc networks (VANETs) [67], means that discon-

nection in the network is the norm rather than the exception. In this type of environment,

traditional MANET route-discovery protocols are inefficient and ineffective regarding both

1

O0

O1

O2

O3

(a) Snapshot at interval I0

O0

O1

O2

O3

(b) Snapshot at interval I1

O0

O1

O2

O3

(c) Snapshot at interval I2

Figure 1.1: Routing with opportunistic encounters

delivery ratio and resource consumption [6, 64, 70, 75, 106, 107]. Frequently discovering

new routes imposes control overhead to the communication task and sometimes fails to re-

turn any result. In mobile wireless sensor networks, because each sensor has limited battery

capacity [7], the communication overhead of frequent route discovery is a severe drawback.

In summary, directly applying protocols from MANET does not meet the specific require-

ments of disconnected networks.

As an alternative solution, Delay Tolerant Networks (DTNs) [34], also called Disrup-

tion or Disconnection Tolerant Networks, provide communication despite the occasional

presence of disconnected sub-networks. In this thesis, we focus on Delay Tolerant Mobile

Networks (DTMNs) where a lack of continuous network connectivity is caused by node mo-

bility. To address the routing problem in such networks, communications depend on finding

a set of sequential opportunistic encounters between pairs of mobile nodes in a store-and-

forward fashion where an encounter is defined as a time period long enough so that mobile

nodes can directly communicate with each other. Unlike their roles in MANET, partici-

pants in DTMNs are not only end-hosts and relays, but also serve as temporary storage for

messages during routing. Messages will be exchanged when opportunistic encounters arise.

Figure 1.1 illustrates an end-to-end communication using opportunistic encounters due

to lack of continuous connection in a DTMNs. Let us assume that source o0 has a message

for destination o3. An opportunistic encounter, indicated by a bidirectional arrow, arises

during interval I0. At this encounter, o0 forwards the message to an intermediate node

o1. Node o1 carries the message until it encounters destination o3 during interval I1. At

this encounter, the message is indirectly delivered. As an alternative route, o0 could hold

the message until it meets destination o3 directly during I2. Because communications are

asymmetric in DTMNs, the same path from o0 to o3 is not applicable if o3 has a message

for o0.

2

Within DTMNs, opportunistic encounters are critical for routing. In this thesis, we

propose to utilize stable encounters, more specifically periodic encounter patterns, within

mobile data for routing in DTMNs.

1.2 Routing protocols in delay tolerant mobile networks

In this section, we concentrate on routing protocols and node mobility patterns that have

already been used in DTMNs. There are mainly four categories of routing protocols in

DTMNs: 1) mobility-unaware routing where protocols choose opportunistic encounters

without considering overall node movement, 2) mobility-aware routing where protocols

use the past history of node mobility to predict future encounters, 3) social-aware routing

where protocols compute routes based on social networks that are derived from aggregating

past encounters, and 4) periodicity-aware routing where protocols forward messages using

regular and periodic encounters within node movement.

1.2.1 Mobility-unaware routing

Under the circumstance that there is no knowledge about when and which pair of nodes will

encounter in the future, the epidemic routing protocol targets at providing promising deliv-

ery by utilizing all possible opportunistic encounters [129]. By flooding the message, every

node holding a copy of the original message transmits a replica to the one without a copy

at every opportunistic encounter. This protocol guarantees the delivery with the shortest

delay. However, it is inefficient with regard to energy consumption because of the mas-

sive number of retransmissions and is also inefficient regarding the storage where a large

number of replicas is distributed in the network. In contrast to epidemic routing, in direct

delivery [119] the source delivers the message if and only if it encounters the destination.

This protocol guarantees minimal storage and energy usage but with a potentially low de-

livery ratio because the probability of meeting the destination could be low. Epidemic and

direct delivery routing protocols set upper and lower bounds on resource usage and delivery

ratio in DTMNs.

To improve epidemic routing, researchers have proposed protocols that control the

flooding in the network by limiting the number of replicas [128], diverting replicas individu-

ally [122], reducing the lifetime and the distance that replicas can travel in the network [69]

and limiting the maximum number of relay hops to reach the destination [45]. However,

it is difficult to accurately tune parameters in these protocols to adjust different mobile

environments for better performances. As alternative solutions to direct delivery, some pro-

3

tocols aim to maintain one copy of the message in circulation in the networks [66, 123].

For example, the first-contact routing protocol always forwards the message to the first en-

countered node [66], and randomized routing protocol randomly transmits the message to

a relay based on a forwarding probability [123]. In general, this single-copy forwarding

protocol has very low delivery ratio because of long delays and low encounter probabilities.

In contrast, flooding-based routing protocols achieve better performance while consuming

a large amount of network resources. Now, the trend of designing protocols in DTMNs

exploits node mobility where encounter patterns can be applied in routing.

With respect to inter-contact times and reachability of nodes, it has been shown that mo-

bility and pair-wise encounters can benefit communications in disconnected networks [20,

125, 144]. In order to improve routing performance, solutions have been proposed to exploit

node mobility patterns. For example, FRESH [31] selects the node whose last encounter

with the destination is the most recent. PROPHET [85] uses the history of past encounters

to estimate the nodes’ delivery probabilities. In MaxProp [16] each node keeps track of

the probabilities of encountering other nodes. BubbleRap [60] relies on social structures

of the network for routing, which are aggregated on encounter histories. As we can see,

different aspects of node mobility have been used to predict opportunistic encounters. Both

mobility-aware and social-aware routing protocols are discussed next.

1.2.2 Mobility-aware routing

Mobility-aware routing protocols use the past history of node mobility to make forwarding

decisions. In general there are two categories of statistics being used to design mobility-

aware routing protocols. One category of protocol predicts the encounter probability based

on past encounters. The other category of protocol learns from the age of encounters such

as elapsed times since last encounters.

Probabilistic protocols

In previous studies, many protocols have been proposed to utilize encounter probabilities.

For example, MV exploits the frequency of encounters in the past [17]. OPF replicates

messages to achieve the maximum delivery probability [86]. 3R predicts the probabilities

to meet other nodes at a certain hour during weekdays and weekends [130]. In this section,

we focus on the most popular routing protocols in this category, which are PROPHET,

MaxProp, PREP and Prediction.

PROPHET was introduced to direct communications by learning from past encounters

4

and their transitivity properties [85]. In that paper, the authors introduced a metric called

delivery probability at every node to indicate the probability that it will deliver the message

to a given destination. Therefore, each node needs to maintain a list of delivery probabilities

for different nodes in the network. At the beginning, each node can only record delivery

probabilities for one-hop (directly encountered) neighbours. If a pair of nodes do not en-

counter each other in a while, delivery probabilities in both nodes decrease as time elapses.

Later, the property of transitivity helps to calculate delivery probabilities for indirectly en-

countered nodes. The observation is that if node A frequently encounters node B, and node

B frequently encounters node C, it implies that node B could be a good relay for messages

destined to node A from node C, and vice versa. Nodes exchange summary vectors con-

taining delivery probabilities and update their summary vectors accordingly. Last, if a node

has a message, it only delivers it to the nodes that have a higher delivery probability to

the destination than the current holder. Experiments showed that PROPHET achieved a

good performance while consuming less network resources, i.e., number of transmissions,

comparing to epidemic routing. However, one problem is that PROPHET was evaluated

using an unrealistic random mobility model so that, statistically, encounter probabilities do

not vary with time. In addition, delivery probabilities that were cumulated as long as the

experiments ran could not capture changes of encounter patterns within sub-periods.

MaxProp is another history-based protocol that calculates the delivery likelihood of a

message, which is the probability of meeting other mobile nodes [16]. Similar to PROPHET,

each node collects encounter probabilities for one-hop neighbours and then shares this local

information with other nodes. Whenever there is a message, the source needs to compute

the path with the best delivery likelihood based on collected probabilities. The difference

between MaxProp and PROPHET is that MaxProp concentrates on local encounter prob-

abilities where the probabilities of all possible paths for a source-destination pair can be

computed in order to find the best one, while PROPHET finds end-to-end probabilities with-

out further computation. In addition, MaxProp used acks for a better storage management

where nodes can drop acked messages from their buffers. However, just like PROPHET,

delivery likelihoods are cumulated for the whole duration of experiments, where changes

of sub-periods could not be captured.

Both MaxProp and PROPHET exchange up to O(n) number of messages at every en-

counter, where n is the number of nodes in the network. The total number of this exchange

process in the network could be up to O(n2) times. To address the problem of massive

exchanges, Encounter-Based Routing protocol (EBR) was proposed based on the observa-

5

tion that nodes experiencing a large number of encounters are more likely to successfully

pass the message to the destination than the ones who have less encounters [98]. In EBR, a

metric called Encounter Value was introduced to measure a node’s past rate of encounters

within a certain window length as an exponentially weighted moving average. The higher

the Encounter Value is, the higher the probability to deliver a message is. A sender always

transmits a copy of the message to one-hop neighbours with a higher Encounter Value. In

this protocol, control overheads are saved by only comparing their Encounter Values. How-

ever, using Encounter Values regardless of the identities of encountered nodes is not enough

to guarantee a good performance. For example, if high Encounter Values within a set of

nodes are mainly contributed by encounters among themselves, messages destined to other

nodes could get stuck within this set of nodes and never get delivered.

PREP is another protocol that takes advantage of node mobility. It plans routing by

predicting availabilities of encounters between mobile nodes and proposes message prior-

itization to reduce the burden on storage and bandwidth [113]. In PREP, a metric called

average availability is attributed to every pair of nodes to measure the average fraction of

time that two nodes encountered in the past. This value is reset to zero if both nodes have

not encountered for a while. With a neighbour discovery algorithm, each node obtains the

duration of encounters to its one-hop neighbours in the past. Then, average availabilities are

calculated to determine the availabilities of those encounters in the future. Whenever there

is a change of average availability at a particular node to its one-hop neighbours, an update

is disseminated into the network using epidemic routing. Therefore, the source node uses

Dijkstra’s shortest path algorithm to find the best route in terms of average availability. To

conserve network resources, a priority schema is used to decide when to drop a message

and which message to send first. This schema in PREP allows effective usage of network

resources leading to a good performance on delivery ratio. However, this priority schema

depends strongly on a set of thresholds. How to choose proper values for them in different

applications has not been addressed by the authors in that paper.

Another protocol called Prediction was proposed to use historical contact information to

estimate the encounter probability between every pair of nodes in the network [119]. Pre-

diction protocol estimates the contact probability based on a metric called timely-contact

probability that is the contact frequency between two nodes. To calculate this probabil-

ity, the duration of each input trace is partitioned into sequential intervals with the same

duration. For each pair of directly encountered nodes, their timely-contact probabilities

measure the fraction of how many intervals actually contain at least one encounter between

6

them. Over time, these direct contact probabilities are shared with all nodes in the net-

work. Therefore, indirect contact probabilities can be derived from them. If a sender has

a message, it transmits the message to a set of encountered nodes whose timely-contact

probability to the destination is higher than a threshold. Note that this protocol replicates

messages during routing. Comparing to PROPHET and MaxProp that are forwarding-based

protocols, Prediction pushes replicas into the network, which is inefficient regarding net-

work resources. In addition, different applications could have different mobile behaviours.

Selecting a proper granularity for partitioning and choosing a proper threshold for replicat-

ing to achieve good performances are critical issues. How to do that is not addressed in that

work.

Encounter age-based protocols

Besides predicting encounter probabilities from past histories, other protocols aim at using

the age of last encounter to measure the reliability of encounters between nodes in the

future.

FRESH is a protocol that directs routing by picking the next hop that encountered the

destination earlier in the past [31]. Each node in the network maintains records of time

elapsed since the most recent encounter with all other nodes. When a sender has a message

for the destination, it searches for one-hop neighbours who encountered the destination

more recent than the sender as the next relay. Then newly added relay keeps searching for

the next relay who encountered the destination more recently. The same procedure repeats

until the destination is reached. The assumption behind this protocol is that the distance

travelled during an interval is positively correlated with the duration of this interval. For

example, nodes encountered few minutes ago are probably closer than nodes that were

encountered few hours ago. FRESH improves the usage of network resource without ex-

changing the global knowledge of networks. However, in heterogeneous networks, time

may not be positively correlated to distance. Nodes who recently met the destination may

not always be the ones who are closer to the destination. In addition, it is incorrect to as-

sume that all nodes within the network encounter with each other. Added to that, in the

scenarios that networks are partitioned into sub-regions with very little interaction among

them, messages destined to other regions may never get delivered.

MEED is a method that keeps track of the disconnection time between node pairs and

uses this information to make routing decisions [71]. In the network, each node records

disconnection times with its one-hop neighbours. After sharing this information with other

7

nodes, each node obtains the topology of entire network described as a graph, whose ver-

tices are nodes, and edges connect pairs of encountered nodes with weights describing the

estimated delays between two consecutive encounters. If a node has a message, it computes

the path with the minimum estimated expected delay and sends the message to the first relay

on this calculated path. A note here is that nodes may not have exactly the same graph at the

same time. A relay may find a better path in its own graph that has more recent information

than the sender. Therefore, nodes have to locally recompute the path for every received

message to find a next hop. In addition, frequently distributing topology updates may also

limit the performance of MEED.

Similarly to using contact history in MEED, another link-state protocol, proposed by

Su et al., uses the history of inter-contact times to measure the relationship between two

nodes [126]. First, each node maintains perceived states of the network referred as a link-

state graph. In the graph vertices represent nodes, and edges represent encounters between

pairs of nodes. A weight on an edge is modelled as an exponentially weighted moving

average that captures the changes of inter-contact times. Over time, nodes will update their

link-state graphs and share updated entries with other nodes. The idea for routing is to

find the path with the minimum weight (inter-contact time) on the graph. Just like MEED,

frequently updating link-state graphs imposes control overheads in the network.

The EASE protocol exploits node mobility based on the time and the location of its

last encounter with every other node in the network [46]. Because every node only needs

to maintain a database of direct encounter information, no communication overhead is in-

curred to the network. To be a good relay, a node must either have a more recent encounter

with the destination or physically closer to the destination than the current holder. Again,

EASE assumes every node meets the rest of the network, which is not necessarily true. An-

other problem is that mobility patterns and speeds could degrade the performance in terms

of route length because both the time and location of last encounter become less stable in

irregular moving patterns or fast moving destinations.

Predict and Relay is another protocol that studies mobility history, specially contacts [141].

Because mobile nodes move between landmarks, where associated nodes can directly con-

tact with others, according to their social schedules, Predict and Relay protocol addresses

routing by calculating transition probabilities between landmarks based on contact history

at a certain time. Therefore, inter-node contact probabilities can be derived. After shar-

ing transition probabilities with the rest of the network, every node can calculate its own

probability to meet the destination. Messages are forwarded using a greedy approach to

8

select next hops with the highest encounter probability with the destination. The experi-

ments showed that this protocol had good performance in terms of delivery delay and ratio.

However, its performance will degrade as the number of landmarks increases in the net-

work. Increasing the number of landmarks increases the communication overhead because

each node needs to exchange up to O(m2) transition probabilities where m is the number

of landmarks in the network. In some scenarios, this is even worse than other probabilistic

protocols such as PROPHET and MaxProp with only O(n) updates, where n is the number

of nodes.

1.2.3 Social-aware routing

The performance of mobility-aware routing protocols depends highly on tuning parameters

and/or global sharing of local collected probabilities, which may lead to significant con-

sumption of energy, processing capability and bandwidth. As an alternative, social-aware

routing was proposed to use social relationships between nodes to make forwarding de-

cisions. This is because social relationships are thought to be less volatile than mobility

behaviours [60]. In social-aware routing, connectivity is modelled using a graph called a

social network. Each node is represented with a vertex, and an edge is assigned between

two vertices if they have a social relationship. The idea of communities is also introduced

in the network where people from the same community have stronger social relationships

compared to people from different communities.

LABEL is one of the first methods that exploited social relationships, especially com-

munities for routing in disconnected networks [59]. In that work, the authors distributed

iMotes to participants at INFOCOM where iMotes used Bluetooth to collect encounter in-

formation. Before handing out the mobile devices, four groups/communities of people were

carefully selected by labelling them with a group name. The inter-contact and intra-contact

distributions from collected contacts showed that people from the same group encountered

each other more frequently than people who are friends from different communities. In ad-

dition, friends from different communities encountered more frequently than people that are

neither friends nor from the the same community. In their LABEL strategy, group labelling

technique allows to forward messages directly to the destination or to a relay who also be-

longs to the same community as the destination. Experiments showed that forwarding based

on communities improved the delivery ratio and delivery cost in terms of total number of

transmissions. Additionally, forwarding between friends from different communities can

slightly improve the delivery ratio. However, the LABEL strategy depends on relays from

9

the same group as the destination. The delivery will fail if the sender never encounters any

member from the same group as the destination.

As we have seen in LABEL, sources forward messages to any member from the same

community as the destination if both source and destination do not meet directly. However,

in some scenarios, the source may never meet any member from the same group as the

destination. Even if the source does, relays that the source chooses may never meet the

destination within their own group. In those cases, choosing popular nodes within com-

munities and important nodes that connect different communities becomes critical. SimBet

proposed methods to identify both types of nodes within the context of social networks by

measuring nodes’ betweenness centrality and social similarity [27]. Betweenness centrality

captures how important a node is for connecting two other nodes from different commu-

nities who never encounter. Social similarity predicts the probability of future encounters

between two nodes. Both metrics are used to calculate the SimBet utility function where the

effects of the two metrics can be adjusted by tunable parameters in different applications.

When two nodes meet each other, they exchange their contact lists along with their similar-

ity and betweenness values. As a result, both nodes can update their metrics accordingly.

Forwarding decisions are based on local calculations to find next hops with stronger social

characteristics, i.e., similarity and betweenness. The results showed that this protocol had

good performance regarding delivery ratio and extremely low delivery cost in terms of total

number of transmissions. However, there is one big issue about SimBet. When two nodes

encounter, a lot of processes need to be performed such as sharing contact histories, com-

puting utility values (both betweenness and similarity) and exchanging a set of messages.

Its performance can easily degrade in scenarios where encounters have short durations.

Unlike SimBet, BubbleRap combines the knowledge of community structures and ranks

of nodes to make forwarding decisions [60]. Instead of manually labelling each group as in

their previous work (LABEL) the authors first classified nodes into communities based on

their social characteristics such as number of contacts and identities of encountered nodes.

Then, classified communities and local/global rankings of nodes derived from betweenness

centrality are applied to forward messages. Here, global ranking describes the popularity of

a node in the entire network whereas local ranking captures the popularity of a node within

its own community. Because a node may belong to multiple communities, it can have mul-

tiple local rankings. The forwarding strategy of BubbleRap is relatively simple. If a node

has a message, it first checks whether the destination is within the same community. If it

is, the message is bubbled up to relays who have higher local rankings until one of relay

10

encounters with the destination. If the destination is from another community, the message

greedily bubbles up to relays with higher global rankings until a relay from the same com-

munity as the destination is found. Then, the same procedure in the first case is applied.

By detecting communities and forwarding with social rankings, this protocol achieved a

good performance regarding high delivery ratio and fewer transmissions. However, mes-

sages originated at nodes with low ranking could cause flooding because of exhaustively

searching for better relays from the bottom to the top of social ranks. Such a scenario will

affect the performance of this protocol.

There are also other protocols that take advantage of social relationships such as Social-

Cast [26] and PeopleRank [97], which all use centralities and utility functions to find relays

with better social characteristics.

One criticism of using social networks for routing is that the delay is unknown because

we do not know when an encounter is going to take place in the social network [130]. An-

other problem is that social networks grow in complexity over time [54]. A social network

is built by aggregating encounter information. After a long time period, the social network

will become very complex, sometimes even becoming a complete graph. This affects the

utility function, and degrades the performance of routing. In addition, it has been shown

that a small number of good nodes, i.e., with high centrality, carry a significant amount

of the traffic in the network [110]. The performance of these protocols will significantly

degrade if any good node fails.

1.2.4 Periodicity-aware routing

Neither mobility-aware routing nor social-aware routing capture the regularity and period-

icity of node mobility. For example, even if two nodes are not highly socially connected

or have a low encounter probability in the past, they might still have a promising encounter

during a certain time every week. In this section, we discuss the most relevant routing

protocols that make forwarding decisions using periodic encounters.

In 2004, an algorithm was proposed for routing in disconnected networks based on an

assumption that every node has full knowledge of future encounters in the network [49].

Even though this assumption has nothing to do with regular and periodic nodal encounters,

it provided foresight to exploit deterministic encounter within node mobility. Because every

node is assumed to have the global knowledge of all encounters during all intervals, a tree

rooted at the source can be built for forwarding, where each level of the tree represents

encounters at a certain interval, k, that is k intervals away from the root. If nodes do not have

11

global knowledge of encounters, they can exchange local encounter knowledge with their

one-hop neighbours. The same tree built on top of collected information is used to make

forwarding decisions. In a distributed approach, because nodes within the network do not

have exactly the same knowledge about the network, relays with a better path can make local

decisions to reroute the message through a better path. Unfortunately, no experiment was

conducted to demonstrate the performance of this work. The problem of this approach is

that routes are computed with time-varying encounters. If nodes do not move as predicted,

the path will be broken accordingly. This is the reason why we need to find those promising

encounters within node mobility. Another problem of this work is the tree itself. If nodes

have global information, the constructed tree could be very big because it has to record all

encounters in the network.

In another work, the authors introduced the idea of contacting sequence that describes

a sequential set of repetitive encounters within a time window [68]. It was assumed that

repetitive encounters are given and repeat themselves with a given period in the future.

Based on this assumption, a contact graph was built on top of repetitive patterns. Within

this contact graph, each vertex represents a node whereas an edge links two nodes with a

weight to describe the contact time within the period. Because in real life scenarios contacts

may not repeat at exactly the same time, a probability of the occurrence of a contact is

introduced as a part of the weight on an edge. Therefore, the weight on an edge is a tuple

with two parameters, the contact time and probability of occurrence. Within the graph, the

path to deliver a message is a sequence of contacts that occur in an increasing order of

time based on the weight on edges. At the beginning, a centralized algorithm is required

to calculate the best probability to access each edge from a specific source by examining

them in the right order of time. To find the best path (highest delivery probability) for

a given source-destination pair, another algorithm is used in a reverse fashion from the

destination by greedily adding the edge with the highest probability step by step. Finally,

a protocol makes forwarding decisions by only transmitting the message to the nodes that

are on the pre-calculated path. Experimental results showed it can achieve high delivery

ratio with no message replication. However, the problem is that a 2-tuple weight on an

edge makes computation extremely complicated. This is the reason that two algorithms

are used to find an end-to-end path. In that paper, a centralized algorithm was used to

sort all edges according to their contact times globally to calculate access probabilities of

using an edge for a specific source for routing. It is impractical to apply that approach in

distributed environment because getting such global information in real-time is extremely

12

inefficient. The worse problem is that algorithms in this protocol have to recompute critical

information, i.e., access probabilities, for every source because the algorithm is source-

oriented.

One problem of existing solutions in periodicity-aware routing is that they all assumed

that repetitive encounter patterns are given. However, as far as we know, no previous

method is able to extract periodic patterns that can be used for routing. One objective

of our studies is to fill this gap.

1.3 Periodic behaviours within mobile data

One interesting characteristic that has emerged from node mobility is that mobile nodes

often have periodic behaviours [44, 68, 118]. In many domains, mobile nodes have rela-

tively predictable and periodic patterns of movement. They tend to have a repeated, stable

sequence of activities because of their social and/or controlled behaviours. For example,

mobile robots in an automated factory have relatively invariant mobility traces because

they have predefined schedules and areas to work, and people use relatively stable routes

daily to commute to and from work. One outcome from these repeated activities is that each

mobile node may encounter a set of other nodes periodically, for example at approximately

the same time every day. We call these sequences of periodic encounters encounter pat-

terns. Compared to previous works that predict next relays for routing, periodic encounters

reveal useful information within node mobility where the time and node pairs of encounters

are much more stable. Hence, if we can obtain such periodic encounter patterns, we can

use this information to find routes to forward network packets in a more reliable way. Re-

calling the example in Figure 1.1, if all nodes have full knowledge of periodic encounters

during all three intervals, then indirect delivery has less delivery delay, and direct delivery

saves energy. Therefore, different performance metrics can be evaluated in the domain of

periodicity.

Mobile devices are usually carried by animals, human beings or equipment that is pro-

grammed or operated by humans. These devices may exhibit regular and periodic move-

ment patterns reflecting predefined schedules or social activities. Many applications such

as vehicular networks (i.e., public transportation network) [16], sensor networks for wild

life monitoring [143] and PeopleNet [96] rely on opportunistic encounters among mobile

nodes. If promising periodic encounters exist within node mobility, we should use them

for routing instead of wasting network resources because of inaccurate predications. We

13

believe the periodicity within node mobility is more promising to make forwarding deci-

sions because both the time of periodic encounters and periods of periodic behaviours fill

the gap within previous works. In addition, all periodic nodes are equally treated where a

fair routing can be managed whereas traffic in mobility-aware and social-aware routings is

heavily loaded on hot nodes.

1.3.1 Applications

Many applications of DTMNs can be extended to our problem because underlying mobile

nodes may exhibit periodic behaviours. In this section, we discuss some of the applications

that are closely related to our studies in this thesis.

Vehicular ad-hoc networks

One of the well-known DTMNs is a VANET where vehicles are mobile nodes in the net-

work. With on-board sensors and computers, it aims to provide both vehicle-to-vehicle

and vehicle-to-infrastructure communications. More specifically, for example, vehicle-to-

vehicle and vehicle-to-infrastructure communications help enhance highway safety with

cooperative collision avoidance [13], commercial advertising dissemination [81], entertain-

ment services such as on-line gaming [103] and health data collection [99]. In those appli-

cations, vehicles as mobile nodes in the network are mediums reflecting drivers’ movement

patterns. They do not move randomly but follow the driver’s intention to move around. One

of their patterns is periodic movement patterns.

Another typical example with periodic patterns of movement is a public transportation

system. A testbed called UMass DieselNet at the University of Massachusetts has been

deployed [120]. In this testbed, buses follow the same route periodically. The testbed con-

sists of 35 buses each with an on-board wireless device that allows information to be shared

and exchanged between buses. In addition, there is a commercialized product called First

Mile Solution [1], which implements the studies of DakNet [104]. Its objective is to pro-

vide internet services to remote villages with a relatively lower cost, and such systems have

already been deployed in India and Cambodia. Instead of building underlying infrastruc-

ture, the system is composed of stationary kiosks and mobile access points (MAPs) that

can be buses running between remote kiosks and internet gateways, and data is transmitted

in a store-and-forward fashion. In DakNet, the system does not provide real-time com-

munications where only asynchronous services such as email and voice mail are provided.

Because MAPs are usually equipped on vehicles, they have relatively high capacities in

14

terms of buffer space. As a result, it can provide a relatively high throughput compared

to traditional telephone modem. In the setting of DakNet, vehicles running between cities

and remote villages have predefined routes and schedules. Because data transmission solely

depends on MAPs with periodic movement patterns, communications in such environments

could significantly be benefited by techniques presented in this thesis.

Wireless ad-hoc networks

One example of wireless ad-hoc networks is wireless sensor networks. Wireless sensor net-

works (WSNs) consists of spatially distributed mobile or stationary sensor nodes to monitor

physical or environmental conditions. Moreover, wireless sensors cooperate to pass data

through network to base stations. In WSNs, a key constraint for sensors is energy. Because

each sensor has limited battery capacity [7], different energy management frameworks have

been introduced. One of the strategies is to schedule sensor’s active time slots [8]. While

designing wake/sleep scheduling algorithms in WSNs, we can incorporate periodicity in

the design of scheduling by adopting the store-and-forward in DTNs. As a result, instead of

having a connected sensor network at all the time, sensor networks could be disconnected.

If data acquisition consumes significantly less energy than transmission, queries can be dis-

seminated and collected by scheduling a set of sequential connected sensors between data

sources and sinks.

Other than the famous ZebraNet [143], WSNs also have great impacts on measuring

and monitoring dynamic changes in agriculture [133]. Wireless technologies have been

introduced into agriculture to improve productivity and provide long term monitoring to

prevent harmful events. For example, several cattle monitoring systems have been proposed

in recent years with coverages from local farms to national wide control [111, 112, 136,

137]. Most studies just simply adopted routing protocols from MANET without considering

the constraint of energy consumption in the network. Because the monitored animals often

roam around separately in physical clusters that are disconnected from a central backbone

infrastructure, naively adopting routing protocols from MANET could reduce the life-time

of sensors, and it is very expensive and difficult to replace sensors if there are hundreds

or thousands of animals in the system. It has shown that animals have relatively invariable

mobility patterns because of their habits [15]. For example, cattle have predefined schedules

for feeding, milking, exercising and so on, and wide-life such as zebras know where to

feed and where to stay during the night. Understanding their movement patterns, specially

periodic patterns, could help set up proper networks and design efficient routing protocols

15

to disseminate and collect data from those mobile nodes.

In addition, other projects such as the European Union’s Haggle Project [2], SARAH

project [5] and ResiliNets [61] have also been proposed to utilize opportunistic communica-

tions between mobile nodes. We believe exploiting periodic behaviours within mobile data

could help to design delay tolerant distributed services, resilient and survivable networks.

In summary, we discussed two major applications where periodic movement patterns can

be applied. In those applications, mobile nodes exhibit strong periodic movement pat-

terns. However, a total lack of knowledge about underlying periodicity limits the usage

of stable periodic encounters where existing solutions simply adopt routing protocols from

MANETs and DTNs that target predicting future encounters. In addition, some applica-

tions in MANETs and DTMNs, and VANETs particularly, need the assistance from station-

ary base-stations or roadside-units to enhance connectivity in the network. Sophisticated

analyses aimed at different metrics are conducted for optimal deployment without consid-

ering the diversity in the network, so that if a critical base-station or roadside-unit failed,

connectivity in the network could be significantly degraded.

Our studies are not limited by those applications. Utilizing periodic patterns is suitable

to any application with the involvement of people, animal and schedules. Because mobile

nodes must exhibit some types of movement patterns, as long as there is periodicity within

mobile data, our studies in this thesis could benefit communication services.

1.3.2 Opportunities and challenges in periodicity detection and utilization

As we have discussed in Section 1.2, both mobility-aware and social-aware routing suf-

fer from unstable predicted encounters with lack of routing information such as encounter

times. Protocols using probabilities or social relationships alone are not enough to guaran-

tee good performance. For example, even if two nodes are not highly socially connected

or have a low encounter probability in the past, they might still have a promising encounter

during a certain periodic time window. As an alternative solution, we propose to use regular

and periodic mobile behaviours from node mobility to address communications in DTMNs.

We believe the periodicity within node mobility is promising to make forwarding decisions

because both the time and the period length of periodic behaviours fill the gap within pre-

vious works. In addition, all periodic nodes are treated equally where a fair routing can be

managed.

16

Fundamental challenges

There are two fundamental challenges in order to take advantage of periodic patterns of

node movements. First, we need to detect and extract periodic patterns from node mobility.

Secondly, we need to model and exploit the obtained periodic behaviour.

• Detecting and extracting periodic behaviours Studies have been done to under-

stand characteristics of different network environments and user groups, but it is dif-

ficult to generalize these findings to other applications. For instance, in [74], the

periodic property of node mobility was introduced to reveal periods within node mo-

bility and periods of association patterns from access points. There are also other

studies detecting periodicity with different statistics. For example, the re-appearance

probabilities of nodes to specific locations [56, 58, 118] and the probabilities of users

returning to specific locations after a certain amount of time [44]. By examining

repetitive patterns of users and encounters, previous work has observed periodic be-

haviour in real mobility traces. However, finding routes in mobile networks needs

more than that. We need to find pairs of objects that encounter each other periodi-

cally. In addition, besides encounters between two objects, we need to know which

encounters are periodic, and which ones are not (since they may not be reliably used).

Finally, there are two important pieces of information from a periodic encounter pat-

tern: the period length and the promising encounter phase(s). The length defines

the duration of the pattern. The phase indicates the time(s) within the period where

periodic encounters occur. Because a pair of nodes may have several events where

their encounters for each event are periodic, we should be able to exploit them all.

For example, we may observe a frequent weekly encounter on Mondays and a less

frequent bi-weekly encounter on Thursdays. If we have to choose only one of these,

we may degrade routing performance for some source-destination pairs.

• Modelling periodicity Once we obtain the periodic patterns, the next step is to de-

fine a formal model that is flexible enough to reflect different assumptions and goals.

In conventional logical topologies graphs are usually applied to model network con-

nectivities at a particular time. Within a graph, an edge between two vertices means

that two mobile objects can directly communicate with each other, i.e., an encounter

occurs. If objects in the networks are mobile, the graph has to change whenever there

is a change in the physical topology. As we have discussed before, periodic patterns

contain both the period length and the periodic encounter phase(s). Within a periodic

17

pattern there may be multiple periodic encounters at different times. Integrating en-

counters from multiple time instances is impractical because we will lose track of the

phases of periodic encounters. In addition, representing repetitive encounters in the

model becomes even more challenging.

• Relay node deployment In DTMNs where the network is partitioned into completely

disconnected sub-networks, deploying stationary relay nodes is one of the approaches

that enhance the connectivity by increasing encounter opportunities. In previous so-

lutions, the problem of deployment is treated as different optimization problems such

as the smallest connected dominating set. As a result, to satisfy different measure-

ment metrics such as minimizing the number of relays in the network, there may be

only one path between most of the node pairs. Because mobile networks can be very

dynamic, if a mobile node or a relay that is used to join disconnected sub-networks

fails, the whole network would fall apart and become disconnected again. Therefore,

increasing route diversity, i.e., the existence of multiple disjoint paths in the network,

is also very important with respect to relay deployment. How to properly model route

diversity in terms of mobile node failure, relay node failure and link failure is very

challenging.

Open challenges

As extensions to the fundamental problems, exploiting regularity and periodicity within

node mobility opens up new research frontiers in various aspects such as (1) designing

novel routing techniques that adopt periodic encounters, (2) disseminating and collecting

queries in delay tolerant environments, (3) integrating mobile nodes from different network

types and (4) preserving security and privacy in DTMNs.

Routing protocols In our proposal of modelling periodic patterns a centralized graph

model is built by integrating all periodic encounter patterns. Therefore, optimal al-

gorithms such as Dijkstra’s can be applied to find paths with the minimum weight

for end-to-end communications. In addition, the minimum weighted Steiner Tree

can be applied for mutlicast routing with the minimum cost. Theoretically, commu-

nication can be routed through those pre-calculated routes. However, in distributed

environments each mobile node has to discover periodic encounters online, and can

only obtain local information about its one-hop neighbours. Routing protocols with

18

distributed solutions are required with cost-efficient methods to utilize local informa-

tion. In the discussion of mobility-aware protocols, there are several problems about

exchanging and updating local information. For example, updating local routing in-

formation implies control overhead, which wastes network bandwidth. In addition,

the inconsistency of local information is also a problem. For example, because of

diverse encounter times, the global sharing of local information is not consistently

distributed through the network. As a result, the optimal route to a destination com-

puted from one node may be different from the one from other nodes. In this situation,

the global optimization is not always guaranteed. How to balance or minimize those

constraints within the routing protocol becomes very challenging.

In addition to designing protocols with distributed solutions, protocols should also

be robust with respect to random and infrequent interruptions of periodic encounters.

The performance of routing under the circumstances of losing stable periodic part-

ners highly depends on the sensitivity of detection techniques to discover abnormal

behaviours. Slow reaction of routing protocols with respect to periodicity changes

may lead to poor performance with long delays and high costs of network resources.

Therefore, designing simple and robust periodicity detection techniques is also criti-

cal in the design of routing protocols.

Querying Querying is also an interesting problem in DTMNs. Of course, query

dissemination and result collection rely on different routing protocols depending on

query types. However, simply applying routing protocols for query processing in

DTMNs may not perform very well. In mobile ad-hoc networks where networks are

always assumed to be connected, queries are disseminated by forming a routing tree

originated at the source node called root [42]. A query is distributed along the tree

from the source to destinations that are leaf nodes in the tree. Once results are ready,

they are sent back to the source in a bottom-up fashion where query aggregating or

filtering such as finding the MAX or MIN value is performed by intermediate nodes

on the tree. Selecting a proper routing tree has a non-trivial impact on effectiveness

and efficiency of query dissemination and result collection. Unfortunately, such strat-

egy does not work in DTMNs because of 1) lack of connectivity in the network and

2) time-varying encounters. Lack of connectivity in DTMNs means a routing tree

may not exist in the network. Even though a routing tree may be found for query

distribution, this tree may disappear or its topology may change over time. If the

topology for routing tree has changed for result collection, pre-scheduled aggregat-

19

ing or filtering at intermediate nodes in the old tree will fail.

In the domain of periodic encounters in DTMNs, routing trees can be established on

top of periodic encounters. However, unlike sharing one tree for both dissemination

and collection, two trees may be required because of time-varying encounters. An en-

counter may not be there when a result needs to be sent back from a node to its parent

in the tree. Therefore, one tree is used to distribute queries to all destinations where

the second tree is used to collect results, where results are aggregated and filtered at

the intermediate nodes in the second tree.

Mobile nodes and networks integration In our studies, we have found that typi-

cally only a small portion of nodes exhibit strong periodic mobile behaviours. This

is because interruptions or unexpected events could affect periodic encounter series

so that their periodicities are too weak to be detected. Our studies so far only focus

on periodic nodes of entire node population. For aperiodic nodes, we lose the benefit

of encounters that can be used to compute routes for routing. In DTMNs integrating

both periodic and aperiodic mobile objects is vital. In addition, there are various net-

work types co-existing in real life. For example, cellular networks, wireless local area

networks and networks based on Bluetooth encounters such as Pocket Switched Net-

works. Mobile objects from these networks could exhibit periodic behaviours, where

they should not be isolated from each other. Otherwise, mobile objects from dif-

ferent applications could suffer from system constraints where communications are

limited within separated networks. New frameworks should coordinate requirements

and cooperate mobile objects from diverse DTMNs environments where communica-

tions cross platforms (networks) can be benefited. However, they (each network type)

should not be treated in isolation. Rather, the possibility of cooperation between dif-

ferent networks should be explored. How to integrate mobiles objects from different

networks and routing among objects in large-scale networks as well as non-mobile

networks requires more investigation.

Security and Privacy Delay Tolerant Networks (DTNs) have been studied exten-

sively for almost a decade. However, not much research has been done to address

the security of data transmission and protect the privacy of mobile objects who are

willing to participate routing processes. Because DTMNs are just general scenarios

of DTNs, they also face all security issues that target DTNs. In particular, authentica-

tion cannot guarantee environments free of malicious nodes because it is difficult to

20

only deliver private keys to non-malicious objects in mobile environments. Once ma-

licious objects are inserted, messages such as queries and answers for queries could

be captured on the fly or even be replaced by malicious code. How to guarantee

data integrity and protect node privacy and confidentiality become even bigger prob-

lems. In the context of routing with periodic patterns, inserting a malicious node into

networks is relatively easy. Without authentication, if the movement of malicious ob-

jects is pre-planned to be periodic, or even if stationary malicious objects are placed

in the network, non-malicious objects encountering them regularly could consider

malicious objects as stable periodic one-hop neighbours. Therefore, how to prevent

intruders, protect privacy and avoid attacks are important issues to preserve secure

and reliable services while still benefiting from periodicity in DTMNs.

1.4 Thesis contributions

Utilizing encounters within mobile networks from different perspectives can improve the

performance of routing protocols in DTMNs. Instead of predicting future encounters, we

concentrate on exploiting stable periodic encounter behaviours within mobile data. In this

thesis, we describe a series of studies: (1) finding and extracting periodic encounter patterns

from mobile data, (2) modelling periodic encounter patterns as a graph where routing prob-

lems can be addressed as optimization problems and (3) deploying stationary relay nodes in

DTMNs to connect disconnected subnetworks. In summary, this thesis makes the following

contributions.

Finding periodic encounter patterns within mobile data

Our study is the first research to propose a method for extracting the specific encounter

patterns (both period and phase) for pairs of nodes that meet each other periodically. Other

work has stopped short of this, only proposing methods for detecting node pairs that have

periodic encounters. We conduct experiments on different network types including Blue-

tooth, cellular and wireless local area networks whereas previous studies only concentrated

on wireless local area networks. We also investigate the persistence of detected periodic

behaviours, i.e., how long they reliably project themselves in the future. Furthermore, the

small-world structure of networks formed by periodic encounters is examined. Our results

show that the majority of networks have a small-world structure where messages between

any pair of nodes can be delivered through a very small number of hops in the network.

21

A graph model for periodic encounter patterns

To take advantage of periodic encounter behaviours, we introduce a graph model which in-

tegrates all encounter patterns. We show that both the minimum delay and minimum energy

consumption problems can be modelled as optimization problems. The only change be-

tween the graphs used to solve either problem is in the assignment of weights for the edges.

The minimum delay problem can be modelled as the shortest path tree problem whereas the

minimum energy consumption problem can be modelled as the minimum weighted Steiner

Tree problem. With a modification, we can use Dijkstra’s shortest path algorithm [29] to

find an optimal solution for the minimum delay problem. However, because the minimum

weighted Steiner Tree problem is NP-hard, we propose a polynomial time k-approximation

algorithm, where k is the number of destinations, to find a multicast tree for routing. Exper-

imental results, using both real and synthetic datasets, show that our proposed approaches

always find better routes with regard to delivery delay and energy cost compared to other

state-of-art protocols in DTNs [34].

Deploying relay nodes to connect isolated subnetworks

Our studies showed that even mobile nodes with periodic behaviours can still be partitioned

into disconnected components. To address this disconnection problem, we propose deploy-

ing relay nodes in the network to connect disconnected components. In this thesis, we first

present an extension of our proposed graph model that can capture encounters in different

mobility environments. We also show that relay node deployment problem can be modelled

as various k-connectivity problems with the objective to build fault-tolerant networks: the

k-edge connectivity problem models the encounter failure problem; the k-vertex connec-

tivity problem captures the node failure problem; and the k-element connectivity problems

examines the relay node failure problem. In our study, we concentrate on the k-element

connectivity problem where we want to minimize the number of relay nodes in the network

such that the network is k-element connected. Finally, we present an integer programming

formulation to solve the problem. In addition, three polynomial time heuristic algorithms

are introduced to find solutions to k-element connectivity. Our simulation results show

significant improvement in network performance regarding the delivery ratio and delivery

delay by forming k-element connected networks.

22

1.5 Thesis organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce our methodol-

ogy to detect and extract periodic behaviours from mobile data. To characterize the per-

formance, we examine our method against both synthetic data and real-world traces. In

addition, we use real-world traces to explore periodic encounter behaviours and their prop-

erties. Chapter 3 presents our graph models regarding both unicast and multicast routing.

Mathematical optimization and optimal algorithms that capture the semantics of the dis-

covered encounter patterns are also discussed. Experiments against both synthetic data and

real-world traces are conducted to examine the performance of our algorithms in the graph

models with respect to different problems. In Chapter 4, we discuss the relay node deploy-

ment problem in order to obtain k-element connected networks. To address the problem, we

first present an integer programming formulation of the problem. In addition, three polyno-

mial time heuristic algorithms are used to solve the problem. Experiments and simulations

are conducted to demonstrate the performance of our heuristic algorithms and deployment

solutions. Finally, we conclude this thesis in Chapter 5 with a discussion of future research

directions.

23

Chapter 2

Finding periodic encounter patterns
within mobile data

2.1 Introduction

Mobile nodes have been observed to exhibit periodic behaviours [44, 68, 95]. They tend

to have a relatively stable sequence of activities because of their social or controlled be-

haviours. For example, people often use the same routes daily to commute to and from

work. Farm animals and animals in the wild also exhibit predictable mobility behaviours in

terms of paths followed, places they rest, feed, etc. One result of these repeated activities is

that each mobile node may encounter one or more other nodes periodically. If we can detect

and extract these periodic encounters, we can know when and which pairs of nodes are go-

ing to encounter each other. Therefore, periodic encounters can be used to find and schedule

routes for communication. In order to utilize periodic encounter patterns, we first need to

detect and extract them from node mobility. In this chapter we propose a methodology to

find periodic behaviour within real mobility traces including MIT [32], USC [57], Dart-

mouth [76] and Nokia-MDC [80] traces and examine connectivities among mobile nodes

with periodic behaviour. Our studies in this chapter have the following contributions:

1. We propose a method for extracting the specific encounter patterns (both period and

phase) for pairs of nodes that meet each other periodically. Previous solutions have

stopped short of this, only proposing methods for detecting node pairs that have pe-

riodic encounters.

2. We conduct experiments on different network types including Bluetooth, cellular and

wireless local area networks whereas previous studies only concentrated on wireless

local area networks.

24

3. We also investigate the persistence of detected periodic behaviours, i.e., how long

they reliably project themselves in the future, where similar work has never been

presented before.

4. Furthermore, we examine the small-world structure of networks formed by mobile

nodes with periodic encounter behaviours.

The remainder of this chapter is organized as follows. An overview of existing routing

protocols in DTN is discussed in Section 2.2. In Section 2.3, we introduce our method

to detect and extract periodic behaviours from traces. Section 2.4 presents two sets of

experiments that use synthetic traces and real mobility traces, respectively. Finally, future

work and a summary are given in Section 2.6 and Section 2.7.

2.2 Periodicity detection

In previous studies, analyses of human social network connectivity have been conducted

to demonstrate delivery between different human communities using their social relation-

ships [14, 27, 52, 59, 60]. However, routing with a social network does not offer control

over the time delay of delivery [130]. We know that people will encounter each other if they

are socially connected. However, we do not know when encounters will take place. There-

fore, mobility traces have also been studied to understand user mobility. Many researchers

have studied movement patterns. With respect to inter-contact times and reachability of

nodes, it has been shown that mobility and pair-wise encounters can benefit communica-

tions [20, 83, 125, 144]. With respect to understanding periodicity within node mobility,

several authors recently have reported experiments to detect periodic behaviours [56, 95].

One study looks at the association of wireless devices with wireless access points

(APs) [56]. Device associations were captured every minute in a real network. These

associations were used to calculate a location similarity index, which is the percentage of

observations for which a given device is associated with the same AP. The network simi-

larity index was then calculated as the average of the location similarity index values for

all devices for a given time lag between successive observations. High values of the net-

work similarity index were observed close to a lag of 1 day. This indicates that nodes have

daily periodic behaviours. In addition, the second highest index was observed at a lag of

approximately 7 days. This suggests a weekly periodic behaviour.

Another study reports a spectral analysis of mobility traces to quantify the regularity

and periodicity of nodal encounters [95]. Real user traces were converted into time series

25

of nodal encounters. Each trace was split up into consecutive intervals based on a given

granularity (e.g., 1 hour or 1 day). A binary time series was then created for each unique

pair of nodes. The length of each series equals the number of intervals in the trace at the

given granularity. During any interval, if there was an encounter between a pair of nodes, a

value of 1 was recorded. Otherwise, a 0 was recorded. The auto-correlation function was

then calculated to find periodic encounters at each lag [22]. Then, the discrete Fast Fourier

Transform was applied to the auto-correlation function to convert it from time domain to

frequency domain. Analysis in the frequency domain was quite elementary, and consisted

of looking for the frequency component with the largest amplitude. However, as the authors

stated, the results from using the Discrete Fourier Transform (DFT) include an artifact that

affects the accuracy of period detection. For example, the most significant period returned

from DFT could be 7 days and 10 hours whereas the true underlying periodicity is 7 days.

In our method, we examine the correlations between encounters at different times. If there

is an underlying periodic encounter behaviour within the time series, our method guarantees

an integer period instead of a fractional result.

In addition to spectral analysis, mining periodic events is a well-known problem in

data mining. Previous studies concentrated on finding “exact periodicity” and “partial

periodicity” in transactions with the characteristic that events are perfectly periodically

aligned [18, 48, 89, 102, 140]. However, such a characteristic does not hold for real-user

mobility traces. In human routines, an event may occur on a regular basis; however, it is un-

likely to always occur at exactly the same time. To discover periodicity in human routines,

a new method was proposed to find the minimum routine period of events that have some

periodicity but do not always occur at the exactly the same time [10]. In that paper, given

sequences of events with the same type plus their occurrence times, the authors proposed

a method with two steps: (1) first, an algorithm is used to find a set of candidate period

lengths, and (2) second, given a set of candidate period lengths returned by the first step,

another algorithm using a sliding window is proposed to find the minimum period length of

the routine in the input sequence, if there is one. In summary, the method is based on the

use of a sliding window. Instead of examining every period length that is less than the input

sequence length, the authors used pruning to filter out the period lengths that are not valid

based on user-specified parameters. For a candidate period l that has been found, a sliding

window is used to examine each consecutive interval with length l in the original sequence

for aligned routines. A sequence has an aligned routing with period l if and only if the

number of adjacent intervals containing exactly one occurrence of the input event satisfies

26

the user-specified constrains. Because the method proposed in [10] is based on a sliding

window, it depends on finding adjacent intervals containing exactly one occurrence of an

event. Noise such as extra events within those adjacent intervals affect the performance

of proposed method. As a result, some event sequences with periodic behaviour will be

overlooked. In contrast, our objective is to reliably find underlying periodicity that may be

buried under noise.

From previous studies, we learned that mobile nodes with regular encounters can be

identified with sliding windows, autocorrelation and spectral analysis. However, finding a

route in a mobile network needs more than that. We can find pairs of nodes that encounter

each other periodically. Just as in a social network, messages can be routed via such pairs of

nodes. However, we may lose control over delivery delay [130] without knowledge of when

the encounters will take place. In addition, among encounters between two nodes, we need

to know which encounter is a periodic encounter, and which encounter is just an occasional

or even random encounter. A route will likely fail if an occasional or random encounter is

selected. Also, in previous work, a pair of nodes can only have encounters of one period.

For example, they are allowed to have either a daily encounter, or a weekly encounter – but

not both. If there are multiple encounter events between a pair of nodes, we should be able

to exploit them all. For example, we may observe a frequent weekly encounter on Mondays

and a less frequent bi-weekly encounter on Thursdays. If we have to choose only one of

these, we may degrade routing performance for some source-destination pairs.

In traces with periodic encounter behaviours, encounters occur on a regular basis; how-

ever, they may not be perfectly periodic. To address this problem, we use granularity to

wrap encounters within consecutive intervals whose length equals the granularity. This

serves the same purpose as the “envelope” introduced in [10]. The challenge in our stud-

ies is to differentiate periodic encounters from random/occasional encounters. In addition,

missing periodic encounters are another challenge. If a trace is perfectly periodic, methods

using sliding windows or the Fast Fourier Transform are capable of detecting underlying

periodicity. However, noise and missing encounters can interfere with the Fast Fourier

Transform, leading to incorrect results. With sliding windows, noise encounters affect the

detected intervals where some of them may contain multiple occurrences of the same event.

As a result, those intervals are not valid, and some traces with periodic encounter behaviours

will be overlooked.

In our work, in addition to detecting node pairs with periodic encounters, we propose

a method to extract their pattern(s) of encounters. From a periodic pattern, two important

27

pieces of information can be found: (1) period length and (2) promising encounter phases.

For example, if a pair of nodes exhibits a weekly encounter pattern, our method can iden-

tify the weekdays that encounter takes place, e.g., Monday and Thursday. It is possible

that a trace contains multiple periodic encounter events between two nodes. Other work

has stopped short of this, only detecting one period. Our method finds the least-common

multiple at which encounters occur. For example, if encounters occur every two days and

every five days, our method would highlight an encounter pattern every ten days. The re-

sulting 10-day pattern will include both 2-day and 5-day patterns because both patterns

synchronize every 10 days.

2.3 Proposed methodology

In this section, we introduce the methodology used to find periodic patterns. First, we define

the terminology and model mobility traces. Second, we present our method to analyze time

series and produce periodic encounter patterns.

Definition 1. An encounter is defined as a time-period where wireless devices are physically

close enough to communicate with each other.

A mobility trace has a duration that is the monitoring time of mobile movement. Given

a granularity, e.g., 1 hour or 1 day, this duration can be broken into consecutive intervals

whose duration is equal to the granularity. We create an encounter series for every unique

pair of nodes where the length of the series equals the number of intervals after partitioning

the trace at the chosen granularity. If a pair of nodes has an encounter during a specific

interval, we record a 1 in that interval, otherwise, a 0 is recorded.

Definition 2. Given a monitoring duration σ and a granularity τ , an encounter series for

a unique pair of nodes (x,y) is defined as:

Sx,y = {d1,d2,d3, · · · ,dn} where

n = bσ
τ
c and

d j =

{
1 if x and y encounter at interval j ∈ [1,n]
0 otherwise

Obviously, an encounter series is just a binary time series. All series derived from the

same mobility trace have the same length because all nodes are being monitored over the

same period of time.

28

(a) A perfect encounter series
1 10 0 0 0 1 10 0 0 0 10 0 0 0 010 0

(b) An imperfect encounter series
1 10 0 0 0 1 10 0 0 0 10 0 0 0 01 1 0

Figure 2.1: Encounter series

Fig. 2.1 presents two periodic encounter patterns. Assuming the granularity of obser-

vation is one day, each series models a total of 21 days. The first one is perfectly periodic,

while the second one is imperfect. The perfect encounter series shows two nodes encounter-

ing each other every Monday and Friday, assuming the series starts on a Monday, whereas

the imperfect encounter series also has periodic encounters on every Friday with noise and

missing periodic encounters.

The general process of our method is shown in Figure 2.2. In this section, we will focus

on the core component of the process. We use the auto-persistence function, defined below,

to study the encounter series for each pair of nodes in the mobility trace. We normalize

the auto-persistence values by applying a filter to remove noise from occasional encounters

and missed periodic encounters. By analysing the result, we decide whether the encounter

series for a particular pair has periodic encounter patterns. We repeat the same process

for each node pair. If an encounter series has periodic encounter behaviours, its encounter

pattern is extracted by pattern recognition. In this section, we introduce three sub-steps of

the proposed method: (1) applying auto-persistence function and, (2) pre-processing the

results and (3) recognizing periodic encounter patterns.

Encounter Series

…….

…….

…….

Process

1) Auto-persistence

function

2) Pre-processing

3) Recognition

Input: Mobile Traces

Output: Encounter

patterns

0

1

1

1 1

1

11

0 0 0 0

0 0 0 0 0

0 00 0

Figure 2.2: General procedure of our proposed method

2.3.1 Auto-persistence function

newline

Previous work used the auto-correlation function, which examines encounters as a function

29

of time between them [95]. As other works have suggested [124, 131], while the auto-

correlation function is good for real-valued series, it provides less statistical information for

binary time series.

The auto-persistence function is calculated from the conditional probabilities of the

different combinations of two values in a binary time series that are separated by a given

lag k, that is k positions away in encounter series. There are, of course, four combinations

of two binary values. We concentrate on the combination where both intervals k-lags away

from each other have encounters. We define the auto-persistence function (APF) as:

APF(k) = P(dt+k = 1|dt = 1) (2.1)

where k is the lag between intervals.

As an empirical counterpart to the auto-persistence function, the auto-persistence graph

(APG) is defined as:

APG(k) =
n

n− k
∑

n−k−1
t=1 I{dt+k = 1,dt = 1}

∑
n
t=1 I{dt = 1}

(2.2)

where n is the size of encounter series, k is the lag, and I is the binary indication function,

whose value equals 1 if and only if the condition is satisfied.

Similar to the auto-correlation function, as the lag increases, the correlation between the

current interval and the interval that is k lags ahead usually decreases. However, in testing

for an encounter of period k, an encounter in a given interval will be highly correlated with

other encounters k intervals away. As the lag, k, increases, patterns with longer periods are

being tested. Therefore, to compensate for the decreasing number of intervals at greater

lags within a series of fixed length, the scalar n/(n− k) is introduced in the APG.

In the APG, different encounter rates have different behaviours where the encounter

rate of an encounter series is defined in Definition 3.

Definition 3. The encounter rate is the fraction of intervals within the encounter series

containing encounters:

Rx,y =
∑

n
j=1 d j

n

As an example, the APGs for two perfect encounter series, each with a time series of

length 100, are shown in Figure 2.3. The first encounter series has an encounter pattern with

period 10, with 3 phases containing regular encounters. The second series has an encounter

pattern with the same period length of 10, but with 8 encounter phases. As a result, the first

encounter series has a lower encounter rate of 30% while the second has an encounter rate

30

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 20 30 40 50

A
P

G

Time Lag

(a) Encounters at 3 phases

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 20 30 40 50

A
P

G

Time Lag

(b) Encounters at 8 phases

Figure 2.3: APG graphs for two series with encounters of period 10

of 80%. The figure shows that both series have periodic behaviours because of the wave

representation. Waves appear at multiples of the minimum lag of 10 in both examples. The

repetition in the APGs comes from the underlying periodicity in the encounter series. If an

encounter series has an encounter pattern with length m, then this encounter series also has

encounter patterns with length 2∗m, 3∗m and so on. An encounter pattern is defined as:

Definition 4. Given an encounter series Sx,y and a user-defined threshold T ∈ [0,1], if an

encounter pattern exists in Sx,y, this encounter pattern is defined as:

Pm
x,y = p1, p2, · · · , pm where

m < bn
4
c and

p j =

{
1 iff ∑

b n
m c

i di∗m+ j ≥ T ∗b n
mc for j ∈ [1,m], i ∈ [0,b n

mc−1]
0 otherwise

This encounter pattern repeats itself with a period of m within Sx,y. There are two impor-

tant parts to an encounter pattern: the pattern period and the encounter phase(s). The period

defines the duration of the pattern. The phase indicates the interval(s) within the period

where periodic encounters occur. In the original encounter series, d j = 0 means there is no

encounter between two nodes during this interval, and d j = 1 means there is an encounter.

However, in the encounter pattern, a p j = 1 means there is a regular periodic encounter,

whose probability is above the user-defined threshold, and has been observed between the

two nodes at this phase in the pattern, while p j = 0 means the opposite. To successfully

identify a periodic encounter pattern, we need to observe at least two repetitions of the

encounter patterns at the corresponding time lags m and 2 ∗m. Therefore, the length of

the input series must be greater than 4 ∗m, and this is the reason that m has the constraint

m < bn
4c in Definition 4. Furthermore, when an encounter appears at the same phase during

31

all observed periods with a frequency greater than the threshold that is T ∗b n
mc, we consider

this encounter a periodic encounter. This explains the constraint for p j in the definition.

Figure 2.4 presents encounter patterns corresponding to the encounter series in Figure 2.1.

(a)Encounter pattern for the perfect series
1 10 0 0 00

(b) Encounter pattern for the imperfect series
10 0 0 000

Figure 2.4: Encounter patterns

The encounter pattern for the series in Figure 2.1(a) is shown in Figure 2.4(a). Even

through the imperfect encounter series has occasional aperiodic encounters, and is missing

a regular encounter on Monday in the third week, this does not mean that this series has no

periodic encounters. It still has the encounter pattern as shown in Figure 2.4(b) where a pe-

riodic encounter happens every Thursday. In both sample encounter series, the user-defined

threshold is 100%, T=100%. However, if T = 60% for periodic encounters, meaning that

encounters appearing 60% of time at a certain phase can be considered to be periodic, the

imperfect encounter series has another valid pattern shown in Figure 2.4(a) with at least a

60% matching probability in its phases.

In addition, it is possible that an encounter series has events at multiple periods. This

leads to multiple encounter patterns for the series. For example, the APG shown in Fig-

ure 2.5 arises from an encounter series with periodic encounters at two phases. One pattern

has a period of 4, and the other has a period of 5. Spikes occur in the APG at lags that

are multiples of four, and at lags that are multiples of 5. One interesting observation is that

the patterns overlap at lags that are multiples of both period lengths, in this example at lags

20 and 40. The overlapping of encounter patterns produces a fundamental encounter pat-

tern Pmu
x,y . Instead of finding individual encounter patterns, selecting the maximum value in

the APG identifies this fundamental encounter pattern for a series with multiple encounter

events.

Lemma 1. If an encounter series Sx,y has multiple encounter patterns Pm1
x,y ,Pm2

x,y ,· · · ,Pm j
x,y

where no encounter length is the multiple of the minimum encounter length, then series

Sx,y has a fundamental encounter pattern Pmu
x,y where mu equals the least common multiple

of all individual period lengths m1,m2,· · · ,m j. The wave representation in the APG identifies

this fundamental encounter pattern.

Proof. Given such a series, let us assume this series is composed of several perfect periodic

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 4 5 8 10
 12

 15
 16

 20

 24
 25

 28
 30
 32

 35
 36

 40

 44
 45

 48
A

P
G

Time Lag

Figure 2.5: A series with two periodic encounter patterns

encounter series whose period lengths are m1, m2 and up to m j. In addition, let us assume,

all encounter lengths are not multiples of each other. An example of APGs for such a series

is shown in Figure 2.5.

When the time lag equals the period of each individual encounter pattern such as lag =

m1, lag = m2 or lag = m j, their periodic encounters match. Therefore, the conditional

probabilities for the individual encounter patterns reach their maximum values. When the

time lag equals mu, the least common multiple, every individual encounter pattern has its

periodic encounter aligned on the encounter series. At this lag,

APG(mu) > APG(m1)

APG(mu) > APG(m2)

· · ·

APG(mu) > APG(m j)

Each inequality holds because at lag = mu all periodic encounter patterns contribute to the

conditional probability at that lag. As a result, the maximum values in the APG are repre-

sented by the fundamental lag and its multiples. Thus, according to the wave representation

of periodicity, the encounter pattern with the period of the fundamental lag will have the

maximum value.

As suggested by Lemma 1, if there are multiple encounter events within a series, our

detection technique will return the fundamental encounter pattern, Pmu
x,y .

2.3.2 Pre-processing

newline

The APG is the tool we use to detect periodicity within each encounter series. With APGs

33

such as those in Figure 2.3, we can easily find the top-k lags within an encounter series

and then check whether these lags are multiples of each other. This approach works for

a perfect encounter series. However, occasional or random encounters will add noise to

our encounter series, and mask periodicity to a greater or lesser extent. The APG for a

noisy series still exhibits periodic behaviour but requires extra processing, which we call

pre-processing.

We start the discussion by presenting an example of a real encounter series. Figure 2.6

shows the APG for an encounter series derived from real mobility traces with a 1 hour gran-

ularity. We choose a 1 hour granularity because this scale of APG is easy to demonstrate.

This figure exhibits a strong periodic behaviour represented by the dashed line. Three spikes

appear at lags 168, 336 and 504. These lags represent exactly 7 days, 14 days and 21 days.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 168 336 504

A
P

G

Time Lag

 0.5

 0.6

 0.7

 335 336 337

Figure 2.6: APG for a real trace [57]

This example shows that, unlike perfect encounter series, the periodicity in a noisy

series is implicitly embedded within the APG spikes. The inset in Figure 2.6 shows the

APG coefficients immediately adjacent to lag 336. In this example, the top three lags are at

335, 336 and 337 rather than at 168, 336 and 504. Therefore, just selecting the top-k spikes

in the APG will not identify the top-k periods. We propose two steps to pre-process the

APG: (1) filtering and (2) spike simplification.

Filtering One problem with the auto-persistence function is that there is still a low

conditional probability for two encounters separated by some arbitrary length of time,

even when those encounters are not periodic. Small conditional probabilities like

these cause the small spikes in Figure 2.6. We propose to filter out these spikes as

follows.

Definition 5. A filter is a boundary chosen by considering the overall property of

34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 168 336 504

A
P

G

Time Lag

Filter=Mean+2*STD

Figure 2.7: APG filtering

APG values to remove insignificant values. It is defined as:

F = m+K ∗σ

where m is the estimated mean of the APG values, σ is the estimated standard devia-

tion and K is a constant.

We assume the APG coefficients at different lags are normally distributed, and set

K = 2 to filter out all but approximately the top 2% of the spikes. Figure 2.7 shows

the filter value as a horizontal line. Compared to Figure 2.6, spikes above the filter

value are more significant. This makes the APG much less sensitive to spikes from

aperiodic behaviours.

Spike simplification The second step is to concentrate spikes. Figure 2.6 and 2.7

show that each spike is composed of a group of APG values from consecutive lags.

To have a better representation of the spike, in this example we merge each spike

into a single lag by using the highest value in the range to represent the whole spike.

Figure 2.8 is the simplified APG of Figure 2.7.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 168 336 504

A
P

G

Time Lag

Filter=Mean+2*STD

Figure 2.8: APG simplification

With these two steps, we have removed irrelevant spikes and simplified the APG.

From this simplified APG, if an encounter series has periodic encounter behaviours,

their representation can be found. We now look for spikes with maximum values,

35

where a spike is a lag with smaller preceding and following APG values. For exam-

ple, there are three spikes in Figure 2.8, at lags 168, 336 and 504. We conclude that

this encounter series exhibits a weekly periodic encounter because the other two lags

are multiples of the fundamental, 168.

2.3.3 Periodic pattern recognition

newline

From the APG after pre-processing, we are able to declare whether an encounter series

has a periodic encounter behaviour or not. In addition, we can identify the period of the

behaviour. Once the period is known, we can extract the encounter pattern from the original

encounter series using alignment, where each encounter series is split into several disjoint

1 10 0 0 0 1 10 0 0 0 10 0 0 0 01 1 0

Period size 7

1 10 0 0 01
1 10 0 0 01

10 0 0 0 00

10 0 0 00 0

Extract

Figure 2.9: Pattern recognition

segments, each of whose length equals the period previously detected. We note that, in

general, multiple encounter behaviours with different periods could appear in a lengthy

segment; thus, we use the term period to refer specifically to the interval over which a

behaviour repeats (irrespective of phase), and segment to refer to a fixed-length portion

of a trace. After breaking the trace into segments, we stack the segments vertically as

shown in Figure 2.9. In each vertical phase, we examine the probability that encounters

appear. Given the length of the input series, n, and the period length, m, there would be b n
mc

complete segments. We consider an encounter a periodic encounter if it has a frequency

greater than the threshold, T ∗ b n
mc, at the same phase during all observed periods. As an

example, given the input series Sx,y and T = 100% in Figure 2.9, the periodic encounter

pattern is P7
x,y = {0,0,0,0,1,0,0}.

In the detection process, an encounter is considered to be noise if an encounter appears

at different phases. For example, let us assume we have the encounter series in Figure 2.10

containing observations of an event over 28 days. For example, this may represent a person

36

attending church, where his/her cellphone connects to the WiFi access point in the church.

In the example series, this person goes to church every Sunday (assuming the week starts

on Monday), and may occasionally drop by on another day during the week. The encounter

series has an underlying weekly encounter pattern on Sunday. In other words, this encounter

series has a period length of 7 days and the phase of the encounter is Sunday.

0 00 0 0 1 0 00 1 0 1 00 1 0 0 101 0 0 00 0 0 10

Figure 2.10: A noisy series

In this example, encounters happening other than on Sunday would be considered as

noise. If any encounter is missing on Sunday, such a missing encounter would be considered

a missing periodic encounter.

In summary, our method takes a set of encounter series as inputs. Each series represents

the sequential encounters of a unique pair of nodes. The analysis described above is applied

to each individual encounter series separately. If an encounter series has periodicity after

pre-processing and recognition, an encounter pattern is derived from this encounter series

by alignment. The process repeats for the next series for the next unique pair of nodes.

2.4 Experimental results

In this section, we present a set of experiments to examine our method. There is no previous

work to which we can compare our method, so we first conducted a set of experiments in a

controlled environment. We controlled the synthetic generation of encounter series. After

this, we conducted experiments using real mobility traces.

2.4.1 Experiments using synthetic encounter series

We use synthetic traces to understand the performance of our method. By constructing syn-

thetic traces, we can control the characteristics of the encounter patterns, including period

lengths and the phase(s) of encounters within a pattern. This allows us to see how robust

and noise-tolerant our method is.

We propose four controlled variables to create synthetic encounter series.

1. Period length m is used to control the length of an encounter pattern Pm
x,y.

2. Probability pα is used to control the chance of missing an encounter within a pe-

riodic pattern. In other words, pα controls the probability that a periodic encounter

does not occur.

37

3. Probability pβ is used to control the chance of an unexpected/occasional encounter

occurring at a non-encounter phase.

4. Threshold T defines the probability of a periodic encounter appearing at a phase.

Period length is controlled for consistency. Given fixed values for pα and pβ , the longer

the period, the higher the chance that an event will be changed. In order to keep probabilities

consistent, period length m is controlled as well.

To produce an encounter series, we need to select a series length, n. In our experiments,

n is set to be 1440 to model a duration of one day with a one minute granularity, or 60

days with a 1 hour granularity and so on. We first choose a period length and create an

encounter pattern with the chosen length. Note that there is at least one encounter within an

encounter pattern. Then, encounter patterns are concatenated until the desired series length

n is reached. If probabilities pα and pβ equal zero, then we have a perfect encounter series.

As both probabilities increase, they bring more and more noise into the encounter series.

For the following, we set T = 80%. We generated 100,000 encounter series for each

combination of the remaining three variables and applied our method to produce the results

in Figure 2.11 and 2.12. For all the results in Figure 2.11, m = 100. In the figures, each

x-axis label includes the encounter series with a encounter rate that is less or equal to the

current label but greater than the previous label. One note is that the series without any en-

counter is not covered by point 10% in all figures. For example, the point at 30% encounter

rate on the x-axis covers series with 20% < Rx,y ≤ 30%

In Figure 2.11(a), we set both pα and pβ to zero in order to see the performance of

our method for several perfect encounter series. The results present the detection rates for

encounter series with ten different encounter rates, Rx,y. The point at 10% includes series

with Rx,y ≤ 10% where rate 0 is not included, the point at 20% covers series with 10% <

Rx,y ≤ 20%, etc. Figure 2.11(a) shows that our method is able to find over 99.9% of the

encounter patterns except for patterns with high encounter rates (Rx,y > 90%). Series with

Rx,y = 100% are not detected because those series have no wave representation. However,

a pre-scan of the series can easily solve this problem.

In Figure 2.11(b), we increase both pα and pβ slightly to 0.01. The results are similar

to Figure 2.11(a), however the detection rate for series with low Rx,y (≤ 10%) and high

Rx,y (> 90%) has decreased. Similar results were observed in previous work as well [56].

The conditional probabilities for series with encounter rates at both ends of the scale are

sensitive to noise. The encounter probabilities are easily changed with even a small amount

38

 0.9

 0.95

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

ec
ti

o
n

 R
at

e

Encounter Rate

(a) pα = 0, pβ = 0

 0.8

 0.85

 0.9

 0.95

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

ec
ti

o
n

 R
at

e

Encounter Rate

(b) pα = 0.01, pβ = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 0.2 0;3 0.4 0.5 0.6 0.7 0.8 0.9

D
et

ec
ti

o
n

 R
at

e

Pβ

(c) pα = 0.01, varying pβ

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

ec
ti

o
n

 R
at

e

Encounter Rate

(d) pα = 0.01, pβ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

0.01 0.1 0.2 0;3 0.4 0.5 0.6 0.7 0.8 0.9

D
et

ec
ti

o
n

 R
at

e

Pα

(e) Varying pα while pβ = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

ec
ti

o
n

 R
at

e

Encounter Rate

(f) pα = 0.1, pβ = 0.01

Figure 2.11: Effects of pα and pβ

39

 0

 0.2

 0.4

 0.6

 0.8

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
et

ec
ti

o
n

 R
at

e

Calibration

(a) m = 100, pα = 0.01 and pβ = 0.01

 0

 0.2

 0.4

 0.6

 0.8

 1

100 200 300 400 500 600 700

D
et

ec
ti

o
n

 R
at

e

Period lenght

(b) m = 100, pα = 0.01, pβ = 0.01 and T =
80%

Figure 2.12: Varying m and calibration

of noise.

In Figure 2.11(c), we fixed the period length m = 100 and pα = 0.01 to examine the

effect of pβ . Increasing pβ decreases the detection rate dramatically, as expected. The

increasing amount of noise in the encounter series degrades the APG. Therefore, we are not

able to detect periodic encounters.

We also tested the effect of encounter rate on detection rate (see the results in Fig-

ure 2.11(d)). Here, the detection rates are very low for series with Rx,y ≤ 20%. The lack

of periodic encounters lets unexpected encounters dominate the results, so the encounter

series lose their periodicity.

We tested the effect of pα the same way we tested pβ . We fixed the period length to

be 100 and set pβ = 0.01. Figure 2.11(e) is very similar to Figure 2.11(c). The increasing

amount of noise makes the encounter series less and less representative.

Lastly, we examined detection rates at different encounter rates (see Figure 2.11(f)).

The results are symmetric to those in Figure 2.11(d). pα affects series with high Rx,y while

pβ affects series with low Rx,y. Missing periodic encounters clearly affect the APG. En-

counters from other lags and phases are able to dominate the conditional probability and

mask the true periodicity when the encounters are very dense.

The results shown in Figure 2.12 are produced by fixing pα and pβ to be 0.01 while

varying m and the calibration. Calibration is the percentage of the total length of the series

used to detect periodicity. For example, if the calibration is 40%, then we use the first 40%

of the series in our analysis. The purpose of varying m is to examine how sensitive the

detection is to the period of the pattern. The purpose of varying calibration is to see how

sensitive detection is to the length of the acquired series. In Figure 2.12(a), the period length

is 100 and the length of each encounter series is 1440. The results show that no encounter

40

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
c
c
u
ra
c
y

Threshold

(a) Varying T

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

D
is
tr
ib
u
ti
o
n

T=20%

T=40%

T=60%

T=80%

(b) CDF of accuracy

Figure 2.13: Varying T with 50% calibration

patterns are found until the calibration is over 30%. This is because we need an encounter

series that is at least 4 times the period length for detection. The first portion of an encounter

series whose length is twice the period is used to detect the first repetition of the pattern.

Then the second repetition is used to confirm the pattern. Figure 2.12(b) demonstrates the

same result from a different point of view. Patterns with length greater than 360 could not

be found in these experiments because the time series are only of length 1440.

With the APG, we are able to detect periodicity and extract encounter patterns. How-

ever, we still need to validate the extracted patterns to ensure they persist throughout the

series. We do this by examining the series, and the extracted patterns, at a given calibration.

For example, with 50% calibration, we use the first 50% of the series for periodicity and

pattern detection. If we detect a periodic encounter in the first half of the series, we extract

the corresponding pattern and label it promising. Then we use the second 50% of the series

for validation. For each promising pattern, we calculate the fraction of times an encounter

appears where it should. We call this the accuracy of the pattern.

We now illustrate the results of accuracy testing. In the following set of experiments,

we set m = 100, pα = pβ = 0.01 and varied T . We used 50% calibration to find the en-

counter patterns in the series, and then we used the remaining 50% to check the accuracy

of detection. Figure 2.13(a) shows that increasing the detection threshold increases the ac-

curacy. This is because we include fewer non-periodic encounters that affect the accuracy

of detection. Figure 2.13(b) supports this conclusion by presenting the CDF of accuracy.

With T = 20%, 10% of the encounter patterns are detected with an accuracy less than 90%.

However, by increasing the threshold to 40%, less than 5% of the patterns are detected

with an accuracy lower than 90%. Therefore, our experiments suggest that a high detection

threshold should be used.

41

These experiments show that our method is robust and tolerates a certain amount of

noise. Figure 2.11(c) and (e) show that approximately 20% to 30% noise is acceptable

(above this range the slope of the curve changes dramatically). The stability of periodic

encounters, which is affected by pα , and the stability of non-encounter phases, which is

affected by pβ , are equally important to our method. We also learned that encounter se-

ries whose encounter rate is in the middle of the range, i.e., Rx,y = 50%, exhibit stronger

periodicity than those whose encounter rate is nearer either extreme.

2.4.2 Experiments using real mobility traces

Now we change our focus to real traces. A database called CRAWDAD provides numer-

ous datasets that have been collected by researchers over the years [28]. In general, there

are two types of publicly available real-world traces [56, 95]: (1) encounter-based traces

and (2) AP-based (access point based) traces. In encounter-based traces, each wireless mo-

bile device such as an iMote [32, 82] or NOKIA 6600 [116] is equipped with a Bluetooth

module. The devices frequently broadcast a beacon signal to announce their presence in a

neighbourhood. They also acknowledge the beacon signal from other devices. Once a de-

vice receives an acknowledgement, an encounter is recorded with a timestamp. AP-based

traces are usually GSM traces [32] or WLAN traces [9, 57, 76]. When a mobile devices

enters the coverage area of an AP, the AP records the arrival of the device with a timestamp

or the duration of the association. If other mobile devices are associated with this AP at the

same time, we first assume there is an encounter between each pair of the then-associated

devices. Durations of encounters are derived from the association times with the AP. We

then treat each access point as a stationary relay in the network. Encounters are derived

when two mobile nodes or a mobile and a stationary node are physically close enough.

Experiments are conducted for both scenarios.

Encounter-based traces are ideal for our analysis. However, as shown in Table 2.1,

the available encounter-based traces are composed of small numbers of nodes observed for

very short durations. In contrast to encounter-based traces, the available AP-based traces

are rich in nodes and cover a much longer duration. In previous studies, encounters are

derived from AP-based traces by assuming that two mobile devices encounter each other if

they are associated with the same AP at the same time. In our study, we do not make this

assumption. However, we consider each cellular tower or AP as a stationary relay in the

network. The reason is because the association between a mobile node and a cellular tower

or an AP is a type of encounter. If two mobile nodes never encounter, no message can be

42

Table 2.1: Real-world traces

Source nodes Duration Type
Milano [94] 44 19 days PMTR
UMPC [82] 36 12 days iMote
Cambridge [116] 12 6 days iMote
MIT Bluetooth [32] 95 282 days Bluetooth
MIT Cellular network [32] 95 282 days Cellular
USC Summer 05 [57] 5580 111 days WLAN
USC Spring 06 [57] 25481 95 days WLAN
Dartmouth [76] 13888 1178 days WLAN
Nokia-MDC Bluetooth [80] 38 548 days Bluetooth
Nokia-MDC GSM [80] 38 548 days Cellular
Nokia-MDC WLAN [80] 38 548 days WLAN
Milano = University of Milano
PMTR = Pocket Mobility Trace Recorder
UMPC = University Pierre et Marie Curie
USC = University of South California

exchanged directly between them. However, if both of them associate with the same AP or

cellular tower at different times, the message could be exchanged between the mobile nodes

indirectly by using the AP or cellular tower as a relay. Although relaying is not currently a

feature of cellular base stations or APs, we believe there is merit in exploring the potential

benefit of adding this functionality, as it would enable the diverse applications of DTNs.

Initially, we looked at the MIT traces [32], Dartmouth College traces [76], USC traces [57]

and the Nokia-MDC traces [80] shown in Table 2.1. In the MIT, Dartmouth College and

USC traces, the duration of each encounter is given. However, in the Nokia-MDC traces,

each encounter has a corresponding timestamp. From that, we need to calculate the duration

of each encounter. In Figure 2.14, mobile node A encounters nodes B and C at timestamp Ti.

At the next timestamp, A only meets node C. We assume that A stops seeing B right before

Ti+1. Therefore, the encounter for node pair {A,B} starting at Ti has a duration of Ti+1−Ti

time units. Similarly, the encounter for node pair {A,C} starting at Ti has a duration of

Ti+2−Ti time units. Using this approach, there are two complete encounters, {A, B} and

{A, C}, starting at Ti.

Time

Ti

B,C

Ti+1

C

Ti+2

D

Figure 2.14: Encounter history of mobile node A

At the time of examining the Nokia-MDC traces, we also considered another approach

43

to define encounter duration that is based the characteristics of inter-encounter times. We

use Figure 2.14 to explain the second approach. In Figure 2.14, mobile node A encounters

nodes B and C at timestamp Ti. At timestamp Ti+1, A only meets node C. Similarly, A only

encounters node D at timestamp Ti+2. We first extract the individual inter-encounter times.

In this example, there would be two inter-encounter times: (1) Ti+1−Ti and (2) Ti+2−Ti+1.

We then calculate the average of all inter-encounter times as T AV G. In our example, the

encounter for node pair {A,B} starting at Ti has an inter-encounter time of Ti+1−Ti time

units. If the inter-encounter time of Ti+1−Ti time units is less then T AV G, the duration of

this encounter will be Ti+1−Ti time units. Otherwise, the duration of this encounter is set

to be T AV G. We conducted experiments on the Nokia-MDC traces using both methods for

calculating encounter durations. The results showed that both methods returned very similar

results. This is because all encounter series are derived with a 1-day granularity. The

assumptions about encounter duration have a very small impact on generating encounter

series, and thus they have a very small impact on our final results. In the rest of this chapter,

durations derived from real-world traces are based on the first approach, and encounter

series are derived with a 1-day granularity. With respect to periodicity, the USC traces were

the only ones to exhibit periodicities extending over their full lengths because the USC

traces are relatively short, i.e., 95 days, as noted in Table 2.1. We will discuss the reason

for this shortly while in this section we present our experimental results based on the USC

Spring traces from 2006.

From our previous results, we know we need a series of at least 4 times the period

length to detect a periodic encounter pattern. This means we will only be able to detect

patterns with periods less than 23 days in the USC spring traces. By using the complete

length of each series (100% calibration), we were able to detect 2536 encounter series,

where the encounters involve 2394 unique nodes. There are 25481 nodes in the USC spring

traces, so only a relatively small fraction of them – less than 10% – are involved in periodic

encounters.

As before, we find that the number of patterns detected changes with the calibration.

Figure 2.15 shows a zigzag curve for the number of patterns detected while increasing the

calibration. This is because different lengths of encounter series can only accommodate

encounter patterns with a certain period. For example, 30% calibration can detect periods

up to b(95∗0.3)/7c= 4.

We note a drop in the detection curve at 60% calibration. At 60% calibration, each

encounter series contains encounter information from b(95 ∗ 0.6)/7c = 8 weeks. Because

44

the user-defined threshold T was set at 80%, an encounter series is noted as having under-

lying periodic encounter behaviour if and only if it has the encounter at the same phase in

d8 ∗ 0.8e = 7 out of 8 weeks. Many of the encounter series fail to pass this high threshold

value because of missing encounters. As a result, we observe this drop in the detection

curve. The increase in the number of patterns detected after 60% calibration suggests: (1) a

new encounter series with a 14-day periodicity has been detected, and (2) an encounter se-

ries that failed at 60% calibration has been detected again due to including more encounter

information.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
u

m
n

e
r
 o

f
D

e
te

c
ti

o
n

Calibration

Figure 2.15: Number of patterns detected

Figure 2.16 presents the CDF for periods found at different calibrations. When the

calibration is 20%, the majority of patterns have lengths of 2, 3 or 4 days. However, when

the calibration reaches 40%, the majority of patterns have length 7 days. As we increase

the calibration, over 99% of the patterns are of weekly or multi-week periodicity.

2 3 4 7 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Period length (m)

D
is

tr
ib

u
ti

o
n

20% Calibration

40% Calibration

60% Calibration

80% Calibration

Figure 2.16: Detected period length using different calibrations

In Figure 2.17, we present the average accuracy of encounter patterns for each cali-

bration. This figure shows that using a longer series in detection leads to better accuracy.

However, there is a drop in accuracy from calibration 80% to 90%. This is an artifact be-

cause the last 10% of a series may not be as long as the period of the pattern being validated.

45

This leads to a degradation in performance.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

10% 20% 30% 40% 50% 60% 70% 80% 90%

A
c
c
u
ra
c
y

Calibration

Figure 2.17: Accuracy using different calibrations

Figure 2.18 shows the CDF for accuracies at different calibrations. Here again, we

see that longer encounter series provide better results. When the calibration reaches 80%,

approximately 50% of the detected patterns have 100% accuracy.

We have examined the effects of varying calibrations in terms of the quality of detected

patterns. Furthermore, we conducted experiments to examine the effect of the threshold,

which controls the promising phases. In the following experiments, we use 50% calibration

to detect encounter patterns, and the remaining 50% of the series to examine the accuracy

of the detected patterns.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Accuracy

D
is

tr
ib

u
ti

o
n

20% Calibration

40% Calibration

60% Calibration

80% Calibration

Figure 2.18: Accuracy distributions using different calibrations

As we noted earlier, one of the inputs to our method is the user-defined threshold T .

This defines whether the encounter occurs over a significant enough fraction of time at a

particular phase to be considered periodic. By increasing the threshold, we place heavier

constraints on the phases that qualify. On one hand, fewer patterns satisfy the threshold,

leading to a decrease in detections as shown in Figure 2.19. On the other hand, the phases

yielded by a higher threshold value provide encounter patterns with better accuracy, as

shown in Figure 2.20.

46

 2500

 3000

 3500

 4000

 4500

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
u

m
b

e
r
 o

f
d

e
te

c
ti

o
n

Threshold

Figure 2.19: Number of patterns detected

 0.5

 0.6

 0.7

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
c
c
u
ra
c
y

Threshold

Figure 2.20: Accuracy with different thresholds

2.5 Analysis of results

Our experimental results indicated that there are detectable weekly periodic encounter pat-

terns within real-world traces. In order to apply those periodic encounters for routing in

DTMNs, we need to understand the characteristics of periodic encounter patterns from

three main perspective: (1) the persistence of periodic encounters, (2) the connectivity

among nodes with periodic encounter behaviours and (3) the structure, i.e., small-world

structure, of the networks formed by periodic nodes. In this section, we present the results

regarding these characteristics.

2.5.1 The persistence of periodicity within real mobility traces

In our experiments, we applied our detection techniques to four different traces. Only the

USC traces exhibit periodic behaviour for the full duration of the series. However, this does

not mean that there is no periodic behaviour that lasts for shorter periods in the other traces.

To discover short-term periodic behaviour, we break the traces into disjoint segments

with the same length. For example, each daily encounter series in the Nokia-MDC traces

could be broken down into 19 segments where each segment is 30 days in length. For daily

encounter series, we apply our detection techniques to segments with length varying from

47

1 day to the maximum duration of each trace, with a 1 day increment.

As shown in Figure 2.21 (a), (c), (e) and (g), 35-day segments in the Dartmouth, MIT

and Nokia-MDC traces have the largest number of detected periodic encounters. However,

in Figure 2.21(g), 33-day segments have the largest number of detected periodic encounters

in the USC traces. The USC Spring traces in Figure 2.21(g) have a sudden drop after the

33-day segments. This is caused by an artifact. The USC Spring traces have a duration of

95 days. At 34-day segments, each encounter series could be broken down into 3 segments.

The first two segments each cover 34 days whereas the last segment only contains 27 days.

As a result, even though there may be weekly periodic patterns within the last segment, we

can only detect periodic patterns up to 6 days, b27
4 c= 6. Therefore, we lose a large number

of detections in the last segment of all encounter series.

To understand these periodic behaviours at the segment size with the largest number

of detected periodic encounters, Figure 2.21(b), (d), (f) and (h) provide more details about

detected periodic behaviour by presenting the CDF of their periods. The results indicate

that there is a strong weekly encounter behaviour in all the mobility traces.

Once the period length is known, we can extract periodic encounters from the original

segments using alignment. For alignment, each segment is split into disjoint sub-segments

where the length of each sub-segment equals the period length previously detected. Then,

we stack all sub-segments vertically to examine the probability that encounters appear in a

particular column. When the probability of encounters in a column is greater than a user-

defined threshold, we consider that encounter as a periodic encounter. This process is the

same as the pattern recognition described before.

From our discussion above, we discovered mobility traces do not have long-term peri-

odicity. If we still examine the accuracy of detected periodic encounters within segments

against the whole traces, the overall accuracy for each periodic pattern will be very low.

Therefore, instead of evaluating the accuracy, we examine how long those periodic patterns

reliably appear in the future. We call this time range the projected persistence.

After extracting periodic encounters, we evaluate their projected persistence by using

the remaining encounter series following a given segment. For example, if the very first

35-day segment in the Nokia-MDC traces has periodic encounters, we use the remaining

548-35=513 days to evaluate the persistence of detected periodic encounters. Similarly,

if the second 35-day segment has periodic encounters, we use the remaining 513-35=478

days to evaluate its persistence. We first partition the remaining encounter series into dis-

joint intervals, I, whose size equals the previously detected period. To evaluate projected

48

 0

 2000

 4000

 6000

 8000

 10000

 12000

 35 200 400 600 800 1000

N
u

m
b

e
r

o
f

d
e
te

c
ti

o
n

Segment length (days)

(a) Dartmouth

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Period length (days)

D
is

tr
ib

u
ti

o
n

Dartmouth

(b) Dartmouth at 35-day segments

 0

 100

 200

 300

 400

 500

 35 100 200

N
u

m
b

e
r

o
f

d
e
te

c
ti

o
n

Segment length (days)

Bluetooth
Cellular network

(c) MIT

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Period length (days)

D
is

tr
ib

u
ti

o
n

Bluetooth

Cellular network

(d) MIT at 35-day segments

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 35 100 200 300 400 500

N
u

m
b

e
r

o
f

d
e
te

c
ti

o
n

Segment length (days)

Bluetooth
GSM

WLAN

(e) Nokia-MDC

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Period length (days)

D
is

tr
ib

u
ti

o
n

Bluetooth

GSM

WLAN

(f) MDC at 35-day segments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10 30 50 70 90 110

N
u

m
b

e
r

o
f

d
e
te

c
ti

o
n

Segment length (days)

Spring
Summer

(g) USC

2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Period length (days)

D
is

tr
ib

u
ti

o
n

Spring

Summer

(h) USC at 33-day segments

Figure 2.21: Effects of segments

49

persistence, we introduce two thresholds:

1. the matching probability of periodic encounters within an interval, θ . Given an in-

terval, θ measures the probability that this interval has periodic encounters. For

example, if detected periodic encounters take place every Monday and Friday, and a

given interval only has an encounter on Monday, then θ = 1/2 = 0.5 for the given

interval.

2. the acceptable number of intervals without periodic encounters, ∆. Because of un-

expected events, periodic encounters may be interrupted. Therefore, ∆ is used to

tolerate the number of intervals that suffer from missing periodic encounters because

of interruptions.

Using Figure 2.22 as an example, let us assume that from the very first 35-day segment,

we detected periodic encounters repeating every 7 days. Since the period length is 7 days,

we partition the remaining encounter series into intervals whose size equals 7 days and

calculate θ for each interval. Given thresholds at θ = 0.9 and ∆ = 0, only I1 satisfies the

θ threshold; therefore, the projected persistence is 7 days. If thresholds are θ = 0.9 and

∆ = 1, by treating I2 as the tolerated non-periodic interval, I4 is the interval furthest in the

future for which the thresholds are satisfied, therefore, the projected persistence is 28 days.

Similarly, if thresholds are θ = 0.9 and ∆ = 2, the projected persistence is 42 days.

Tables 2.2 and 2.3 show the average projected persistence for each mobility trace at the

segment length with the largest number of detected periodic encounters. On one hand, as

θ increases, the average persistence decreases because we are looking for intervals with

highly persistent and stable periodic encounters. On the other hand, as ∆ increases, we have

longer projected persistence because we are more tolerant of interruptions in the patterns.

Time

Segment

1 35 42 49 56 63 70 77 84

0.9 0.5 1 1 0.2 0.9 0.3

I1 I
7

I
6

I
5

I
4

I
3

I2

Figure 2.22: Accuracy with different thresholds

This explains why we did not detect any long-term periodic behaviour in the full-length

traces: their persistence is interrupted from time to time. Due to various limitations such

as students changing schedules each semester, or seasonal road construction, it is possible

that periodic behaviours have been changed, or those behaviours just change. Therefore,

long-term periodic behaviour is not detected.

50

Table 2.2: ∆ = 0, projected persistence by varying θ

Trace types
Threshold θ

0.1 0.3 0.5 0.7 0.9
Dartmouth

87.01 days 63.49 days 46.14 days 30.32 days 19.31 days
35-day segments
MIT Bluetooth

40.5 days 32.56 days 26.65 days 22.04 days 15.56 days
35-day segments

MIT Cellular
20.37 days 19.84 days 19.01 days 13.84 days 12.67 days

35-day segments
USC Spring

23.77 days 22.49 days 20.12 days 15.21 days 14.9 days
33-day segments

USC Summer
27.07 days 26.08 days 24.12 days 21.14 days 18.38 days

33-day segments
Nokia Bluetooth

54.68 days 39.9 days 29.01 days 22.28 days 14.59 days
35-day segments

Nokia GSM
70.72 days 54.45 days 33.72 days 23.64 days 14.18 days

35-day segments
Nokia WLAN

61.63 days 47.87 days 34.94 days 23.55 days 14.58 days
35-day segments

Table 2.3: θ = 0.9, projected persistence by varying ∆

Trace types
Threshold θ

0 1 2 3
Dartmouth

19.31 days 20.74 days 27.83 days 35.15 days
35-day segments
MIT Bluetooth

15.56 days 18.89 days 20.17 days 23.88 days
35-day segments

MIT Cellular
12.67 days 14.03 days 15.92 days 17.54 days

35-day segments
USC Spring

14.9 days 20.11 days 26.15 days 29.98 days
33-day segments

USC Summer
18.38 days 20.15 days 20.92 days 21.04 days

33-day segments
Nokia Bluetooth

14.59 days 17.29 days 23.41 days 29.17 days
35-day segments

Nokia GSM
14.18 days 14.18 days 25.83 days 31.41 days

35-day segments
Nokia WLAN

14.58 days 14.58 days 25.28 days 28.54 days
35-day segments

51

007 b82137b91896

009

b66056

b10366

b71474

b37163

b103622 b11258

023

b80186

b116825
b13718

b75539

b28724

b58960

b97610

094

026

b7834

b112234

b103643

b85622

050

b27086

b57146

b94865

b68410

b75383 b53887

051

b48985

b67694

b96916

060

b77380

b115603

b110745

b36591

b5570

068 b25154b110498

077

b26644

b38424

b71025

b99353

089

b122263

111

b76924

b109263

b103925

b93936

109 b34366b124249

b14957

b16609

b93575

127

b108953

b122786

b11397

(a) Bluetooth

007

g22468

g21991

g19582
g14447

g7708

g7577

g14068

g1839

g1370

g16348

009

g5032
g10510

g15048

g19106

g21295

g1809

g6542

g11769

g5309

023

g4710

g343

g15326

g4297

g3439

g14406

g13588

g13285

g17388

g1320g5597

g23594

026

g10698

g4442

g22425

g15202

g10345

g7844

g12701

g17563

g12621

g11974

g985

g12349

g12334

g5514g16360

050

g9396

g19891

g21908

g21530
g20954

g7416 g13275

g2124
g6445

g20049

051

g19972

g19940

g15336

g15263

g21758

g2916

g20965

g7538

g7442

g14031

g13269
g13115

g11885

g12158

g11592

g9768

g9753

060
g5135

g21892

g19397

g20805

g13573

g7053

g1551

g23623

g4990g12013

068

g9426

g4302

g3598

g21110

g17788

077

g16245

g9512

g5111
g22647

g14647
g12752 g5983

089

g15306

g15279

g3542

g21329

g20563

g13075

g5666

g9891

109

g10015

g6817

g7004

g18049

111

g5113
g4398

g7812

g19219

g14154

g18263

g12755

g17346

g1451

g6239

g1211

g9854

g11666

g15955

g561

127g6396

169

g10421

g10288

g3468

g22065

g13311 g20335

179

g21846

g14178

g21060

g16380

(b) GSM

007
w20663

w83157

w94130

w79147

w31013

w23354

w72886

w22387

w85068w111591

009

w25539
w18342

w70865

w18006

w31886

w55799

w98735

w120825

w105908

w101370

w55204

w35410

w80740

w112421w28054

w420

w97226
w64985

w76633

w71678w103495
w38146

w71594

023

w8479

w37460

w76148

w102383

w105964

w73983

w28519

w100696

w73033

w84416

w69612

w19172

w96071

w60011

w63904

026

w33056

w18158

w3337

w82606

w106826

w2841

w43849

w118688

w28949

w35916

w11820

w93656

w54728

w6508

w58475

w109391

w109347

w33849

w5165

w41270

w19367

w72392

w95739

w26334

w8793

w64511

w126872

050

w38023

w107658

w126774

w90507

w52276

w13447
w126606

w115054

w49309

w8231

w48775

w2847

w7689

w125908

w86954

w17531

w56211

w79755

w75346

w48594

w118615

w50820

w7456

w3065

w121247

w94247

w17242

w74645

w75035

w121115

w70127

w1892

w106263

w48115

w93538

w67293

w31284

w54710

w30769

w124750

w85778

w55037

w1523

w78594

w28188

w5720

w61533
w92671

w80619

w66321

w27589

w92578

w60906

w116626

w38950

w53633

w26845

w58304

w76952

w69794

w5197

w45756

w95901

w26513
w21667

w83800

w116077

w110734

w83772

w14357

w76591

w90819

w8702

w71621

w90765

w19033

w108228

w64404

w71514

w21294

w4114

051

w40322

w56601

w52244

w29892

w40048

w67950
w86989

w49115

w8084

w37091

w28971

w118587

w31643

w2553

w35964

w11966

w70109

w118114

w117692
w93351

w125145

w113173w35414w28265

w39780

w105302
w78280

w100375

w10675

w89705

w77732

w30223

w84880

w5478
w80246

w19203

w32927

w90793
w13773

w51996

w56704

060

w119466

w114533

w7145

w6623

w46637

w4926

w112135

w100119

w96469

w14211
w18525

068

w13376 w122181

w55991w119318

w17625

w48532

w78902

w104341

077

w71474

w121775

w32491
w94586

w102314

w101833

w94388

w56007

w86655

w121008

w73917

w62268

w117479

w19919

w34617

w124228

w78050

w112125

w10485

w34315
w61091

w4782

w64907

w4623

w77254

w88460

w4250

w52340

094

w36882

w43624

w44061

w59941

w65151

w49731

109

w38008
w70950

w121880
w95307

w25441

w64125
w118958

w88020

w90308
w106865

w49181
w107248

w70523

w99386
w119144

w126192

w93804

w105931

w67427

w75034 w2336w7154

w55310w17086

w94029

w124907

w100947

w24132

w100882

w106100

w105685

w1647

w120393

w28396

w28359 w109978

w117567
w67015 w62163

w22997

w97679

w100621

w15730

w22800

w105375

w1378

w23237

w93069

w112321

w58600

w34630

w97302 w109549

w34589

w34572

w34543

w111707

w5413
w92300

w69976

w30058

w65547

w5343

w61118

w80227

w100020

w5218

w115818

w92030

w26568
w83860

w96278

w103537

w49810

w13891

w111102

w68946

w119833

w9163

w19099

w21392

w76494 w102960

w26164

w9052

w63900

w122495

w87894

111

w18312

w79893

w79618
w16714

w98550

w48291

w120588

w50294

w61611

w46872
w97521

w27586

w11153

w30240

w111814

w61343

w34220

w126864

w122491

169

w6989

w1799

w124596

w11077

w76948

179

w70903

w8202

w122076

w62755

w63019

w80912

w59381

w22569

w58057

(c) WLAN

Figure 2.23: Connectivity in different network types from Nokia MDC traces

In addition, both 2.2 and 2.3 reveal information about the persistence range. As shown

in this table, for a certain value of ∆, periodic behaviour can last up to a few months on

average. For example, given ∆ = 3 in the Dartmouth traces, the projected persistence can

be up to 35+35.15=70.15 days (segment length plus projected persistence).

2.5.2 Network connectivity

We also built graphs based solely on periodic encounter series. The connectivity graph

G = 〈V,E〉 is an undirected graph, which is defined as follows. Given a set of encounter

series with periodic behaviour, P, V is the set of nodes participating in P. For a pair of

nodes u and v, the edge eu,v ∈ E if and only if su,v ∈ P.

The Nokia-MDC datasets include mobility datasets from different network types. The

three types of datasets are Bluetooth, GSM and WLAN. Bluetooth traces track direct en-

counters between mobile nodes. Both GSM and WLAN traces record associations between

mobile nodes and either access points or cellular towers. Using the Nokia-MDC traces

as an example, the connectivity graphs for 35-day segments shown in Figure 2.23 repre-

sent connectivity between nodes with periodic behaviour from different network types. In

this figure, connection graphs derived from Bluetooth, GSM and WLAN traces consist of

several star shapes. In the Nokia-MDC datasets, we have a total of 38 participants whose

encounters are recorded. As a result, the centre of each cluster is one of the participants

whereas leaf nodes are external MAC addresses whose encounter series is unknown, except

for one encounter with a non-leaf node. All three graphs are composed of multiple isolated

clusters where nodes from different network types cannot communicate with each other.

In real life there are various co-existing network types. For example, in the Nokia-MDC

datasets we have cellular networks, wireless local area networks and Bluetooth encounters.

52

007

b82137
b91896

g22468
g21991

g19582

g14447

g7708

g7577

g14068

g1839

g1370

g16348
g9469

g4425

g10398
g3665

g3653

g19480

g22106

g2880

g20530
g1331

w20663

w83157

w94130
w79147

w31013
w23354w72886

w22387w85068

w111591

009
b66056

b10366

b71474

b37163b103622

b11258
g5032

g10510

g15048g19106

g21295
g1809

g6542 g11769

g5309

g1211

g4507

g10574
g10074g10043

g1208g1181

g1113

g9791

w25539

w18342

w70865

w18006

w31886
w55799

w98735
w120825

w105908

w101370
w55204

w35410

w80740

w112421

w28054

w420
w97226

w64985

w76633

w71678w103495
w38146

w71594

023

b80186

b116825

b13718

b75539

b28724
b58960

b97610

094

g4710

g343

g15326

g4297
g3439

g14406

g13588

g13285

g17388

g1320

g5597

g23594

g22891

g22875

g5039

g10777

g3371

g20964 g1999

g1982

g20403

g20309

g20231

g17423

w8479

w37460

w76148

w102383

w105964

w73983
w28519

w100696

w73033

w84416

w69612

w19172

w96071

w60011

w63904

026

b7834

b112234
b103643b85622

g10698
g4442

g22425
g15202

g10345
g7844

g12701

g17563
g12621

g11974

g985
g12349

g12334

g5514

g16360
g11263
g189

g4380

g4379

g4344

g4343

g15385

g22319g3658g21659
g22083

g18589g20398

g1586g11956

w33056w18158
w3337

w82606
w106826

w2841

w43849w118688

w28949

w35916
w11820

w93656 w54728
w6508

w58475
w109391

w109347

w33849
w5165

w41270
w19367

w72392

w95739
w26334

w8793

w64511

w126872
050

b27086

b57146 b94865

b68410

b75383

b53887
g9396

g19891

g21908

g21530

g20954
g7416

g13275
g2124

g6445

g20049
g482

g3850
g3837g18657

g1920

g1553

g1184

g1139

g1133
g1129

w38023w107658
w126774

w90507

w52276

w13447

w126606
w115054

w49309

w8231

w48775

w2847

w7689

w125908

w86954w17531w56211

w79755

w75346

w48594
w118615

w50820

w7456

w3065

w121247

w94247

w17242

w74645
w75035

w121115w70127

w1892

w106263w48115

w93538w67293

w31284
w54710

w30769
w124750

w85778

w55037
w1523

w78594

w28188

w5720
w61533w92671

w80619w66321

w27589

w92578

w60906

w116626
w38950w53633

w26845

w58304w76952w69794

w5197
w45756

w95901
w26513

w21667
w83800w116077

w110734w83772

w14357

w76591
w90819

w8702

w71621
w90765w19033
w108228

w64404
w71514

w21294

w4114

051

b48985
b67694

b96916

g19972

g19940

g15336

g15263

g21758

g2916

g20965g7538

g7442
g14031

g13269

g13115

g11885

g12158

g11592
g9768

g9753

g4408

g4351

g4349
g4141 g3654

g15044g8380

g8352
g7818

g14337
g20903

g21229
g2476

g2471

g17667
g11982

g5621
w40322w56601

w52244w29892
w40048

w67950

w86989
w49115

w8084
w37091

w28971

w118587
w31643w2553

w35964

w11966 w70109w118114

w117692
w93351

w125145

w113173

w35414
w28265w39780

w105302
w78280

w100375w10675

w89705

w77732

w30223

w84880
w5478

w80246
w19203

w32927
w90793

w13773

w51996

w56704

060

b77380

b115603

b110745
b36591

b5570

g5135
g21892

g19397

g20805

g13573
g7053

g1551

g23623

g4990

g12013

g161g160

g19821

g19172

g19089

g3189

g3188

g3186

g1031

g5346

w119466

w114533

w7145

w6623

w46637

w4926

w112135

w100119

w96469

w14211

w18525

068

b25154

b110498

g9426

g4302

g3598

g21110
g17788

g10305

g7893

g13078

g13077

g11981

w13376

w122181

w55991

w119318

w17625

w48532

w78902

w104341

077

b26644

b38424

b71025

b99353g16245

g9512 g5111
g22647

g14647

g12752
g5983g7937

g15041
g8250

g21560

g20687g6543

g11952w71474w121775

w32491
w94586

w102314

w101833

w94388

w56007w86655

w121008
w73917w62268

w117479

w19919

w34617

w124228

w78050
w112125

w10485

w34315
w61091

w4782
w64907

w4623

w77254

w88460
w4250

w52340

089

b122263

111

g15306

g15279g3542
g21329

g20563

g13075

g5666

g9891

g11230

g11101

g11088

g12813

g12812

g2233

g12776

g6386

b76924

b109263 b103925

b93936

w36882

w43624
w44061

w59941

w65151
w49731

109

b34366
b124249

g10015

g6817

g7004

g18049

g10071

g20114

g20112

g16435

w38008w70950

w121880w95307

w25441
w64125

w118958
w88020

w90308
w106865

w49181

w107248

w70523

w99386

w119144
w126192

w93804

w105931

w67427
w75034

w2336 w7154

w55310
w17086w94029w124907

w100947w24132

w100882

w106100

w105685w1647

w120393

w28396

w28359

w109978
w117567w67015

w62163
w22997

w97679
w100621

w15730

w22800 w105375

w1378

w23237w93069
w112321

w58600
w34630w97302

w109549w34589w34572

w34543

w111707

w5413

w92300
w69976

w30058

w65547

w5343
w61118

w80227
w100020w5218

w115818
w92030

w26568

w83860
w96278

w103537

w49810w13891

w111102
w68946

w119833

w9163

w19099
w21392

w76494

w102960

w26164w9052

w63900
w122495

w87894

b14957
b16609

b93575
g5113

g4398

g7812

g19219
g14154

g18263

g12755

g17346 g1451

g6239g9854
g11666

g15955

g561
g15856

g5129
g11232

g14942
g8685g10431

g10430

g9034

g21140

g6409

g6288

g6237g6234 g17214

g936
w18312

w79893w79618
w16714w98550w48291

w120588w50294
w61611

w46872

w97521

w27586w11153

w30240

w111814
w61343

w34220

w126864

w122491

127

b108953

b122786

b11397

g6396

g22905

169g10421
g10288

g3468

g22065

g13311

g20335
g381g15030

g15022g19142g17897

w6989
w1799

w124596
w11077w76948

179
g21846

g14178

g21060
g16380g9537g11254

g14426g14266

w70903w8202
w122076

w62755
w63019

w80912w59381

w22569

w58057

Figure 2.24: The integrated network from Figure 2.23

Mobile nodes could exhibit different periodic behaviours within each network type. As

shown in Figure 2.24, integrating periodic encounter series from different network types

presents a better connected graph, which could substantially improve the effectiveness, and

likely efficiency, of communication overall. Nonetheless, there still exist isolated clusters.

As shown in Figure 2.23, the networks containing periodic nodes are composed of isolated

star-shape components where the centre of each component is one of the 38 participants in

the Nokia-MDC datasets.

Unlike social networks, which are generally connected, the periodic nodes in our stud-

ies do not form a single connected component. As a result, conventional DTN routing pro-

tocols cannot be immediately applied to take advantage of periodic encounter behaviour.

Providing services between the clusters in such networks still requires further research.

One solution would be using some underlying infrastructure such as the Internet to con-

nect access points in isolated clusters. An alternative solution could be deploying relays

(throw-boxes [149]) in the network.

2.5.3 Small world structure

In this section, we examine the properties of the connectivity graphs that are composed by

periodic patterns in different mobility traces. To create connectivity graphs, we selected the

periodic patterns detected using the segments with the highest number of detections, i.e., 35-

day segments from the Nokia-MDC, MIT and Dartmouth traces but 33-day segments from

the USC traces. The connectivity graph shown in Figure 2.23 is an example derived from the

Nokia-MDC traces. In these graphs, we may have several clusters. Since some evaluations

can only be used on connected graphs, we present our analyses on the largest cluster in each

53

graph from each mobility trace.

Degree distribution

The node degree distribution for the largest clusters in each mobility trace follows the

power-law distribution with a heavy tail (see Figure 2.25(a)). However, these large clus-

ters contain a relatively small fraction of the users. To investigate further, we rank nodes in

descending order based on their node degree. Plotting the sorted nodes in Figure 2.25(b),

we find that the USC, MIT and Dartmouth traces follow the power-law distribution. Even

though the overall distribution of the Nokia-MDC traces is non-trivial, the first 38 nodes in

the distribution follow the power-law distribution. This number matches the total number of

participants in the Nokia-MDC datasets whereas all other nodes are external nodes whose

complete mobility is unknown. This strongly suggests that by building a network using

nodes with periodic behaviour, we can obtain a scale-free network rather than a random

network.

The small-world network

Based on the Watts-Strogatz mechanism [134], a graph with a small-world structure must

satisfy two properties: (1) short average path lengths, and (2) clustering coefficient is orders

of magnitude higher than its random equivalent. Table 2.4 presents calculations regarding

small-world structure. In the Nokia-MDC traces, the average node degree is d = 2.51. In-

vestigating the small-world structure in this network, we find that the average path length,

L, between any pair of nodes in the network is 3.12. We observe that the average path

length is approximately equal to the logarithm of the number of nodes in the network,

3.12 ≈ log(2025) = 3.30. This is a good indication that the network has a small-world

structure [134]. In addition, we calculate the clustering coefficients for all nodes in the net-

work. There are two types of cluster coefficient: local and global, which measure the num-

ber of triangles with respect to the number of open triplets in the graph [53, 134]. In other

words, cluster coefficients measure whether a graph forms a clique. If it is not, it tells how

close the graph is to a clique. Our calculations show that 99.9% of the nodes in the Nokia-

MDC datasets are external nodes whose local cluster coefficient equals zero as shown in

Figure 2.25(c). Therefore, the global cluster coefficient of the network equals the relatively

small value of 0.0015. If we consider a node in a random graph, the probability that two of

its neighbours are connected is equal to the probability that two randomly selected nodes

are connected. Consequently the global cluster coefficient of a random graph equals d/N.

54

1 10 100 1000
1

10

100

1000

10000

Node Degree

N
u

m
b

e
r
 o

f
n

o
d

e
s

Nokia−MDC

USC

MIT

Dartmouth

(a) Node degree distribution

1 10 100 1000 10000
1

10

100

1000

Node Rank

N
o

d
e

 d
e

g
r
e

e

Nokia−MDC

USC

MIT

Dartmouth

(b) Node degree rank

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Local Clustering Coefficient

P
e
r
c
e
n

ta
g

e
 o

f
N

o
d

e
s

Nokia−MDC

USC

MIT

Dartmouth

(c) Local clustering coefficient

Figure 2.25: Comparison between datasets for small-world structure in log-log scale

Since the global cluster coefficient for the network in the Nokia-MDC datasets is very close

to that from a random graph, 2.51/2025 = 0.0012, we conclude that the network does not

have a small-world structure even though the average path length still satisfies the small-

world bound. One possible reason is that the traces of external nodes are unknown, and we

may be losing periodic encounter series among them. As a result, the graph still consists of

multiple star-shaped components.

To show that networks formed by nodes with periodic behaviour have a small-world

structure, we present our studies about the other three traces. In the USC connectivity graph,

the largest cluster contains 4961 mobile nodes. As shown in Figure 2.25(a) and 2.25(b), the

node degree distribution in the USC traces follows the power-law distribution. It is clear that

these traces come from a scale-free network. To further explore the network, we calculate

the average path length for its connectivity graph. The value at 3.34 is a good indication of

the small-world structure, where 3.34 ≈ log(4961) = 3.69. In addition, the global cluster

coefficient shown in Table 2.4 is much greater than the one from a random graph. Therefore,

we conclude the network formed by the periodic nodes in the USC traces has a small-world

structure. The same analyses can be applied to the MIT and Dartmouth traces where we

also conclude that graphs composed by the periodic nodes have a small-world structure.

2.6 Future work

Similar to previous work [56], we have an encounter series for every pair of nodes in the

mobility traces. Our objective is to detect and extract periodic encounter patterns in the

encounter series with the presence of random/noise encounters that could affect the detec-

tion. However, experimental results showed that our method had a low detection rate for

55

Table 2.4: Small-world statistics from different mobility traces

Network N APL d GCC
Nokia-MDC 2025 3.12 2.51 0.0015

Random Graph 2025 3.12 2.51 0.0012
USC 4961 3.34 19.44 0.139

Random Graph 4961 3.34 19.44 0.0039
MIT 268 2.72 4.07 0.13

Random Graph 268 2.72 4.07 0.011
Dartmouth 3642 3.75 9.47 0.197

Random Graph 3642 3.75 9.47 0.0026
N=number of nodes in the network
APL=average path length
d=average node degree
GCC=global clustering coefficient

0 00 0 0 1 0 00 1 0 1 00 1 0 0 101 0 0 00 0 0 10

(a) Encounter series shown in Figure 2.25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
P

G
 c

o
e

ff
c

ie
n

t

Time Lag

Filter=Mean+1*STD

(b) K = 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
P

G
 c

o
e

ff
c

ie
n

t

Time Lag

Filter=Mean+1.5*STD

(c) K = 1.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A
P

G
 c

o
e

ff
c

ie
n

t

Time Lag

Filter=Mean+2*STD

(d) K = 2

Figure 2.26: The effects of using different thresholds by varying constant K

node pairs with frequent encounters where such pairs are clearly important relays. If we

can clean the encounter series by distinguishing regular encounters from the random ones,

we may detect more patterns and/or have detection with better persistence. Therefore, there

could be two ways in general to improve our techniques: 1) pruning the search space by

excluding series with only random encounters, and 2) cleaning random encounters within

each encounter series. One possible solution inspired by other studies is to generate ran-

dom mobile traces and prune encounter series or encounters within series that have similar

characteristics comparing to the ones from random traces.

In our method, the filtering described in Section 2.3.2 plays an important role to identify

periodic lags in auto-persistence functions. To prune spikes representing random/aperiodic

behaviours, we proposed a threshold defined as F = m+K ∗σ where m is the estimated

mean of the APG values, σ is the estimated standard deviation and K is a constant. Given

an encounter series, in the definition of the threshold its value is controlled by the constant

K because both m and σ are fixed. Therefore, how to choose a proper constant becomes

56

critical. In Figure 2.26, examples are presented to demonstrate the effects of using different

K values. Given the encounter series in Figure 2.26 (a), we have shown that this encounter

series has an underlying weekly encounter pattern. When K equals 1, because three spikes

found at lags 7, 10 and 14 are not correlated, we can not detect the underlying periodic-

ity. When K is equal to 1.5, spikes located at lags 7 and 14 indicate the weekly patterns.

However, if we increase the value of K to 2, no spike can be discovered leading to a failed

detection. From those examples, the value of the threshold can affect detection results be-

cause a tight threshold could overlook periodic encounters whereas a loose threshold could

include aperiodic behaviours in the detection process. To address the problem, we could

examine some properties such as rankings of all returned APG coefficients to find a proper

threshold instead. An alternative solution could define a range for K instead of having a

constant value, and examine every possible value of K with a granularity within the range

for periodic encounter patterns.

2.7 Summary

Understanding user mobility, and the patterns of encounters between nodes, is critical for

communications within a DTN. Instead of blindly using opportunistic encounters, periodic

encounters can be used in routing messages between nodes. In this chapter, we explore the

periodicity and regularity within encounter series by applying the auto-persistence graph.

Our experimental results show that our method is robust and can detect and extract the peri-

odic behaviours in synthetic traces. It can also detect and extract encounter patterns in real

traces with up to 100% accuracy. Our experiments show that noise in the form of unex-

pected encounters, and in the form of missing periodic encounters, affect the fidelity of our

method equally. Nonetheless our experiments showed that there is no long-term periodic-

ity within mobility traces whereas periodic behaviours could be interrupted by unexpected

events from time to time. Experimental results suggest that periodic behaviours are highly

likely to change after a few months. This helps us to determine how stable and persistent

a pattern is, which explains why one is not able to find a pattern that lasts the whole du-

ration of the mobility trace. To understand the properties of networks formed by periodic

encounter series, our studies show that networks are scale-free networks, and some of them

satisfy a small-world structure where messages between any pair of nodes can be delivered

through a very small number of hops in the network.

57

Chapter 3

A graph model for periodic
encounter patterns

3.1 Introduction

In Chapter 2, we proposed a methodology to detect and extract periodic encounter patterns

within mobile data. Given periodic encounter patterns, the next task is how to properly

model them in order to find routes to deliver packets through periodic encounters. To il-

lustrate the benefits of encounter patterns, an example is presented in Figure 3.1 where we

have four nodes. In this example, node o0 is a stationary base station, while the other three

are mobile nodes. Encounters, represented by directed lines, occur during four consecutive

time intervals. In the example, at the beginning of interval I0, node o0 wants to send a

packet to node o3. If routing protocols from mobile ad-hoc networks start route exploration

immediately at interval I0, no route will be found until interval I3. Until then the routing

discovery process is simply a waste of energy. In contrast to those protocols, and assuming

one knows the encounter pattern for this scenario, two routes can be found to disseminate

the packet from o0 to o3. The first route is that node o0 holds the packet and sends it to

destination o3 during interval I3. The second route is that node o0 transmits the packet to

(a) Snapshot at
interval I0

(b) Snapshot at
interval I1

(c) Snapshot at
interval I2

(d) Snapshot at
interval I3

Figure 3.1: Encounters during four consecutive intervals

58

node o1, and node o1 carries the packet and disseminates it to o2. The packet is eventually

delivered to node o3 by node o2 during interval I2. The first route saves energy, but is not

the most efficient in terms of delay, whereas the second route has less delay but consumes

more energy.

In this chapter, we introduce a graph model which integrates all periodic encounter

patterns. Using the graph model, both the minimum delay and minimum energy consump-

tion problems can be modelled as optimization problems. The only change between the

graphs used to solve either problem is in the assignment of weights for the edges. The

minimum delay problem can be modelled as the shortest path tree problem whereas the

minimum energy consumption problem can be modelled as the minimum weighted Steiner

Tree problem. With a modification, we can use Dijkstra’s shortest path algorithm [29] to

find an optimal solution for the minimum delay problem. However, because the minimum

weighted Steiner Tree problem is NP-hard, we propose a polynomial time approximation

algorithm to find a multicast tree for routing. The experiments show that our algorithm

can quickly find sub-optimal routes whose energy cost is typically 2-3 orders of magnitude

smaller than the cost of state-of-art solutions in delay tolerant networks [34].

The remainder of this chapter is organized as follows. An overview of existing models

to capture encounters and periodic patterns is discussed in Section 3.2. In Section 3.3, we

introduce a graph model that captures the semantics of the discovered encounter patterns.

Mathematical optimization and algorithms are presented in Section 3.4 to solve routing

problems. Experimental results shown in Section 3.5 present the performance of our algo-

rithms regarding both unicast and multicast routing. Finally, conclusions and suggestions

for future work are given in Section 3.7.

3.2 Existing graph models

In communication networks, graphs play an important role in route design and optimiza-

tions. In MANETs, a graph is used to capture the network connectivity during a certain pe-

riod of time with the assumption that the topology does not change. Many routing protocols

can take advantage of this assumption to provide end-to-end, i.e., unicast, communication

in the network [64, 70, 107]. However, in DTNs, such a static graph is not sufficient to cap-

ture topology changes. To address the problem, previous studies proposed a complex graph

system, called time-varying graphs [19], dynamic networks [78] or temporal graphs [135].

Although different names are used, they are very similar to each other, and all of them can

59

model topology changes in DTNs. The proposed graph systems contain a set of consec-

utive static graphs where each static graph captures the network topology at a particular

timestamp or during a certain interval. The problem of the proposed graph systems is that

they generally are very large and complicated. To model large mobile traces, they will cre-

ate hundreds or thousands of static graphs for different snapshots or intervals. In addition,

the same node in different static graphs at different time instances is not connected. It is

difficult to track the same node over multiple time instances. Finding routes among static

graphs over multiple time instances becomes even more difficult.

With respect to periodic encounter patterns, several studies have been proposed to use

different logical structures to model them. In [49], the authors assumed every node has the

global knowledge of all encounters during all intervals. A tree rooted at the source can be

built for forwarding, where each level of the tree represents encounters at a certain interval,

k, that is k intervals away from the root. The problem of this approach is that different

trees have to be built at different intervals in order to accurately capture future encounters.

In another work, a contact graph was built on top of repetitive patterns [68]. Within this

contact graph, each vertex represents a node whereas an edge links two nodes with a weight

to describe the contact time within the period. Because in real life scenarios contacts may

not repeat at exactly the same time, a probability of the occurrence of a contact is introduced

as a part of the weight on an edge. The problem of the contact graph is that a 2-tuple weight

on an edge makes computation extremely complicated. This is the reason that the authors

used two algorithms to find an end-to-end path.

The previous work shows different approaches to model encounters and encounter pat-

terns. However, they fall short in two ways: (1) they do not present a formal model that

is simple and flexible enough to reflect different assumptions and goals, and more impor-

tantly, (2) they do not provide an algorithmic approach to solve the problem optimally. The

research presented in this chapter fill both gaps.

3.3 Proposed graph model

Given a set of mobile nodes O = {o0,o1,o2,on−1}, we assume that a set of periodic

encounter patterns with period length m is given. The encounter patterns are considered

given for the purposes of this chapter. In a periodic encounter pattern, the duration of each

phase is equal to a given granularity; this term was defined in Chapter 2. As a result, each

phase has the same duration. Let us define the duration of a phase as τ .

60

The period length m of the encounter pattern indicates the total time over which the

pattern repeats itself. For example, if the duration of each phase is one day and m = 21, the

encounter pattern represents the regular interactions between nodes x and y over a three-

week period. The phase t indicates the interval within the period where regular encounters

occur. For example, continuing the previous example, if p6 = 1 then nodes x and y encounter

each other regularly on the first Sunday in the three-week period, assuming p0 occurs on a

Monday.

During an encounter between two nodes, and at no other time, messages can be ex-

changed between the two encountering nodes. For instance, in Figure 3.1(a), o0 encounters

o1 during phase I0. Furthermore, mobile nodes can relay packets among themselves. For

instance, as illustrated in Figure 3.1, a message can be routed from o0 to o2 through o1 at

the cost of two transmissions.

Table 3.1: Encounter matrix for
node O0.

p0 p1 p2 p3

O1 1 1 0 0
O2 0 0 0 0
O3 0 0 0 1

Table 3.2: Encounter matrix for
node O1.

p0 p1 p2 p3

O0 1 1 0 0
O2 1 1 0 1
O3 0 0 0 0

Table 3.3: Encounter matrix for
node O2.

p0 p1 p2 p3

O0 0 0 0 0
O1 1 1 0 1
O3 0 0 1 0

Table 3.4: Encounter matrix for
node O3.

p0 p1 p2 p3

O0 0 0 0 1
O1 0 0 0 0
O2 0 0 1 0

Using encounter patterns, we can solve a variety of problems in routing a message from

a source to one destination (unicast), or from a source to a set of destinations (multicast),

such that either the energy cost or the time delay for message delivery is minimized.

Definition 6. The encounter matrix summarizes all periodic encounters for a given node.

We define the encounter matrix Mk = [mk
jt] for mobile node ok as:

mk
jt =

{
1 iff pt = 1 ∈ Pm

k, j
0 otherwise

where 0≤ k ≤ (n−1), k 6= j and 0≤ t ≤ (m−1).

We note that the number of nodes encountered by any given node, and thus the number

of rows in Mk, is expected to be much smaller than n. The encounter matrices for the four

61

nodes in Figure 3.1 are given in Tables 3.1-3.4.

3.3.1 The encounter graph for unicast routing

If we combine the encounter matrices for all the mobile nodes in the network, we can create

an encounter graph that represents all the observed periodic patterns for a given set of nodes.

For example, Figure 3.2 gives the encounter graph corresponding to the behaviours shown

in Figure 3.1.

t=0 t=1 t=2 t=3

O
2

O
1

O
0

O
3

Figure 3.2: An unicast graph model reflecting the encounter patterns in Figure 3.1

In this graph, there are four nodes in the network, and all node pairs have periodic

encounter patterns with a period of four intervals. In order to represent a mobile node

during different intervals, each node is modelled using a vertex with the same shape at four

time intervals in the graph. To denote the same node at different interval and encounters

between node pairs, two types of edges, horizontal edges and vertical edges, are used in the

graph respectively:

• Horizontal edges connect vertices with the same shape to represent the same node

at different intervals. This type of edge only connects vertices with the same shape

during two adjacent intervals. Because this graph models periodic encounters, when

the last interval of a period is reached, a horizontal edge connects the node back to

the first interval of the next period to reflect the encounter pattern repeating in the

next period.

• Vertical edges link two nodes at the same interval to illustrate encounters between

these nodes. Encounters happen only within one time interval, so links from one

node at one interval to another node at another interval are not permitted.

With this model, unicast routing with respect to both the minimum end-to-end energy

consumption and minimum end-to-end delay problems can be treated as shortest path prob-

62

lems. The two problems can be instantiated by assigning different edge weights in the

graph.

• Communication Delay In this problem, if a node decides to store the message and

carry it on to the next time interval to disseminate it in the future, this yields a commu-

nication delay equal to the duration of the current time interval. Because all intervals

in the graph model have the same duration, each horizontal edge has the same weight.

In contrast, if a node decides to transmit the packet immediately, it needs to prepare

the message for transmission, and then the message needs to propagate over the wire-

less channel. However, these delays have already been embedded in the duration of

the corresponding interval. Thus, all vertical edges have a zero weight.

• Energy consumption In the energy consumption problem, if a node decides to carry

the message on to the next time interval and disseminate it in the future, this requires a

very small amount of energy for data storage during the current time interval. There-

fore, all horizontal edges have a relatively small non-zero weight. In contrast, if

a node transmits the message during an interval, each vertical edge has a constant

energy cost that is much larger compared to the energy required for message storage.

Another important function from networks is to deliver messages to multiple destina-

tions, i.e., multicast routing. However, our model presented in Figure 3.2 targeting at single

source and destination is not able to address problems of multicast routing. In wireless

communications, specially in time division multiple access, all neighbours within the trans-

mission range can hear from the source. The energy cost only needs to be counted once no

matter how many receivers are within the neighbourhood. However, in our previous graph

model, costs of transmission to neighbours will be added separately. For example, in Fig-

ure 3.1, node o1 can transmit to nodes o0 and o2 at the same time during interval I0. In the

graph, because both outgoing edges from o1 to o0 and o2 have non-zero energy weights, the

total energy cost for this single transmission will be counted twice. Thus, the graph model

in Figure 3.2 is not suitable for multicast routing.

3.3.2 The encounter graph for multicast routing

To mimic scenarios of multiple receivers of a single transmission, in the graph model for

multicast routing shown in Figure 3.3, two vertices now are used to represent a node during

an interval: one describes the receiving/processing module carried by this node, and the

other one stands for the transmitting module. The receiving/processing module is described

63

using a regular vertex, and the transmitting module is represented by a dotted vertex with the

same shape. As an example shown in Figure 3.3, this graph model has the same connectivity

as the graph model for unicast routing in Figure 3.2.

O2

O1

O0

O3

D
0

o

Do
1

Do
2

D
3

o

t=0 t=3t=2t=1

Figure 3.3: A multicast graph model reflecting the encounter patterns in Figure 3.1

There are four nodes whose encounters are represented in the graph. The nodes are

each represented by a different shape (triangle, circle, trapezoid and diamond). There is an

implicit time axis in this graph, from left to right. The four different solid-line instances of

each shape represent the same node during four successive time intervals. That is, the left-

hand solid triangle represents node o0 during period t = 0, and the right-hand solid triangle

represents o0 during period t = 3.

The horizontal left-to-right directed edge from one solid-line shape to the next instance

of the same solid-line shape to the right represents the possibility for a node to buffer a

message and carry it forward to successive instants in time. The final edge, from the furthest

right-hand instance of a solid-line shape back to the furthest left version of the same solid-

line shape represents the possibility for a message to be carried forward in time to the next

64

repetition of the observed behaviours.

In this example, all encounter patterns have a period length of m = 4, so the graph has

four instances of each solid-line shape. If we had patterns with different period lengths, the

graph would have a width equal to the least-common multiple of the periods.

There are four solid-line instances of each shape, and four dotted-line instances. They

enable us to differentiate between the node in receiving mode (solid), and the same node

in transmitting mode (dotted). For example, the possibility of a transmission from o0 to o1

during t = 1 is represented by the directed vertical arc from the dotted triangle in interval

t = 1 to the solid circle in the same interval. Messages can only be transmitted from one

node to another during the same interval. Thus, transmission arcs cannot cross intervals.

They may, however, be directed vertically either up or down, depending simply on the

relative positions where two nodes have been positioned in the graph. The vertical arcs

represent the encounters in the binary time series; it is these encounters that make message

transmission possible.

Lastly, there is a single ”darker solid” lined version of each shape. This is a convenient

representation of each node as a potential destination vertex in the graph model. For exam-

ple, if our goal is to find the minimum delay path for a message from o0 to o2, one possibility

is to send it from o0 to o1 during t = 1, and then from o1 to o2 during t = 2. This route could

be found algorithmically by asking for the shortest path (under a few constraints) from o0

at t = 0 to oD
2 , i.e., to the destination version of o2.

In summary, we use three types of vertices in our graph model: receiving vertices V R,

transmitting vertices V T and destination vertices V D. The edges used to connect these

vertices can be grouped into four categories:

• Horizontal edges connect vertices with the same shape to represent the possibility for

a node to buffer and carry a message from one phase to the next. We denote these

edges as eH
t,o where subscript t indicates the phase number, and subscript o defines the

node number.

• Internal edges connect a node’s receiver to its transmitter. The weight on an internal

edge can be used, for example, to represent the energy cost of transmission. These

edges are denoted eI
t,o.

• Vertical edges link two nodes in the same phase, and represent an encounter between

these two nodes. They are denoted eV
t,o1,o2, where o1 and o2 are the indices of the two

nodes.

65

• Destination edges link receivers to their destination vertex to capture the fact the

message has been delivered to its destination. They are denoted eD
t,o.

We now use this terminology to describe the situation where a node can deliver a mes-

sage to a set of destinations. Here, we assume that each node at a particular phase either

broadcasts the message to all encountered neighbours or does not transmit at all. Using the

encounter matrices Mk,0 ≤ k ≤ n− 1, the encounter graph is the weighted directed graph

G = (V,E,W) where:

• V R = {vR
t,i | 0 ≤ i ≤ n− 1, 0 ≤ t ≤ m− 1} ∈ V denotes the receiving modules for a

set of n nodes during a period of length m phases,

• V T = {vT
t,i | 0≤ i≤ n−1, 0≤ t ≤ m−1} ∈V denotes the transmitting modules for

a set of n nodes during a period of length m phases,

• V D = {vD
i | 0≤ i≤ n−1} ∈V denotes destination vertices for a set of n nodes,

• EH = {eH
t,i = (vR

t,i,v
R
t+1,i) ∀oi ∈ O, 0≤ t ≤ m−1} ∈ E denotes the horizontal edges,

• EV = {eV
t,i, j = (vT

t,i,v
R
t, j) ∀oi,o j ∈ O, 0 ≤ t ≤ m− 1} ∈ E if and only if mi

jt = 1}

denotes the vertical edges,

• E I = {eI
t,i = (vR

t,i,v
T
t,i) ∀oi ∈ O, 0≤ t ≤ m−1} ∈ E denotes the internal edges,

• ED = {eD
t,i = (vR

t,i,v
D
i) ∀oi ∈ O, 0 ≤ t ≤ m− 1}} ∈ E denotes the destination edges

and

• W represents a function on an edge returning the weight assigned to it.

This graph is generic enough to be used to represent both energy and delay costs simply by

adjusting the weights W assigned to each edge in G. We discuss this next.

Communication delay

The encounter graph can be used to solve the minimum delay problem as follows. If a

node decides to store the message and carry it on to the next phase to disseminate it in the

future, this yields a communication delay equal to τ , i.e., the duration of the current phase

pt . Transmission preparation (the weight for internal edges) yields a small amount of delay

between the receiving module and the transmitting module, and signal propagation (the

weight for vertical edges) also introduces another delay. However, we can treat both delays

as zero because both are embedded within the weight of the horizontal edges τ , which is the

duration of each phase. In addition, the weight of destination edges is always zero because

they are artificial edges which do not add any delay in the physical environment. Therefore,

the weights of the edges for minimum delay routing are (see Figure 3.4):

66

O2

O1

O0

0

O3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0
0 0

0

000 0

0 0

t=0

0

0 0 0 0

0 0

0
00

0
0

0

D
0

o

Do
1

Do
2

D
3

o

t=3t=2t=1

Figure 3.4: Graph model for the minimum delay problem

• ∀eH ∈ EH , W (eH) = τ .

• ∀eV ∈ EV , W (eV) = 0.

• ∀eI ∈ E I, W (eI) = 0.

• ∀eD ∈ ED, W (eD) = 0.

Energy consumption

The encounter graph can also be used to find the minimum energy consumption for routing

a message. If a node decides to carry the message on to the next phase and disseminate it

in the future, this requires a very small amount of energy for data storage during the current

phase pt . In this chapter, we let ε be the energy cost for a node to store data during a

phase with duration τ . If a node carries the message on to the next phase, this results in an

energy cost, ε , to store the message. In contrast, if the node decides to transmit the message

67

O2

O1

O0

0

O3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0
0 0

0

000 0

0 0

D
0

o

Do
1

Do
2

D
3

o

0

t=0 t=3t=2t=1

Figure 3.5: Graph model for the minimum energy consumption problem

immediately to a set of encountered nodes during the current phase, a certain amount of

energy, depending on the application, is required. In this chapter, we assume homogeneous

networks where each transmission costs the same amount of energy, ρ . However, our model

can be used to model the case where the energy required to transmit a message between two

nodes depend on when and where they meet. For instance, in some encounters the nodes

can be closer or further apart. Formally, to model energy costs for routing, the weights of

horizontal and vertical edges can be defined as follows (see Figure 3.5):

• ∀eH ∈ EH , W (eH) = ε .

• ∀eV ∈ EV , W (ev) = 0.

• ∀eI ∈ E I, W (eI) = ρ .

• ∀eD ∈ ED, W (eD) = 0.

68

3.3.3 Domain constraint

In some scenarios, an intermediate node within two consecutive encounters during the same

phase may participate in the optimal route. For example, if node o0 has a packet for node

o2 during phase p0, the route with the minimum delay in Figure 3.3(a) is vR
0,0 → vT

0,0 →

vR
1,0→ vT

1,0→ vR
2,0→ vD

2 with zero delay if the propagation delay and processing delay are

negligible. In this route, the intermediate node o1 acts as a bridge for two consecutive trans-

missions during the same phase. However, because the encounters between node o1 and

nodes o0 and o2 both take place during the same phase and the order of encounters is un-

known in the graph model, we forbid such type of retransmissions during the same phase.

Therefore, we propose a domain-oriented constraint called NOT (NO reTransmissions dur-

ing the same phase in the graph). However, if a retransmission is required for a node during

a particular phase, e.g., node o1 at phase p0 with a transmission from node o0 during the

same phase, it has to wait for the same phase during the next repetition of the periodic

encounters. As a result, each retransmission costs an additional delay that equals the to-

tal period of time of such a periodic pattern. Because of this domain-oriented constraint,

conventional shortest path algorithms cannot be used to find optimal routes satisfying the

constraint. In the next section, we discuss mathematical optimization and modifications

of Dijkstra’s algorithm [29] that enforce the NOT constraint in their results for both the

minimum delay and minimum energy consumption problems.

3.4 Mathematical optimization and algorithms

One of basic functions of a network is to distribute information to various groups of des-

tinations with the objective to minimize the usage of resources including overall energy

consumption or/and communications delay. Given a set of destinations, our objective is to

distribute the packet to them using the minimum delay or the minimum energy consump-

tion. We need to find a tree structure rooted at the source that connects desired destinations

in the graph. The tree in our graph model is a Steiner Tree. Our objective is to find the

minimum weighted Steiner Tree that connects the source to all destinations [91, 92].

In this section, we introduce two approaches, binary integer programming and opti-

mal/approximate algorithms, to find routes for communications in our graph model. We

discuss the multicast version of the problem as the unicast is a special case of multicast.

69

3.4.1 Binary integer programming

Mathematical programming is a powerful tool that can be used to solve optimization prob-

lems. Targeting both the minimum energy consumption and minimum delay problems by

assigning different weights on our graph model, the optimal route is a set of sequential

edges where the summation of weights on those edges is the minimum. If we treat all edges

as variables, an edge either does participate in an optimal route (its value is 1) or does not

(its value is 0). This general approach is called the binary integer programming. In this

section, we define the formulation to find a minimum weighted Steiner Tree that satisfies

our constraints in the graph model.

The minimum delay problem

In the minimum energy consumption problem, our goal is to find the Steiner Tree whose

total weight is the minimum. This is because the energy cost on the path from the source to

a destination is isolated from other paths. The total weight of a tree is the cumulative cost

of all these paths. However, this strategy is incorrect for the minimum delay problem where

there are multiple destinations in a packet. The reason is that the time to deliver a packet

to one destination may partially overlap the time to deliver the packet to other destinations.

For example, as shown in Figure 3.3 a), if node o2 has a packet for nodes o0 and o3 at the

beginning of phase p0, the minimum delay will be 2τ instead of 3τ because the delay (τ)

to deliver the packet from o2 to o0 is embedded within the delay (2τ) of path from o2 to o3.

Therefore, when we count the minimum delay, it is incorrect to simply add delays from all

paths. This special phenomenon cannot be modelled by linear programming, but we can

solve this problem algorithmically; this is discussed in detail in the next subsection.

......

......

.

.

.

.

et,i
He H

t-1,i

et,i
D

et,i
I

e V
t,i,j

et,i
I

v
t,i
R v

t,i
T

v D
i

t=0

m-1

et,i
D

Tv
t,j

e
t,j,i
V

v
t,j
R

Figure 3.6: Illustrations for edge notations

70

The minimum energy consumption problem

In this binary integer program, each edge in the graph has a weight. Each edge either

participates in the minimum weighted Steiner Tree or it does not. Therefore, if we set each

edge as a variable, this variable has value either one or zero. Because each edge also has a

weight, our goal is to minimize the total weight of the Steiner tree being used in order to

connect all desired destinations. To define the formulation of all edges, we first have a look

at different types of vertices. As we described before, we have three types of vertices in

our graph model. Receiving and processing vertices have five categories of edges in either

incoming and outgoing directions. Transmitting vertices have only incoming internal edges

and outgoing vertical edges. Lastly, destination vertices have only incoming destination

edges.

A vertex vR
t,i ∈V R has five types of incoming and outgoing edges as shown in Figure 3.6:

a set of vertical incoming edges, a set of horizontal incoming edges, a set of horizontal out-

going edge, a set of vertical outgoing edge to the transmitting module and an edge to vD
i .

The combinations of their corresponding values are also presented in Table 3.5. The total

weight of all incoming edges must be zero or one. Otherwise, it violates the definition of a

tree structure where there is only one path from the root to every node on the tree. In addi-

tion, a vertex vR
t,i ∈V R has four different roles in routing. First, it can be the source vertex.

As shown in the seventh column of Table 3.5 where the cross sign represents the invalid

combination of values, it has no incoming edge, and the edge to its destination vertex must

not be enabled. Second, this type of vertex can be the vertex on the tree which directly con-

nects to its destination vertex. The third role for this type of vertex is to be an intermediate

vertex, which does not directly connect to the destination vertex. The last one is a vertex

that does not participate to form the tree. Similar to the last two roles, intermediate vertices

and vertices which are not on the tree also have some invalid combinations. In Table 3.5,

the last column summarizes all invalid scenarios for the last three roles of receiving and

transmitting vertices.

A vertex vT
t,i has the following properties shown in Figure 3.6:

1. if vT
t,i ∈ V T is an intermediate vertex on the tree, eI

t,i = 1 while ∑
vR

t,k

eV
t,i,k ≥ 1 for all

ok ∈ O if mi
kt = 1.

2. if vT
t,i ∈V T is not on the tree, eI

t,i = 0 while ∑
vR

t,k

eV
t,i,k = 0 for all ok ∈ O if mi

kt = 1.

A vertex cD
i has the following properties shown in Figure 3.6:

71

y = ∑
e∈E

w(e) · e

subject to

e =
{

1 if used in the minimum Steiner tree
0 otherwise

(C1)

m−1

∑
t=0

eD
t,i =

{
1 if vD

i ∈ D
0 otherwise

(C2)

∑
vT

t, j

eV
t, j,i + eH

t−1,i + eD
t,i = 0 where vR

t,i = vR
st,s (C3)

eI
t,i + eH

t,i ≥ 1 where vR
t,i = vR

st,s (C4)

∑
vT

t, j

eV
t, j,i ≤ 1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C5)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eI
t,i + eH

t,i + eD
t,i where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C6)

eI
t,i ≤ eH

t−1,i where vR
t,i 6= vR

st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C7)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≥ eH
t,i where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C8)

∑
vT

t, j

eV
t, j,i ≥ eD

t,i where vR
t,i 6= vR

st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C9)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eI
t,i +1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C10)

∑
vT

t, j

eV
t, j,i + eH

t−1,i ≤ eH
t,i +1 where vR

t,i 6= vR
st,s and ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C11)

eI
t,i ≤∑

vR
t, j

eV
t,i, j where ∀oi,o j ∈ O and 0≤ t ≤ m−1 (C12)

eI
t,i ≥ eV

t,i, j where ∀oi,o j ∈ O and 0≤ t ≤ m−1 if mi
jt = 1 (C13)

Figure 3.7: Binary Integer program for routing in our graph model

72

1. ∑
m−1
t=0 eD

t,i = 1 if vD
i is one of the destinations

2. ∑
m−1
t=0 eD

t,i = 0 if vD
i is not one of the destinations

To enforce all properties regarding different types of vertices, we have the formulation

shown in Figure 3.7. Given a directed graph G, let w(e) be the cost of an edge e ∈ E. Given

a source vertex vR
st,s and a set of destination vertices D, we present our BIP formulation for

the minimum edge-weighted directed Steiner tree problem.

Table 3.5: Combinations of edge values to identify i ∈V R

Constraint ∑vT
t, j

eT
t, j,i eH

t−1,i eI
t,i eH

t,i eD
t,i vR

st,s vR
t,i ∈V R

0 0 0 0 0 ×
√

C9 0 0 0 0 1 × ×
C8 0 0 0 1 0

√
×

C8,C9 0 0 0 1 1 × ×
C7 0 0 1 0 0

√
×

C7,C9 0 0 1 0 1 × ×
C7,C8 0 0 1 1 0

√
×

C7,C8,C9 0 0 1 1 1 × ×
C6 0 1 0 0 0 × ×
C9 0 1 0 0 1 × ×

0 1 0 1 0 ×
√

C9 0 1 0 1 1 × ×
0 1 1 0 0 ×

√

C9 0 1 1 0 1 × ×
0 1 1 1 0 ×

√

C9 0 1 1 1 1 × ×
C6 1 0 0 0 0 × ×

1 0 0 0 1 ×
√

1 0 0 1 0 ×
√

1 0 0 1 1 ×
√

C7 1 0 1 0 0 × ×
C7 1 0 1 0 1 × ×
C7 1 0 1 1 0 × ×
C7 1 0 1 1 1 × ×
C6 1 1 0 0 0 × ×
C6 1 1 0 0 1 × ×
C6 1 1 0 1 0 × ×
C10 1 1 0 1 1 × ×
C6 1 1 1 0 0 × ×
C11 1 1 1 0 1 × ×

1 1 1 1 0 ×
√

1 1 1 1 1 ×
√

73

There is a total of 13 constraints in our formulation.1

• Constraint C1 treats each edge as a variable to determine whether that edge is on the

optimal Steiner tree.

• Constraint C2 controls destination vertices. All desired destination vertices on the

tree must have one incoming edge. Other destination vertices that do not belong to

the destination set D must not have any incoming edge at all.

• Constraints C3 and C4 are used to constrain the source. A source has no incoming

edge (see C3). In addition, it must have at least one outgoing edge except the destina-

tion edge (see C4).

• Constraints C5 to C11 are used to regulate receiving and processing vertices. For

example, constraint C5 requires that every receiving and processing vertex can only

have one incoming vertical edge.

• Constraints C12 and C13 are used to control each transmitting vertex. If its internal

edge is on the tree, at least one of the vertical outgoing edges must also be on the tree.

Otherwise, both incoming and outgoing edges must not be included on the tree.

Even though we have discussed the domain-oriented constraint in the previous section,

no constraint in our formulation is dedicated to it. However, if we have a close look at

Table 3.5, our domain-oriented constraint is enforced by combining different constraints in

the formulation. We know that in a logical tree, each vertex has only one incoming edge and

at least one outgoing edge. However, if we look at two valid scenarios presented by the last

two rows in Table 3.5, both incoming vertical and horizontal edges can be included on the

tree. It seems that they are contradictions to the definition of a logical tree, but this is valid

because of our domain constraint and the repetition of periodic encounters. For example, if

a node receives a packet from another node (one of the incoming vertical edges is enabled),

this node can store the packet and transmit it in the future. If the best time to transmit this

packet is at the same phase during the next period, as a result, both incoming horizontal and

vertical edges will be included on the tree.

3.4.2 Optimal and approximate algorithms

We have to treat the minimum energy consumption and minimum delay problems differ-

ently. This is because the nature of time in the minimum delay problem is quite different
1Table 3.5 provides details about the functionalities of each constraint in this group. In that table, cross

signs represent violations; check signs represent valid scenarios.

74

from that of energy usage in the minimum energy problem. In this section, we present

approaches that address these two problems separately.

1) The minimum delay problem:

The minimum delay problem in routing is relatively simple. The main result can be

found in the following theorem.

Theorem 1. The minimum delay in routing for a set of destinations equals the maximum of

all pair-wise minimum delays between the source and destinations.

Proof. We prove this theorem by induction. Let us use d to represent the number of desti-

nation nodes in the graph.

If d = 1, then a path with minimum delay from the source to that node must also yield

the the minimum delay for unicast routing.

If d = 2, we can pick one node first and find a path with the minimum delay from the

source to it. Then, we find a path with the minimum delay from the source to the second

node. If the delay to reach the second node is less than the delay to reach the first node,

the delay to reach the second node must be embedded in the delay to reach the first node.

Otherwise, the minimum delay to reach the second node must include the delay to reach the

first node. Therefore, in either case, the maximum of the minimum pair-wise path delays

among two nodes is the minimum delay in multicast routing.

Let us assume our theorem is true when d = n−1.

If d equals n, for every combination of n− 1 destination nodes, the minimum delay

to reach those n−1 destinations is the maximum of all minimum path delays between the

source and n−1 destinations. By introducing one extra destination node, we need to show

that the theorem statement holds as well. We can now use the same argument for the case

where d = 2 to complete the induction argument.

From our theorem, many classical shortest path algorithms can be used to solve the

minimum delay problem with small modifications. The algorithm used in this chapter for

the minimum delay problem is a modification of Dijkstra’s algorithm [25]. Its pseudo-code

is presented as Algorithm 1. There is one difference with respect to the original algorithm

in [25]: the if-statement at lines 18 to 21 is inserted to enforce the NOT constraint. This if-

statement does not re-direct the optimal route; it only adjusts the weight of related vertices

to avoid transmissions that violate the NOT constraint. For example, in line 19, if the

predecessor and successor of the current vertex on the route are from the same phase, it is a

violation of the NOT constraint. If the retransmission must be part of the optimal route, that

75

means the edge in the graph for the retransmission represents the only encounter between

both intermediate nodes. In other words, there is only one path between the source and the

destination. Because of our domain-oriented constraint, the retransmission to its successor

has to wait, or the packet has to be held until the same phase in the next period. As shown

in line 20, data storage requires an additional energy cost, ε×m units of energy, to store the

message for a whole period with m phases. The principle of the modification in Algorithm 1

is: whenever there is a violating retransmission, we eliminate the retransmission by having

the node to store the packet until the same encounter at the next period in time. Because the

Algorithm 1 ModifiedDijkstra(G,D,w,s)

1: for each vertex v ∈V [G] do
2: d[v]← ∞ //initialize the distance to be infinite
3: p[v]← null //set the predecessor to be empty
4: end for
5: d[s]← 0 //initialize the source distance
6: S← /0
7: Q←V [G] //initialize the priority queue
8: while Q 6= /0 do
9: u = EXTRACt-MIN(Q)

10: if u ∈ D then
11: D← D\{u}
12: end if
13: if D == /0 then
14: break
15: end if
16: for each vertex v ∈ Ad j[u] do
17: if d[v]> d[u]+w(u,v) then
18: //check whether the predecessor/successor and the current vertex are from the

same phase
19: if phaseOf(v) == phaseOf(p[u])

&& phaseOf(v) == phaseOf(u) then
20: d[v]← d[u]+ ε ∗m
21: else
22: d[v]← d[u]+w(u,v)
23: end if
24: p[v]← u
25: end if
26: end for
27: end while
28: // retrieveTree function retrieves the tree by traversing the predecessor recorded at each

destination back to the source
29: T = retrieveTree(G,D,s)
30: return T

76

cost of storing the message has already been included in the final cost in Algorithm 1, the

route returned is an optimal route that does not violate the NOT constraint. Note that if we

remove lines 18 to 21 from the algorithm, this part of the algorithm is exactly the same as

Dijkstra’s algorithm. In other words, the path to each destination generated by the algorithm

which satisfies our constraint is guaranteed to be the optimal route, and furthermore, it can

be found in polynomial time based on the complexity of Dijkstras algorithm. In summary,

our modified Dijkstra’s algorithm finds a shortest-path tree for a given set of destinations.

Based on Theorem 1, the minimum delay to reach all destinations equals the weight of the

longest shortest path on the tree.

In order to prove the correctness of Algorithm 1, we prove that the tree returned from

that modified algorithm is the shortest path tree.

Theorem 2. Given a source and a set of destinations, Algorithm 1 returns a shortest path

tree satisfying the NOT constraint.

Proof. As we discussed before, the only difference between Algorithm 1 and Dijkstra’s

algorithm is that we enforce the NOT constraint from line 18 to 21. As a result, Algo-

rithm 1 only examines paths that satisfy the NOT constraint, and does not change the logic

of Dijkstra’s algorithm. Therefore, the path to each one of the destinations returned by Al-

gorithm 1 satisfies the NOT constraint, and must be the shortest based on the correctness

of Dijkstra’s algorithm. Because all optimal paths originate from the same source, if we

combine those optimal paths, the tree returned must also be a shortest path tree satisfying

the NOT constraint.

Using Theorems 1 and 2, the weight of the longest path between the source and any

destination returned by Algorithm 1 is the minimum delay in order to deliver a packet to

multiple destinations.

It is obvious that the if-statement from line 18 to 21 only updates the weight of the cor-

responding vertices. It does not bring additional complexity into the algorithm. Therefore,

based on the complexity of Dijkstra’s algorithm, our algorithm has polynomial complexity.

2) The minimum energy consumption problem:

As we mentioned before, the minimum energy consumption problem can be solved

by finding the minimum weighted Steiner Tree in the graph where the destination vertices

are leaf nodes [101]. However, the minimum weighted Steiner Tree problem is a classical

NP-hard problem [41] and has been well studied [62, 63, 138]. The minimum weighted

Steiner tree problem can be further divided into two categories: node-weighted Steiner

77

tree and edge-weighted Steiner problem. The minimum energy consumption problem in

our graph model falls into the second category. In graph theory, the minimum weighted

Steiner tree problem is NP-hard in general; however, studies have shown that the Steiner

tree problem can be solved in polynomial time in many special graph types such as Series-

Parallel graphs, Halin graphs, K-planer networks and strongly chordal graphs [121, 138].

Unfortunately, our graph model does not belong to any one of these graph types.

Previous works have presented both exact algorithms and approximation algorithms

that are based on some heuristics. The exact algorithms that have been proposed are all

exponential algorithms [30, 47, 84]. They are not practical for graph models with a large

number of vertices. Therefore, we focus on approximation algorithms which can find the

result faster, although without the guarantee of optimality. Many works have been con-

ducted on heuristics [77, 108, 114, 127]. The most well-known heuristics are from Kou

et al. [77] and Takahashi and Matsuyama [127]. In their paper, Kou et al., used the min-

imum spanning tree heuristic on source and destinations; Takahashi and Matsuyama used

Algorithm 2 Shortest Path Heuristic to find minimum weighted directed Steiner
tree(G,D,w,s)

1: T← {s} //initialize the result tree
2: shortestPathTree = null
3: while D 6= /0 do
4: minCost← ∞

5: P← /0 //the set used to hold the selected path
6: v̂← null
7: d̂← null
8: for each vertex v ∈ T do
9: if shortestPathTree[v] == null then

10: shortestPathTree[v]←ModifiedDijkstra(G,D,w,v)
11: for each destination d ∈ D do
12: if cost(path(v,d)∈shortestPathTree[v])<minCost then
13: minCost = cost(path(v,d))
14: v̂←v
15: d̂←d
16: P←path(v,d)
17: end if
18: end for
19: end if
20: end for
21: T←T∪P\{v̂}
22: D←D\{d̂}
23: end while
24: return T

78

the minimum cost paths heuristic. Both algorithms can achieve a O(kn logn) complexity

where k is the number of destinations; however, these algorithms do not work on directed

graphs.

In order to find a heuristic for directed graphs, we decided to modify previous heuristic

algorithms for undirected graphs. The minimum spanning tree heuristic cannot be applied

to our graph model because the destination vertices has no outgoing edges. The algorithm

cannot construct a complete graph among the source and all destination vertices. Therefore,

we focus on the minimum cost path heuristic.

In the minimum path cost heuristic [127], the algorithm first finds a path from the source

to one of the destinations that has the minimum cost among all destinations. Using the path

as the base of a tree, the algorithm selects the next destination that is the closest to the base

tree and merges the selected path to that tree. The algorithm keeps doing this until the last

destination vertex has been included in the tree. This is why the algorithm has O(kn logn)

complexity. There are k destinations in the tree, and each one of them is required to run

Dijkstra’s algorithm once. As we just mentioned, the destination vertices in our graph

model have no outgoing edge. Thus, there is no path to any vertex in the graph by using

the destination vertex as the source. To change that, we make a small modification from

the original algorithm. Instead of running Dijkstra’s algorithm from destination vertices,

the next closest destination vertex can be used by running Dijkstra’s algorithm from all

intermediate vertices on the result tree. A detailed algorithm is described in Algorithm 2.

In the algorithm, we introduce a storage space, shortestPathTree, to store the shortest-path

tree rooted at each intermediate vertex that is returned by our modified Dijkstra algorithm in

Algorithm 1. In addition, path(v,d) represents the shortest path from vertex v to destination

d in the shortest-path tree rooted at v. In summary, Algorithm 2 incrementally builds the

heuristic tree by inserting a path to one of the destinations at a time.

In the following analysis, we show that our algorithm is a k-approximation algorithm in

the worst case.

Theorem 3. Given any directed graph G = (V,E), a source vertex s and a set of destina-

tions D where D⊆V and |D|= k, Algorithm 2 always provides a solution to the minimum

weighted directed Steiner tree problem that is at most k times the optimal solution.

Proof. According to Algorithm 2, there is an order among all destinations for the sequence

that each one has been added into the tree. For simplicity, we name the destination vertices

as d1,d2, · · ·dk. A destination vertex with a smaller index is inserted into the result tree

79

earlier. Correspondingly, the same sequence can be used to name the destination vertices in

the optimal directed Steiner tree.

Given the optimal tree for the minimum weighted directed Steiner tree problem for k

destinations, T OPT , let cOPT (u,v) be the weight of the path between vertices u and v on the

optimal tree. For the tree that is incrementally built by Algorithm 2, let c(x,y) be the weight

of the path between vertices x and y. Vertices without OPT notation are in the tree built by

Algorithm 2, and the ones with OPT notation are from the optimal tree.

s s

d 2d 1

vOPT

d1

T
OPT

2

d 3 d k

vOPT

3

vOPT

k

.............

Insert into our treed1

Figure 3.8: Partial tree T1 and T OPT

At the beginning, our algorithm creates a path with the smallest cost connecting the

source and one of the destinations. As a result, our partial tree T1 is a single path as shown

in the left part of Figure 3.8 2.

Because the path selected by Algorithm 2 is the shortest path between the source and

any one of the desired destinations, the following inequality holds.

c(s,d1)≤ cOPT (s,d1) (3.2)

Next, the algorithm adds another destination d2 into the tree. For illustration, please

refer to Figure 3.9. When our algorithm adds the second destination d2 into the tree, there

is an intermediate vertex on the path (s,d1) in the left part of Figure 3.8 that has the smallest

cost to connect d2. Let us call this vertex v2. Both v2 and d2 in this example can be mapped

to v̂ and d̂ in Algorithm 2 at each iteration. Similarly, there is a corresponding vertex on

the optimal tree, T OPT , that connects d2 to the path between s and d1. Let us call it vOPT
2 .

Because the path between v2 and d2 has the smallest cost over all paths between s and d2,

we have the following inequality.

2All the figures in this proof are for demonstration only, vertices such as v2, vOPT
2 and so on can be any

vertex on the corresponding trees.

80

c(v2,d2) ≤ c(shortestPath(s,d2))

≤ cOPT (s,vOPT
2)+ cOPT (vOPT

2 ,d2)

(3.3)

s

d 2d 1

vOPT

T
OPT

2

d 3 d k

vOPT

3

vOPT

k

.............

s

d1
d2

v2

Insert into our treed2

Figure 3.9: Partial tree T2 and T OPT

When our algorithm adds the third destination d3, with the same argument before, there

are vertices v3 and vOPT
3 in our tree and the optimal tree connecting d3. Because of the

shortest path heuristic in Algorithm 2, the cost between path v3 and d3 in our tree must be

less than or equal to the any path between s and d3 in the graph. Therefore,

c(v3,d3) ≤ c(shortestPath(s,d3))

≤ cOPT (s,vOPT
3)+ cOPT (vOPT

3 ,d3) (3.4)

s

d 2d 1

vOPT

T
OPT

2

d 3
d k

vOPT

3

vOPT

k

.............

s

d2

v2

d3d1

v3

Insert into our treed3

Figure 3.10: Partial tree T3 and T OPT

The same analysis applies to each insertion of one destination. When the last destination

dk is inserted, we have the inequality shown in Equation 3.5.

81

c(vk,dk) ≤ c(shortestPath(s,dk))

≤ cOPT (s,vOPT
k)+ cOPT (vOPT

k ,dk) (3.5)

After including all destinations, the cost of our tree, T , is:

c(T) = c(s,d1)+ c(v2,d2)+ · · ·+ c(vk,dk) (3.6)

Similarly, the cost of the optimal tree, T OPT , is:

cOPT (T) = cOPT (s,d1)+ cOPT (vOPT
2 ,d2)

+ · · ·+ cOPT (vOPT
k ,dk) (3.7)

By applying the inequalities in Equations 3.2, 3.3, 3.7 and so on, we have:

c(T) ≤ cOPT (s,d1)+ cOPT (s,vOPT
2)+ cOPT (vOPT

2 ,d2)

+ · · ·+ cOPT (s,vOPT
k)+ cOPT (vOPT

k ,dk)

= c(T OPT)+
k

∑
i=2

cOPT (s,vOPT
i)

and
c(T)

c(T OPT)
≤ 1+

∑
k
i=2 cOPT (s,vOPT

i)

c(T OPT)
(3.8)

Therefore, our algorithm is a 1+ ∑
k
i=2 cOPT (s,vOPT

i)

c(T OPT)
approximation where c(s,vOPT

i) is the

shared weight with the existing subtree in the optimal solution for a destination when it is

added into the tree. There are two extreme cases for this shared weight. First, the newly

added destination does not use any edge from existing subtree; second, the newly added

destination fully utilize edges on existing subtree to be reachable by the source s. Therefore,

it is easy to see that 0 ≤ cOPT (s,vOPT
i) ≤ c(T OPT). In the worst case scenarios where all

cOPT (s,vOPT
i) = c(T OPT), we have

c(T)
c(T OPT)

≤ 1+
(k−1)∗ c(T OPT)

c(T OPT)
= k

As a result, c(T)≤ k ∗ c(T OPT) and Algorithm 2 is a k-approximation algorithm.

In Algorithm 2, almost every vertex on the result tree has to run the modified Dijkstra’s

algorithm in Algorithm 1 using itself as the source. Only vertices from the path to connect

82

the last destination do not need to do that. Therefore, given the resulting tree from our algo-

rithm with |Tk| vertices, the running complexity of our algorithm is at most O(|Tk|n logn).

In 1997, Zelikovsky showed that there exists a l-restricted (level-restricted) Steiner tree

that can achieves an approximation guarantee of factor k
1
l to the optimal tree for directed

acyclic graphs [142]. To generalize and extend that study to arbitrary directed graphs,

Charikar et al. presented a l(l− 1)k
1
l -approximation algorithm with the running time of

O(nlk2l) for any tree level l ∈ [1,n], where n is the number of vertices, and k is the number

of terminals [21]. An improvement on this approach, resulting in a time complexity of

O(nlkl +n2k+nm), where m is the number of edges was presented by Hsieh et al. in [55].

Compared to previous results, our algorithm has several advantages. First of all, our

bound of k is the worst case, and the results from our algorithm on most cases are much

closer to the optimum and sometimes are the optimum. Secondly, our algorithm is sim-

ple. Our k-approximation runs in O(n logn) time complexity, which is dominated by the

complexity of Dijkstra’s algorithm, and can be implemented more efficiently using data

structures such as binary heap and Fibonacci heap. In other studies, the algorithm has a

running time of O(n2k2) even for a 2 level restricted Steiner tree. Lastly, our approximation

only depends on one parameter, k, whereas the l(l− 1)k
1
l approximation mainly depends

on the factor of l(l− 1). In some graphs (like the ones in our graph mode), there is no

guarantee about the depth of the returned l-restricted Steiner tree. In other words, there

may not exist l-restricted Steiner tree with a small number l. Therefore, as the returned

level l increases, the factor l(l− 1) will become worse. For example, if k is equal to 5, a

3-restricted Steiner tree with a factor 3(3−1)5
1
3 is worse than ours with a factor of 5.

3.4.3 Unicast and broadcast versus multicast

In the previous discussion, distributing packets aiming at a set of destinations is called

multicast whereas unicast and broadcast are just special cases of multicast. When there is

only one destination, finding the minimum Steiner tree requires finding the shortest path

between the source and the destination. Both the minimum delay and minimum energy

consumption problems in unicast routing are relatively easy to solve by using Algorithm 1.

To achieve broadcast in our model, our objective is to connect the source to all destination

vertices with the minimum Steiner tree rather than finding the minimum spanning tree to

connect all vertices in the graph. With some variations, our graph models can also solve

unicast and broadcast routing by treating them as special cases of multicast routing.

83

3.5 Performance evaluation

In order to evaluate our method, we propose two sets of experiments where one set uses

synthetic traces, and the other one uses real traces.

3.5.1 Evaluation metrics

The complexity of the network is controlled by two different parameters: the number of

nodes in the network and each node’s radio range. Increasing the number of nodes will in-

crease the number of vertices and horizontal edges. In addition, increasing the radio range

increases the coverage area of each sensor, which leads to more encounters. In this section,

we first present experiments using synthetic traces in which we evaluate the effectiveness

and efficiency of our algorithms with respect to two parameters: (1) the number of nodes, n,

and (2) the radio range, r. In addition, a third parameter that is the number of destinations

in a packet, d, is introduced for multicast routing. Next, experiments using real mobile

traces are presented. We compare our algorithm to those results obtained via two straight-

forward delay tolerant network routing protocols, epidemic [129] and direct delivery [119]

protocols, because both protocols exhibit optimal bounds on either delivery ratio or net-

work resources. In order to make a fair comparison, we make the assumption that there are

unlimited buffers and energy supply in each node to guarantee the maximum delivery ratio.

Two metrics are examined in our experiments: (1) delivery delay and (2) energy cost.

Regarding both metrics, the lower their values are, the better the performance is. In addition,

in order to have accurate results, each measurement is calculated by taking the average of

each metric from running 100 packets individually with different sources and destinations.

In our simulation, we arbitrarily choose an integer number as the base unit to calculate the

energy costs at different radio range. However, the energy costs in real-life applications can

be obtained based on different transmission standards [38].

In our experiments, we evaluate both unicast and multicast communications. This is

because in some application one type of communications may be preferred over the other.

3.5.2 Experiments using synthetic traces

First, we examine the running time of our algorithm. Our experiments are implemented

in Java with JDK 1.6. All mobility traces are generated using NS2 [3] random way-point

mobility model. Because this mobility model is complex and takes far too long to generate

traces for a large number of nodes, the maximum number of nodes used in our experiments

84

is 250. In addition, experiments are conducted within a 400×400 square meter area and all

nodes have a radio range up to 50 meters. Finally, we make the assumption that transmitting

a message is much more expensive than simply holding on to a message during a phase.

This is related to how one assigns cost to the vertical and horizontal edges in our graph

model, respectively. We set the ratio of the energy cost to transmit a message over the

energy cost to store-and-carry a message to be 1000:1. In our experiments, the energy cost

grows quadratically with the radio range [39]. In addition, the duration of each phase is set

to be 60 seconds.

Unicast

In unicast routing, we focus on a special case of multicast where there is one destination. As

we mentioned earlier, both the number of nodes in the network, n, and node’s radio range, r,

are controlled in our experiments. By default, n = 150 and r = 30. The performance of our

algorithm is presented in Figure 3.11 that contains two sets of experiments. The first column

presents experimental results with varying n while maintaining a fixed 30 meters radio

range. The second column shows results for varying radio range while keeping 150 nodes

in the network. We compare our algorithm with direct delivery and epidemic routings. In

order to be as fair as possible to epidemic routing we just accounted for the energy and

delay spent until a route is found. This applies to the rest of our experiments.

Figures 3.11(a) and (b) show the end-to-end delay obtained by running our algorithm.

Recall that both our approach and the epidemic routing provably yield the optimal delay,

thus a comparison is not relevant in this case. As expected, with more nodes (or with greater

radio range) the larger the number of encounters and the higher the probability that a shorter

route is found. This causes decreasing trends in all three approaches in both experimental

settings. However, the direct delivery method has the highest delay because the source

has to wait until it meets the destination directly. In addition, this method does not have

obvious decreasing trends because of the random mobility model where the probabilities to

meet other nodes do not vary significantly.

Figure 3.11(c) shows that the obtained energy cost is fairly insensitive to the the number

of nodes in the network. It turns out that for a given default radio range, all packets can

be optimally delivered in a fairly small number of hops. We believe this is an artifact,

rather than a characteristic, due to the size of the area of interest. In this experiment, direct

delivery uses the least amount of energy because only one transmission is required to deliver

the packet whereas epidemic protocol costs the most because of flooding the packet to

85

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

50 100 150 200 250

D
el

ay

Number of nodes

Direct Delivery
Epidemic
Optimal

(a) Varying n while r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

10 20 30 40 50

D
el

ay

Radio Range (meters)

Direct Delivery
Epidemic
Optimal

(b) Varying r while n = 150

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

50 100 150 200 250

E
n

er
g

y

Number of nodes

Direct Delivery
Epidemic
Optimal

(c) Varying n while r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

10 20 30 40 50

E
n

er
g

y

Radio Range (meters)

Direct Delivery
Epidemic
Optimal

(d) Varying r while n = 150

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250

S
u

cc
es

s
ra

te

Number of nodes

Direct Delivery
Epidemic
Optimal

(e) Varying n while r = 30

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50

S
u

cc
es

s
ra

te

Radio Range (meters)

Direct Delivery
Epidemic
Optimal

(f) Varying r while n = 150

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

50 100 150 200 250

P
ro

ra
te

d
 E

n
er

g
y

Number of nodes

Direct Delivery
Epidemic
Optimal

(g) Varying n while r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

10 20 30 40 50

P
ro

ra
te

d
 E

n
er

g
y

Radio Range (meters)

Direct Delivery
Epidemic
Optimal

(h) Varying r while n = 150

Figure 3.11: Unicast performance regarding delay and energy cost

every encountered node that does not have a copy of the packet. Our algorithm has a

performance very similar to that of direct delivery. When the radio range increases as shown

in Figure 3.11(d), the energy cost increases for both direct delivery and our algorithm.

This may sound contradictory as larger radio ranges lead to more encounters and thus

more chances of creating better routes. However, as in the case of Figure 3.11(c), the actual

number of hops in the optimal is fairly constant. The curves goes up due to the well known

fact that the energy cost increases quadratically (at least) with the radio range. This increase

86

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

10 25 50 75 100

D
el

ay

of Destinations

Direct Delivery
Epidemic
Heuristic

(a) Varying d while n = 150 and
r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

50 100 150 200 250

D
el

ay

Number of nodes

Direct Delivery
Epidemic
Heuristic

(b) Varying n while r = 30 and d =
50

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

10 20 30 40 50

D
el

ay

Radio Range (meters)

Direct Delivery
Epidemic
Heuristic

(c) Varying r while d = 50 and n=
150

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

10 25 50 75 100

E
n

er
g

y

of Destinations

Direct Delivery
Epidemic
Heuristic

(d) Varying d while n = 150 and
r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

50 100 150 200 250

E
n

er
g

y

Number of nodes

Direct Delivery
Epidemic
Heuristic

(e) Varying n while r = 30 and d =
50

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

10 20 30 40 50

E
n

er
g

y

Radio Range (meters)

Direct Delivery
Epidemic
Heuristic

(f) Varying r while d = 50 and n =
150

 0.2

 0.4

 0.6

 0.8

 1

10 25 50 75 100

D
es

t
R

ea
ch

ab
le

of Destinations

Direct Delivery
Epidemic
Heuristic

(g) Varying d while n = 150 and
r = 30

 0.2

 0.4

 0.6

 0.8

 1

50 100 150 200 250

D
es

t
R

ea
ch

ab
le

Number of nodes

Direct Delivery
Epidemic
Heuristic

(h) Varying n while r = 30 and d =
50

 0.2

 0.4

 0.6

 0.8

 1

10 20 30 40 50
D

es
t

R
ea

ch
ab

le

Radio Range (meters)

Direct Delivery
Epidemic
Heuristic

(i) Varying r while d = 50 and n =
150

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

10 25 50 75 100

P
ro

ra
te

d
 E

n
er

g
y

of Destinations

Direct Delivery
Epidemic
Heuristic

(j) Varying d while n = 150 and
r = 30

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

50 100 150 200 250

P
ro

ra
te

d
 E

n
er

g
y

Number of nodes

Direct Delivery
Epidemic
Heuristic

(k) Varying n while r = 30 and d =
50

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

 1⋅106

 1⋅107

10 20 30 40 50

P
ro

ra
te

d
 E

n
er

g
y

Radio Range (meters)

Direct Delivery
Epidemic
Heuristic

(l) Varying r while d = 50 and n =
150

Figure 3.12: Multicast performance regarding delay and energy cost

in energy usage itself dominates any energy savings by having better routes. In contrast, the

energy cost for epidemic algorithm increases at the first, then it drops after a certain point

of time. This is because the increasing usage of energy first dominates the performance,

then as the number of encounters increases, the saving from having better routes dominates

the energy cost. If we keep increasing the radio range to a certain point of time where all

nodes encounter each other during the same phase, the epidemic protocol will always find

a route with only one transmission just like direct delivery.

87

In Figure 3.11(e), direct delivery has only approximately 60% of successful delivery

ratio because of the random mobility model. This ratio increases to approximately 75%

as the radio range increases in Figure 3.11(f) because more encounters in the network in-

creases the probability of meeting a certain node. The performance of direct delivery in the

previous studies is calculated based on successful deliveries whose total number is much

less than that of our algorithm and the epidemic protocol. Therefore, its performance could

be overestimated. To cancel this effect, we compare the three approaches considering only

the packets that are deliverable using direct delivery. The result in Figures 3.11(g) and (h)

shows that our algorithm performs as well as direct delivery.

Multicast

In addition to the number of nodes in the network, n, and the node’s radio range, r, we

introduced the number of destinations, d, in our experiments for multicast routing. By

default, n = 150, r = 30 and d = 50. Three sets of experimental results are presented in

Figure 3.12. The first column presents experimental results with varying the number of des-

tinations while maintaining 150 nodes in the network and the radio range to be 30 meters.

The second column shows results for varying the number of nodes in the network while

keeping 30 meters radio range and 50 destinations. The third column gives experimental

results for varying radio range where we use 150 nodes in the network and packets with

50 destinations. In general, the experimental results are similar to the results for unicast

routing except multicast routing costs more time and energy.

Figures 3.12(a), (b) and (c) show the packet delay obtained by the different methods

when varying three parameters. Those results show that direct delivery has the highest

delay in all circumstances because of the random mobility model where the probabilities

to meet other nodes do not vary significantly. As the number of destinations increases,

both our algorithm and the epidemic protocol spend more time searching in the network to

deliver the packet to all destinations. For the other two parameters, as expected with more

nodes and greater radio range both cause more encounters in the network leading to less

time to reach all destinations.

For energy cost, epidemic routing has the highest energy cost in all three settings be-

cause of its nature of flooding, and direct delivery always has the lowest cost. Figure 3.12(d)

shows that more energy is required in order to reach more destinations whereas the results

in Figures 3.12(e) and (f) are very similar to the results for unicast routing. As shown in

Figure 3.12(e), energy cost is fairly insensitive to the the number of nodes in the network

88

because of the artifact from the random mobility model due to the size of the area of in-

terest. The energy cost increases as the radio range increases because the energy cost is

quadratically related to the radio range while the actual number of hops in the result is

fairly constant. In general, our algorithm has performance similar to direct delivery.

Similar to what we have discussed in unicast routing, direct delivery is not able to reach

all destinations. Figures 3.12(g), (h) and (i) present the percentage of reachable destinations

for each method. Direct delivery can only reach approximately 60% of the destinations on

average if we vary the number of destinations and the number of nodes in the network.

This probability is determined by the random mobility model. However, the percentage

of reachable destinations increases as the radio range increases because there are more

encounters in the network. Because our results are calculated by taking an average of

delivering packets to all reachable destinations, only delivering to a portion of destinations

makes direct delivery appear to be the best approach. For a fair comparison, we compare

the results of three approaches prorated to the percentage of reachable destinations in direct

delivery. In Figures 3.12(j), (k) and (l) our algorithm has either equal or better performance

compared to direct delivery after prorating the result.

3.5.3 Experiments using real mobile traces

In this section, we use traces collected from real mobile nodes. There are three traces used in

our experiments. Table 3.6 presents the details of these traces. We derived encounters from

each trace and assume derived encounters are periodic encounters, which repeat themselves

at every discrete period of time.

Table 3.6: Real user traces

Source
Number

Duration Type
Analysed Analysed

of Users Users Duration
Milano [94] 44 19 days PMTR encounters 44 19 days
UMPC [82] 36 12 days iMote encounters 36 12 days

Cambridge [116] 12 6 days iMote encounters 12 6 days
Milano = University of Milano
PMTR = Pocket Mobility Trace Recorder
UMPC = University Pierre et Marie Curie

In our experiments, we again compare our algorithm to epidemic and direct delivery.

Each measurement is calculated by taking the average of 100 unicast/multicast packets

where packets are generated randomly. For each trace, we use the same set of packets

across three routing approaches to guarantee a fair comparison.

89

Unicast

Regarding delay, the optimal results from our algorithm are equal to those returned by

the epidemic routing protocol. This is shown by the experimental results in Figure 3.13(a).

When we compare our method to direct delivery routing, the routes found by direct delivery

always have longer delays than our method.

5.0⋅104

1.0⋅105

1.5⋅105

2.0⋅105

2.5⋅105

3.0⋅105

3.5⋅105

4.0⋅105

4.5⋅105

5.0⋅105

5.5⋅105

PMTR UMPC Cambridge

D
el

ay

Traces

Direct Delivery
Epidemic
Optimal

(a) Experimental results for delay
in unicast

0.0⋅100

2.0⋅105

4.0⋅105

6.0⋅105

8.0⋅105

1.0⋅106

1.2⋅106

1.4⋅106

1.6⋅106

1.8⋅106

2.0⋅106

PMTR UMPC Cambridge

D
el

ay

Traces

Direct Delivery
Epidemic
Optimal

(b) Experimental results for delay
in multicast

1.0⋅100

1.0⋅101

1.0⋅102

1.0⋅103

1.0⋅104

1.0⋅105

PMTR UMPC Cambridge

E
n

er
g

y

Traces

Direct Delivery
Epidemic
Optimal

(c) Experimental results for en-
ergy in unicast

1.0⋅100

1.0⋅101

1.0⋅102

1.0⋅103

1.0⋅104

1.0⋅105

PMTR UMPC Cambridge

E
n

er
g

y

Traces

Direct Delivery
Epidemic
Heuristic

(d) Experimental results for en-
ergy in multicast

1.0⋅100

1.0⋅101

1.0⋅102

1.0⋅103

1.0⋅104

PMTR UMPC Cambridge

P
ro

ra
te

d
 E

n
er

g
y

Traces

Direct Delivery
Epidemic
Optimal

(e) Prorated energy cost in unicast

1.0⋅100

1.0⋅101

1.0⋅102

1.0⋅103

1.0⋅104

1.0⋅105

PMTR UMPC Cambridge

P
ro

ra
te

d
 E

n
er

g
y

Traces

Direct Delivery
Epidemic
Heuristic

(f) Prorated energy cost in multi-
cast

Figure 3.13: Unicast and multicast performance regarding delay and energy cost in
real mobile traces

For the energy cost, a node has to transmit whenever there is an encounter in the epi-

demic protocol. This approach causes many more redundant transmissions compared to

direct delivery and our optimal routing. As shown in Figure 3.13(c), the average energy

cost from epidemic routing is an order of magnitude higher than for direct delivery and

our optimal algorithm. Our algorithm can always find an optimal route that has an energy

cost less than or equal to that from direct delivery. The prorated energy cost is presented in

Figure 3.13(e).

90

Multicast

For the delay problem, our algorithm finds the shortest path tree whose delay equals the

delay of the longest branch. This delay is the same as the delay returned by the epidemic

protocol. As shown in Figure 3.13(b), the result of our algorithm is the same as the epidemic

algorithm. In the direct delivery protocol, it always has to wait for the direct encounter. In

general, the source has to wait until all reachable destinations are encountered. Therefore,

the delay for each packet in direct delivery protocol is longer than the delay to deliver the

message to destinations in our algorithm and the epidemic algorithm.

For the energy cost in the multicast, our algorithm and direct delivery consume much

less energy compared to the epidemic protocol as shown in Figure 3.13(d). Experimental

results show that our heuristic multicast tree works better than direct delivery in all three

traces. Again, the prorated energy analysis is presented in Figure 3.13(f).

3.6 Future work

In order to simplify our model, we assume that periodic encounter patterns have the same

period length. However, our assumption may not be true in some scenarios. For example,

a person may go to a gym everyday, but only go to a church once a week. As a result,

our graph model is not able to capture periodic encounter patterns with distinct period

lengths. In this section, we present two approaches that modify encounter patterns and

our graph model so that periodic encounter behaviours with different period lengths can

be accommodated. We use three periodic encounter patterns in Table 3.7 for the following

discussion. One note here is that the proposed modifications currently only focus on unicast

routing. We leave multicast routing for future work.

Table 3.7: Periodic patterns with different period length

Node pair Periodic pattern
o0↔ o1 P3

o0,o1
= 1 1 0

o0↔ o1 P4
o0,o1

= 1 0 1 1
o1↔ o2 P6

o1,o2
= 1 0 1 1 1 0

To combine encounter patterns with different lengths, we can expand them because of

their property of repetition. If an encounter series has an encounter pattern with length m,

then this encounter series also has encounter patterns with length 2m, 3m and so on. After

calculating the least common multiple of all period lengths, encounter patterns shown in

Table 3.7 can be extended to the ones in Table 3.8. Because the least common multiple

91

equals 12 for integers 3, 4 and 6, in the extended encounter patterns, each pattern just

repeats itself until it reaches the length of 12.

Table 3.8: Extended periodic patterns

Node pair Periodic pattern
o0↔ o1 P12

o0,o1
= 1 1 0 1 1 0 1 1 0 1 1 0

o0↔ o1 P12
o0,o1

= 1 0 1 1 1 0 1 1 1 0 1 1
o1↔ o2 P12

o1,o2
= 1 0 1 1 1 0 1 0 1 1 1 1

There are two ways we can model extended patterns: (1) building the encounter graph

based on extended encounter patterns and (2) modifying the encounter graph to adopt ex-

tended patterns.

Applying the proposed graph model

Similar to our discussion in Section 3.3, if we combine all the extended patterns,

we can create an encounter graph where all periodic patterns are synchronized by

their least common multiple. For example, Figure 3.14 presents the encounter graph

corresponding to the extended patterns in Table 3.8. In the encounter graph, we have

12 intervals matching 12 phases in the extended patterns.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 t=10 t=11

O
2

O
1

O
0

Figure 3.14: The encounter graph adopting extended patterns

Applying the proposed graph model to model a pattern with different lengths, our

analyses presented in this chapter can be applied to solve routing problems in the

proposed graph model. With respect to both unicast and multicast routing, the mini-

mum energy consumption and minimum delay problems can be solved by finding the

shortest path and minimum weighted Steiner tree. However, this approach uses the

extended patterns whose lengths are usually multiples of the original ones. The re-

sulting graph can be very large and be composed of a substantial number of vertices.

Modifying the proposed graph model As an alternative, we can modify the original

92

0,6

0,6

1,7 2,8

2,8

3,9

3,9

4,10 11

4,10

Period Length=12

O
2

O
1

O
0

Figure 3.15: The compact encounter graph

encounter graph to have a compact graph with many fewer vertices. Because periodic

encounters are synchronized by extending the patterns to the length of their least

common multiple, the input to the modified encounter graph is still the extended

patterns. However, instead of containing 12 intervals as in our last approach, we

compress the total number of intervals into 6, which is the length of the longest

encounter pattern in its original form in Table 3.7. The modified encounter graph is

shown in Figure 3.15 where the constraints on vertical edges indicate the phases of

periodic encounters. For example, at interval t = 13, there is a periodic encounter

between o0 and o1 because constraint 13 ≡ 1 (mod 12) is indicated on the second

vertical edge between o0 and o1. Similarly, there is no periodic encounter among

three nodes at interval t = 17 because no vertical edge in the encounter graph has a

constraint 17≡ 5 (mod 12).

The modified encounter graph is relatively simple and small. However, the phase

constraints on vertical edges need to be considered in the design of algorithms and

routing protocols. In addition, in our graph model we already have another constraint

called NOT (NO reTransmissions during the same phase). Adopting both constraints

could complicate our graph model.

We briefly presented two approaches to model encounter patterns with different lengths.

Each one of them has different advantages and disadvantages. However, more studies are

required with respect to routing problems in the modified encounter graphs.

In addition to assuming patterns with the same length, we assume that each mobile node

has exactly the same mobility behaviours during every consecutive period in time. However,

mobility behaviours are often disturbed by unexpected events. Furthermore, unexpected

events may cause delays on a sequences of activities. How to handle these incidents requires

further study. Our future work is to extend the proposed models to account for uncertainty

93

in the encounter patterns. Also, all calculations and computations are currently performed

in a centralized manner. In applications where there are thousands of mobile nodes, this

may be not practical. Like conventional routing protocols, mobile nodes should be able

to make local decisions based on their mobility patterns. How to distribute this process is

another interesting direction for further research.

3.7 Summary

Assuming a scenario of a mobile wireless network where disconnections are more the norm

than the exception, we explored the ways mobility patterns of nodes can be used to improve

routing in such networks. We proposed a novel graph model built on top of mobility patterns

that is flexible enough to accommodate several different assumptions. Analyses on two hard

problems in wireless communications were conducted to show the benefits of having the

knowledge about mobility patterns. Algorithms were developed to solve the complementary

problems of forwarding a packet with minimum delay, and with minimum energy, both in

polynomial time. In addition, our experiments show the effectiveness and efficiency of our

solutions.

94

Chapter 4

Relay node deployment

4.1 Introduction

In DTMNs, communications depend on finding a set of sequential opportunistic encounters

between pairs of mobile nodes in a store-and-forward fashion. However, it is still possible

that the network is partitioned into isolated subnetworks where there is no path between

mobile nodes from unconnected subnetworks. Messages that must travel between discon-

nected subnetworks cannot be delivered simply because no path exists.

To connect isolated components, additional encounter opportunities are required to de-

liver messages across different subnetworks. In general, there are two approaches to address

the problem: (1) message ferrying and (2) deploying stationary relay nodes. Message fer-

rying aims to provide extra encounter opportunities by either having dedicated nodes or

changing the trajectories of existing nodes in the network. The key problem of message

ferrying is to design effective routes for ferries. Deploying relays adds additional nodes

into the network that serve as buffers for nodes that visit the same relays at different times.

Therefore, finding the optimal locations for deployment becomes critical. Having dedicated

ferries or using existing mobile nodes as ferries by changing their original movements can

be expensive and infeasible in some applications. Therefore, we focus on the relay deploy-

ment problem, which aims to optimally place relays to enhance connectivity in the network.

When the network is disconnected, there is no direct encounter between mobile nodes

from different isolated subnetworks. However, it is possible that mobile nodes from dif-

ferent subnetworks visit the same locations but at different times. For example, in the

university people from different departments rarely physically encounter each other, but

they frequently meet people from the same department. Most of the time different groups

of people are disconnected from each other. It would be very difficult to deliver a message

through people from one department to the other. However, there are locations that both

95

groups of people may visit, e.g., cafeteria during lunch time and LRT/bus stations during

commute time. By setting up message boards at these locations, people from one depart-

ment can write message on the boards, and people from another department can read the

message when they visit the locations of the message boards. In this example people can be

treated as mobile nodes whereas message boards serve as relays in the network. In discon-

nected environments, effectively deploying relays can help increase encounter opportunities

leading to the improvement of network connectivity and performance.

In relay deployment, relay failure may pose significant degradation to the performance

of the whole network. In addition, encounters in mobile networks may be interrupted by

unexpected events leading to link failures. If a link is critical to join disconnected subnet-

works, its failure will disconnect the whole network. Similarly, mobile node failure is also

detrimental to network connectivity. Therefore, instead of deploying the minimum number

of relays in the network simply to reduce delivery delay for example, the route diversity

in the network is also very important to improve routing robustness so that the network is

more resilient to relay node failures, encounter (link) failures and mobile node failures. In

this chapter, route diversity is defined as the existence of multiple disjoint paths for routing

between mobile nodes in the network.

The relay deployment problem can be modelled as various k-connectivity problems:

(1) node failure can be modelled as the k-vertex connectivity problem, (2) encounter failure

can be modelled as the k-edge connectivity problem, and (3) relay node failure can be

modelled as the k-element connectivity problem. In this chapter we concentrate on the k-

element connectivity problem in which we find the minimum number of relays where the

network is tolerant regarding relay node failure. Our study in this chapter has the following

contributions:

• We extend the graph model presented in Chapter 3 to capture encounters in differ-

ent mobility environments. With the extended graph model, the relay deployment

problem can be addressed in both AP-based and trajectory-based mobility traces.

• We model the relay deployment problem as a k-connectivity problem. In discon-

nected environments, relays can be deployed to guarantee route diversity in the net-

work where k disjoint paths exist between mobile nodes.

• We propose two different approaches to solve the relay deployment problem: (1)

exact solutions using linear programming and (2) heuristic algorithms. Experiments

96

and simulations are used to evaluate the performance of our heuristic algorithms and

understand how various deployment approaches impact the network connectivity.

The remainder of this chapter is organized as follows. An overview of message fer-

rying and relay deployment is discussed in Section 4.2. In Section 4.3, we introduce the

extended graph model that captures encounters in different mobility environments. Sec-

tion 4.4 presents the formal problem statement and approaches to solve the problem. To

examine the performance of proposed algorithms and deployment solutions, experimental

and simulation results that use synthetic data and real mobility traces are discussed in Sec-

tion 4.5 and Section 4.6, respectively. Finally, future work and a summary are given in

Section 4.7 and Section 4.8.

4.2 Related work

There are mainly two approaches to join disconnected subnetworks: message ferrying and

deploying relays. Message ferries act as mobile relays that travel between disconnected

nodes whereas stationary relays buffer messages for mobile nodes who visit the same places

at different times.

4.2.1 Message ferrying

In message ferrying, the network is composed of two components: partitioned regular nodes

that can be either mobile or stationary and message ferries. Dedicated ferries or regular

nodes acting as ferries change their trajectories to carry and forward messages between reg-

ular nodes in permanently partitioned environments [51, 145, 146, 148]. This technique can

be applied in battlefield communication, communications after disasters, wide area sensing

and surveillance where ferries, for example, can be unmanned aerial vehicles [132, 147].

Message ferrying introduces new node movements to the network and exploits such move-

ments to improve message delivery ratio. Therefore, the key problem in message ferrying

is the message ferry route problem targeting at finding the optimal routes. In previous stud-

ies, researchers addressed the problem using optimization techniques such as solutions from

Travelling Salesman problem [147] and connected dominating set problem [109]. However,

changing or disrupting the original trajectories of regular nodes is not feasible in many ap-

plications.

Most studies of message ferrying assumed that ferries have the full knowledge of the

network. In other words, every ferry knows the exact locations of all other nodes at all

97

times. However, because of obstacles and limited communication range, ferries may only

cover a sub-region of the network. This is called partial ferry observation. To solve the

problem, studies were conducted using partially observable Markov decision process with

the assumption of the Markovianess of node mobility [50, 87]. However, because mobile

nodes in real-life such as animals and vehicles do not move randomly, the assumption of

randomness is unrealistic in some applications.

4.2.2 Relay node deployment

Another solution to enhance network connectivity is to deploy stationary relays, also called

throw-boxes [149] in DTNs. Its objective is to build an unconnected infrastructure that

helps message delivery by increasing transmission opportunities, i.e., connectivity.

In DTNs, previous studies have shown the impact of adding relays to the network

with respect to increasing connectivity (delivery ratio) and decreasing average delivery de-

lay [12, 35, 37, 117, 149]. In [149], the authors deployed throw-boxes (relays) to impose

additional encounter opportunities to enhance message delivery ratio. In their analyses, dif-

ferent deployment approaches are considered based on the availability of contact histories

and/or traffic demands of mobile nodes in the network. To extend that work, the authors

in [11] proposed an energy management strategy for throw-boxes to increase their perfor-

mance in DTNs. Another study also considered the use of base stations [12]. In that study,

the authors investigated the trade-offs of three different infrastructure deployment: relays,

base stations and meshes. The authors showed that with the ease and cost of deployment,

a mesh network or disconnected relays is a better choice compared to deploying base sta-

tions in many scenarios. However, to achieve similar performance in a network with base

stations, it requires twice the number of mesh nodes or five times the number of relay nodes.

Aiming at Vehicular Delay Tolerant Networks (VDTNs), a special network of DTMNs,

Pereira et al. presented different challenges in VDTNs [105]. To address the routing prob-

lem in VDTNs, the same research group focused on the optimal deployment of relay nodes.

The authors argued that finding the smallest Connected Dominating Set is a feasible solu-

tion to their problem. Because the complexity of finding an optimal deployment in general

is a NP-hard problem, two greedy-based heuristic algorithms were proposed to minimize

(1) the average hop count and (2) the average message delivery time with the deployment

of relays [35, 37].

To connect a large area of isolated regions, Farahamand et al. proposed a wireless burst

switching network architecture targeting at providing low-cost communications for isolated

98

regions with no infrastructure [36]. In the scenarios where the network is composed of

disconnected communities that are internally connected, relays are placed where mobile

vehicles can pick up and drop off messages which are destined to different e-koisks known

as community gateways. To build such a network, the authors introduced three greedy-

based heuristic algorithms to solve the relay deployment problem with the objectives to

minimize the number of relays in the network and/or the delivery delay.

For the relay deployment problem, previous studies assumed that trajectories of mobile

nodes are given. However, in many applications, no trajectory is provided. For example,

real mobility traces such as Dartmouth, USC and MIT traces only contain associations be-

tween mobile nodes and APs, e.g., wireless routers or cellular towers. Therefore, solutions

from previous studies cannot be generalized to those applications. Furthermore, previous

solutions mainly aimed to increase delivery ratio and reduce delivery delay without con-

sidering route diversity in the network. Because mobile networks can be very dynamic, if

relays that are used to join disconnected subnetworks fail, the whole network would fall

apart and become disconnected again. Therefore, increasing route diversity is also very

important with respect to relay deployment.

4.3 Extended graph model

In this section, we extend the graph model presented in Chapter 3 to capture encounters

from both AP-based and trajectory-based traces with the presence of relays.

In AP-based traces, associations are recorded when mobile nodes associate with APs.

If two nodes associate with the same AP at the same time, we assume that there is a direct

encounter between both mobile nodes. Although APs are not explicitly expressed, there

exists an underlying AP for every derived encounter from AP-based traces. This is because

APs act as intermediates to forward messages between associated nodes. Since there is no

geographical information in AP-based traces, the potential locations for relay deployment

cannot be determined. Our motivation is to use APs as candidates for relays. The locations

of APs are referred as logical locations. Although relaying is not a feature of APs, we

propose to explore the potential of adding this functionality in DTMNs. Regarding the

relay deployment problem, in AP-based traces we target at finding potential APs as relays to

connect isolated subnetworks. In trajectory-based traces, we are able to track the movement

of mobile nodes. With the help from trajectories, we aim to determine the optimal locations

99

in a geographical space for relay deployment. We refer such locations in trajectory-based

traces as physical locations.

In the following discussions, deploying a relay at a logical location means treating an

AP as a relay in AP-based traces; and deploying a relay at a physical location means placing

a new relay in the network at a physical location in trajectory-based traces.

4.3.1 Mobile data with logical locations

An example of AP-based traces is presented in Table 4.1. In this example, we have three

mobile nodes and two access points with the associations of three intervals. For example,

mobile node B associated with access point M1 during interval I0. It then moved to a remote

location with no record, and finally moved to the coverage area of access point M1 at time

I2. By assuming that two mobile nodes encounter each other if both associate with the same

AP at the same time, the derived encounters are presented in Table 4.2.

Table 4.1: AP associations

Time Node AP
I0 A M1
I0 B M1
I0 C M2
I1 A M2
I1 C M1
I2 A M1
I2 B M1

Table 4.2: Derived encounters

Time Node Node AP
I0 A B M1
I2 A B M1

Recalling our graph model for periodic encounters in Chapter 3, it can be used to model

derived encounters between mobile nodes. Figure 4.1 presents a graph that models the de-

rived encounters in Table 4.2. In the graph, node C is disconnected from other nodes. The

only difference between the graph in Figure 4.1 and the ones capturing periodic encoun-

ters is the absence of horizontal edges to connect the same node from the last phase to the

first one. This is because we do not model periodic encounter patterns in the relay deploy-

ment problem, and the extended graph model is adopted to capture opportunistic encounters

within mobile data. One note here is that the graph model in Chapter 3 can also be extended

using the methods discussed in this section to capture the relay deployment problem in the

network formed by mobile nodes with periodic behaviours.

When a relay is deployed at a logical location, i.e., adding the relaying functionality to

an AP, the AP becomes a real node in the network rather than an underlying infrastructure

supporting encounters between mobile nodes under our assumption. Once an AP is active

100

I
0

I
1

I
2

A

B

C

Figure 4.1: The graph model

I
0

I
1

I
2

A

B

C

M
1

(a) Using M1 as a relay

I
0

I
1

I
2

A

B

C

M
2

(b) Using M2 as a relay

I
0

I
1

I
2

A

B

C

M
1

M
2

(c) Using both M1 and M2 as
relays

Figure 4.2: Relay nodes deployment

as a relay, the associations between the AP and mobile nodes introduce new transmission

opportunities to the network.

To connect two isolated components in Figure 4.1, Figure 4.2 presents examples of

deploying relays at different logical locations. In those examples, a set of vertices with the

same shape is inserted into the graph to mimic each newly deployed relay during different

intervals. In addition, each encounter derived from an AP, which is now a relay, is split into

two encounters where each encounter corresponds to an association. To demonstrate the

changes in the graph, we select access point M1 as a relay. In Figure 4.2 (a), a set of three

connected vertices is inserted to represent M1 at different intervals. In addition, because the

underlying AP is M1 for derived encounters between nodes A and B during intervals I0 and

I2, we remove each vertical edge in the original graph and replace it by two vertical edges

where each edge represents the association between the relay and one of the mobile nodes.

Furthermore, because node C is associated with M1 during interval I1, another vertical edge

101

is inserted to represent the encounter between C and M1 during interval I1. By treating M1

as a relay, the network is now connected.

4.3.2 Mobile data with physical locations

In trajectory-based traces, trajectories are restricted in a geographical area. Given a relay at

a specific location with a radius, it is trivial to find mobile nodes whose trajectory overlaps

the coverage area of the relay. As a result, the search space in trajectory-based traces is

much larger than that of AP-based traces. Unlike derived encounters in AP-based traces,

encounters in trajectory-based traces take place when mobile nodes are physically close

enough. Therefore, adding relays into the network does not affect existing encounters.

We use the example presented in Figure 4.3 to demonstrate how to map trajectory-based

traces into our extended graph model. In this example, we have trajectories of three mobile

nodes where the tuples in the figure represent the node movement. Each tuple is used to

indicate the location of a mobile node during a particular interval: the first item in the tuple

represents the identity of a mobile node whereas the second item defines the interval. For

example, the dashed line in Figure 4.3 (a) represents the trajectory of node A. Tuple (A, I0)

defines the location of node A during interval I0, tuple (A, I1) indicates the location of node

A during interval I1, and the location of node A during interval I2 is identified by tuple (A,

I2). There is no relay in this example, and only one encounter, which is emphasised by the

circle in Figure 4.3 (a), can be observed when nodes A and B are physically close to each

other during interval I2. As a result, there is only one vertical edge in the corresponding

graph in Figure 4.3 (b) to indicate the encounter.

(A, I)0

(A, I)1

(A, I)2

(B, I)0

(B, I)1

(B, I)2

(C, I)1

(C, I)0

(C, I)2

AAAAAA

BBBBBB

CBBBBB

(a) Trajectories

I
0

I1 I2

A

B

C

(b) The graph model

Figure 4.3: Trajectories and the corresponding graph

When a relay is placed in the network, we add a set of connected vertices with the same

102

shape to represent that relay. New vertical edges are also inserted into the graph between

relays and mobile nodes if and only if they encounter each other. Examples of deploying

relays at two different locations are presented in Figure 4.4. As we can see, once relays

have been placed at different physical locations, the network connectivity can be increased

significantly. When there is no relay, node C is disconnected from the rest of the network.

By placing relay R2, for example, as shown in Figure 4.4 (b) and (e), node C can transmit

messages to R2 where node A can receive them later and further distribute them to node B.

As a result, placing relay R2 connects two disconnected components.

R1

(A, I)0

(A, I)1

(A, I)2

(B, I)0

(B, I)1

(B, I)2

(C, I)1

(C, I)0

(C, I)2

AAAAAA

BBBBBB

CBBBBB

(a) Placing relay R1

R2

(A, I)0

(A, I)1

(A, I)2

(B, I)0

(B, I)1

(B, I)2

(C, I)1

(C, I)0

(C, I)2

AAAAAA

BBBBBB

CBBBBB

(b) Placing relay R2

R1

R2

(A, I)0

(A, I)1

(A, I)2

(B, I)0

(B, I)1

(B, I)2

(C, I)1

(C, I)0

(C, I)2

AAAAAA

BBBBBB

CBBBBB

(c) Placing relays R1 and R2

I
0

I1 I2

A

B

C

R1

(d) Graph for the deployment in (a)

I
0

I1 I2

A

B

C

R2

(e) Graph for the deployment in
(b)

I
0

I1 I2

A

B

C

R1

R2

(f) Graph for the deployment
in (c)

Figure 4.4: Graph models to capture different deployment approaches

Compared to the graph models for AP-based traces and trajectory-based traces, turning

an AP into a relay (deploying relays at logical locations) breaks related derived encounters

into two separated encounters whereas placing relays at physical locations does not affect

any existing encounters. Similar to our graph model in Chapter 3, the extended graph is

generic enough to represent both energy and delay costs simply by adjusting the weights

103

assigned to each edge.

4.4 Relay deployment problem

To connect partitioned subnetworks, our objective is to deploy the minimum number of

relays in the network while maintaining route diversity, i.e., disjoint paths in the network.

We propose to use the k-connectivity problem paradigm to model the relay deployment

problem.

4.4.1 k-connectivity problems

In the network, metrics such as throughput, reachability, reliable transportation, fault-tolerance

and load balancing can be modelled as or related to k-connectivity problems. There are three

variations of the k-connectivity problem:

1. k-vertex connectivity: A graph is said to be k-vertex connected if and only if there

does not exist a set of k-1 vertices whose removal disconnects the graph.

2. k-edge connectivity: A graph is said to be k-edge connected if and only if there does

not exist a set of k-1 edges whose removal disconnects the graph.

3. k-element connectivity: In this problem, vertices in a graph are partitioned into two

categories: terminals and non-terminals. The non-terminals are called elements. A

graph is said to be k-element connected if and only if there does not exist a set of k-1

elements whose removal disconnects the graph. In other words, there are k element-

disjoint paths connecting every pair of terminals; and these paths are allowed to share

terminals.

A

B

C

D

E

F

G

Terminals Elements

Figure 4.5: A sample graph

As an example, let us consider the sample graph in Figure 4.5. First of all, the sample

graph is 1-vertex connected but not 2-vertex connected because removing vertex D discon-

104

nects the graph. Secondly, the graph is 2-edge connected because removing one edge does

not disconnect the graph. In the figure, vertices with a circle-shape are terminals whereas

the ones with a square-shape are elements. The sample graph is 2-element connected. Be-

cause vertex D is a terminal that can be shared by two element-disjoint paths, removing one

of the elements B, C, E or F does not disconnect the graph.

For a given k, finding an optimal subgraph for all three variants of k-connectivity is

NP-hard [40].

To the best of our knowledge, the best approximation ratios regarding general graphs are

presented in Table 4.3. All those approximation algorithms are based on a linear program-

ming relaxation of the problem, which can be solved in polynomial time by the ellipsoid

algorithm [88]. The studies listed in the table focused on general graphs. In some special

graph classes, there are better approximations. For example, the k-vertex and k-element

connectivity problem in planar graphs can be approximated by O(k) [23].

Undirected graph Directed graph
Edge weighted Node weighted Edge weighted1 Node weighted

Edge-connectivity 2-approx [65] O(k logn) [100] 2-approx N/A
Element-connectivity 2-approx [40] O(k logn) [100] 2-approx N/A
Vertex-Connectivity O(k3 logn) [24] O(k3 logn) [24] O(k3 logn) N/A

Table 4.3: Approximation results

Although finding an optimal subgraph with k-connectivity is NP-hard, finding the max-

imum k-connectivity in a graph or checking whether a graph is k-connected can be solved

in polynomial time using max-flow algorithms based on Mengers theorem [93]. Max-flow

algorithms such as Ford-Fulkerson algorithm [43] and Edmonds-Karp algorithm [33] can

be used to find edge-disjoint paths in directed graph. By assigning each edge capacity 1,

a max-flow algorithm actually computes the maximum number of edge-disjoint paths for

a given source and destination. As a result, the maximum k of the input graph equals the

minimum max-flow over all node pairs. To address node weighted graphs and undirected

graphs, some reductions are required. The same technique can also be used to find the

maximum k-vertex connectivity and maximum k-element connectivity of the input graphs.

Once again, reductions are required.

The main objective of using k-connected graphs is to build fault-tolerant networks, also

called survivable networks [73]. In addition to fault-tolerant networks, k-connected graphs
1Lando et al. showed that an edge-weighted directed graph can be reduced to an undirected graph [79].

Therefore, any edge-weighted connectivity problem in directed graph can be solved by the ones from undirected
graph in the complexity of reduced format.

105

can also be used to address other network issues. For example, k vertex/edge-disjoint paths

provide multiple routes to deliver messages from a source to a destination. As a result, the

throughput can be increased by utilizing these independent routes. Another example is load

balancing. With multiple vertex-disjoint, i.e., node disjoint, paths, a naive approach would

be using round-robin scheduling to inject traffic into those independent paths.

The problem statement

In Section 4.3, we introduced an extended graph model modelling encounters in different

mobility environments. Using the graph model, routes can be selected for communications.

In our simulations, we used the extended graph model to find routes to deliver messages.

However, in the relay deployment problem, we concentrate on whether a relay can be used

to join isolated subnetworks or not. The horizontal edges in the extended graph model

mimicking time-flow are not important any more in our problem domain. Therefore, we

propose to simplify the graph to model the relay deployment problem.

Disconnected networks are composed of isolated subnetworks. In this study, we as-

sume mobile nodes within subnetworks do not fail. Thus, we can use a single vertex to

represent each isolated subnetwork. Because subnetworks are disconnected, their represen-

tative vertices are also disconnected. In other words, there is no path between any pair of

representative vertices. The problem now is to deploy the minimum number of relays to

connect those vertices such that the failure of relays does not disconnect the network. As

we discussed before, this problem can be modelled as a k-element connectivity problem

where vertices representing subnetworks are terminals, and vertices representing relays are

elements in the graph.

R
1

R
2

T
3

T
2

T
1

R
3T

3

T
2

T
1

(a) A disconnected network with three
isolated subnetworks

R
1

R
2

T
3

T
2

T
1

R
3

(b) A connected network with the pres-
ence of relays

Figure 4.6: A sample scenario to the k-element connectivity problem

An example of building an input graph to our problem is presented in Figure 4.6. As

106

shown in Figure 4.6 (a), the network is composed of three isolated subnetworks represented

by three terminals. In order to connect those subnetworks, three candidate relays can be

deployed as shown in Figure 4.6 (b). By treating each subnetwork as a single vertex, i.e., a

terminal in the graph, we finally obtain an input graph to the relay deployment problem

as shown in Figure 4.6 (b). It is not hard to see that the graph is a bipartite graph where

terminals and relays are two disjoint sets, and no two vertices within the same set are con-

nected. In this example, the minimum deployment to build a 1-element connected subgraph

connecting all terminals is using relay R1. Similarly, the minimum deployment to build a

2-element connected subgraph connecting all terminals is using all three relays because the

failure of one relay will not disconnect the network.

In disconnected networks, by assuming mobile nodes within isolated subnetwork do not

fail, each isolated subnetwork is modelled as a single vertex called a terminal in the graph.

Given an input bipartite graph whose vertices are divided into two disjoint sets terminals T

and relays R such that every edge connects a vertex in T to one in R, we define the relay

deployment problem as follows.

Definition 7. Given an input k and an input bipartite graph G = (T,R,E), the relay de-

ployment problem in our domain is to find the minimum k-element connected subgraph of

G. In other words, our objective is to find the minimum number of relays such that every

pair of terminals in the subgraph formed by these relays has k relay-disjoint paths.

It is clear that the relay deployment problem in our domain is just the minimum-cost

(minimum number of relays) k-element connectivity problem in a special graph class.

4.4.2 Mathematical optimization

With the input graph, we can set each relay as a variable. If a relay participates in the

optimal deployment, its value is 1; otherwise, its value is 0. Therefore, the relay deploy-

ment problem can be modelled by linear programming with the objective to minimize the

summation of the values of all relay variables.

The relay deployment problem is similar to the multi-commodity flow problem. In

the multi-commodity flow problem, we want to guarantee multiple commodities (flow de-

mands) between different sources and destinations in the graph. In the relay deployment

problem, if we assume each directed edge has a unit weight, each pair of terminals de-

mands k units of flow. Therefore, we can model the relay deployment problem based on the

multi-commodity flow problem by transforming undirected input graphs to directed graphs.

107

Given a flow network G = (T,R,E) and a flow demand k ≥ 1, let the set of vertices

V = T ∪R, T ∩R = /0, and edge eu,v ∈ E if and only if vertices u and v are not from the same

set. In addition, let |T |= n, ti ∈ T and t j ∈ T , there are n∗(n−1)
2 commodities Ci, j in the flow

network, which is defined by Ci, j = (ti, t j,k) where i < j, ti and t j are the source and sink of

the commodity Ci, j. The flow of a commodity Ci, j along an edge eu,v is defined as f i j
uv. Let

rx ∈ R, our objective is to minimize the number of rx used in the network such that the flow

demands of all commodities are satisfied. To enforce the flow demand of each commodity

Ci, j, we have the following formulation.

minimize ∑
∀rx∈R

rx where rx =

{
1 if participates in the optimal deployment
0 otherwise

subject to

∑
v∈R

f i j
uv−∑

v∈R
f i j
vu =

{
k if i < j and u = ti
−k if i < j and u = t j

(C1)

∑
u,v∈V

f i j
uv− ∑

u,v∈V
f i j
vu = 0 if i < j and u,v 6∈ {ti, t j} (C2)

0≤ drx× rx−∑
u∈T

f i j
uv ≤ drx−1 if i < j and v = rx where drx = |eu,rx | (C3)

f i j
uv ∈ {0,1} (C4)

In the formulation, T represents terminals, and R represents relays.

• Constraint C1 defines the amount of flow from a source to a destination. It enforces

every source terminal must have k units of outgoing flow whereas every destination

terminal must have k units of incoming flow.

• Constraint C2 controls the amount of flow through vertices that is neither the source

nor the destination of a given commodity Ci, j. If a vertex participates the flow, the

amount of its incoming flow must equal the amount of outgoing flow. Moreover, if

a vertex does not play a part in the flow, both the amount of incoming and outgoing

flow must be zero. In either case, the difference between both amounts must be zero.

• Constraint C3 defines the behaviour of a relay. In the constraint, the number of incom-

ing edges drx is a constant based on the input graph. If a relay node rx participates in a

flow, its value must equal 1. Meanwhile, at least one of its incoming edges must carry

a flow. The constraint on the outgoing flow of a relay node is enforced by Constraint

C2.

108

• Constraint C4 controls the amount of a flow on each edge.

4.4.3 Heuristic algorithms

To find an optimal k-element connected subgraph, approximation algorithms based on a

linear programming relaxation of the problem have been proposed. They can be solved in

polynomial time using the ellipsoid algorithm. However, the ellipsoid algorithm is relatively

computationally expensive. In this section, we introduce three heuristic algorithms, an

iterative algorithm, a greedy algorithm and a shortest-path based algorithm, to solve the

relay deployment problem.

Iterative Algorithm

As we described before, given an input k, a max-flow algorithm can be used to check

whether a graph is k-element connected in polynomial time. Taking advantage of this ap-

proach, we present Algorithm 3 that checks the k-element connectivity every time a relay

node is inserted into the graph. Initially, the subgraph only contains terminals. The algo-

rithm iteratively adds relays into the subgraph and checks its connectivity. There are two

phases in this algorithm.

1. The algorithm first sorts the relays according to the number of terminals they connect.

It then gradually expands the graph by iteratively inserting relays that connect to the

most terminals first into the subgraph in the decreasing order.

2. Once the subgraph is k-element connected, in the second phase, the algorithm prunes

the relays that have been selected in the reverse order. The objective is to remove

redundant relays in the subgraph.

Because checking whether a graph is k-element connected can be solved using a max-

flow algorithm i.e., Edmonds-Karp algorithm, the complexity of this algorithm is domi-

nated by the underlying max-flow algorithm and the number of relays being inserted. The

complexity of this algorithm can be improved in some scenarios. In lines 9 and 15 in Al-

gorithm 3, when a relay is inserted to or removed from the subgraph, a max-flow algorithm

is run to check whether the insertion or deletion of the relay changes the connectivity of

the subgraph. In these scenarios, we do not have to always apply the max-flow algorithm.

Because the k-element connectivity is less than the minimum degree of the graph, checking

the minimum degree of the subgraph first can sometimes eliminate the unnecessary running

of the underlying max-flow algorithm. In our experiments, we implemented this strategy to

109

Algorithm 3 Iteratively add relays to build a k-element connected graph(G = (T,R,E),k)

1: if G is not k-element connected then
2: return null
3: end if
4: //phase one
5: G′← T //initialize a graph only with terminals
6: sort R in the descending order based on the number of terminals each relay connects
7: for each relay r ∈ R in the descending order do
8: G′← G′∪ r
9: if G′ is k-element connected then

10: break
11: end if
12: end for
13: //phase two
14: for each relay r ∈ G′ in the reverse order of insertion do
15: if G′ is k-element connected if r is removed then
16: G′← G′ \ r
17: else
18: break
19: end if
20: end for
21: return G′

reduce the complexity of the iterative algorithm. Another observation is that this algorithm

can be generalized to solve the k-vertex and k-edge connectivity problem by iteratively

adding relays based on the number of vertices they connect in the network.

Greedy algorithm

The input graphs to our problem are bipartite graphs. It is easy to see that an input bipartite

graph can be viewed as an instance of set covering. The objective is then to find a minimum

subset of relays which cover all terminals. However, the relay deployment problem is not

equivalent to the set cover problem. Let us look at an example. The universe includes four

terminals where U = {T1,T2,T3,T4}. We let relay R1 connect to terminals {T1,T2}, relay

R2 connect to terminals {T2,T3}, and relay R3 connect to terminals {T3,T4}. It is clear

that relays R1 and R3 is the minimum set cover to cover all terminals. However, deploying

relays R1 and R3 does not connect the whole graph because subgraphs {T1,R1,T2} and

{T3,R2,T4} are still disconnected. To connect the whole graph, relay R2 is also required.

To demonstrate the difference between the set covering problem and the relay deployment

problem, Figure 4.7 presents two deployment approaches for the discussed example.

To solve the relay deployment problem, we develop a greedy algorithm inspired by the

110

T
1

T
2

T
3

T
4

R
1

R
3

(a) A solution for the set cov-
ering problem

T
1

T
2

T
3

T
4

R
1

R
3

R
2

(b) A solution to build a 1-
element connected subgraph

Figure 4.7: The difference between the set covering problem and the relay deployment
problem

greedy algorithm for the set cover problem. The pseudo-code of the algorithm is presented

in Algorithm 4. The idea is simple, our greedy algorithm gradually builds a k-element

connected subgraph by always building a (k-1)-element connected graph first. To be spe-

cific, the algorithm constructs the k-element connected subgraph by greedily connecting

terminals with a degree of k-1 in the (k-1)-element connected subgraph.

In Algorithm 4, when i equals 1, set U contains all terminals because their degrees are

less than i. To cover all terminals in U , the greedy covering function is called at line 14.

The greedy covering function first chooses a relay containing the most uncovered terminals.

After selecting the first relay, the greedy covering function chooses the second relay that

covers the most uncovered terminals left in U . Meanwhile, the second relay must cover

at least one terminal that has already been covered. The process of selecting the second

relay repeats until all terminals are covered. By doing this, the greedy covering function

guarantees that terminals in U are connected. It is not hard to see that the greedy covering

builds a 1-element connected subgraph to connect all terminals in set U . As i increases, the

subgraph returned by our greedy algorithm always connects terminals whose degree is less

than i. The greedy covering function is applied to connect those terminals until i equals k.

When i is equal to k, the returned subgraph is k-element connected.

Let us look at the if-statement at lines 18 to 24 in Algorithm 4 where the greedy covering

function fails to return a feasible covering. Because greedy covering is used to find relays

covering terminals with a degree less than the current connectivity i where i≤ k, if no relay

can be used to connect those specific terminals, greedy covering fails to find a feasible

solution, and thus the iterative algorithm is called to finish searching for relays.

An example to illustrate the failure is presented in Figure 4.8. In this example, it is

111

Algorithm 4 Greedy algorithm to find relays to build k-element connected graph(G =
(T,R,E),k)

1: if G is not k-element connected then
2: return null
3: end if
4: G′← T //initialize a graph only with terminals
5: U ← /0 //U is used to contain terminals with a degree less than i
6: C← /0 //C is used to contain a set of selected relays
7: i← 1 //counter
8: while i≤ k do
9: for each terminal t ∈ T do

10: if degree(t)< i then
11: U ←U ∪ t
12: end if
13: end for
14: C← calling greedyCovering(U ,G′,G) function
15: if C 6= /0 then
16: G′← G′∪C
17: U ← /0
18: else if C == /0 then
19: //no feasible solution is returned by the greedy covering function
20: C← use the iterative algorithm to find the rest of relays to build k-element
21: connected subgraph
22: G′← G′∪C
23: return G′

24: end if
25: i++
26: end while
27: return G′

28:

29: function greedyCovering (U ,G′,G)
30: C←U //initialize a graph only with terminals
31: S← /0 //terminals that have been covered
32: select a relay r ∈ G and r /∈ G′ that covers the most uncovered terminals in U
33: S← S∪Sr //Sr is the set of terminals covered by r
34: C←C∪ r
35: U ←U \Sr

36: while U 6= /0 do
37: select a relay r ∈ G, r /∈ G′ and r /∈ C such that it covers the most uncovered

terminals in U and Sr ∩S 6= /0
38: S← S∪Sr

39: C←C∪ r
40: U ←U \Sr

41: end while
42: return C
43: end function

112

Result 1:

Result 2:

i=1 i=2

No feasible solution

Terminals

Relays

T1
T2

T4T3

T1 T2

T4T3

T1 T2

T4
T3

T1 T2

T4
T3

R5R4
R1 R3

R2 R4R1
R3

R5R1

R2

R4R1
R3

R5

Figure 4.8: An example of failure of the set covering

trivial that the graph on the left side is 2-element connected. To find a 2-element connected

subgraph, the greedy algorithm first builds a 1-element connected subgraph. When i equals

1, both results 1 and 2 are valid 1-element connected subgraphs that can be returned by

greedy covering. When i is increased to 2, in result 1 the greedy algorithm will select

R5 to connect terminals T2 and T4 because their degree is less than 2 when i = 1. As a

result, the subgraph is 2-element connected. However, in result 2 no such a relay can be

found to connect terminals T3 and T4. Therefore, greedy covering fails to return a feasible

solution. Thus, the greedy algorithm calls the iterative algorithm to find relays on top of

the ones that have already been selected to build a 2-element connected subgraph. In this

example, all five relays will be selected. Because both the subgraphs returned in results 1

and 2 are valid when i equals 1, if the greedy algorithm returns result 2, it would be more

computationally expensive to find a feasible solution. In addition, the subgraph returned by

calling the iterative algorithm will contain more relays compared to the number of returned

relays in result 1.

We now prove the correctness of our greedy algorithm. In the cases where greedy

covering fails to deliver a solution, the iterative algorithm is called to find a result. It is

obvious that the iterative algorithm is correct. Therefore, the theorem focuses on the cases

where the greedy algorithm does return a k-element connected subgraph.

Theorem 4. Given an input k and an input bipartite graph G = (T,R,E), the greedy algo-

rithm returns a k-element connected subgraph if it returns a nonempty set.

Proof. The greedy algorithm gradually builds a subgraph towards k-element connectivity.

We let the set of relays being added at state i be Ri in this proof where 1≤ i≤ k.

When i equals 1, it is clear that the greedy algorithm builds a 1-element connected

113

subgraph using a set of relays R1.

When i equals 2, the greedy algorithm adds a set of relays, R2, into the subgraph to

connect the terminals with a degree 1 in the 1-element connected subgraph. As a result,

the resulting subgraph is still connected if a relay r ∈ R1 is removed. This is because

the subgraph is connected by relays in R2. Similarly, if a relay r ∈ R2 is removed, the

subgraph is also connected because the subgraph is 1-element connected when i equals 1.

In the resulting subgraph, because there are two independent sets of relays connecting the

subgraph, removing one relay from two independent sets does not disconnect the subgraph.

Therefore, the subgraph generated is 2-element connected.

The same analyses apply as i increases. Therefore, we conclude that our greedy algo-

rithm returns a k-element connected subgraph.

Shortest path Heuristic Algorithm

To deploy the minimum number of relays in a disconnected network, we can find the relay-

disjoint paths with the minimum total weight in the corresponding graph if a unit weight

is assigned to vertices whereas edges have a zero weight. To find relay-disjoint paths with

the minimum total weight, we develop a shortest-path based heuristic algorithm to find a

k-element connected subgraph.

Algorithm 5 A shortest-path based algorithm to build k-element connected graph(G =
(T,R,E),k)

1: if G is not k-element connected then
2: return null
3: end if
4: w(t) = 1 ∀t ∈ T
5: w(r) = 1 ∀r ∈ R
6: for every pair of terminals u,v where u ∈ T and v ∈ T do
7: C← use a shortest path algorithm to find k relay-disjoint paths between u→ v
8: for each relay r in C where r ∈ R do
9: if w(r) == 1 then

10: w(r) = 0
11: end if
12: end for
13: end for
14: return the subgraph with all terminals and relays with a zero weight.

Initially, every vertex in the input graph has a unit weight, and edges have a zero weight.

For each pair of terminals, the idea is to run a shortest path algorithm to find k relay-disjoint

paths. The weight of relays that are selected by previous terminal pairs is set to zero in

114

the graph. Changing their weights to zero is to mimic that the relays have been deployed

for previous terminal pairs; therefore, it is free to reuse those deployed relays for the rest

of terminal pairs to find their relay-disjoint paths since we want to minimize the number

of relays being deployed towards a k-element connected subgraph containing all terminal

pairs.

Our heuristic is presented in Algorithm 5. The complexity of this algorithm is bounded

by the running time of a shortest path algorithm and the total number of terminals in the

graph.

4.5 Experiments

In this section, we present experiments to evaluate the performance of the proposed heuristic

algorithms. First, we conduct a set of experiments using real mobility traces. Because the

instances derived from real mobility traces are relatively small, we also evaluate the three

heuristic algorithms against synthetic data containing large instances.

4.5.1 Experiments using networks derived from real mobility traces

In trajectory-based traces, there exist a large number of candidate positions where relays can

be set up. In order to reduce the search space, previous studies made different assumptions

such as dividing the entire area into a grid of cells where relays are placed at the center of

those cells [149]. However, making such assumptions may impact the results of the relay

deployment problem. In this section, we concentrate on AP-based traces. In this type of

mobility trace, we consider each AP as a candidate relay.

Table 4.4: Real-world traces

Traces # of nodes # of APs Total duration Examined duration Examined nodes
Dartmouth [76] 13888 603 1178 days 14 days 2169
MIT Reality [32] 95 26956 2 282 days 14 days 68
MIT corporate WLAN [9] 1237 172 30 days 14 days 870
USC Summer 05 [57] 5580 61 111 days 14 days 4177
USC Spring 06 [57] 25481 137 95 days 14 days 5206

In the experiments, we focus on five real mobility traces listed in Table 4.4. By ex-

amining mobility traces over their entire durations, we found that the derived networks are

connected as a single component. In order to have disconnected networks, we reduce the

examined duration of each type of trace. In the real mobility traces, if the examined dura-

2This number includes both cellular towers and Bluetooth relays.

115

tion is too short, the networks formed by mobile nodes within the period can be completely

disconnected. Deploying all candidate relays to the network still cannot connect them. As

a result, in a totally disconnected network, there is no feasible solution for the relay de-

ployment problem in our domain. Based on preliminary results, we found that a period of

consecutive 14 days is a reasonable duration where disconnected subnetworks can be con-

nected by relays. By randomly selecting a period of 14 days, the number of the examined

mobile nodes in each trace is listed in Table 4.4. In addition to reducing the duration of the

examined traces, we propose a constraint, d, on the degree of the vertices in a graph. In a

graph, some vertices may be loosely connected to the rest of the graph, i.e., with a degree

equal to one. If we set the constraint d = 2, the vertices with a unit degree will become dis-

connected from other vertices. As a result, the graph will become disconnected. Using the

degree constraint, we are able to derive disconnected networks from real mobility traces.

Because the results of all five traces are qualitatively similar to each other, we concentrate

on the Dartmouth College traces in this section.

(a) Dartmouth traces

d = 2 d = 3 d = 4
n 14 20 30
m 482 485 497
p 24.7% 18.2% 15.8%
k 3 2 2

(b) Relays for Dartmouth traces

Algorithm
of returned relays
d = 2 d = 3 d = 4

greedy 8 12 14
iterative 8 12 15

shortestPath 28 41 66

Table 4.5: Relay deployment in Dartmouth college traces

Table 4.5 presents the results regarding the Dartmouth College traces. In Table 4.5 (a),

by varying the degree constraint d from 2 to 4, four characteristics have been measured in

the generated networks:

• n is the number of disconnected subnetworks, i.e., the number of terminals in the

graph.

• m is the number of candidate relays that connect to at least two terminals.

• p is the percentage of coverage. It measures the percentage of terminals in average

that each candidate relay connects.

• k measures the maximum element connectivity in the graph.

For example, when d equals 2, the generated network contains 14 terminals, 482 candi-

date relays where each relay in the network connects to 24.7% of the terminals in average,

116

and the maximum element connectivity in the network is equal to 3.

As the degree constraint increases, both n and m increase. It is trivial that the number

of disconnected components increases because more nodes are partitioned as d increases.

In addition, the number of candidate relays increases because of more terminals in the

network. However, p decreases because the increasing number of terminals impacts the

average coverage. Lastly, the element connectivity decreases simply because candidate

relays may not cover all terminals as the number of terminals increases in order to be k-

element connected.

Let us look at the results returned by our heuristic algorithms in Table 4.5 (b). Because

the minimum element connectivity equals 2 among three different scenarios of the degree

constraint in the last row of Table 4.5 (a), Table 4.5 (b) presents the number of returned

relays in order to form 2-element connected networks. In the results, on one hand, the

greedy and iterative algorithms return the same number of relays to connect disconnected

subnetworks except when the degree constraint equals 4. One note here is that even though

the number of returned relays from both algorithms are identical, the actual candidates may

not be the same. On the other hand, the shortest-path based algorithm returns more relays

compared to the ones returned by the other two algorithms.

There are three observations from the results:

1. The number of returned relays increases for all three algorithms as the number of

terminals n increases. This is because as n increases, more relays need to be deployed

in order to connect all terminals.

2. The greedy algorithm returns the smallest number of relays whereas the iterative

algorithm returns identical or similar results. However, the shortest-path based algo-

rithm returns the highest number of relays to form 2-element connected subgraphs.

We believe this is caused by the differences in our heuristic algorithms. In the greedy

algorithm, the relays connecting the most uncovered terminals are always selected

first. The greedy covering guarantees to reduce the number of returned relays. In the

iterative algorithm, relays are selected in the descending order based on the number

of terminals that they connect. Furthermore, the pruning process in the iterative al-

gorithm eliminates the redundant relays to reduce the number of returned relays. The

greedy covering and greedy selection in the greedy and iterative algorithms help to

reduce the number of returned relays. However, in the shortest-path based algorithm,

terminal pairs may have completely different sets of shortest relay-disjoint paths. As

117

a result, relays being selected may not be reused by other terminal pairs leading to a

large number of returned relays.

3. The difference between the numbers of relays returned by the shortest-path based

algorithm and the number returned by the greedy/iterative algorithm increases as the

degree constraint increases. For example, the difference between the number of relays

returned by the shortest-path based algorithm and the iterative algorithm equals to 20

(28-8) when d = 2, 29 (41-12) when d = 3 and 51 (66-15) when d = 4. We believe the

cause is the increase of n and/or the decrease of p. Because in the shortest-path based

algorithm terminal pairs may have completely different sets of shortest relay-disjoint

paths, the increase in n introduces more relays to form relay-disjoint paths between

terminal pairs. In addition, as the coverage p decreases, relays in average connect to

fewer terminals. It also reduces the probability that the shortest-path based algorithm

finds the relays that can be reused by multiple terminal pairs.

Because the network instances being examined in the real mobility traces are relatively

small, we conduct experiments against synthetic data containing large network instances in

the next section.

4.5.2 Experiments using synthetic networks

Because the disconnected networks derived from real mobility traces are small, in this sec-

tion we use synthetic networks to understand the performance of different heuristic algo-

rithms. By constructing synthetic networks, we can control the characteristics of synthetic

networks such as the number of candidate relays and the percentage of coverage.

We use three control variables to create synthetic networks:

1. n controls the number of terminals in a network.

2. m defines the number of relays in a network.

3. p is used to control the percentage of terminals covered by relays in average. For

example, if p equals 5%, it means that each relay in the network randomly connects

to 5% of the terminals in average. Given a fixed p, we assume that the percentage

of coverage from candidate relays in the network follows a normal distribution. This

variable mainly controls the overall connectivity in a network.

Two metrics are examined in our experiments: (1) the number of returned relays and

(2) the running time. The number of returned relays indicates how good each heuristic

118

algorithm is whereas the running time measures the efficiency of each algorithm.

In the following experiments, 100 random networks are generated for each combination

of these three variables. In those random networks, the maximum k-element connectivity

can be equal to 7. We first set k = 3 by default in each combination of the three variables,

and then vary k to examine heuristic algorithms in networks with different k connectivity.

Varying n

 0

 50

 100

 150

 200

 250

 300

 50 100 150 200 250 300

#
 o

f
s
e
le

c
te

d
 r

e
la

y
s

n

Greedy

ShortestPath

Iterative

(a) The number of selected relays

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 50 100 150 200 250 300

R
u

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

n

Greedy

ShortestPath

Iterative

(b) Running time

Figure 4.9: Varying n while m = 400, p =20% and k = 3

In Figure 4.9, we vary n while keeping the other three variables fixed. As the number

of terminals increases, the number of relays required to connect those terminals increases

as well. This explains the increases of the number of selected relays for all three heuristic

algorithms. Among the three heuristic algorithms, the greedy and iterative algorithms return

the smallest number of relays. This is because the greedy algorithm always selects the

relays covering the most uncovered terminals first whereas the iterative algorithm always

chooses the relays connecting to the most number of terminals first. The number of relays

returned by the greedy algorithm at different n is slightly less than the one returned by the

iterative algorithm; however, it may be difficult to recognize the difference in the figure.

The shortest-path based algorithm returns the highest numbers of relays. In the shortest-

path based algorithm, even though we set the weight of selected relays to be zero to reuse

them, there could be so many relays that can be used to form the shortest relay-disjoint

paths between terminal pairs that the ones can be reused by other terminal pairs may not

be selected at all. This explains why the shortest-path based algorithm returns the largest

number of relays.

Regarding the running time, all three algorithms use more time to find the results as the

number of terminals increases. The greedy algorithm takes the smallest amount of time be-

cause of adopting the greedy algorithm from the set cover problem. The iterative algorithm

119

uses a significant amount of time to find a solution because it needs to check k-element

connectivity at every insertion of a relay. The running time of the iterative algorithm in-

creases as the number of terminals increases. This is because the iterative algorithm needs

to include more relays as the network size increases. The running time of the shortest-path

based algorithm increases because the number of times that the underlying shortest path

algorithm needs to be run increases as the number of terminals n increases in the network.

Varying m

 0

 50

 100

 150

 200

 250

 300

 350

 100 200 300 400 500 600

#
 o

f
s
e
le

c
te

d
 r

e
la

y
s

m

Greedy

ShortestPath

Iterative

(a) The number of selected relays

 0

 200

 400

 600

 800

 1000

 1200

 100 200 300 400 500 600

R
u

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

m

Greedy

ShortestPath

Iterative

(b) Running time

Figure 4.10: Varying m while n = 200, p =20% and k = 3

In Figure 4.10, we examine the three heuristic algorithms by varying m. Given a fixed p,

we assumed the percentage of coverage from candidate relays follows a normal distribution.

As the number of candidate relays increases in the network, even though p is fixed, the ab-

solute number of relays with a high percentage of coverage increases. Because the absolute

number of candidate relays with a high percentage of coverage increases, both the greedy

and iterative algorithms demand fewer relays to connect a fixed number of terminals. As a

result, there is a slight decrease in the results of both algorithms with respect to the number

of selected relays. Similar to our discussion for Figure 4.9, as the number of candidate

relays increases in the network, more relays can be used to form the shortest relay-disjoint

paths between different pairs of terminals so that the ones can be reused by other terminal

pairs may not be selected by the shortest-path based algorithm. This causes the increase in

the number of selected relays, and it also explains the reason that the shortest-path based

algorithm still returns the largest number of relays.

By selecting fewer relays, the running time of both the greedy and iterative algorithms

decreases because their greedy approaches only need to examine fewer relays. However,

the increase of the network size due to the increase of m leads to the increase in the running

time of the shortest-path based algorithm. This is because the underlying shortest path

120

algorithm takes longer time to find solutions in large networks.

Varying p

 0

 50

 100

 150

 200

 250

 300

 350

 400

5% 10% 15% 20% 25% 30%

#
 o

f
s
e
le

c
te

d
 r

e
la

y
s

p

Greedy

ShortestPath

Iterative

(a) The number of selected relays

 0

 500

 1000

 1500

 2000

 2500

 3000

5% 10% 15% 20% 25% 30%

R
u

n
n

in
g

 t
im

e(
se

co
n

d
s)

p

Greedy

ShortestPath

Iterative

(b) Running time

Figure 4.11: Varying p while n = 200, m = 400 and k = 3

In Figure 4.11, we test the effect of varying the percentage of coverage p. As the average

coverage increases, candidate relays now connect to more terminals. As a result, fewer

relays are required to form a 3-element connected subgraph. This explains that all three

algorithm return fewer relays as p increases in Figure 4.11 (a). In the figure, the number of

relays returned by the shortest-path algorithm decreases very quickly. This is because the

number of feasible solutions to build an optimal/sub-optimal 3-element connected subgraph

increases leading to a high probability of selecting reusable relays by the shortest-path based

algorithm.

As p increases, the resulting networks become dense. As a result, the shortest-path

based algorithm takes longer time to find relay-disjoint paths. With respect to the greedy and

iterative algorithm, both their running time decrease as the percentage of coverage increases

because fewer relays are required to form 3-element connected subgraphs. Surprisingly,

the running time of the iterative algorithm is lower than that of the shortest-path based

algorithm once p is greater than 20%. As p increases, in Figure 4.11 (a), the iterative

algorithm returns fewer relays. For example, only approximately 10 relays in average are

returned by the iterative algorithm to form 3-element connected subgraphs when p equals

30%. As p increases, the number of times to checking the k-connectivity of subgraph

decreases because fewer relays are required; however, the shortest-path based algorithm

needs to find k relay-disjoint paths for every pair of terminals no matter what the value of p

is. When p is large enough and the network is dense enough, the iterative algorithm takes

less time than the shortest-path based algorithm.

121

Varying k

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7

#
 o

f
s
e
le

c
te

d
 r

e
la

y
s

k

Greedy

ShortestPath

Iterative

(a) The number of selected relays

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 3 4 5 6 7

R
u

n
n

in
g

 t
im

e
(s

e
c
o

n
d

s
)

k

Greedy

ShortestPath

Iterative

(b) Running time

Figure 4.12: Varying k while n = 200, m = 400 and p =20%

When we set n = 200, m = 400 and p =20%, the maximum connectivity of the gen-

erated synthetic networks can be equal to 7. Figure 4.12 presents the results regarding

the performance of the three heuristic algorithms in networks with different connectivity.

As k increases, more relays are required in order to form a k-element connected network.

This explains the increase in the number of selected relays in Figure 4.12 (a) for all three

heuristic algorithms. However, because the shortest-path based algorithm may not select

the reusable relays, the number of returned relays is significantly higher than the numbers

returned by the other two algorithms in the networks with different connectivity.

In Figure 4.12 (b), the running time of all three algorithms increase as the value of k

increases because they need to use more relays to build k-connected networks. The running

time of the iterative algorithm is significantly higher than that of the other two algorithms

because checking whether a subgraph is k-element connected after each insertion of a relay

is very expensive. Because more relays are required when k increases, the number of times

that the iterative algorithm checks k-connectivity in the subgraph increases too.

In summary, our experimental results against synthetic networks have confirmed our

observations from using the real mobility trace. In addition, we found that the greedy

algorithm has the best performance in both synthetic and real data regarding both the run-

ning time and the number of selected relays. The greedy algorithm using greedy covering

gradually connects the terminals towards building a k-element connected subgraph where

greedy covering guarantees to return a small number of relays. Because of greedy cover-

ing that does not need to check the k-connectivity of the subgraph, the greedy algorithm is

very efficient and effective in terms of finding solutions for the relay deployment problem.

122

The iterative algorithm has competitive results compared to the greedy algorithm. Greedily

selecting the next relays which connect the most terminals and pruning redundant relays

help to reduce the total number of returned relays. However, the iterative algorithm takes

the longest time to find solutions among the three algorithms because iteratively checking

k-connectivity at every insertion of a relay is time-consuming. With respect to the shortest-

path based algorithm, even though running a shortest path algorithm to find relay-disjoint

paths for terminal pairs is relatively fast, the shortest-path based algorithm fails to utilize the

reusable relays because the returned shortest-paths may not always choose those reusable

relays.

4.6 Simulations

In the previous section, we presented experiments to evaluate the performance of the three

heuristic algorithms. Because the greedy algorithm has offered the best performance, we

use the greedy algorithm to find relays in the following simulations. After finding a set of

relays to form a k-element connected network, we evaluate the performance of the deploy-

ment using simulations. We aim to evaluate the deployment in enhancing network perfor-

mance regarding (1) the delivery ratio, (2) the average delivery delay and (3) the overhead

ratio. In addition, we also examine how various deployment and routing approaches impact

the performance. In this section, we first introduce our simulation settings and evaluation

metrics, and then present our simulation results.

4.6.1 Simulation settings

There are two steps in our simulations: (1) computing feasible deployment and (2) evaluat-

ing deployment solutions using ONE simulator.

In our simulations, we adopt Edmonton Transit System (ETS) bus network scenar-

ios [4]. In general, both AP-based and trajectory-based real-world traces are publicly

available to use. Due to the limitation of ONE simulator, the AP-based traces cannot be

simulated. This is mainly affected by the missing trajectories of moving among access

points. In AP-based traces, only the associations between mobile nodes and access points

are recorded without any trajectory capturing its movement from one access point to an-

other. Even though we can generate synthetic movement, i.e., shortest path, to fill the

graph, this may affect the accuracy of AP-based traces and alter the underlying properties

of mobile traces.

123

In trajectory-based traces, GPS positions are recorded to track node movement. It has

been shown that the trajectory data is significantly affected by the low accuracy of GPS

positioning because of missing trajectory segments and imprecise recording of positions

due to the facts such as atmospheric and ionospheric disturbances and limited satellite vis-

ibility [139]. We decide to use ETS bus network scenarios for our simulations because the

trajectories of buses are complete.

Each simulation is run for a period of 86400 seconds (1-day) in simulation time to

capture the complete movement during a weekday. In order to create disconnected environ-

ments, in our simulations we randomly selected 20 buses as mobile nodes that are simulated

to move in a 15×15 km2 area within the City of Edmonton. Within this space, we have ap-

proximately 3000 bus stops. Instead of making any assumption about the potential locations

for deployment, we use bus stops as candidate locations for relay deployment. The greedy

algorithm is used to find potential locations to set up relays to build k-element connected

networks in various input settings.

In our experiments, the packet-level simulations are conducted using the Opportunistic

Networking Environment (ONE) [72] simulator. It provides simulations in delay tolerant

environments supporting different mobility models and DTN routing protocols. However,

buses in our simulations follow a map-based scheduled movement in which buses travel

on the road between bus stops rather than the Euclidean shortest paths on the map. This

movement model is currently not available in ONE simulator. To solve the problem, we

implement the movement model.

To evaluate the performance of deployment, two routing protocols are used in our sim-

ulations: (1) epidemic routing and (2) scheduled routing. The epidemic protocol targets at

providing delivery by utilizing all possible opportunistic encounters. By flooding the mes-

sage, every node holding a copy of the original message transmits a replica to the ones with-

out a copy at every encounter. In addition to the epidemic protocol, we propose a protocol

called scheduled routing that takes advantage of our extended graph model in Section 4.3

to schedule routes between mobile nodes. Our scheduled routing implements the modified

Dijkstra’s algorithm from Chapter 3. Based on the bus schedules, we are able to obtain

encounters between buses and relays whose locations are determined by the greedy algo-

rithm. One note here is that encounters are directly derived from bus schedules; however,

the actual delays of arrival time of buses at bus stops in the simulation follow a power-law

distribution.

Due to the constraint on ONE simulator, each message being generated from a mobile

124

node during the simulation only has one destination. In our simulations we focus on unicast

routing and leave multicast routing for future work.

4.6.2 Evaluation metrics

Given a fixed number of mobile nodes, the complexity of the network is mainly controlled

by each node’s radio range. Increasing the radio range increases the coverage area of each

node, which leads to more encounter opportunities. Because we are deploying relays in

the network, the buffer size of relays and mobile nodes may also impact the performance

of routing protocols. In addition, the message generation rate and the number of relays in

the network also affect network performance. In general, higher message generation rates

increase the traffic load in the network; more relays in the network create more encounter

opportunities to forward messages. In this section, we present simulations using traces

derived from ETS bus network scenarios in which we evaluate the performance of different

deployment approaches and routing protocols with respect to five parameters:

1. the radio range, r.

2. the message generation rate, s.

3. the buffer size of all nodes including relays, b.

4. the buffer size of relays, br.

5. the number of relays in the network, m.

Three metrics are examined in our simulations: (1) the delivery ratio, (2) the average

delay and (3) the overhead ratio. The delivery ratio is defined as the ratio of messages

received by the destinations to those generated by the sources. The average delay is the

average time from the generation of a message until it is delivered to the destination in

the simulation. The overhead ratio defines the ratio between the number of transmitted

messages (without the final deliveries) and the number of unique messages being delivered.

It is defined as follows.

Overhead ratio=
Total number of transmissions – The number of messages being delivered

The number of messages being delivered

The overhead ratio is used to measure the amount of overhead, e.g., duplicates in epidemic

routing, in the network. For instance, the overhead ratio of the direct delivery protocol is

zero because messages are forwarded only to the destination.

125

Regarding the delivery ratio, the higher the value is, the better the performance is. In

contrast with the delivery ratio, the lower the average delay and overhead ratio are, the better

the performance is. In addition, in order to have accurate results, we run the simulations

three times with different sets of mobile nodes. Each measurement is calculated by taking

the average of the results from three simulations.

4.6.3 Results

Each simulation is run for a period of 86400 seconds in simulation time. By default, the

size of messages is 1 kB, r = 300 meters, s = 1
60 (1 message every 60 seconds), b = 5MB,

and br = 5MB. In addition, messages are transmitted from the buffer in a FIFO order (First

In, First Out). When the buffer overflows, a node will drop the first message in the buffers.

The transmission rate is set to be 1 Mbps by using the lowest transmission rate of IEEE

802.11b in outdoor space [115]. By default, the greedy algorithm is used to find relays to

build 2-element connected networks in the simulations. Two other deployment strategies,

grid deployment in which relays are placed to form a grid and random deployment in which

relays are deployed at random locations, are considered in the simulations as well.

The effect of varying the radio range

We first study how the radio range affects network performance. By varying the radio range

from 100 meters to 500 meters, Figure 4.13 presents the results of two routing protocols

under different deployment approaches. In our simulations, disconnected networks only

have 2 or 3 isolated subnetworks. As shown in Table 4.6, it only requires approximately 2

relays in average to build 2-element connected networks. Under ETS bus network scenarios,

due to a relatively large span of the area and a small number of relays in the network, both

grid and random deployment tends to place relays at locations where mobile nodes do not

visit. Both grid and random deployment do not introduce any transmission opportunity,

and thus do not affect network performance. As a result, the curves of grid and random

deployment overlap with the one without any relay. This is the reason that we can only

observe four curves in Figure 4.13. The same argument applies to the following results

unless stated otherwise.

As the radio range increases, the total number of encounters increases in the network.

As a result, each node has more opportunities to forward messages leading to the increase

of delivery ratios for both epidemic and scheduled routing in Figure 4.13 (a). With the

presence of relays to form 2-element connected networks, there are much more transmission

126

2-element connected
Simulation 1 2
Simulation 2 2
Simulation 3 3

Average 2.33

Table 4.6: The number of relays returned to form 2-element connected networks in
each round of simulation

opportunities compared to grid and random deployment. As a result, the delivery ratios of

both epidemic and scheduled routing are increased by at least 20% in the networks that are

2-element connected. Because epidemic routing generates a large number of duplicates in

the networks, given a fixed buffer space in each node, the performance of epidemic routing

is limited by the availability of buffer space. If the buffer overflows, messages that have

not been delivered yet may be dropped leading to lower delivery ratios. This explains that

scheduled routing in Figure 4.13 (a) always has better delivery ratios compared to epidemic

routing.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 100 150 200 250 300 350 400 450 500

D
e

li
v

e
ry

 r
a

ti
o

Radio range(meters)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(a) Delivery ratio

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 22000

 100 150 200 250 300 350 400 450 500

A
v

e
ra

g
e

 d
e

la
y

(s
e

c
o

n
d

s
)

Radio range(meters)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(b) Average delivery delay

 0

 20

 40

 60

 80

 100

 120

 100 150 200 250 300 350 400 450 500

O
v

e
rh

e
a

d
 r

a
ti

o

Radio range(meters)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(c) Overhead ratio

Figure 4.13: Varying radio range

As the radio range increases, there are more forwarding opportunities in the network.

As a result, each message has a better chance to be delivered leading to the decrease of the

queueing delay for the messages in the network. As expected, in Figure 4.13 (b) the aver-

age delivery delay decreases as the radio range increases. With the presence of 2-element

connected networks, there are more forwarding opportunities that can be used by epidemic

and scheduled routing compared to other deployment approaches. As a result, epidemic

and scheduled routing have the lowest delay at different radio ranges in the networks that

are 2-element connected.

In epidemic routing every node holding a copy of the message transmits a replica to the

ones without a copy at every encounter. As the radio range increases where each node has

more transmission opportunities, the number of duplicates of the original message (redun-

127

dant messages) increases in the network. As a result, as shown in Figure 4.13 (c), the over-

head ratio of epidemic routing increases no matter whether there are relays in the networks

or not. Epidemic routing in the networks without any relay or with grid/random deployment

has a slightly lower overhead ratio because it has less transmission opportunities compared

to the one in the 2-element connected networks. In the networks with different deployment

approaches, scheduled routing has a very low overhead ratio, which approximately equals

three. This is because in scheduled routing each message is only forwarded to a single

next-hop based on a pre-calculated route. As a result, the overhead is generated only when

an intermediate node forwards the message to the next-hop.

The effect of varying the message generation rate

We now focus on the effect of varying the message generation rate. In Figure 4.14, the

message generation rate is reduced from 1 message every 10 seconds to 1 message every

120 seconds. As the traffic load decreases, fewer messages are generated in the network.

This reduces the chances of buffer overflow leading to a result that more messages can be

transmitted during encounters. As shown in Figure 4.14 (a), the delivery ratio increases for

both protocols in different deployment approaches when the radio range increases. There

are significant increases in delivery ratios of both epidemic and scheduled routing with the

presence of 2-element connected networks compared to grid and random deployment. This

is because the network is connected and there are more transmission opportunities in 2-

element connected networks. As we described before, the performance of the epidemic

protocol is limited by the buffer space. When the message generation rate decreases, fewer

messages are buffered in the network where the chance that a message is dropped due to

the buffer overflow reduces. Since fewer messages are dropped in the network, the chance

that a message is delivered to the destination increases. As the traffic load in the network

decreases, the impact of the buffer size on epidemic routing is reduced as well. In scheduled

routing, a message delivery follows the pre-calculated route derived from bus schedules,

and it may fail because buses may run behind schedule. This explains that in Figure 4.14

(a) epidemic routing outperformed scheduled routing when the traffic load in the network

is low enough, i.e., 1 message every 120 seconds.

Whenever the message generation rate changes, we have completely different sets of

messages being generated. It is difficult to have a trend/pattern regarding the average de-

livery delay. As shown in Figure 4.14 (b), we have zigzag curves for both protocols in

the networks with different deployment approaches. In general, the protocols in 2-element

128

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1/10 1/30 1/60 1/90 1/120

D
e

li
v

e
ry

 r
a

ti
o

Transmission rate(packet/second)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(a) Delivery ratio

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

 18500

1/10 1/30 1/60 1/90 1/120

A
v

e
ra

g
e
 d

e
la

y
(s

e
c

o
n

d
s

)

Transmission rate(packet/second)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(b) Average delivery delay

 0

 20

 40

 60

 80

 100

 120

 140

 160

1/10 1/30 1/60 1/90 1/120

O
v

e
rh

e
a

d
 r

a
ti

o

Transmission rate(packet/second)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(c) Overhead ratio

Figure 4.14: Varying the message generation rate

connected networks always have the lowest delay. This is because the queuing time of the

messages decreases in the 2-element connected networks when there are more transmission

opportunities in the network. When the traffic load is high, i.e., 1 message every 30 sec-

onds, in the network, scheduled routing has a lower delivery delay compared to epidemic

routing because in epidemic routing messages are often dropped due to the buffer overflow.

Once the message generation rate reduces, the impact of the availability of buffer space on

epidemic routing reduces leading to lower delivery delays, which is shown in Figure 4.14

(b). This is because epidemic routing generates the shortest delay if it is not restricted by

the network resources such as the buffer size.

In Figure 4.14 (c), the overhead ratio of epidemic routing decreases as the message gen-

eration rate decreases. This is because less traffic in the network generates fewer replicated

messages in the circulation. The overhead ratio of scheduled routing still maintains at a low

value because of using a single-copy forwarding approach.

The effect of varying the buffer size

In our simulations, the size of a message is 1 KB. By varying the buffer size from 1 MB to 9

MB, each node including relays can hold up to approximately 9200 messages. Because the

messages in a node may be dropped due to the buffer overflow, increasing the buffer size in-

creases the lifetime of the messages in the network where each message has a better chance

to be delivered. As expected, in Figure 4.15 (a) the delivery ratio of epidemic routing in-

creases as the buffer size increases. In addition, as the storage space increases, epidemic

routing has great improvement in the delivery ratios in 2-element connected networks com-

pared to ones in the networks without any relay. For example, the delivery ratio is increased

by 20% when the buff size equals 9 MB whereas the improvement is only about 10% when

the buffer size is 3 MB. This is because as the buffer size increases, more messages destined

to different subnetworks can be delivered through the deployed relays whereas the increase

129

in the delivery ratios in grid and random deployment is caused by the increase of deliver-

ies within the same subnetwork. Because single-copy forwarding only has one copy of the

message being circulated in the network, scheduled routing only has a very small number of

messages in the network. Because the size of the messages being stored does not exceed the

buffer size, the availability of buffer size does not have any impact in scheduled routing in

our simulations. This explains that the delivery ratios of scheduled routing in the networks

with different deployment approaches do not change.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9

D
e

li
v

e
ry

 r
a

ti
o

Buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(a) Delivery ratio

 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

 1 2 3 4 5 6 7 8 9

A
v

e
ra

g
e

 d
e

la
y

(s
e
c

o
n

d
s
)

Buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(b) Average delivery delay

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 3 4 5 6 7 8 9

O
v

e
rh

e
a

d
 r

a
ti

o

Buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
No relay epidemic

2-connected scheduled
Grid scheduled

Random scheduled
No relay scheduled

(c) Overhead ratio

Figure 4.15: Varying buffer size

In contrast to the improvement in the delivery ratio, in Figure 4.15 (b) the average

delay of epidemic routing increases as the buffer size increases. With a large buffer size,

in epidemic routing messages with long delays do not get dropped and tend to stay in the

network for a longer time. As a result, the delay for delivered messages increases. Because

the number of messages in the network is relatively low, the availability of more buffer

space does not affect scheduled routing. As a result, the average delay does not change.

As shown in Figure 4.15 (c), the overhead ratio of epidemic routing decreases. This

is because fewer messages are dropped because of larger buffer sizes. The overhead ratios

of scheduled routing in the networks with different deployment approaches do not change

because the availability of buffer space has no impact when the number of messages in the

network is low.

The effect of varying the relay buffer size

We have shown the impact of varying the buffer space on epidemic and scheduled routing

in Figure 4.15. In those simulations, we increased the buffer size of both mobile nodes and

relays. In this section, we only vary the buffer size of relays. Because relays are critical to

deliver messages destined to different subnetworks that are used to be disconnected, we aim

to evaluate the performance of the network by only varying the relay buffer size. By setting

the buffer size of mobile nodes to be 5 MB, the buffer size of relays varies from 1 time and

130

up to 20 times of that of mobile nodes. Because of examining relays, the performance of

epidemic and scheduled routing in disconnected networks without any relay is not presented

in the following figures.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5 25 50 75 100

D
e

li
v

e
ry

 r
a

ti
o

Relay buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
2-connected scheduled

Grid scheduled
Random scheduled

(a) Delivery ratio

 15000

 15500

 16000

 16500

 17000

 17500

 5 25 50 75 100

A
v

e
ra

g
e
 d

e
la

y
(s

e
c

o
n

d
s

)

Relay buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
2-connected scheduled

Grid scheduled
Random scheduled

(b) Average delivery delay

 0

 20

 40

 60

 80

 100

 120

 5 25 50 75 100

O
v

e
rh

e
a

d
 r

a
ti

o

Relay buffer size(MB)

2-connected epidemic
Grid epidemic

Random epidemic
2-connected scheduled

Grid scheduled
Random scheduled

(c) Overhead ratio

Figure 4.16: Varying relay buffer size

By increasing the buffer size of relays from 5 MB to 25 MB, the delivery ratio of

epidemic routing in 2-element connected networks is increased by approximately 5% in

Figure 4.16 (a). After that, the availability of more buffer space does not affect the delivery

ratio any more, i.e., the delivery ratio of epidemic routing in 2-element connected networks

does not change even with larger buffer sizes. As the relay buffer size increases, relays are

able to hold more messages without the buffer overflow. As a result, more messages can be

delivered in the network. When the buffer size of relays is significantly large enough, given

the same encounter scenarios, the messages received by the relays do not change any more.

Therefore, the delivery ratio of epidemic routing in 2-element connected networks stays

the same after the relay buffer size reaches 25 MB. Since grid and random deployment do

not introduce any transmission opportunity, the delivery ratios of epidemic routing in both

deployment approaches do not change. In scheduled routing, because of a relatively small

number of messages in the circulation in the network, relays can always hold messages des-

tined to other subnetworks without the buffer overflow. Increasing the buffer size of relays

does not affect the delivery ratio of scheduled routing in different deployment approaches.

Increasing the buffer size of relays makes relays hold more messages. Therefore, those

messages have better chances to be delivered. As a result, the delivery delay of epidemic

routing decreases when the relay buffer size is increased to 25 MB. After that, the delivery

delay does not change in Figure 4.16 (b) because there is no change in the total number

of deliveries. Similarly, in other tested scenarios, there is no change in the delivery delay

because there is no change in the deliveries.

As the buffer size increases, relays hold more messages and transmit more replicas to

the network. As a result, the overhead ratio of epidemic routing with the presence of 2-

131

element connected networks increases when the relay buffer size is increased to 25 MB.

After that, the delivery ratio does not change any more even in larger buffer sizes. This

result is presented in Figure 4.16 (c). Similarly, the overhead ratio of other tested scenarios

stays the same.

The effect of varying the number of relays in the network

In the previous simulations, we evaluated network performance in the 2-element connected

networks. In this section, we increase the k-element connectivity to understand the perfor-

mance implication of various routing and deployment approaches.

2-element connected 3-element connected 4-element connected
Simulation 1 2 4 5
Simulation 2 2 3 4
Simulation 3 3 4 6

Average 2.33 3.66 5

Table 4.7: Number of relays selected to form k-element connected networks in each
round of simulation

When we increase the k-element connectivity in the network, the number of relays

required to form a k-element connected network increases as well. In our simulations,

the average number of relays to form 2, 3 and 4-element connected graphs are presented in

Table 4.7. As we described before, in our simulations disconnected networks only have 2 or

3 isolated subnetworks. Only a small number of relays are required to form a corresponding

k-element connected network. In Figure 4.17, we rounded each average number of relays to

1 significant digit, i.e., its nearest integer, and use them as tic marks along x-axis to indicate

different connectivity. The actual number of relays in grid and random deployment equals

the number of relays in corresponding k-element connected networks.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

2
(2-connected)

4
(3-connected)

5
(4-connected)

D
e

li
v

e
ry

 r
a

ti
o

Number of relays

k-connected epidemic

Grid epidemic

Random epidemic

k-connected scheduled

Grid scheduled

Random scheduled

(a) Delivery ratio

 13000

 14000

 15000

 16000

 17000

2
(2-connected)

4
(3-connected)

5
(4-connected)

A
v

e
ra

g
e

 d
e

la
y

(s
e

c
o

n
d

s
)

Number of relays

k-connected epidemic

Grid epidemic

Random epidemic

k-connected scheduled

Grid scheduled

Random scheduled

(b) Average delivery delay

 0

 20

 40

 60

 80

 100

 120

 140

 160

2
(2-connected)

4
(3-connected)

5
(4-connected)

O
v

e
rh

e
a

d
 r

a
ti

o

Number of relays

k-connected epidemic

Grid epidemic

Random epidemic

k-connected scheduled

Grid scheduled

Random scheduled

(c) Overhead ratio

Figure 4.17: Varying connectivity

As the number of relays increases in the network, each mobile node has more trans-

132

mission opportunities. In the networks that are k-element connected, the delivery ratios of

both epidemic and scheduled routing increase as k increases. As shown in Figure 4.17 (a),

the increases in the delivery ratio of both protocols may not be significant, e.g., the delivery

ratio is increased by 5% for scheduled routing when k is increased from 2 to 4. This may

be caused by the small number of relays being deployed in the network, e.g., 5 relays in

average being deployed to the network when k equals 4. We believe that the connectivity

(new transmission opportunities) introduced by deploying a few relays is insufficient for

significantly increasing the delivery ratio.

As expected, in Figure 4.17 (b) the delivery delay decreases in both epidemic and

scheduled routing because there are more forwarding opportunities in the networks. In

Figure 4.17 (c) the overhead ratio of epidemic routing in the k-element connected networks

increases as k increases. This is because more relays introduce more transmission oppor-

tunities to the network, and the number of replicated messages increases in the network

leading to the increase in the overhead ratio.

In summary, to connect isolated subnetworks, deploying relays to build k-element con-

nected networks has great impact on network performance with respect to the delivery ratio,

the delivery delay and the overhead ratio in our simulations. Even with the presence of a

very small number of relays in the network, we had approximately 50% improvement in

the delivery ratio in general, i.e., from 0.4 to 0.6 in 2-element connected networks. In

addition, the experimental results showed that scheduled routing consumed much lower

network resources such as the buffer space and the total number of transmissions compared

to epidemic routing. Although we did not concentrate on periodic encounter patterns in this

chapter, it is not difficult to see that our studies in this chapter can be easily generalized

to the relay deployment problem under the network environments with periodic movement

patterns.

4.7 Future work

In our problem domain, the input bipartite graph represents the aggregated connectivity

between terminals and relays. However, in aggregated graphs we lose underlying encounter

information such as how frequent the encounter is between a relay and a terminal and when

those encounters take place. Moreover, even though two candidate relays connect to the

same set of terminals in the graph, they may introduce different transmission opportunities

133

to the network. As a result, one may be preferred over the other. To demonstrate the

difference, we present an example in Figure 4.18. In the example, there are two subnetworks

and two relays in the network where either of relays can be used to join both subnetworks.

In the aggregated graph in Figure 4.18 (a), relays R1 and R2 are considered equivalent

because they both connect to the same set of terminals. However, in the extended graphs

representing the deployment of each one of the relays, it is trivial that relay R2 imposes more

encounters opportunities compared to relay R1. If R1 is deployed, messages generated after

interval I0 will never be delivered, but they can be delivered if R2 is deployed.

R
2

R
1

T
2

T
1

(a) A sample graph

I
0

I
1

I
2

R
1

T
2

T
1

(b) Deploying relay R1

I
0

I
1

I
2

R
2

T
2

T
1

(c) Deploying relay R2

Figure 4.18: The difference in network connectivity between two deployment ap-
proaches

If we can use the underlying encounter information for selecting the relays to form

k-element connected networks, we may further improve network performance regarding

the delivery ratio and the delivery delay. One possible solution to utilize the underlying

encounter information is to assign a weight to each relay. In our example, relay R2 should

have a higher weight because it introduces more encounter opportunities. It would be a very

interesting future direction to design a weight function to capture the differences between

candidate relays in the network. By assigning weights to relays, the relay deployment

problem becomes a multi-objective optimization problem where we want to minimize the

number of relays to form k-element connected networks while maximizing the total weight

of the selected relays.

In our discussion, we have introduced three variations of the k-connectivity problem:

(1) the k-element connectivity problem, (2) the k-vertex connectivity problem and (3) the

k-edge connectivity problem. In this chapter, we only focused on the relay deployment

problem that is modelled as the k-element connectivity problem in a special graph class. In

DTMNs, mobile nodes failures and encounter failures are the norm rather than the excep-

tion. How to properly model those failures in the scope of the k-connectivity problem in

134

general graphs requires further investigations.

In our simulations, the examined protocols, especially scheduled routing, did not take

advantage of relay-disjoint paths in the network. In scheduled routing, routes are pre-

calculated based on the derived encounters. If a relay on the scheduled routes fails, mes-

sages travelling through that relay will never be delivered even though there exist other

paths. Therefore, dedicated routing protocols are required in order to utilize k-element

connectivity. Because of the existence of disjoint paths in the network, dedicated proto-

cols should aim at utilizing different metrics such as throughput, fault-tolerance and load

balancing. We will design routing protocols in k-connectivity environments in future study.

4.8 Summary

In DTMNs, mobile movements may lead to a situation called network partition where an

end-to-end path may never exist because the network is divided into several isolated sub-

networks. To connect isolated subnetworks, we proposed to deploy stationary relays to

form k-element connected networks where there are k relay-disjoint paths between isolated

subnetworks. The whole network is still connected if k-1 relays fail. In this chapter, we

extended our graph model to capture the relay deployment problem in both AP-based and

trajectory-based traces. To solve the relay deployment problem, we proposed three heuristic

algorithms: a greedy algorithm, an iterative algorithm and a shortest-path based algorithm.

The experimental results showed that the greedy algorithm returns the smallest number

of relays to form k-element connected networks. Using the relays returned by the greedy

algorithm, we conducted a set of simulations to evaluate the performance of the k-element

connected network. Our simulation results showed significant improvement in network per-

formance regarding the delivery ratio and delivery delay by forming k-element connected

networks.

135

Chapter 5

Conclusion and future directions

5.1 Conclusion

New applications have created increasing demands for services in mobile networks. Cur-

rently, the majority of routing techniques have an underlying assumption that mobile nodes

are within a single connected network. However, in some application domains the physi-

cal topology may change often and mobile nodes (or entire sub-networks) may not always

be connected due to various forms of node movement as well as energy management or

interferences. In our studies, we focused on mobile networks where a lack of continuous

network connectivity is caused by node mobility, which are also called Delay Tolerant Mo-

bile Networks (DTMNs). To provide effective and efficient communications, we proposed

exploiting periodic encounter behaviours within node mobility for routing in DTMNs. In

this thesis, we concentrated on the three problems: (1) detecting and extracting periodic en-

counter patterns within mobile data, (2) modelling and utilizing periodic encounter patterns

and (3) connecting isolated sub-networks that are strongly internally connected, e.g., by

periodic encounters. In summary, we have made the following contributions.

1. We proposed a methodology for extracting the specific encounter patterns (both pe-

riod and phase) for pairs of nodes that meet each other periodically. We also investi-

gated the persistence of detected periodic behaviours and the small-world structure of

networks formed by periodic encounters to understand their characteristics. The ex-

perimental results showed that the proposed method can detect and extract encounter

patterns in real mobility traces with up to 100% accuracy. In addition, our studies

showed that the majority of networks formed by the mobile nodes with periodic en-

counter behaviours have a small-world structure where messages between any pair of

nodes can be delivered through a very small number of hops in the network.

136

2. To take advantage of periodic encounter behaviours, we introduced a graph model

which integrates all encounter patterns. We showed how routing problems can be

modelled as optimization problems. The only change in the graphs used to solve

different problems is in the assignment of weights for the edges. To solve the routing

problems, we proposed exact and approximation algorithms targeting at finding the

routes for unicast and multicast routing. Using both real and synthetic datasets, the

experimental results showed that our proposed approaches always find better routes

with regard to delivery delay and energy cost compared to other state-of-art protocols.

3. To connect disconnected sub-networks, we proposed deploying stationary relays to

the network to create new transmission opportunities. We showed that the relay node

deployment problem can be modelled as the k-element connectivity problem with the

objective to minimize the number of relays in the network such that the network is k-

element connected, i.e., k relay-disjoint paths. By deploying a very small number of

relays to the disconnected network, our experimental results showed that the resulting

k-element connected network had approximately 50% improvement in the delivery

ratio in general.

Our three contributions are steps towards efficient and effective routing in DTMNs.

Detecting and extracting periodic encounter patterns can identify mobile nodes that can

be reliably used. The proposed graph model adopts the semantics of periodic patterns

where routers can be scheduled for message delivery with respect to different metrics in

the network. Relay deployment is used to join isolated sub-networks which are internally

strongly connected, e.g., by periodic encounters. With the combination of the solutions

from the three problems, in the environment of DTMNs with the presence of disconnected

sub-networks, message delivery can benefit greatly from the underlying periodicity within

mobile data.

5.2 Future directions

There are still many interesting questions left open and worthy pursuing in the future. The

following directions are some of the many we consider interesting in further the contribu-

tions presented in this thesis.

137

5.2.1 A real-time routing protocol

In this thesis the method in Chapter 2 for detecting and extracting periodic encounter pat-

terns is currently performed in a centralized manner. In applications where there are thou-

sands of mobile nodes, this may be not practical. To distribute the process of detection and

extraction, one possible solution would be that a copy of the method can be implemented

in each mobile node to discover its own patterns. In our studies, we showed that periodic

encounter patterns do not last forever but change over a period of time. Pre-calculated

routes will be seriously affected if the underlying periodicity changes. Our study regrading

the persistence of detected periodic behaviours helps understand how long patterns reliably

project themselves. As a result, after a certain period of time, the detection and extraction

method can be re-executed to find new patterns in response to changes. Our future plan

would be to design a routing protocol that utilizes periodicity for routing and dynamically

adopts the changes in periodic behaviours.

5.2.2 A graph model capturing the probabilities of periodic encounters

In order to simplify our model, in Chapter 3 we assumed that every periodic encounter

appears at its phase during every consecutive period in time. However, node movements are

often disturbed by unexpected events. As a result, a periodic encounter may not be available

to use at some phases of periods in time. To capture the stability of periodic encounters,

probabilities can be used to describe how stable each periodic encounter is. We would like to

design a graph model that is able to incorporate the probability of each periodic encounter.

Using this type of graph model, the objective is to find the routes with the highest delivery

probabilities as well as to minimize other metrics in the network. If there are disjoint paths,

e.g., relay-disjoint paths in this thesis, multiple copies of the message can independently

travel through each route to increase the reliability of delivery.

5.2.3 Coordination among relays

In Chapter 4 the relay deployment problem discussed focused on building an unconnected

infrastructure to help message delivery where there is no interaction between relays. By

connecting relays in the network with underlying infrastructure, it is worthwhile to study

coordination among relays to further improve network performance. For instance, redi-

recting messages between relays may lead to improvement. In addition, how to optimally

deploy connected relays is another interesting direction for future research.

138

Bibliography

[1] First Mile Solution. http://www.firstmilesolutions.com/.

[2] Haggle project. http://www.haggleproject.org/.

[3] NS2. http://www.isi.edu/nsnam/ns/.

[4] ETS data for developers. http://www.edmonton.ca/transportation/ets/about ets/ets-
data-for-developers.aspx.

[5] SARAH: Delay-tolerant distributed services for mobile ad hoc networks.
http://www-valoria.univ-ubs.fr/SARAH/presentation.shtml.

[6] M. Abolhasan, T. Wysocki, and E. Dutkiewic. A review of routing protocols for
mobile ad hoc networks. Ad Hoc Networks, 2(1):1–22, 2004.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 38:393–422, 2002.

[8] G. Anastasi, M. Conti, M. Francesco, and A. Passarella. Energy conservation in
wireless sensor networks: A survey. Ad Hoc Networks, 7(3):537–568, 2009.

[9] M. Balazinska and P. Castro. Characterizing mobility and network usage in a corpo-
rate wireless local-area network. In Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pages 303–316, 2003.

[10] A. Bamis, J. Fang, and A. Savvides. A method for discovering components of human
rituals from streams of sensor data. In Proceedings of the International Conference
on Information and knowledge management, pages 779–788, 2010.

[11] N. Banerjee, M. Corner, and B. Levine. An energy-efficient architecture for DTN
throwboxes. In Proceedings of the International Conference on Computer Commu-
nications, pages 776–784, 2007.

[12] N. Banerjee, M. Corner, D. Towsley, and B. N. Levine. Relays, base stations, and
meshes: enhancing mobile networks with infrastructure. In Proceedings of the 14th
ACM International Conference on Mobile computing and Networking, pages 81–91,
2008.

[13] S. Biswas, R. Tatchikou, and F. Dion. Vehicle-to-vehicle wireless communication
protocols for enhancing highway traffic safety. IEEE Communications Magazine, 44
(1):74–82, 2006.

[14] V. Borrel, F. Legendre, M. Dias de Amorim, and S. Fdida. SIMPS: Using sociol-
ogy for personal mobility. IEEE/ACM Transactions on Networking, 17(3):831–842,
2009.

[15] M. Bouissou, A. Boissy, P. Neindre, and I. Veissier. Social behaviour in farm animals.
In L. Keeling and H. Gonyou, editors, The social behavior of cattle, pages 113–145.
CABI Publishing, 2001.

139

[16] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. MaxProp: Routing for vehicle-
based disruption-tolerant networks. In Proceedings of the 25th IEEE International
Conference on Computer Communications., pages 1–11, 2006.

[17] B. Burns, O. Brock, and B. Levine. MV routing and capacity building in disrup-
tion tolerant networks. In Proceedings of the Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 1, pages 398–408, 2005.

[18] H. Cao, N. Mamoulis, and D. Cheung. Discovery of periodic patterns in spatiotem-
poral sequences. IEEE Transactions on Knowledge and Data Engineering, 19(4):
453–467, 2007.

[19] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs
and dynamic networks. In Proceedings of the 10th international conference on Ad-
hoc, mobile, and wireless networks, pages 346–359, 2011.

[20] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of hu-
man mobility on opportunistic forwarding algorithms. IEEE Transactions on Mobile
Computing, 6:606–620, 2007.

[21] M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Ap-
proximation algorithms for directed Steiner problems. In Proceedings of the ninth
annual ACM-SIAM symposium on Discrete algorithms, pages 192–200. Society for
Industrial and Applied Mathematics, 1998.

[22] C. Chatfield. Analysis of Time Series. Chapman and Hall/CRC, 6th edition, 2003.
ISBN 1584883170.

[23] C. Chekuri, A. Ene, and A. Vakilian. Node-weighted network design in planar and
minor-closed families of graphs. In Proceedings of the 39th international colloquium
conference on Automata, Languages, and Programming, pages 206–217, 2012.

[24] J. Chuzhoy and S. Khanna. An o(k3logn)-approximation algorithm for vertex-
connectivity survivable network design. In Proceedings of the 50th Annual IEEE
Symposium on Foundations of Computer Science, pages 437–441, 2009.

[25] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms.
McGraw-Hill Science/Engineering/Math, 2nd edition, 2003. ISBN 0-26-2032937.

[26] P. Costa, C. Mascolo, M. Musolesi, and G. Picco. Socially-aware routing for publish-
subscribe in delay-tolerant mobile ad hoc networks. IEEE Journal on Selected Areas
in Communications, 26(5):748–760, 2008.

[27] E. M. Daly and M. Haahr. Social network analysis for routing in disconnected delay-
tolerant MANETs. In Proceedings of the 8th ACM international symposium on Mo-
bile ad hoc networking and computing, pages 32–40, 2007.

[28] Dartmouth College. CRAWDAD dataset. http://crawdad.cs.dartmouth.edu/data.php.

[29] E. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathe-
matik, 1:269–271, 1959.

[30] S. Dreyfus and R. Wagner. The Steiner problem in graphs. Networks, 1:195–207,
1972.

[31] H. Dubois-Ferriere, M. Grossglauser, and M. Vetterli. Age matters: efficient route
discovery in mobile ad hoc networks using encounter ages. In Proceedings of the 4th
ACM international symposium on Mobile ad hoc networking and computing, pages
257–266, 2003.

[32] N. Eagle, A. S. Pentland, and D. Lazer. Inferring social network structure using
mobile phone data. In Proceedings of the National Academy of Sciences, volume 36,
pages 15274–15278, 2009.

140

[33] J. Edmonds and R. Karp. Theoretical improvements in algorithmic efficiency for
network flow problems. Journal of the ACM, 19(2):248–264, 1974.

[34] K. Fall. A delay-tolerant network architecture for challenged internets. In Pro-
ceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 27–34, 2003.

[35] F. Farahmand, I. Cerutti, A. Patel, Q. Zhang, and J. Jue. Relay node placement in
vehicular delay-tolerant networks. In IEEE Global Telecommunications Conference,
pages 1–5, 2008.

[36] F. Farahmand, A. Patel, J. Jue, V. Soares, and J. Rodrigues. Vehicular wireless burst
switching network: Enhancing rural connectivity. In IEEE Global Telecommunica-
tions Conference, pages 1–7, 2008.

[37] F. Farahmand, I. Cerutti, A. Patel, J. Jue, and J. Rodrigues. Performance of vehicular
delay-tolerant networks with relay nodes. Wireless Communications and Mobile
Computing, 11(7):929–938, 2011.

[38] L. Feeney and M. Nilsson. Investigating the energy consumption of a wireless net-
work interface in an ad hoc networking environment. In Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings, volume 3, pages
1548–1557, 2001.

[39] J. Feng, C.-W. Chang, S. Sayilir, Y.-H. Lu, B. Jung, D. Peroulis, and Y. Hu. Energy-
efficient transmission for beamforming in wireless sensor networks. In Annual IEEE
Communications Society Conference on Sensor Mesh and Ad Hoc Communications
and Networks, pages 1–9, 2010.

[40] L. Fleischer, K. Jain, and D. P. Williamson. An iterative rounding 2-approximation
algorithm for the element connectivity problem. In 42nd Annual IEEE Symposium
on Foundations of Computer Science, pages 339–347, 2001.

[41] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1990. ISBN 0716710455.

[42] J. Gehrke and S. Madden. Query processing in sensor networks. IEEE Pervasive
Computing, 3:46–55, 2004.

[43] A. Goldberg and R. Tarjan. A new approach to the maximum-flow problem. Journal
of the ACM, 35(4):921–940, 1988.

[44] M. Gonzalez, C. Hidalgo, and A. Barabasi. Understanding individual human mobil-
ity patterns. NATURE, 453:799–782, 2008.

[45] M. Grossglauser and D. Tse. Mobility increases the capacity of ad hoc wireless
networks. IEEE/ACM Transactions on Networking, 10(4):477–486, 2002.

[46] M. Grossglauser and M. Vetterli. Locating mobile nodes with ease: learning efficient
routes from encounter histories alone. IEEE/ACM Transactions on Networking, 14
(3):457–469, 2006.

[47] S. Hakimi. Steiner’s problem in graphs and its implications. Networks, 1:113–133,
1971.

[48] J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time se-
ries database. In Proceedings of the International Conference on Data Engineering,
pages 106–115, 1999.

[49] R. Handorean, C. Gill, and G. Roman. Accommodating transient connectivity in
ad hoc and mobile settings. In Pervasive Computing, volume 3001, pages 305–322.
2004.

141

[50] T. He, K. Lee, and A. Swami. Flying in the dark: controlling autonomous data
ferries with partial observations. In Proceedings of the eleventh ACM international
symposium on Mobile ad hoc networking and computing, pages 141–150, 2010.

[51] T. He, A. Swami, and K. Lee. Dispatch-and-search: dynamic multi-ferry control in
partitioned mobile networks. In Proceedings of the 12th ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing, pages 1–10, 2011.

[52] K. Herrmann. Modeling the sociological aspects of mobility in ad hoc networks.
In Proceedings of the 6th ACM international workshop on Modeling analysis and
simulation of wireless and mobile systems, pages 128–129, 2003.

[53] S. Holland, P. W.; Leinhardt. Transitivity in structural models of small groups. Com-
parative Group Studies, (2):107–124, 1971.

[54] T. Hossmann, F. Legendre, and T. Spyropoulos. From contacts to graphs: Pitfalls
in using complex network analysis for DTN routing. In Proceedings of the Interna-
tional Conference on Computer Communications, pages 1–6, 2009.

[55] M. Hsieh, E. Wu, and M. Tsai. FasterDSP: A Faster Approximation Algorithm for
Directed Steiner Tree Problem. Journal of Information Science and Engineering, 22:
1409–1425, 2006.

[56] W. Hsu and A. Helmy. On nodal encounter patterns in Wireless LAN traces. IEEE
Transactions on Mobile Computing, 9(11):1563–1577, 2010.

[57] W. Hsu and A. Helmy. CRAWDAD data set usc/mobilib (v. 2008-07-24). Down-
loaded from http://crawdad.cs.dartmouth.edu/usc/mobilib, 2008.

[58] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy. Modeling spatial and temporal
dependencies of user mobility in wireless mobile networks. IEEE/ACM Transactions
on Networking, 17(5):1564–1577, 2009.

[59] P. Hui and J. Crowcroft. How small labels create big improvements. In Proceedings
of the Fifth IEEE International Conference on Pervasive Computing and Communi-
cations Workshops, pages 65–70, 2007.

[60] P. Hui, J. Crowcroft, and E. Yoneki. BUBBLE Rap: Social-based forwarding in
delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11):1576–
1589, 2011.

[61] D. Hutchison and J. P. Sterbenz. Resilinets: Resilient and survivable networks. Eu-
ropean Research Consortium for Informatics and Mathematics, pages 30–31, 2009.

[62] F. Hwang and D. Richards. Steiner tree problems. Networks, 22:55–89, 1992.

[63] F. Hwang, D. Richards, and P. Winter. The Steiner tree problem. Annals of Discrete
Mathematics, 53, 1992.

[64] P. Jacquet, P. Muhlethaler, T. Clausen, A. Laouiti, A. Qayyum, and L. Viennot. Op-
timized link state routing protocol for ad hoc networks. In Proceedings of the Inter-
national Multitopic Conference, pages 62–68, 2001.

[65] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. In Proceedings of the 39th Annual Symposium on Foundations of Computer
Science, pages 448–457, 1998.

[66] S. Jain, K. Fall, and R. Patra. Routing in a delay tolerant network. In Proceedings of
the conference on Applications, technologies, architectures, and protocols for com-
puter communications, pages 145–158, 2004.

142

[67] J. Jakubiak and Y. Koucheryavy. State of the art and research challenges for
VANETs. In Proceedings of the Conference on Consumer Communications and
Networking, pages 912–916, 2008.

[68] R. Jathar and A. Gupta. Probabilistic routing using contact sequencing in delay toler-
ant networks. In Proceedings of the 2nd International Conference on Communication
Systems and Networks, pages 1–10, 2010.

[69] Z. Jin, J. Wang, S. Zhang, and Y. Shu. Epidemic-based controlled flooding and adap-
tive multicast for delay tolerant networks. In Proceedings of the 7th International
Conference on Ubiquitous Intelligence Computing, pages 191–194, 2010.

[70] D. Johnson, D. Maltz, and J. Broch. DSR: The dynamic source routing protocol for
multi-hop wireless ad hoc networks. In C. Perkins, editor, In Ad Hoc Networking,
pages 139–172. Addison-Wesley, 2001.

[71] E. P. C. Jones, L. Li, J. K. Schmidtke, and P. A. S. Ward. Practical routing in delay-
tolerant networks. IEEE Transactions on Mobile Computing, 6:943–959, 2007.

[72] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE simulator for DTN protocol evalu-
ation. In Proceedings of the 2nd International Conference on Simulation Tools and
Techniques, pages 1–10, 2009.

[73] H. Kerivin and R. Mahjoub. Design of survivable networks: A survey. Networks, 46
(1):1–21, 2005.

[74] M. Kim and D. Kotz. Periodic properties of user mobility and access-point popular-
ity. Personal Ubiquitous Computation, 11:465–479, 2007.

[75] Y. Ko and N. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks.
Wireless Networking, 6:307–321, 2000.

[76] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo. CRAWDAD
data set dartmouth/campus (v. 2009-09-09). Downloaded from
http://crawdad.cs.dartmouth.edu/dartmouth/campus, 2009.

[77] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta
Informatica, 15:141–145, 1981.

[78] M. Lahiri and T. Berger-Wolf. Periodic subgraph mining in dynamic networks.
Knowledge and Information Systems, 24(3):467–497, 2010.

[79] Y. Lando and Z. Nutov. Inapproximability of survivable networks. Theoretical Com-
puter Science, 410(21):2122–2125, 2009.

[80] J. Laurila, D. GaticaPerez, I. Aad, J. Blom, O. Borneta, O. Dousse, J. Eberle, and
M. Miettinen. The mobile data challenge: Big data for mobile computing research.
In Proc Mobile Data Challenge by Nokia Workshop, in conjunction with Int. Conf.
on Pervasive Computing, Newcastle, June 2012.

[81] S. Lee, J. Park, M. Gerla, and S. Lu. Secure incentives for commercial ad dissem-
ination in vehicular networks. IEEE Transactions on Vehicular Technology, 61(6):
2715–2728, 2012.

[82] J. Leguay, A. Lindgren, J. Scott, T. Friedman, J. Crowcroft, and P. Hui.
CRAWDAD data set upmc/content (v. 2006-11-17). Downloaded from
http://crawdad.cs.dartmouth.edu/upmc/content, 2006.

[83] V. Lenders, J. Wagner, and M. May. Analyzing the impact of mobility in ad hoc
networks. In Proceedings of the ACM/Sigmobile Workshop on Multi-hop Ad Hoc
Networks: from theory to reality, pages 39–46, 2006.

143

[84] A. Levin. Algorithm for the shortest connection of a group of graph vertices. Soviet
Math, 12:1477–1481, 1971.

[85] A. Lindgren, A. Doria, and O. Schelen. Probabilistic routing in intermittently con-
nected networks. In P. Dini, P. Lorenz, and J. Souza, editors, Service Assurance with
Partial and Intermittent Resources, volume 3126, pages 239–254. Springer Berlin
Heidelberg, 2004.

[86] C. Liu and J. Wu. An optimal probabilistic forwarding protocol in delay tolerant
networks. In Proceedings of the tenth ACM international symposium on Mobile ad
hoc networking and computing, pages 105–114, 2009.

[87] C. H. Liu, T. He, K. Lee, K. K. Leung, and A. Swami. Dynamic control of data
ferries under partial observations. In Proceedings of the Conference on Wireless
Communications and Networking, pages 1–6, 2010.

[88] L. L. M. Grotschel and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer-Verlag, 2nd edition, 1993. ISBN 3540567402.

[89] S. Ma and J. Hellerstein. Mining partially periodic event patterns with unknown
periods. In Proceedings of the International Conference on Data Engineering, pages
205–214, 2001.

[90] J. Macker, V. Park, and M. Corson. Mobile and wireless internet services: putting
the pieces together. IEEE Communications Magazine, 39(6):148–155, 2001.

[91] N. Maculan. The Steiner problem in graphs. Annals of Discrete Mathematica, 31:
185–222, 1987.

[92] Z. Melzak. On the problem of Steiner. Canadian Mathematical Bulletin, 4:143–148,
1961.

[93] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[94] P. Meroni, S. Gaito, E. Pagani, and G. P. Rossi. CRAWDAD data set unimi/pmtr (v.
2008-12-01). Downloaded from http://crawdad.cs.dartmouth.edu/unimi/pmtr, 2008.

[95] S. Moon and A. Helmy. Understanding periodicity and regularity of nodal encounters
in mobile networks: A spectral analysis. In Proceedings of IEEE Conference on
Global Telecommunications, pages 1–5, 2010.

[96] M. Motani and V. Srinivasan. Peoplenet: engineering a wireless virtual social net-
work. In Proceedings of the International Conference on Mobile Computing and
Networking, pages 243–257, 2005.

[97] A. Mtibaa, M. May, C. Diot, and M. Ammar. Peoplerank: social opportunistic for-
warding. In Proceedings of the 29th conference on Information communications,
pages 111–115, 2010.

[98] S. Nelson, M. Bakht, R. Kravets, and A. Harris. Encounter based routing in DTNs.
Proceedings of SIGMOBILE on Mobile Computing and Communication Review, 13:
56–59, 2009.

[99] H. Noshadi, E. Giordano, H. Hagopian, G. Pau, M. Gerla, and M. Sarrafzadeh. Re-
mote medical monitoring through vehicular ad hoc network. In Proceedings of the
Conference on Vehicular Technology, pages 1–5, 2008.

[100] Z. Nutov. Approximating Steiner networks with node weights. In Proceedings of the
8th Latin American conference on Theoretical informatics, pages 411–422, 2008.

[101] C. Oliveira and P. Pardalos. A survey of combinatorial optimization problems in
multicast routing. Computers & Operations Research, 32:1953–1981, 2005.

144

[102] B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. In Proceed-
ings of the International Conference on Data Engineering, pages 412–421, 1998.

[103] C. Palazzi, M. Roccetti, S. Ferretti, and S. Frizzoli. How to let gamers play in
infrastructure-based vehicular networks. In Proceedings of the International Con-
ference on Advances in Computer Entertainment Technology, pages 95–98, 2008.

[104] A. Pentland, R. Fletcher, and A. Hasson. DakNet: rethinking connectivity in devel-
oping nations. Computer, 37(1):78–83, 2004.

[105] P. Pereira, A. Casaca, J. Rodrigues, V. Soares, J. Triay, and C. Cervello-Pastor. From
delay-tolerant networks to vehicular delay-tolerant networks. IEEE Communications
Surveys Tutorials, 14(4):1166–1182, 2012.

[106] C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector
routing for mobile computers. In Proceedings of the conference on Communications
architectures, protocols and applications, pages 234–244, 1994.

[107] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. In Proceed-
ings of the Second IEEE Workshop on Mobile Computing Systems and Applications,
pages 90–100, 1999.

[108] J. Plesnik. A bound for the Steiner tree problem in graphs. Mathematica Slovaca,
31:155–163, 1981.

[109] B. Polat, P. Sachdeva, M. Ammar, and E. Zegura. Message ferries as generalized
dominating sets in intermittently connected mobile networks. Pervasive and Mobile
Computing, 7(2):189–205, 2011.

[110] J. Pujol, A. Toledo, and P. Rodriguez. Fair routing in delay tolerant networks. In
Proceedings of the International Conference on Computer Communications, pages
837–845, 2009.

[111] M. Radenkovic and B. Wietrzyk. Mobile ad hoc networking approach to detecting
and querying events related to farm animals. International conference on Networking
and Services, 0:109–120, 2006.

[112] M. Radenkovic and B. Wietrzyk. Wireless mobile ad-hoc sensor networks for very
large scale cattle monitoring. In Proceeding of the International Workshop on Appli-
cations and Services in Wireless Networks, pages 47–058, 2006.

[113] R. Ramanathan, R. Hansen, P. Basu, R. Rosales-Hain, and R. Krishnan. Prioritized
epidemic routing for opportunistic networks. In Proceedings of the 1st international
MobiSys workshop on Mobile opportunistic networking, pages 62–66, 2007.

[114] V. Rayward-Smith. The computation of nearly minimal Steiner trees in graphs. Inter-
national Journal of Mathematical Education in Science and Technology, 14:15–23,
1983.

[115] P. Romano. The range vs. rate dilemma of WLANs.
http://www.eetimes.com/design/communications-design/4009276/The-Range-
vs-Rate-Dilemma-of-WLANs.

[116] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chaintreau.
CRAWDAD data set cambridge/haggle (v. 2009-05-29). Downloaded from
http://crawdad.cs.dartmouth.edu/cambridge/haggle, 2009.

[117] S. Shahbazi, A. Harwood, and S. Karunasekera. On placement of passive station-
ary relay points in delay tolerant networking. In Proceedings of the International
Conference on Advanced Information Networking and Applications, pages 764–771,
2011.

145

[118] C. Song, Z. Qu, N. Blumm, and A. Barabsi. Limits of predictability in human mo-
bility. Science, 327(5968):1018–1021, 2010.

[119] L. Song and D. Kotz. Evaluating opportunistic routing protocols with large realistic
contact traces. In Proc. of the ACM CHANTS, pages 35–42, 2007.

[120] H. Soroush, N. Banerjee, A. Balasubramanian, M. Corner, B. Levine, and B. Lynn.
DOME: a diverse outdoor mobile testbed. In Proceedings of the 1st ACM Interna-
tional Workshop on Hot Topics of Planet-Scale Mobility Measurements, pages 21–26,
2009.

[121] J. Spinrad. Efficient graph representations. American Mathematical Society, 2003.
ISBN 0821828150.

[122] T. Spyropoulos, K. Psounis, and C. Raghavendra. Spray and focus: Efficient
mobility-assisted routing for heterogeneous and correlated mobility. In Proceedings
of the Fifth IEEE International Conference on Pervasive Computing and Communi-
cations Workshops, pages 79–85, 2007.

[123] T. Spyropoulos, K. Psounis, and C. Raghavendra. Efficient routing in intermittently
connected mobile networks: The single-copy case. IEEE/ACM Transactions on Net-
working, 16(1):63–76, 2008.

[124] R. Startz. Binomial autoregressive moving average models with an application to
u.s. recessions. Journal of Business on Economic Statistics, 26(1):1–8, 2008.

[125] J. Su, A. Chin, A. Popivanova, A. Goel, and E. Lara. User mobility for opportunistic
ad-hoc networking. In Proceedings of the Sixth IEEE Workshop on Mobile Comput-
ing Systems and Applications, pages 41–50, 2004.

[126] J. Su, A. Goel, and E. Lara. An empirical evaluation of the student-net delay tolerant
network. In Proceedings of the 3rd Annual International Conference on Mobile and
Ubiquitous Systems, pages 1–10, 2006.

[127] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem
in graphs. Mathematica Japonica, 24:573–588, 1980.

[128] K. P. Thrasyvoulos Spyropoulos and C. Raghavendra. Spray and wait: an efficient
routing scheme for intermittently connected mobile networks. In Proc. of the ACM
SIGCOMM workshop on DTN, pages 252–259, 2005.

[129] A. Vahdat and D. Becker. Epidemic routing for partially-connected ad hoc networks.
Technical report, Duke University, CS-2000-06.

[130] L. Vu, Q. Do, and K. Nahrstedt. 3R: Fine-grained encounter-based routing in delay
tolerant networks. In Proceedings of IEEE International Symposium on WoWMoM,
pages 1–6, 2011.

[131] C. Wang and W. Li. On the autopersistence functions and the autopersistence graphs
of binary autoregressive time series. Journal of Time Series Analysis, 32(6):639–646,
2011.

[132] T. Wang and C. Low. Reducing message delay with the general message ferry route
(MFR*) problem. In Proceedings of the International Conference on Wireless and
Mobile Computing, Networking and Communications, pages 380–387, 2011.

[133] T. Wark, P. Corke, P. Sikka, L. Klingbeil, Y. Guo, C. Crossman, P. Valencia,
D. Swain, and G. Bishop-Hurley. Transforming agriculture through pervasive wire-
less sensor networks. IEEE Pervasive Computing, 6:50–57, 2007.

[134] D. Watts and S. Strogatz. Collective dynamics of small-world networks. Nature, 393
(6684):440–442, 1998.

146

[135] J. Whitbeck, M. Dias de Amorim, V. Conan, and J. Guillaume. Temporal reacha-
bility graphs. In Proceedings of the 18th annual international conference on Mobile
computing and networking, pages 377–388, 2012.

[136] B. Wietrzyk and M. Radenkovic. Enabling large scale ad hoc animal welfare mon-
itoring. International Conference on Wireless and Mobile Communications, 0:401–
409, 2009.

[137] B. Wietrzyk, M. Radenkovic, and I. Kostadinov. Practical MANETs for pervasive
cattle monitoring. International Conference on Networking, 0:14–23, 2008.

[138] P. Winter. Steiner problem in networks: a survey. Networks, 17:129–167, 1987.

[139] J. Wolf, S. Hallmark, M. Oliveira, R. Guensler, and W. Sarasua. Accuracy issues with
route choice data collection by using Global Positioning System. Transportation
Research Record Journal, 1660(2):66–74, 1999.

[140] J. Yang, W. Wang, and P. Yu. Mining asynchronous periodic patterns in time se-
ries data. IEEE Transactions on Knowledge and Data Engineering, 15(3):613–628,
2003.

[141] Q. Yuan, I. Cardei, and J. Wu. Predict and relay: an efficient routing in disruption-
tolerant networks. In Proceedings of the tenth ACM international symposium on
Mobile ad hoc networking and computing, pages 95–104, 2009.

[142] A. Zelikovsky. A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica, 18:99–110, 1997.

[143] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware design experiences in Ze-
braNet. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 227–238, 2004.

[144] X. Zhang, J. Kurose, B. N. Levine, D. Towsley, and H. Zhang. Study of a bus-
based disruption-tolerant network: Mobility modeling and impact on routing. In
Proceedings of ACM MobiCom, pages 195–206, 2007.

[145] Z. Zhang and Z. Fei. Route design for multiple ferries in delay tolerant networks.
In Proceedings of the International Conference on Wireless Communications and
Networking, pages 3460–3465, 2007.

[146] W. Zhao and M. Ammar. Message ferrying: proactive routing in highly-partitioned
wireless ad hoc networks. In Proceedings of the 9th IEEE Workshop on Future
Trends of Distributed Computing Systems, pages 308–314, 2003.

[147] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach for data delivery
in sparse mobile ad hoc networks. In Proceedings of the 5th ACM international
symposium on Mobile ad hoc networking and computing, pages 187–198, 2004.

[148] W. Zhao, M. Ammar, and E. Zegura. Controlling the mobility of multiple data trans-
port ferries in a delay-tolerant network. In Proceedings of the International Con-
ference on Computer Communications Joint Conference of the IEEE Computer and
Communications Societies, pages 1407–1418, 2005.

[149] W. Zhao, Y. Chen, M. Ammar, M. Corner, B. Levine, and E. Zegura. Capacity
enhancement using throwboxes in DTNs. In Proceedings of the IEEE International
Conference on Mobile Adhoc and Sensor Systems, pages 31–40, 2006.

147

	Introduction
	Delay tolerant mobile networks
	Routing protocols in delay tolerant mobile networks
	Mobility-unaware routing
	Mobility-aware routing
	Social-aware routing
	Periodicity-aware routing

	Periodic behaviours within mobile data
	Applications
	Opportunities and challenges in periodicity detection and utilization

	Thesis contributions
	Thesis organization

	Finding periodic encounter patterns within mobile data
	Introduction
	Periodicity detection
	Proposed methodology
	Auto-persistence function
	Pre-processing
	Periodic pattern recognition

	Experimental results
	Experiments using synthetic encounter series
	Experiments using real mobility traces

	Analysis of results
	The persistence of periodicity within real mobility traces
	Network connectivity
	Small world structure

	Future work
	Summary

	A graph model for periodic encounter patterns
	Introduction
	Existing graph models
	Proposed graph model
	The encounter graph for unicast routing
	The encounter graph for multicast routing
	Domain constraint

	Mathematical optimization and algorithms
	Binary integer programming
	Optimal and approximate algorithms
	Unicast and broadcast versus multicast

	Performance evaluation
	Evaluation metrics
	Experiments using synthetic traces
	Experiments using real mobile traces

	Future work
	Summary

	Relay node deployment
	Introduction
	Related work
	Message ferrying
	Relay node deployment

	Extended graph model
	Mobile data with logical locations
	Mobile data with physical locations

	Relay deployment problem
	k-connectivity problems
	Mathematical optimization
	Heuristic algorithms

	Experiments
	Experiments using networks derived from real mobility traces
	Experiments using synthetic networks

	Simulations
	Simulation settings
	Evaluation metrics
	Results

	Future work
	Summary

	Conclusion and future directions
	Conclusion
	Future directions
	A real-time routing protocol
	A graph model capturing the probabilities of periodic encounters
	Coordination among relays

	Bibliography

