
University of Alberta

Static detection and identification of X86 malicious
executables: A multidisciplinary approach

by

Zhiyu Wang

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

c©Zhiyu Wang
Fall 2009

Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific

research purposes only. Where the thesis is converted to, or otherwise made available in
digital form, the University of Alberta will advise potential users of the thesis of these

terms.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any

substantial portion thereof may be printed or otherwise reproduced in any material form
whatever without the author’s prior written permission.

Examining Committee

Mike H. MacGregor, Computing Science

Mario A. Nascimento, Computing Science

Raymond Patterson, Alberta School of Business

GuoHui Lin, Computing Science

This thesis is dedicated to my parents and lovely wife.

iii

Thesis advisor Author

Mike H. MacGregor, Zhiyu Wang

Abstract

In this thesis, we propose a novel approach to detect malicious executables in the

network layer using a combination of techniques from bioinformatics, data mining and

information retrieval. This approach requires translating malicious code into genome-

like representations. Based on their “genetic” formats, we can easily extract features

by constructing families for known malicious code using data mining algorithms.

These features then can be stored in a router or an another device in the network to

measure the similarity between payloads and extracted features. Once the similarity

is over a threshold, the security device can block the entire session and report an

alert before the threat reaches the intended host(s). Further more, attacks can be

identified based on their features and the families where these features come from.

Ultimately, our experiments showed that 95% accuracy of detection is possible with

an identification rate of 83%.

iv

Contents

Dedication . iii
Abstract . iv
Table of Contents . vi
List of Figures . vii
List of Tables . viii
Acknowledgments . ix

1 Introduction 1
1.1 Definitions of detection and identification 2
1.2 Previous Solutions . 3

1.2.1 Signature based methods . 3
1.2.2 Heuristic methods . 4
1.2.3 Distributed system . 5

1.3 Motivation and challenges . 6
1.3.1 Motivation . 6
1.3.2 Challenges and opportunities 7

1.4 Outline of the thesis . 9

2 Related work 10
2.1 Binary-based detection . 11
2.2 Instruction-based detection . 13
2.3 Hybrid detection . 14

3 Background 17
3.1 Malicious attacks . 18
3.2 Clustering algorithms from data mining 19
3.3 Techniques from information retrieval 21

3.3.1 Term Frequency/Inverse Document Frequency 21

v

Contents vi

3.3.2 Cosine similarity . 22
3.4 Alignment algorithms from bioinformatics 23
3.5 Performance measurement . 25

4 Malicious code detection and identification 27
4.1 Data preparation . 27

4.1.1 Disassembly . 28
4.1.2 Opcode grouping . 28
4.1.3 s-opcode sequence transformation 29

4.2 Clustering . 30
4.2.1 Distance measurement . 31
4.2.2 Clustering algorithm . 33

4.3 Feature extraction . 35
4.4 Applying features to the problems of detection and identification . . . 39
4.5 Summary . 40

5 Experiments and Performance Evaluation 41
5.1 Datasets . 41
5.2 Experiment setup and simulation . 42
5.3 Results . 43

5.3.1 Parameter selection . 43
5.3.2 Analysis . 46

5.3.2.1 Experiments against the training set 46
5.3.2.2 Experiments against the entire dataset 56

6 Conclusions 58
6.1 Limitations . 59
6.2 Future work . 59

Bibliography 65

A Intel opcode grouping 66

B numerical experimental results 74

List of Figures

2.1 The hybrid model explanation for training phase and testing phase
from Masud et al. [27]. 15

3.1 Terminology explanation from Ester et al. [13]. 21
3.2 Comparison between global and local alignments 24

4.1 Binary to s-opcode sequence transformation 29
4.2 Sliding window used to retrieve length k term list. 32
4.3 Result from a complete hierarchical clustering algorithm. 34
4.4 Feature list size. 37
4.5 Processes of our approach . 40

5.1 Sorted average distance to k nearest neighbors. 45
5.2 Individual segment examination . 48
5.3 Individual segment examination with merged features 50
5.4 Double segments examination . 52
5.5 Double segments examination with merged features 53
5.6 Varying number of segments examined 54
5.7 Individual segment examination with varied alignment thresholds . . 55
5.8 Double segments examination with varied alignment thresholds 56

vii

List of Tables

4.1 Single character representation of opcode categories. 30
4.2 Adjusted score matrix. 33
4.3 Multiple alignment that has common subsequences. 36
4.4 The content of the feature list changes by varying the threshold refer-

ring to Figure 4.4. 38

5.1 Overall accuracy of detection. 47
5.2 OAD using double segments examination 51

A.1 Opcode grouping . 73

B.1 Numerical results for individual segment examination referring to Fig-
ure 5.2. 74

B.2 Numerical results for individual segment examination using the merged
feature list referring Figure 5.3. 74

B.3 Numerical results for double segments examination referring to Fig-
ure 5.4. 75

B.4 Numerical results for double segments examination using the merged
feature list referring to Figure 5.5. 75

B.5 Numerical results for varying the number of examining segments re-
ferring to Figure 5.6. 75

B.6 Numerical results for varying classifier threshold for one segment ex-
amination referring to Figure 5.7. 76

B.7 Numerical results for varying classifier threshold for double segments
examination referrring to Figure 5.8. 76

viii

Acknowledgments

First of all, I would like to thank my supervisors, Dr. Mike MacGregor and Dr.

Mario Nascimento. Without their extensive support and patience, this work would

be impossible for me. I would also like to thank faculty members, Dr.Guohui Lin

and Dr.Joerg Sander, for their generous assistance. Thanks to Sunil Ravinder for his

comments during the meetings.

I really appreciate the financial support from the Computing Science Department

at the University of Alberta, and from NSERC.

Finally, I would like to thank my parents and wife for their long-term under-

standing and love.

ix

Chapter 1

Introduction

Malicious executables are programs that perform malevolent functions. They

hide somewhere in the computer system, infect other benign files and execute harm-

ful operations, such as destroying private data, consuming physical resources, pro-

viding unauthorized remote access to the system, stealing sensitive information and

so on. Billions of dollars are lost every year due to damage from computer viruses

alone. Therefore, detecting and identifying malicious executables play a crucial role

in protecting computer systems.

The problem of malicious executables has become a serious security threat, espe-

cially with the growth of Internet usage. Networking provides not only an easy way

to communicate between hosts, but it also provides a convenient tunnel to widely

and quickly propagate dangerous attacks. Since the creation of the first computer

virus in the mid-1980s, the number of malicious programs has been increasing very

fast every year. Malicious code can now reach all aspects of the computer system.

The majority of the operating system market is taken by the series of Microsoft

Windows R© operating systems. These operating systems are highly popular, but

they still have a large number of systemic holes that are vulnerable to attacks. Thus,

the majority of malicious executables aim at Windows operating systems and appli-

1

Chapter 1: Introduction 2

cations. These programs, both malicious and benign, all run on the Intel processor

that use the X86 instruction set architecture. Systemic defects demand some defense

mechanisms to secure the system.

Currently, Windows-based security systems, anti-virus and internet security soft-

ware, mainly use signatures from known malicious executables composed of binary

sequences to prevent threats. These systems can only detect malicious executables,

whose signatures were previously identified and are stored in a database. In this

thesis, we aim at improving the effectiveness of detecting and identifying malicious

X86 executables. For that, we apply techniques from multiple disciplines to packet

classification in the network layer of computer networking.

1.1 Definitions of detection and identification

Detecting malicious executables is an interesting and important problem. Given

dangerous executables, the detection problem is how to effectively discover threats to

prevent system damage. Currently, dynamic analysis and static analysis are the main

detection techniques. Dynamic detection monitors potential malicious attacks during

their execution to observe abnormal behaviors. In contrast, static detection analyzes

the properties of malicious attacks before their execution. Bergeron et al. [4] argue

that static analysis has some advantages over dynamic analysis: it allows exhaustive

analysis; it gives a verdict; and there is no run-time overhead. Probably because of

these benefits, static analysis has been adopted widely and many static automated

systems have been built using feature extraction techniques in recent years [17, 24,

38, 41], though all have their limitations. Feature extraction is the core component of

these systems, and it is also a complicated task requiring a combination of different

data processing algorithms. Although features provide important information to

detect malicious executables, it is still difficult to completely understand various

attacks. For this reason, dynamic analysis can be an accessorial supplement used to

Chapter 1: Introduction 3

further improve the detection rate. Both static and dynamic analysis are helpful.

But we concentrate on static detection in this thesis.

While many detection techniques have been proposed, the problem of identifying

malicious executables has not been given the attention it deserves. Given harmful

code, the identification problem is how to correctly recognize attacks and classify

them into possible families. Currently, human experts are involved in the process of

identifying and classifying new attacks. No automated system from our knowledge

has been released to provide suggestions to label new attacks. We also aim at this

problem beside the problem of detection. Algorithmic identification can offer us an

opportunity for building a system with the ability to identify and classify previously

unknown malicious executables automatically.

1.2 Previous Solutions

The ability to detect and identify malicious executables has evolved relatively

slowly. Signature-based methods are still being commercially used; even though

they cannot help detecting new attacks. New content-based solutions have been

proposed, but they have not been implemented in real-time. Distributed security

schemes provide a great potential to subvert the architecture of current anti-virus

software. Since no work has addressed the problem of automated identification, in

this section, we present only a brief introduction to different detection methods and

their pros and cons.

1.2.1 Signature based methods

The first attempts to detect malicious executables (mainly viruses) were based

on signatures. These approaches require the use of experts to manually extract

signatures from destructive samples. These signatures are used to detect possible

Chapter 1: Introduction 4

incoming attacks. However, signature extraction with human involvement is time

consuming. Therefore, Kephart and Arnold [23] introduced an automatic method

to extract signatures from samples of known viruses to remove the need for human

experts. This has made the development of automated security systems possible.

In fact, automated signature-based detection has been adopted to build commercial

anti-virus software. The success of signature-based techniques has shown that they

work very well for detecting known malicious executables, but they fail to prevent

new attacks. After damage reports of new attacks are issued, the executables are sent

to labs to analyze their functionalities. When the key binary sequences are found,

client-side security programs have to update their malicious signature databases.

According to Fitzgerald [15], “2007’s total doubled the number of signatures F-

Secure had built up over the previous 20 years.” From this argument, it is obvious

that lack of signatures for new attacks reduces the effectiveness of current anti-virus

systems every year.

1.2.2 Heuristic methods

In academia, it has been recognized that the capabilities of signature-based se-

curity systems have faded away [2, 17, 24, 27, 33, 38, 41]. In order to overcome

the shortcomings of signature-based solutions, some open problems about computer

virus research were presented by White [39]. One of the problems is to develop

heuristic techniques for detection. Actually, static analysis is a heuristic technique,

where researchers analyze the features of malicious executables. These features are

the core representations of the malicious executables. By using these features, we

can inspect new attacks in a heuristic approach without exact signature matching.

Unlike binary sequences, features have varied formats, and there are many different

ways to extract features.

Byte patterns were one of the first features to be considered. Using an n-gram

Chapter 1: Introduction 5

model [26], byte sequences in hex format are broken into multiple short subsequences,

each with a length of n. Then the frequency of each unique n-gram subsequence is

counted in order to determine whether it qualifies as a feature or not. The feature

list may be pruned based on other constraints. A classifier is trained later using

these features to label new malicious executables. Many researchers [2, 17, 24] use

byte patterns as features to guide their classifiers, but there are problems with this

type of the feature. All we can get from byte patterns are binary numbers. In this

case, we have no knowledge of the malicious code at all. We need to use the features

to understand the information hidden behind the binary digits.

Recently, the emphasis of feature extraction has shifted from binary analysis to

content analysis, that is an analysis of assembly code. Reverse engineering techniques

are involved in the process of content analysis. First of all, malicious executables

are translated from binaries into low-level assembly code. This facilitates a better

understanding of the functionality of the malicious executables. Depending on the

contents of the assembly code, there are many types of features that may be ex-

tracted. Bergeron et al. [4] chose to use control-flow graphs of API function calls

as features. Zhang et al. [41] applied the n-gram model to the sequences of API

functions to refine their features. Here, the API is the application programming

interface to the operating systems. A more novel approach is from Masud et al. [27].

They combined three types of features consisting of DLL (Dynamic Link Library)

functions, assembly n-gram features and binary n-gram features, to build a hybrid

model to discover new attacks. Besides these examples, there are many other types

of features. In this thesis, we select opcode sequences to be our features.

1.2.3 Distributed system

All previous solutions to the problem of detecting malicious executables are iso-

lated to run on a single host. Every client host, as a single entity, installs some

Chapter 1: Introduction 6

security systems to protect itself. Recently, some commercial companies and re-

searchers have been proposing a distributed approach. This distributes the task of

detecting and identifying malicious executables across the whole network. An anti-

virus company, Rising R©, has already deployed its defense mechanism called “cloud

security plan” using cloud computing. In their scheme, each client host becomes a

sensor to detect abnormal behaviors and risky files. Identified malicious targets are

sent to a central node for further processing. After analyzing them, solutions are

returned to the source and are shared with all end users immediately. In this case,

client hosts are not separated entities any more. They only carry small connected

portions of the entire security system to protect all the users. Unfortunately, the

current version of cloud-based security is aimed at trojan horses only.

1.3 Motivation and challenges

In the prior sections, we have briefly described the strategies to solve the problem

of detecting malicious attacks. Signature-based systems perform poorly against new

attacks, and recent research only focuses on the detection of destructive code. We

then asked ourselves the question: can we find a technique to effectively detect

new attacks and also identify them? To address the problems of both detection and

identification, we propose a approach using a combination of techniques from multiple

disciplines to statically analyze known malicious attacks, in order that extracted

features can be used to detect and identify both previously known and unknown

malicious executables.

1.3.1 Motivation

From our observation, some behaviors of malicious executables are similar to bio-

logical organisms, such as diseases and viruses. In some circumstances, attacks break

Chapter 1: Introduction 7

out, self-replicate and propagate just like diseases and viruses. Usually, biologists

analyze organisms using their DNA/RNA materials [5]. Inspired from biological

genetic composition, we could analyze malicious executables using their simulated

“genetic” representations. A new discipline of computing science, bioinformatics,

has advanced biological analysis especially in the area of genome analysis. What we

can do is to treat binary executables as “genomes”. Important features obtained

from binary “genomes” could be the “genes”. In order to find them, we can ana-

lyze binary executables using their simulated “protein” sequences representations.

Currently, researchers have already applied bioinformatics techniques to intrusion

detection [8, 36]. Its algorithms combined with other techniques could be employed

to address the problem of detecting and identifying new malicious attacks as well.

Detection using content analysis can potentially achieve higher accuracy than bi-

nary analysis. However, existing systems only focus on detecting malicious executa-

bles, they do not address the problem of identification. Commercially, new attacks

must still be sent to human experts for identification and classification. Therefore,

we believe a high detection rate is no longer enough. The next questions we have

to ask ourselves are: what kinds of functionalities make programs virulent? Which

families do they belong to? Security systems should be able to provide some advice

about answering these questions.

1.3.2 Challenges and opportunities

Our challenge is to choose a proper format to represent characteristics of mali-

cious executables. Byte sequences are one choice. However, in order to bypass de-

tection through binary features, programmers of malicious programs try to disguise

their work. For example, they may add extra instructions, or extend instruction

sequences into longer equivalent sequences. Therefore, binary/hex representation by

itself is not sufficient. At some level, similar malicious operations must have similar

Chapter 1: Introduction 8

instruction sequences. If we reverse binary executables into assembly code, there

must be some similar subsequences of instructions existing in all related malicious

attacks, and these subsequences should also be unique compared to other types of

attacks. Thus, the hypothesis in this thesis is that: there exists at least one unique

common instruction subsequence in every member of the same malicious family. In

other words, benign executables should not contain any of these characteristic in-

struction sequences. In order to test this hypothesis, we encounter the following

challenges:

• To choose a proper representation to describe malicious executables. Binary/byte

patterns, API functions, control-flow graphs and other types listed previously

can all be used to represent malicious executables, but which type is more

appropriate to our hypothesis?

• To algorithmically construct the families for malicious executables. To our

knowledge, no solution has been proposed to automatically cluster malicious

attacks, i.e., they are classified manually by human experts. If our clustering

approach works, then we have a solution or can at least provide some sugges-

tions for algorithmically grouping malicious attacks.

• To extract features from each family, because each family contains many ma-

licious members that include a large amount of information. It is difficult to

find the feature that can represent the whole family.

• How to use features and how to take advantage of them to address the problem

of detecting and identifying malicious executables.

Chapter 1: Introduction 9

1.4 Outline of the thesis

The remainder of this thesis is organized as follows. An overview of the existing

systems for detecting malicious executables is discussed in Chapter 2. Also, Chapter 3

provides the discussion about the background of some fundamental algorithms from

data mining, bioinformatics and information retrieval. In Chapter 4, we introduce the

processes of our approach, including data preparation, clustering, feature extraction

and application of features. Chapter 5 presents the details of experiments conducted

to evaluate the accuracy of our system. Finally, conclusions and suggestions for

future work are given in Chapter 6.

Chapter 2

Related work

The idea of using a signature was one of the methods used to detect malicious

executables in the early days, and papers, e.g., [11, 23] have been published about

how to extract useful signatures from computer viruses. But it has been recognized

afterwards that signatures cannot be used to protect against entirely new attacks.

Researchers now apply heuristic analysis to potential malicious executables with the

purpose of finding their essential features. In this case, data mining and information

processing techniques become important tools to address the problem of detecting

malicious executables. Features can then be employed to discover new attacks con-

taining similar characteristics. Many different types of features have been proposed

recently. Binary n-gram patterns [2, 6, 17, 24] are considered as features to examine

the binary representations of malicious code. Instruction sequences and API func-

tion calls [4, 38, 41] have also been used to inspect the contents of malicious attacks.

There are many other types of features as well, but it does not matter what kind

of features one would like to use, the ultimate goal is to build an efficient classifier

using these features to effectively and accurately detect new attacks.

In this section, we concentrate on the previous work regarding features. Binary

feature extraction is presented in Section 2.1. Instruction-level feature extraction is

10

Chapter 2: Related work 11

discussed in Section 2.2. Finally, hybrid feature extraction by combining multiple

formats of features is introduced in Section 2.3.

2.1 Binary-based detection

Malicious executables are in binary representations. The first attempt at extract-

ing features was to find characteristics directly out of plain binary/byte sequences.

Henchiri and Japkowicz used exhaustive search for unique binary n-gram sequences

to discover helpful features [17]. By fixing a length n, they count the frequencies of

different n-gram patterns, and the set of sequences with occurrence frequency over

a certain threshold is selected for the subsequent processing. Additional thresholds

such as intra-family and inter-family supports are introduced to further eliminate

redundant sequences. Given the prior knowledge of computer virus families available

from commercial anti-virus software, intra-family support is the constraint that limits

the number of appearances of a feature in members of the same family. Inter-family

support is the constraint that controls the number of occurrences of a feature in all

malicious attacks. Only the n-gram patterns satisfying all constraints are chosen as

features. These pruned features are used to evaluate their system.

After retrieving the most relevant binary n-gram sequences, Kolter and Maloof

applied various types of classifiers to the feature set, including decision tree, naive

Bayes and support vector machine [24]. First, they converted malicious executables

into hexadecimal representations. Then, an n-gram term is generated by concate-

nating n continuous (hex) bytes; However, this n-gram selection produces millions of

distinct byte sequences. In order to find the most pertinent n-gram patterns, Kolter

and Maloof chose the top 500 n-grams independent of the length n based on their

frequencies to be features. Finally, all classifiers listed above were used to evaluate

the system using the extracted n-gram features. The work done by AbouAssaleh

et al. [2] is very similar to the method from Kolter and Maloof. Using binary n-gram

Chapter 2: Related work 12

sequences, they selected the most frequent features to discover new attacks. Multiple

experiments with 3-fold cross-validation are used in order to find the optimal length

of an n-gram and the size of the feature list that can achieve the highest detection

rate. In their experiment, AbouAssaleh et al. can achieve 98% accuracy; however,

approximately two third of the data samples is required in training purposes. Now,

the number of malicious attacks increases exponentially every year. We only have

limited resources to preform the tasks of detection of identification. What we should

do is to use the minimum resources to achieve the maximum results. Therefore, we

believe using a large training set is not appropriate any more.

As we have shown in previous paragraphs, many researchers use n-gram patterns

as features in their systems, but they have to struggle with choosing the proper

length/size for both n-gram and the feature list to get the best result [2, 17, 24].

In addition to the problem of n-gram selection, Henchiri and Japkowicz in their

work have to pre-group the virus samples into families according to the results from

commercial anti-malware software [17].

In contrast to traditional classifiers trained with both sample malicious executa-

bles and benign programs, Cai et al. investigated only the profiles of benign programs

using one-class classification [6]. In their paper, they extract distinct single bytes

from benign programs as features. Principal component analysis [25] and a one-class

support vector machine are applied to benign features to evaluate the accuracy of

detecting malicious executables. This is an interesting approach to exclusively an-

alyze the benign cases; however, single-byte features cause high false positive rates.

In some circumstances, the classifier gives a roughly 70% false positive rate while the

true positive rate is around 93% . At the same time, approximately three fourths of

the data samples is required in training purposes.

Chapter 2: Related work 13

2.2 Instruction-based detection

In recent years, content-based feature extraction has become a popular technique

to detect malicious executables. Researchers now analyze attacks by disassembling

them into low-level assembly code or languages such as C and C++. The disassem-

bled code contains sequences of instructions, system calls and sub-functions; there-

fore, These assembly programs definitely provide more information about malicious

executables than binary patterns.

Wang et al. proposed the features that are instructions in the byte representa-

tion [38]. However they only examine the first byte and the first two bytes of each

four byte chunk. They believe the first byte is the opcode and the first two bytes

are mainly composed of the opcode and the first operand. Information Gain [25]

based on the frequencies of the features is applied to remove inappropriate patterns.

Naive Bayes and decision tree classifiers are used to test the performance of the sys-

tem. Their paper describes an interesting transition from binary sequences to the

content of assembly code. However, it is unreasonable for the authors to assume

every four-byte denotes an instruction because the Intel X86 instruction set contains

variable-length instructions. The use of single-byte patterns provides insufficient

support that causes a roughly 30% false positive rate while the best detection rate

is around 93%.

Zhang et al. chose the features that are generated by a controlled sliding window

through the sequences of API function calls while assuming that all viruses must

interact with a 32-bit Windows operating system [41]. They first disassemble com-

puter viruses to extract the sequences of system function calls. Then an n-gram

sliding window is applied to break the sequences into several subsequences. The

procedure of counting the frequencies of distinct n-gram subsequences is performed

during the sliding process. Only the subsequences containing abnormal behaviors

such as aggressive function calls are considered to be features. Finally, features are

Chapter 2: Related work 14

fed to a support vector machine to discover new attacks. That paper borrows the

idea from Unix intrusion detection systems of using the abnormal sequences of Unix

commands to prevent attacks.

Besides using the sequences of API function calls as the features, the use of

an instruction-flow graph with the application of automatons is also interesting.

Bergeron et al. converted instruction sequences into control-flow graphs [4]. An

instruction-flow graph using assembly code is first constructed to imitate the pro-

cesses of instruction execution. General-purpose instructions other than system func-

tion calls or sub-routine calls are removed from the graph later. Then the instruction

flow graph is simplified into a finite state machine containing only the flows of API

functions and sub-routines. At last, a verifier is used to compare the control-flow

graphs of attacks and the predefined security automata. It is easy to construct the

flows of function calls for malicious executables; however, the difficulty here is how

to build the security automata to cover various types of malicious attacks.

2.3 Hybrid detection

Both binary-based and instruction-based detections only concentrate on one type

of feature, either byte patterns or instruction sequences. Schultz et al. however used

a set of experiments on varied features [33]. They extract three types of features,

including strings that are printable sequences of characters in binary code, API

function calls and byte sequences. Their classifiers are applied to features type by

type to determine which one provides the best result. Interestingly, Schultz et al.

take the point of view that various formats of features can be used to detect malicious

executables.

As an extension, Masud et al. used a hybrid model of three types of features in the

classifier training [27]. A combination of DLL functions, assembly n-gram features

and binary n-gram features was extracted from the sample attacks. A combination

Chapter 2: Related work 15

vector containing these features was then applied to the classifier. The results show

that the hybrid approach can achieve very high accuracy. The processing graph for

this hybrid model is shown in Figure 2.1. Hybrid detection is very effective because it

Figure 2.1: The hybrid model explanation for training phase and testing phase
from Masud et al. [27].

takes advantage of many types of features. But this mechanism is relatively complex

compared to the systems using traditional one-type feature extraction. The main

shortcoming is that several parameters have to be carefully tuned to control various

aspects of the system in order to achieve good results.

Like previous solutions, we use an n-gram sliding window as well. However, in or-

der to reduce the complexity of selecting the proper length for the n-gram, we shrink

its range by proposing a reasonable lower bound. Unlike Henchiri and Japkowicz

[17] using commercial anti-virus software, we construct families using clustering al-

Chapter 2: Related work 16

gorithms instead. Also one-class classification using only malicious code instead of

benign programs is implemented in this thesis. We will present more details about

these approaches in Chapter 4.

Chapter 3

Background

We believe similar malicious executables contain one or more common character-

istics. Since we cannot fully understand individual attacks at once, it is relatively

easier to retrieve key features from a group of similar malicious executable because

they share the same characteristics. Thus, analyzing malicious groups is strongly

required. In this circumstance, grouping malicious executables requires the knowl-

edge of clustering algorithms from data mining. It also demands some properties

from attacks in order to distinguish them. Therefore, techniques from information

retrieval are used to assign weights to malicious executables to differ similar or dis-

similar ones. Once we have the groups, alignment algorithms from bioinformatics

are applied to retrieve the common features that will be used to detect and identify

new attacks. In this chapter, we provide the discussion about malicious attacks in

Section 3.1, techniques from data mining, information retrieval and bioinformatics

are represented from Section 3.2 to Section 3.4. At last, performance measurement

is discussed in Section 3.5.

17

Chapter 3: Background 18

3.1 Malicious attacks

Generally, malicious attacks can be classified according to their functions and

their approaches to propagation. Based on these characteristics, Skoudis and Ziltser

[34] and McGraw and Morrisett [28] have categorized malicious attacks into the

following major types:

• Virus: A virus is a self-replicating program that depends on human interaction

such as opening malicious executables and reading e-mail. Once a virus is

accessed, it infects benign programs by attaching itself to them, or simply by

carrying out malicious acts. Computer viruses often have the ability to destroy

data on the hard drive, or even destroy hard drives.

• Worm: A worm is also a self-replicating program that can spread itself through

the network or through e-mail communication to other hosts. A worm does

not need a benign program to act as a host. Massive replication activity can

exhaust systems and network resources, leading to a crash. Well developed

networks for data sharing provide convenient environments for them.

• BackDoor: A backdoor is a hidden program in the computer system that

provides remote access that bypasses the normal authentication and security

checks. It usually does not self-replicate, spread or infect other files; however,

a backdoor program opens a tunnel for intruders to control the system, and

collect private information and sensitive data.

• Trojan horse: A trojan horse is another type of attack that does not self-

replicate. It arrives disguised as a legitimate program such as a screen-saver

or mini-game. A trojan horse usually does not self-replicate and infect other

clean files, but it actually executes unexpected and unauthorized operations.

Trojan horses are often used to steal sensitive information and destroy data.

Chapter 3: Background 19

• Spyware and Adware: Spyware collects user’ information such as online

activities and file access history. It usually hides itself within other programs.

Adware displays unwanted advertising. It can exhaust system resources and

cause the poor system performance.

This list only contains the major categories. Other types of malicious code such as

logic and time bomb and rootkit also exist. Since we are interested in Windows-

based malicious attacks, any executable using Intel X86 instruction set architecture

will be our target.

3.2 Clustering algorithms from data mining

Data mining or knowledge discovery is “a non-trivial extraction of implicit, previ-

ously unknown, and potentially useful information from data” [16]. It includes many

techniques such as frequent pattern mining, sequential pattern mining, clustering,

classification, outlier detection and so on. In this thesis, we are interested in group-

ing samples into classes without a priori knowledge of the resultant clusters. Hence

clustering algorithms fit perfectly in the solution framework of our problem.

Clustering is a technique that groups a set of data objects into clusters or classes.

Each cluster is a group of data objects that are similar to their cluster members

and dissimilar to objects from other clusters. In other words, clustering maximizes

the intra-cluster similarity and minimizes the inter-cluster similarity. In this case,

a distance function between any pair of data objects and a threshold defining the

meaning of closeness are required to construct the clusters containing similar data

objects. Clustering is also called unsupervised learning because clustering algorithms

do not require any dataset for the training purpose. Although many clustering al-

gorithms have been proposed, each of them demands a different set of parameters

to run. For example, the K-means [12], PAM [30] and CLARA [22] clustering algo-

rithms require the user to specify the expected number of result clusters. Algorithms

Chapter 3: Background 20

with this requirement are not adequate for our needs because we cannot specify the

number of result classes in advance.

DBSCAN algorithm [13] on the other hand does not require the user to predefine

the number of result clusters as an input. It is based on the connectivity and density

functions to discover clusters with arbitrary shapes. There are two input parameters

for DBSCAN, the minimum number of points (MinPts) and a radius (Eps). This

algorithm relies on the following concepts (illustrated in Figure 3.1):

• Eps-neighborhood: number of neighbors within a radius Eps for a given

point.

• Core objects (CO): a set of points that each has at least MinPts points

within its Eps-neighborhood.

• Border objects (BO): a set of points that each has less than MinPts points

within its Eps-neighborhood.

• Directly density reachable (DDR):an point p is DDR from a CO q if p is

within an Eps-neighborhood of q.

• Density reachable (DR): a point p is DR from point q if there exists a chain

of DDR point from p to q.

• Density connected (DC): a point p is DC to point q if there exists a point

r such that p and q are DR from r.

In order to find clusters, DBSCAN arbitrarily picks a data object out of the

dataset. If the point is a border object, the algorithm just randomly picks other

points until it is a core point. If this object is a core object, the algorithm creates a

cluster with all its neighbors that are directly density reachable and further includes

the rest of the points that are either density reachable or density connected to any

point in this cluster. DBSCAN recursively repeats the same process until there is no

Chapter 3: Background 21

Figure 3.1: Terminology explanation from Ester et al. [13].

point that is neither density connected nor density reachable. Once this cluster is

built, the algorithm randomly selects the next un-clustered object, and repeats the

same procedure until there is no point left un-clustered in the dataset.

3.3 Techniques from information retrieval

Here, we use techniques from information retrieval which provide the ability to

determine the distances between data objects. In this section, we introduce the tools

from information retrieval: term frequency/inverse document frequency and cosine

similarity.

3.3.1 Term Frequency/Inverse Document Frequency

Term Frequency/Inverse Document Frequency (TF/IDF) is a measure of the

importance of terms within a document and across multiple documents [32]. In this

thesis, these terms are fixed-length sequences. There are two steps in calculating this

measurement. The first step is to calculate the occurrences of each individual term

(TF). However, some terms are very common, appearing in almost every assembly

Chapter 3: Background 22

code. Therefore, in the second step, IDF adds weights to balance the effects of

common terms. Given terms ti and documents dj, TF/IDF values of terms can be

calculated as follows:

tfidfi,j = tfi,j ∗ idfi,j

where

tfi,j =
ni,j∑
k nk,j

and

idfi,j = ln
|D|

|{dj : ti ∈ dj}|

where:

ni,j : number of appearances of the term ti in document dj.∑
k nk,j : number of terms in document dj.

|D| : total number of documents.

|{dj : ti ∈ dj}| : total number of documents in which term ti appears.

According to this formula, the TF/IDF value for any term is greater or equal to 0.

3.3.2 Cosine similarity

Cosine similarity is a tool to measure similarity using the angle between two

vectors. The elements of the vectors consist of a list of TF/IDF weights for each

term. Given two vectors X and Y , cosine similarity is defined as follows:

similarity(X, Y) = cos(Θ) =
X · Y
|X||Y |

=
x1 ∗ y1 + x2 ∗ y2 + ... + xn ∗ yn

(x2
1 + x2

1 + ... + x2
n)1/2 ∗ (y2

1 + y2
2 + ... + y2

n)1/2

where

X · Y : inner product of two vectors

Chapter 3: Background 23

|X| (|Y |) : the magnitude of vector X (Y)

xi (yi) : the TF/IDF weight for term ti in vector X (Y)

The value of cosine similarity originally is between 0 and -1. Since TF/IDF values

are the input and they are greater or equal to 0, the value of cosine similarity is

between 0 and 1. The closer the cosine similarity is to 1, the more similar the two

vectors are.

3.4 Alignment algorithms from bioinformatics

Bioinformatics is the discipline used to process information about the molecular

biology of organisms. Its objective is to analyze large amounts of data gathered from

genome sequences and other molecular diagnostics [5]. One of the bioinformatics

techniques is the sequence alignment. A sequence alignment is an approach of ar-

ranging the genetic sequences to identify similar regions that may be a consequence

of functional relationships between the sequences. From the result of clustering algo-

rithms, we have a set of clusters containing similar malicious executables. Therefore,

the multiple alignment is used first to extract the common characteristic in mem-

bers of each malicious family. Once we have this feature, the local alignment can

help to find unknown sequences that are locally or globally similar to these common

characteristics.

There are mainly two categories of sequence alignment, pairwise alignment and

multiple sequence alignment. Both of them contain global and local alignment.

Pairwise global alignment [29] aligns all residues in one sequence globally with the

residues in another sequence; and pairwise local alignment [35] looks for identical

contiguous subsequence between two inputs. Let us consider an example. Given two

sequences X and Y in Figure 3.2 (a), the result of pairwise global alignment is in

(b), and the result of pairwise local alignment is in Figure 3.2 (c). In our project,

Chapter 3: Background 24

pairwise local alignment is used by applying features to detect new attacks. From

our assumption in Section 1.3.2, each malicious family contains at least one unique

subsequence of instructions that can represent the whole family. Once we retrieve

these instruction subsequences, any new attack holding such characteristics can be

detected and identified. Therefore, in order to measure the similarity regionally,

pairwise local alignment is the appropriate alignment technique.

Figure 3.2: Comparison between global and local alignments

Since pairwise local and global alignments only address the problem of aligning

two sequences at a time, what if we want to align multiple sequences to analyze their

similarities? This question leads us to the technique of multiple sequence alignment.

Multiple sequence alignment is an extension of pairwise alignment to globally or lo-

cal align more than two sequences at one time. There are many multiple alignment

algorithms, including progressive methods, iterative methods, alignments based on

locally conserved patterns, statistical and probabilistic methods and many others.

Here, we choose to use the CLUSTALW algorithm [37]. CLUSTALW is a greedy

method to globally align multiple sequences. First, it finds the two most similar

sequences and aligns them together. It then progressively adds less similar sequences

to adjust the result. CLUSTALW was originally designed to align a large number

of sequences that are close to each other. Since we first need to group the mali-

Chapter 3: Background 25

cious executables into classes before applying any multiple alignment algorithm, the

CLUSTALW algorithm becomes an excellent choice for our implementation. More

details about adopting multiple alignment to extract features can be found in Sec-

tion 4.3.

3.5 Performance measurement

In order to evaluate the performance of our system, we use the following mea-

surements:

• For detection:

1. True Positive (TP): number of malicious executables correctly classi-

fied.

2. True Negative (TN): number of benign executables correctly classified.

3. False Positive (FP): number of benign executables incorrectly classified

as malicious.

4. False Negative (FN): number of malicious executables mistakenly clas-

sified as benign.

• For identification:

1. True Identification (TI): number of malicious executables correctly

identified as members of their clustering family.

2. False Identification (FI): number of malicious executables not correctly

identified as members of their clustering family.

For the problems of detecting and identifying malicious executables, the secu-

rity system aims at accurately detecting both malicious and benign problems, and

Chapter 3: Background 26

correctly identifying malicious executables as well. Thus, we are interested in the

following quantities:

• Detection Rate (DR): number of malicious executables correctly detected

as malevolent regarding total number of malicious programs.

=
TP

TP + FN

• False Positive Rate (FPR): number of benign programs correctly detected

regarding total number of benign programs.

=
FP

TN + FP

• Overall Accuracy For Detection (OAD): the summation of both correctly

detected malicious and benign programs regarding the entire dataset.

=
TP + TN

TP + TN + FP + FN

• Identification Rate (IR): number of malicious executables correctly identi-

fied regarding total number of malicious programs.

=
TI

TI + FI

Chapter 4

Malicious code detection and

identification

In this chapter, we introduce the processes of our system: malicious data prepa-

ration in Section 4.1; clustering methodology in Section 4.2; feature extraction in

Section 4.3 and the application of features in Section 4.4.

4.1 Data preparation

The epidemiology of malicious executables is similar to biological malicious dis-

eases and viruses because of their ways to propagate, break out and self-replicate. In

biology, diseases and viruses are simple organisms whose functionalities are mainly

controlled by their genome sequences. Our first challenge is to find genome-like

representations for malicious executables. As we stated previously, we assume pro-

grammers try to change opcodes or operands to bypass signature detection, but they

cannot change the instruction sequences too much in order to keep similar functional-

ities. Each instruction is composed of an opcode and some operands, and the opcode

primarily determines the intention of an instruction. In this case, the opcode is the

27

Chapter 4: Malicious code detection and identification 28

core component of each instruction. Therefore, opcodes could be considered as the

“nucleotides” within destructive attacks. In this section, we present our approach for

transforming malicious executables from binary formats into their simulated “pro-

tein” sequences, which we call s-opcode sequences.

4.1.1 Disassembly

We know that malicious executables are programs represented in binary formats.

Since we only examine the executables using 32-bit Intel R© Instruction Set Architec-

ture [21], binary executables can be translated into low-level assembly language to

extract instruction sequences using a disassembler. In our project, we use a free tool,

IDA disassembler [9], to decode malicious attacks. After disassembling them, each

attack becomes a file containing thousands of lines of decoded instructions and their

corresponding positions in binary files. The only data we need from each instruction

is its opcode. By ignoring parameters and other disassembled information, the as-

sembly code of each binary executable is simplified into a sequence of opcodes. Let

us consider an example of the transformation from a binary sequence to its s-opcode

sequence (see Figure 4.1). Given the binary sequence, “B430 CD21 86E0 3D1E 03BE

B407 730A BEA5 103C 0A74 03BE C91E”, this disassembly phase is shown in steps

one and two of the figure.

4.1.2 Opcode grouping

A malicious executable can be seen as a sequence of opcodes. However, there

are about two hundred opcodes within the Intel R© instruction set [21]. It is easy for

programmers of malicious executables to obfuscate attacks. For example, a for-loop

with increment can be changed to a while-loop or for-loop with decrement or many

other implementations. But no matter how they change, a loop has to include the

arithmetic and control instructions. Under this circumstance, we try to categorize

Chapter 4: Malicious code detection and identification 29

Figure 4.1: Binary to s-opcode sequence transformation

hundreds of opcodes into a relatively small number of groups whose opcodes have

similar functionality. According to the guideline from Intel [21], the company has

already classified its opcodes into thirteen categories. Because of the duplication of

these categories, we further simplify the Intel grouping into eleven categories. More

details about opcode grouping can be found in Appendix A. Just as genome sequences

use a single character to denote each amino acid, our categories in Table 4.1 are also

represented with unique single characters.

4.1.3 s-opcode sequence transformation

Each opcode in an opcode sequence is substituted by a single character according

to the opcode grouping specified in Table 4.1. After opcode substitution, an opcode

sequence is turned into the corresponding s-opcode sequence with single-character

opcodes. In biology, both DNA and RNA sequences have four types of nucleotides

and protein sequences are composed of twenty types of amino acids [5]. Since we

group Intel opcodes into eleven groups, s-opcode sequences fit nicely into the domain

Chapter 4: Malicious code detection and identification 30

Intel instruction Category Character representation
Data Transfer Instructions D
Arithmetic Instructions A
Logical Instructions L
Shift and Rotate Instructions T
Bit and Byte Instructions H
Control Transfer Instructions C
String Instructions S
I/O Instructions I
Flag Control Instructions F
Segment Register Instructions R
Miscellaneous Instructions M

Table 4.1: Single character representation of opcode categories.

of bioinformatics algorithms. Now, we can treat s-opcode sequences as biological

genome sequences, and apply bioinformatics techniques such as the alignment algo-

rithms described in Section 3.4 to address the problem of detecting and identifying

malicious executables. This transformation phase is shown in step three of Figure 4.1.

4.2 Clustering

There are at least two ways to detect new attacks. The first approach is to find the

key features from the existing malicious executables, then use these characteristics to

recognize new malicious executables. The second approach is to construct malicious

families based on the properties of attacks. Using these families, we can extract

features from each family to discover new attacks. Between these two approaches,

the first one is more like an idealistic method. It is very complex to find the crucial

information directly from attacks. The second approach on the other hand is more

practical. Malicious families can be formed based on their properties, for example

s-opcode sequences, and it is easier to retrieve key data from members in the same

Chapter 4: Malicious code detection and identification 31

family since they share similar characteristics. In contrast with malicious families, a

single executable alone provides insufficient information to find its characteristics. In

our project, we apply the second method to extract features from clustered malicious

families.

After the transformation from binary code to s-opcode sequences, our task now

is to find a way to cluster malicious attacks algorithmically. In commercial industry,

security software programs have their own approaches to classify malicious executa-

bles. A new malicious attack is analyzed for its functionalities, propagation and many

other characteristics by experienced analysts. Then, these newly reported attacks

are manually classified into families. In this case, human beings play an important

role in forming the groups of malicious executables. For the same reason, different

companies have different understandings of attacks, and therefore, have slightly dif-

ferent identification results for existing malicious executables. In order to construct

malicious families algorithmically, clustering algorithms from data mining can be

used to address the problem of grouping.

In clustering algorithms, there are two important components, a distance function

and a distance threshold. The distance function is also called the distance measure-

ment or similarity measurement and quantifies the difference between any pair of

data objects. The distance threshold is a constraint that determines whether two

data objects are close enough or not. In this thesis, we use a combination of cosine

similarity and TF/IDF to measure the difference. Heuristic approaches introduced

with the DBSCAN algorithm help choosing the distance threshold.

4.2.1 Distance measurement

Given a s-opcode sequence with a length of n, we choose a fixed window length

k where k ≤ n. By sliding the length k window through the s-opcode sequence, we

obtain a vector containing (n−k+1) subsequences where each subsequence is a term

Chapter 4: Malicious code detection and identification 32

with k-opcodes. An example is shown in Figure 4.2 with sliding window of length 8.

The s-opcode sequence with length 13 can be decomposed into 6 subsequences with

length 8. Using this vector representation, each vector has a list of subsequences

which have length k. The TF/IDF value for each subsequence is calculated over all

the available subsequences. After calculating the value for TF/IDF, each vector has

a list of terms associated with their TF/IDF values. Every malicious executable is

now represented in vector space as pairs of k-length subsequences and their TF/IDF

values.

Many distance functions such as Euclidean distance, Manhattan distance and

Jaro distance [14] have been developed to measure the differences between two data

objets of their coordinates in metric space. In our project, instead of measuring geo-

metrical distances between two vectors, we are interested in estimating the direction

and angle of them. The direction and angle between two vectors provides precise

information about how they differ in functionalities that are instruction sequences

in our case. This is the reason that cosine similarity is chosen to measure the angle

between two vectors. Our next step is to apply the vector representations to the

cosine measurement.

Figure 4.2: Sliding window used to retrieve length k term list.

Applying the formula of cosine similarity described in Section 3.3.2, the distance

between vectors A and B can be found in a numeric range of 0 to 1. By collecting all

results of cosine similarity, a score matrix can be generated to represent the distance

Chapter 4: Malicious code detection and identification 33

between any pair of vectors in the dataset. In cosine similarity, the closer to value 1

the distance is, the more similar the two vectors are. In order to follow the meaning

of distance in a natural way, we subtract all the elements in the score matrix from

1. After this adjustment, the adjusted score matrix in Table 4.2 as an example gives

an opposite meaning to the cosine value. The value 0 means that two vectors are

identical. The closer to the value 0 the score is, the more similar the two vectors

are. For example, object “NB-P.COM” is more similar to object “NB-O.COM” than

object “A 204.COM” because the score between object “NB-O.COM” and object

“NB-P.COM” is smaller.

A 204.COM NB-O.COM NB-P.COM NB-T.COM NB-U.COM
A 204.COM 0
NB-O.COM 0.9904101 0
NB-P.COM 0.9919908 0.1834956 0
NB-T.COM 0.990327 0.1748854 0.0487555 0
NB-U.COM 0.9903327 0.1708549 0.0556605 0.046651 0

Table 4.2: Adjusted score matrix.

4.2.2 Clustering algorithm

Once we have the distance matrix for all data objects, the next challenge is to

choose a proper clustering algorithm. We use the implementation of hierarchical

clustering from R [40] with the input of a TF/IDF-Cosine distance matrix to find

the potential number of result groups of our dataset and the possible threshold to

determine the neighborhood. The result from hierarchical clustering is shown in

Figure 4.3. The height at value 0 according to cosine similarity is for objects that

have exactly the same angle (identical). At this distance, every malicious executable

forms a cluster for itself. When we increase the distance from a value of 0 to around

0.1, several clusters are built by merging similar attacks. As the distance further

Chapter 4: Malicious code detection and identification 34

increases, some lines merge together into bigger classes. Fewer and fewer classes can

be formed as the distance approaches 1. A relatively small number of clusters is

constructed overall because we randomly select training samples from the dataset.

The graph shows that similarities between malicious executables within the same

cluster are lower than the similarities between malicious executables from different

families. If we can choose a proper threshold, the clustering algorithm is capable of

constructing some clusters from malicious samples based on their TF/IDF-Cosine

similarity. However, from the result of the hierarchical clustering algorithm, there

is no way in advance to predict the possible number of result classes given the fixed

threshold. All similar malicious executables should be able to be grouped into the

same class without predefined clusters. Because of this constraint, there are only a

few clustering algorithms such as nearest neighbor and DBSCAN algorithms that we

can choose. By testing these clustering algorithms, we find that DBSCAN generates

the categorization that is the closest to the result from commercial anti-malware

products.

Figure 4.3: Result from a complete hierarchical clustering algorithm.

DBSCAN is a density-based algorithm. We introduced DBSCAN in Section 3.2

Chapter 4: Malicious code detection and identification 35

along with its two main parameters. The first parameter is the minimum number

of points within the neighborhood. In our domain, no attack is considered noise.

Therefore, minPts can be set to 1. This allows the smallest family to have at least

two members (a core object and a neighbor). The attack without neighbors builds

a cluster only with itself. The second parameter is the radius used to form the

neighborhood. From the result of the hierarchical clustering algorithm in Figure 4.3,

there are clusters existing in the range of approximately 0.4 to 0.8. Thus, the radius

can be chosen within this range. A detailed heuristic method to choose the DBSCAN

radius is presented in Section 5.3.1.

4.3 Feature extraction

After applying the clustering algorithm, malicious executables are grouped into

different families containing similar attacks. The next obstacle is how to retrieve the

feature from each family. But first of all, what is a “feature” in our domain? As we

stated in Section 1.3, there exists at least one common subsequence of instructions

that is similar or identical among all malicious members from the same family. This

common subsequence is relatively different from other attacks because different fam-

ilies contain comparatively different s-opcode sequences. In this case, these unique

instruction sequences from malicious families become our features. Now we under-

stand the domain of our features, but how can we find specific features? When we

prepared the data objects, we translated the instruction sequences into genome-like

s-opcode sequences. Then all the s-opcode sequences in each class can be aligned

according to their best local sequences using the multiple alignment algorithm de-

scribed in Section 3.4. By searching through the output of multiple alignment, we

can extract the most common s-opcode subsequences as features. In other words, fea-

tures are the local subsequences from each class that appear in every member of that

cluster. The example in Table 4.3 shows a malicious family with two common subse-

Chapter 4: Malicious code detection and identification 36

quences. In the table, the subsequences DSDDCDCDDARDDSDDDDDDD and

ADADDADD are the common s-opcode sequences that could be features.

NB-P.COM DSDDCDCDDARDDSDDDDDDDSAHADADDADD
NB-T.COM DSDDCDCDDARDDSDDDDDDDDDDADADDADD
NB-U.COM DSDDCDCDDARDDSDDDDDDDSDHADADDADD
NB-O.COM DSDDCDCDDARDDSDDDDDDDDDMADADDADD

Table 4.3: Multiple alignment that has common subsequences.

Common subsequences generated from multiple alignment can have various lengths

from family to family. We have found that their lengths vary from 1 to 20 or even

more. The question is how to gather the important features. There are many options

here. The first choice is that we can define a threshold according to the length of the

sliding window. Any common subsequence with length greater than this threshold

can be selected as the feature. The rest are considered to be insignificant. A second

choice is that we ignore the threshold, but choose the longest or the top two longest

common subsequences as features. We have decided to use the subsequences that are

the longest or the two longest common subsequences whose length is greater than

the length of the sliding window as features.

Using common subsequences as the feature suggests a matching threshold with

value 100%. It means that all members in the family have to carry a or some specific

subsequence(s). Unfortunately, some clusters do not have any common subsequence

at all or the length of the common subsequences is not long enough. For these

special clusters, we can reduce the value of the threshold to retrieve proper features

other than common subsequences. But how do we choose the proper value? Should

it be 70%, 80% or 90%? In this circumstance, we introduce a simple approach to

determine the value of the threshold. If we choose the length of the sliding window to

be a fixed value n in the process of data preparation, then the length of the features

should also be greater than n. While the threshold is changing, we can examine the

Chapter 4: Malicious code detection and identification 37

changes of the size and the content of the resulting subsequences to choose a proper

value for the threshold.

For illustration, Figure 4.4 shows how the size of the feature list changes by

varying the threshold for a cluster without any common subsequence. Tables 4.4

lists changes of the content of the feature list.

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

S
iz

e

Threshold

A

B

C

the size of features list
average length of features

Figure 4.4: Feature list size.

While we are altering the threshold from 5% to 100% with 5% granularity, both

the content and the size of the result list change. The size of the list is first flat

on a fixed value, then increases to a peak value and at last goes down to the value

zero as the threshold approaches 100%. Let us examine the contents as well. As the

size of the subsequence list approaches the peak value (point B in both Figure 4.4

and Table 4.4), the average length of subsequences decreases. But, some of the

subsequences are still long enough to be features. Once the size starts dropping (point

C in both Figure 4.4 and Table 4.4), subsequences become shorter and irrelevant to

the problem of detecting and identifying malicious attacks. Therefore, we select a

value on the up-slope curve as the threshold. Then, the longest sequences are picked

Chapter 4: Malicious code detection and identification 38

Point A Point B Point C
D D C

CD C D

DS CD S

CDD DS DC

DDMD DD DD

AAACCD CDD DS

CDCCDD CDC AD

SSDDMC CDMD AA

CACDMCC DACD CD

DDDDDDM DDMD DCD

MDMDDDD LDCA DDD

LDCACDACD MDDDM CDD

CDMDSMDDDM AAACCD CCD

CDDDMDLDCDMD SSDDMC DACD

DDAMMSMDDAADD CACDMCC MDDD

ACDAACCACDDDCD MDMDDDD DDCC

DDCCLCDCDDMDCD DDDDDDM DDMD

AADDTTFADLDDDDDC ACDAACCACD DDMC

RDDRDDDDTDRDDDAADADDDDDD CDDDMDLDCDMD DDDA

DDAMMSMDDAADD CDMCC

DDCCLCDCDDMDCD DAACC

AADDTTFADLDDDDDC DADDDD

RDDRDDDDTDRDDDAADADDDDDD CDDDMD

MDMDDDD

DDAMMSMDDA

Table 4.4: The content of the feature list changes by varying the threshold referring
to Figure 4.4.

as features according to the selected threshold. Since the threshold is arbitrarily

chosen in a range, the result of the feature list is slightly different at each time of

extracting features. By applying this approach, the priority of the feature extraction

is to find common subsequences as features. Then, for those clusters without any

common subsequence, the secondary goal is to find the feature that satisfies the

chosen matching threshold.

Chapter 4: Malicious code detection and identification 39

4.4 Applying features to the problems of detec-

tion and identification

After clustering and feature extraction, we have a set of families of known ma-

licious executables and a list of s-opcode sequences as features that can represent

the characteristics of these malicious families. The next step is to apply features to

detect and identify attacks. For any incoming attack, we use the same transforma-

tion processes: disassembling it into a sequence of instructions; retrieving its opcode

sequence and translating it into an s-opcode sequence. Then, a bioinformatics-based

classifier using s-opcode sequences is applied to perform the tasks of detection and

identification.

Given a set of features and their families, our challenge is to apply the advantages

of bioinformatics analysis. According to our hypothesis, each malicious family has

at least one key subsequence that is unique compared to other families. If any

subsequence from a program is similar or identical to the features appearing in our

database, then this executable can be flagged as a malicious program. The question is

how we are going to compare them. This question requires the knowledge of the local

alignment algorithm. We have described the local alignment in Section 3.4. Pair-wise

local alignment is used to find the similar subsequences in both inputs. Therefore,

for any possible incoming executable, we locally align its decoded s-opcode sequence

with all the features in our database. In order to tell whether two sequences are

close enough or not, we introduce a similarity threshold to distinguish them. This

threshold can vary from 0% to 100%. If the value of the threshold is 100%, then the

local alignment is a scheme with exact matching. On the other hand, decreasing this

threshold gives a better tolerance of detecting new attacks with mutated s-opcode

sequences. However, the threshold cannot be too low. Too low a threshold will

generate a large number of false alerts. We will investigate this in Chapter 5.

In addition to the detection, if there is a match between an incoming attack and

Chapter 4: Malicious code detection and identification 40

the feature in the database, we can retrieve its most similar feature(s). By using these

features and the families where they appear, we can signal the families to which the

attack belongs.

Figure 4.5: Processes of our approach

4.5 Summary

In summary, the procedures of our approach are outlined in Figure 4.5. First of

all, malicious samples are randomly selected from the dataset, and we apply the pro-

cesses of decoding, simplifying and substituting to obtain their s-opcode sequences.

Features extracted from clustered malicious families are then used by the classifier.

The classifier uses these features to achieve the goal of detecting and identifying new

incoming attacks.

Chapter 5

Experiments and Performance

Evaluation

The features we extract from binary executables can be applied at either the

application level or the networking level. This chapter presents results for our ap-

proach in detecting and identifying attacks at the network layer in simulated network

traffic. As we will see in Section 5.3, we try to optimize system parameters in order

to achieve the highest accuracy. Shortcomings that affect the results are analyzed

afterwards, and possible alternative solutions are also presented.

5.1 Datasets

We have a dataset containing 3548 malicious executables and 200 benign files.

The malicious executables were gathered from VX Heavens [1], and the benign pro-

grams come from the Windows XP operating system. The malicious executables

consist of a large number of DOS viruses, Windows malicious EXE or application

programs and a small number of trojan horses. The malicious attacks and benign

files were disassembled and then stored for the purposes of either training or testing.

41

Chapter 5: Experiments and Performance Evaluation 42

We input one fifth of the set of malicious executables into the training phase. After

their features are extracted, both malicious and benign files are used to test the

performance of this system.

If we could deploy our system in the field, then we would use all attacks from our

dataset for training purposes to predict unknown threats online. However, in order

to evaluate our technique, the dataset is divided into two sets, a training set and a

testing set. The idea is to mimic the current knowledge with the training set and

have the testing set serve as the new and unknown threats. Thus we can estimate

how effective our technique would be in realistic settings. Having a relatively small

training set would put an unfair stress on the system since it is unreasonable to

expect that one could learn anything effectively from a small sample. Having the

training set too large , on the other hand, would also be unfair because it would be

strongly biased towards our proposal. We have thus decided to use only 20% of our

dataset as the training set. As we shall see this is enough for us to deliver very good

performance, but also offers a scenario to illustrate how well the technique might

perform when one knows much less about the real set of threats that exist.

5.2 Experiment setup and simulation

All implementations were developed in Java with JDK 1.6. We used an external

Java package, Similarity Measurement Library [7], which implements the local align-

ment algorithm [35] to measure the similarity between two s-opcode sequences. In

addition, a Java version of CLUSTALW [19] was used for aligning malicious s-opcode

sequences in the same cluster.

For our simulations, we simulated a device in the network layer of the Internet.

In this layer, communication data is organized in the form of a series of TCP/IP

segments. The payload of a TCP segment is assumed to be 1400 bytes, and the

average length of an instruction is assumed to be four bytes. Therefore, each seg-

Chapter 5: Experiments and Performance Evaluation 43

ment contains approximately 1400/4=350 instructions with 350 opcodes. In order to

simulate the network traffic, we break each malicious s-opcode sequence into several

subsequences, each with a length of 350 or less if the length of the s-opcode sequence

is not divisible by 350. A classifier is deployed in the simulated device to examine

each incoming segment to determine whether its contents are malicious. If one or

more segments from a session are identified as malicious, then the whole session is

blocked.

5.3 Results

First, we randomly selected 710 malicious executables (20% of the dataset) as the

training set. After their transformation, DBSCAN was applied to this training set

by using the measurements of TF/TDF and cosine similarity. As a result, roughly

300 clusters were built. These clusters contain an unbalanced number of members

that are relatively similar to each other; we call each cluster a malicious family. By

assumption, similar malicious executables contain one or a few opcode subsequences

that are unique compared to other attacks. These key opcode subsequences can be

gathered by using multiple alignment among the members in each family. We used

the CLUSTALW algorithm to extract features (the most common subsequences)

from each family. After extracting the subsequences, there are approximately 300

features. The classifier then applies the local alignment technique to detect and

identify unknown malicious attacks using these features.

The procedures described above depend on various parameters. Next, we intro-

duce these parameters and possible ways for selecting their values.

5.3.1 Parameter selection

There are four parameters in our approach:

Chapter 5: Experiments and Performance Evaluation 44

1. The length of the n-gram for sliding through the s-opcode sequence.

2. The minimum number of points within the neighborhood, needed by DBSCAN.

3. The radius used to build the neighborhood, needed by DBSCAN.

4. The threshold for local alignment similarity used to measure the distance be-

tween two s-opcode sequences.

The length of the n-gram can take values from 1 to the length of the maximum

s-opcode sequence, but we are interested in the size of basic blocks in assembly codes.

A basic block is defined as “a sequence of consecutive statements (instructions) in

which the flow of control enters at the beginning and leaves at the end” [3]. Previous

analysis shows the size of basic blocks from SPEC benchmark programs varies roughly

from 5 to 15 instructions [20]. For example, blocks such as if-else and for-loop

statements require at least 4 to 5 instructions. In order to perform some extra

functions besides basic control statements, we assume a meaningful malicious block

has to be over 8 instructions long. Our experiments test the basic blocks starting at

length 8. Also, the minimum s-opcode length of an important feature corresponds

to the length of the n-gram.

The minimum number of points in the neighborhood and the neighborhood radius

are required parameters for DBSCAN. According to Ester et al., the radius to build

the neighborhood can be found approximately using a graphical representation [13].

We calculate the average distance for each data object to its k nearest neighbors.

After sorting the distances among all points, we can plot the sorted values in a graph,

which will have a “valley” shape. We select the value of the radius somewhere around

the valley. In this thesis, we follow this process by varying k values from 2 to 16.

Figure 5.1(a) shows the “valley” shapes with a broken or shifted line around value

from 0.5 to 0.7. If we zoom in the graph using distances from 0.3 to 0.8, we obtain

more details about this area (see Figure 5.1(b)). The “valley” representing the sorted

Chapter 5: Experiments and Performance Evaluation 45

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1
 0 100 200 300 400 500 600 700

D
is

ta
n

ce
s

to
 it

s
n

 n
ea

re
st

 n
ei

g
h

b
o

rs

Data points (unit)

K = 2
K = 4
K = 8

K = 16

(a) Sorted average distance to k nearest neighbors.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8
 50 100 150 200 250 300 350 400

D
is

ta
n

ce
s

to
 it

s
n

 n
ea

re
st

 n
ei

g
h

b
o

rs

Data points (unit)

K = 2
K = 4
K = 8

K = 16

(b) Enlarged area for distance from 0.3 to 0.8.

Figure 5.1: Sorted average distance to k nearest neighbors.

Chapter 5: Experiments and Performance Evaluation 46

average distance to two nearest neighbors shifts approximately at value 0.5, and the

sorted average distance to eight nearest neighbors breaks roughly at value 0.65.

Values around where the “valley” is shifted or broken can be selected as the

radius to create the neighborhood with the specified number of neighbors. From

Figure 5.1, the radii match the result from our hierarchical clustering analysis in

Section 4.2.2 that malicious families exist in a range of approximately 0.4 to 0.8.

Using this approach, we can determine the value of the radius to create the proper

neighborhood. For determining the minimum number of points, we have to consider

the problem of detecting malicious executables. In clustering malicious attacks, there

is no noise. Malicious executables with neighbors create families to include them,

and the rest of the attacks without any neighbors build singleton families.

The last parameter is the threshold measuring the local alignment similarity. Its

value varies from 0 to 1. If the value is 1, then the local alignment is an exact match.

Otherwise, we are loosening the constraints of the local alignment.

In summary, the two parameters we have to address are the length of the n-gram

and the threshold measuring the local alignment similarity. Hence, we focus on the

performance of the system using various combinations of these two parameters.

5.3.2 Analysis

Since we have narrowed the system parameters down to two, we first run exper-

iments against the training set. These are divided into two parts. First, we fix the

threshold of local alignment similarity and test the system by varying the n-gram

length. Next, we use the n-gram length from the first part which achieves the highest

accuracy, and change the value of the local alignment threshold.

5.3.2.1 Experiments against the training set

n-gram length

Chapter 5: Experiments and Performance Evaluation 47

Threshold
n-gram Length

10 14 18 22
0.6 0.57 0.578 0.577 0.621
0.8 0.578 0.627 0.922 0.929
1 0.749 0.916 0.921 0.9175

Table 5.1: Overall accuracy of detection.

Single segment examination In this test, we first need to select a value for

the local alignment threshold. But, how do we choose a proper value? As we know,

this threshold should not be too low because a low threshold will cause false alarms.

A local alignment threshold of 0.6 is a reasonable lower bound. However, in order

to select a proper value within this range, we have to further understand macro

behaviors of our system using both the local alignment threshold and the n-gram

length as parameters. Applying individual segment examination, Table 5.1 provides

a high-level view of changes of overall accuracy of detection (OAD) using various

combination of both parameters. In the table, the highest OAD values appear when

the threshold is at 0.8. Therefore, we select the threshold to be 80%.

As we discussed in previous sections, a basic instruction block is assumed to be

at least 8 instructions long. Therefore, our experiments start with an 8-gram length.

After running the clustering algorithm using the information provided from the n-

gram length, we extract from each family the most common longest subsequences,

as features, whose length is greater than n. In this case, each family only contributes

one feature to represent its characteristics. We assume the classifier resides in a net-

work device and examines each individual segment. Before we examine any segment,

we choose the threshold to be 0.8 to define the meaning of similarity. If there is a

match between a disassembled payload and a feature from our database with a simi-

larity over this threshold, the classifier will report the segment and block the session.

In this scenario, the classifier only examines one segment at a time, and reports

Chapter 5: Experiments and Performance Evaluation 48

the alert as soon as it identifies the examined segment as malicious. The classifier

does not require any memory to store the information about blocked sessions. We

call this approach the individual segment examination. Results for the individual

segment examination using different n-gram length are shown in Figure 5.2. The

corresponding numeric data of this graph and the following graphs can be found

in Appendix B. In this and the next graphs, Detection Rate (DR) is the fraction

of malicious executables correctly detected. False Positive Rate (FPR) is the frac-

tion of benign files mistakenly detected as malicious. Identification Rate (IR) is the

fraction of malicious executables correctly predicted from their own families, and

Overall Accuracy of Detection (OAD) is the overall accuracy of both detection and

false positive rates. These definitions can be found in Section 3.5.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 24 22 20 18 16 14 12 10 8

R
at

e

Length of the N-gram

DR
FPR

IR
OAD

Figure 5.2: Individual segment examination

The graph shows detection rates of over 97%. Individual segment examination

gives a good detection rate because once there is a match in any one of the segments,

the session will be reported and blocked. However, the false positive rate is relatively

high. This is because of the noise feature. When the length of the n-gram is small,

Chapter 5: Experiments and Performance Evaluation 49

there are many s-opcode sequences in the feature list that commonly appear in the

assembly code. Benign programs containing these common s-opcode sequences are

also reported. Therefore, both detection and false positive rates are affected by

false alarms. Actually, as we increase the length of n-gram, the false positive rate

drops quickly. However, its value is still above 10%. For example, with the 18-

grams sliding window, even though we have a detection rate above 95%, the false

positive rate is roughly 17%. In contrast to the detection rate, the identification rate

increases as the length of the n-gram increases because the longer n-gram becomes

more characteristic and provides more information about targets. We want to select

the n-gram length which can achieve both the highest OAD and IR. In this case, our

experiments suggest that an n-gram length above 18 provides the highest accuracy

for individual segment examination.

The main drawback of checking a individual segment is the relatively high false

positive rate. Our next job is to reduce false positives while maintaining the same

detection rate. There are two options to ameliorate the current situation: improving

the quality of features or introducing more features.

Single segment examination using merged features In the previous ex-

periments using features to examine individual segment, we get high detection and

false positive rates because of the noise feature. To remove noise from features, we

can merge similar features. When a feature is extracted from a family, a scanner will

search the feature list for either its super-sequences or subsequences or features that

are similar enough in other similarity measurements, for example local alignment [35],

Euclidean distance [14] and so on. If the scanner finds a super-sequence feature,

the newly generated feature will be dropped. If the scanner observes sub-sequence

features, the current feature will be included in the feature list by eliminating its

children. Otherwise, if similar features are found, only the longest one among them

is kept. By merging the features, approximately 20% to 30% of the original features

Chapter 5: Experiments and Performance Evaluation 50

are pruned out.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 24 22 20 18 16 14 12 10 8

R
at

e

Length of the N-gram

DR
FPR

IR
OAD

Figure 5.3: Individual segment examination with merged features

Figure 5.3 shows the experimental results for the merged features generated from

different n-gram length. The detection rate is sacrificed a little as a compromise for

the drop of the false positive rate for merged features compared to original features.

For example, using the 18-grams, the false positive rate drops by roughly 1% to

12% while the detection rate is maintained at 93%. However the false positive rate

is still above 10%. After merging the feature list, the effect of noise features has

been reduced. The high false positive rate now could be due to the organization

of executables. The assembly code consists of both execution and data segments.

Lots of data segments or “NOP” operations mix with executable instructions. In

our simulation, we have to remove all unrelated segments to retrieve s-opcode se-

quences. This removal causes s-opcode sequences from some segments to be shorter

and non-characteristic. These non-characteristic s-opcode sequences trigger false

alarms. Therefore, merging similar features does not improve accuracy very much.

In our experiments, the identification rate drops quickly because merging features

Chapter 5: Experiments and Performance Evaluation 51

causes the loss of information about the families they belong to. Eventually, this

leads to a lower identification rate. Interestingly, false positive rates from 10-grams

and 12-grams drop significantly compared to the rate from 14-grams. This is because

short noise features from both 10-grams and 12-grams are comparatively easier to

merge. The more noise features are merged, the better the quality of the feature

list. The graph shows that the n-gram with a length above 18 provides the highest

accuracy.

Threshold
n-gram Length

10 14 18 22
0.6 0.613 0.618 0.621 0.646
0.8 0.63 0.745 0.945 0.951
1 0.8105 0.927 0.93 0.909

Table 5.2: OAD using double segments examination

Double segments examination The last two sets of experiments show that

the false positive rate generated from examining individual segment is affected by

either feature noise or the quality of segment payloads. Since examining one segment

is not enough, we can check two or more successive segments from one session. If

double segments from a session match two features from one family, the classifier

issues an alarm. In this case, the classifier has to include a memory to record at least

the first detected malicious segment for each session.

As far individual segment examination, we need to understand system’s behavior.

Macro results in Table 5.2 shows that a threshold of 0.8 provides the highest OAD

to examine double segments. Therefore, we set the local alignment threshold to be

0.8. Also, we now have to retrieve the two longest features instead of one from each

family. Features stored in the feature list are associated with their families’ name.

Comparing two successive segments with two features from one family can relieve the

Chapter 5: Experiments and Performance Evaluation 52

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 24 22 20 18 16 14 12 10 8

R
at

e

Length of the N-gram

DR
FPR

IR
OAD

Figure 5.4: Double segments examination

impact of both feature and payload noise. The same scenario applies when checking

multiple segments as well. Figure 5.4 gives more details about the experimental

results.

In this graph, the detection rate with an n-gram length of 18 is 95%, for example,

compared to 97% from examining individual segment. The reason the detection rate

drops is because the classifier adds more constraints in detection by examining one

additional segment. As a result, the false positive rate drops significantly from 13%

to 6%. Sacrificing 2% in detection rate can actually reduce the false positive rate by

55%. From experiments, we learn that using an n-gram length of 18 to 22 provides

the highest accuracy.

Double segments examination using merged features Besides using the

approach for examining two successive segments, we can improve the quality of the

feature list containing two features from each family by merging similar ones as well.

The experimental results shown in Figure 5.5 are similar to those in Figure 5.3. The

Chapter 5: Experiments and Performance Evaluation 53

reason that both 10-grams and 12-grams provide better false positive rates is still

the same. The merged feature list can reduce the number of features about 15% and

improve the false positive rate from 6% to roughly 2% while the detection rate drops

from 95% to 90%. Similar to Figure 5.4, experiments show that using an n-gram

length from 18 to 22 provides the highest accuracy.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 24 22 20 18 16 14 12 10 8

R
at

e

Length of the N-gram

DR
FPR

IR
OAD

Figure 5.5: Double segments examination with merged features

Multiple segments examination The result is comparatively better by check-

ing two successive segments, but what would the result be if checking more than

double segments for a session? If we examine more segments, we have to extract the

corresponding number of features from each family. One would hope that examining

more segments for a session would improve the result meaning a higher detection

rate and a lower false positive rate. However, our results (see Figure 5.6) are the

opposite of these expectations.

Both detection and identification rate drop after examining more than double

segments because of adding extra constraints when checking additional segments.

Chapter 5: Experiments and Performance Evaluation 54

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 3 2 1

R
at

e

Number of checked segments

DR
FPR

IR
OAD

Figure 5.6: Varying number of segments examined

The false positive rate increases because the quality of features is declining. In order

to examine more segments in the session, we have to extract more features from each

family. The most significant feature from each family is the longest common s-opcode

sequence. As we increases the number of features extracted from each family, the

quality (length) of features drops. Once the length of the feature falls too much, they

will become non-typical and start generating false alarms. Our results suggest that

checking double segments for each session gives the best result. It is not necessary

to go beyond this point.

Threshold selection

Overall, the results in the previous section show that the n-gram length from 18

to 22 provides the best accuracy regardless of the value of local alignment threshold.

Therefore, in this section, we arbitrarily select the n-gram length to be 18, and vary

the alignment threshold to appraise the system.

First, we test the system using the individual segment examination by changing

Chapter 5: Experiments and Performance Evaluation 55

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.9 0.8 0.7 0.6

R
at

e

The classifier threshold

DR
FPR

IR
OAD

Figure 5.7: Individual segment examination with varied alignment thresholds

the threshold. The experiment results are shown in Figure 5.7. The value of the

threshold varies from 0.6 to 1.0. Since we are using local alignment to measure

the similarity, reducing the threshold below 0.7 creates meaningless results. For

example, a 0.6 threshold gives a 99% detection rate, but it also reports 84% false

positives. If we further lower the threshold, both detection and false positive rates

will reach 100%. It is apparent that the smaller the value of the threshold is, the

higher the detection rate. However, the high detection rate results from false alerts

and therefore does not help improve the overall accuracy. We find that a threshold

of 0.9 gives the highest identification rate and best overall accuracy of detection.

Second, we vary the threshold for examining double segments. The result shown

in Figure 5.8 is very similar to the result of individual segment examination except it

illustrates a lower false positive rate. In general, experiments show that increasing the

threshold reduces the false positive rate, and the detection rate is decreased because

of severely increasing the threshold value. From results of both individual and double

segments examination, the experiments suggest that setting the threshold within the

Chapter 5: Experiments and Performance Evaluation 56

range of 0.8 to 0.9 using double segments examination provides the highest accuracy.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 0.9 0.8 0.7 0.6

R
at

e

The classifier threshold

DR
FPR

IR
OAD

Figure 5.8: Double segments examination with varied alignment thresholds

5.3.2.2 Experiments against the entire dataset

The experiments so far only test malicious executables from the training set. The

next step is to apply the features to all malicious executables. We randomly select

710 malicious executables as the training set which is 20% of the original dataset.

From previous experiments, the n-gram length of 18 and the threshold value of 0.8

generate the best overall accuracy. We apply these parameter values to double seg-

ments examination to detect executables from the entire dataset. The results show

that features generated this way can be used to achieve a detection rate of roughly

69.2% (2456/3548) while maintaining a 4.5% false positive rate. We definitely can

use a large training set to increase the final detection rate, but this is misleading.

In summary, our experiments suggest that double segments examination using a

Chapter 5: Experiments and Performance Evaluation 57

threshold within the range of 0.8 to 0.9 provides the highest accuracy, a 95% overall

accuracy of detection is possible and an identification rate of 83% can be achieved.

Chapter 6

Conclusions

In this thesis, we start with a hypothesis regarding the unique characteristics

among members in the same family of malicious X86 executables. Our whole project

is encircled with this assumption and we have applied techniques from data mining,

information retrieval and bioinformatics. Feature-based characteristics are employed

to solve the problems of detecting and identifying malicious executables. By intro-

ducing the automated identification system and the idea of extracting the “genetic”

information from malicious executables, our research differs from previous related

work that purely focuses on detection. The main contributions of our work can be

summarized as follows:

1. We treat malicious attacks as biological organisms by transforming binary ex-

ecutables into genome-like s-opcode sequences. Alignment algorithms from

bioinformatics and tools from other disciplines are combined in the training

and testing processes of our system.

2. In contrast to traditional two-class classification, we use one-class classification.

Exclusively examining the properties of malicious executables makes it possible

to classify both malicious and benign programs.

58

Chapter 6: Conclusions 59

3. Malicious samples are grouped into classes by the clustering algorithm. This

approach provides an opportunity to automatically group malicious attacks

instead of human experts.

4. Besides the problem of detecting malicious executables, our system also pro-

vides ways to identify unknown attacks by identifying their closest families.

Our approach provides an alternative view to the problem by using a combination

of many techniques to discover “genetic” features from malicious executables. Our

experimental results show that our system can accomplish an identification rate at

approximately 83% while achieving an overall detection rate of roughly 96%.

6.1 Limitations

Even though our system has relatively high accuracy, there are still limitations:

1. There are four parameters in the system, which we believe is too many. Some

of them are related to each other, but it is really complicated to control them

all. Although we propose boundaries for some of the parameters, lots of ex-

periments are still required in order to find the best values to achieve the best

results.

2. The feature list has to be rebuilt after a certain period of time after detecting

and identifying new attacks. If we want to distribute the features, when and

how to update them become the problem.

6.2 Future work

All limitations listed above are our future work, and there are still many places

for improvement.

Chapter 6: Conclusions 60

First, the clustering algorithm is not good enough. In our experiments, the

identification rate is affected by the conjunction of distinct clusters. Since DBSCAN

cannot construct completely disjoint clusters, some families still contain very similar

features after clustering. A possible solution could either improve the clustering

algorithm or post-process the result clusters. We suggest proposing a threshold to

measure inter-family similarity. After clustering the samples, we can merge some of

the close families according to their similarities. Merging clusters could significantly

improve the quality of features in contrast to what we did in Section 5.3.2 by merging

the result features. However, the measurement of inter-family similarities is going to

introduce more parameters to the system.

Second, the present alignment scoring scheme is not very accurate. We are cur-

rently using the simplest pair-wise scoring scheme. The value -1 denotes that a

residue aligns with a different type of residue; the value -2 denotes that a residue

aligns to an empty spot; the value 1 means that a residue matches with the same

type of residue. In bioinformatics, researchers use better scoring matrixes such as

PAM [10] and BLOSUM [18] that are calculated statistically to measure the score

of the alignment. However, we do not have any supporting scoring matrix for the

alignment of s-opcode sequences. If we can build a scoring matrix based on the

sequence of malicious executables, it might improve the accuracy of our similarity

measurement.

Last, host-based security is not effective any more. Oberheide et al. propose a

distributed approach to subvert the architecture of current antivirus software [31].

By using the same concept, we could distribute the features of our system among

network devices such as routers and firewalls across the Internet. First, we could

deploy a special cache storing features in some network devices to examine network

traffic to prevent attacks before their arrival to hosts. If this scheme works, we

could further distribute this mechanism among all devices in the network. Instead

of containing all features, network devices could include a hierarchical distribution

Chapter 6: Conclusions 61

of the feature set. Distinct levels of the network could contain different levels of

features for blocking attacks with different severity. Features within each network

device do not have to be static. A feature-routing protocol could be designed for

devices to exchange features automatically according to their roles in the distributed

security system.

Bibliography

[1] Vx heavens. http://vx.netlux.org/.

[2] T. AbouAssaleh, N. Cercone, V. Keselj, and R. Sweidan. n-gram-based detection
of new malicious code. In COMPSAC ’04: Proceedings of the 28th Annual
International Computer Software and Applications Conference - Workshops and
Fast Abstracts - (COMPSAC’04), pages 41–42, Washington, DC, USA, 2004.
IEEE Computer Society. ISBN 0-7695-2209-2-2.

[3] A. V. Aho, R. Sethi, and J. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1986. ISBN 0-201-10088-6.

[4] J. Bergeron, M. Debbabi, J. Desharnais, M. M. Erhioui, Y. Lavoie, and
N. Tawbi. Static detection of malicious code in executable programs. Int. J. of
Req. Eng., 2001.

[5] B. Brors. An Introduction to Molecular Biotechnology. Wiley VCH, Weinheim,
Germany, 2006. ISBN 3-527-31412-1.

[6] A. D. M. Cai, J. Theiler, and M. Gokhale. Detecting a malicious executable
without prior knowledge of its patterns. In Proc. SPIE 5812, pages 1–12, 2005.

[7] S. Chapman. Similarity metric library. http://www.dcs.shef.ac.uk/ sam/stringmetrics.html.

[8] S. Coull, J. Branch, B. Szymanski, and E. Breimer. Intrusion detection: a
bioinformatics approach. Computer Security Applications Conference, 2003.
Proceedings. 19th Annual, pages 24–33, Dec. 2003. doi: 10.1109/CSAC.2003.
1254307.

[9] DataRescue. IDA PRO 4.9 freeware. http://www.hex-rays.com/idapro/, 2008.

[10] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary
change in proteins. Atlas of protein sequence and structure, 5(suppl 3):345–351,
1978.

62

Bibliography 63

[11] P. S. Deng, J. Wang, W. Shieh, C. Yen, and C. Tung. Intelligent automatic
malicious code signatures extraction. Security Technology, 2003. Proceedings.
IEEE 37th Annual 2003 International Carnahan Conference, pages 600–603,
Oct. 2003.

[12] M. H. Dunham. Data Mining: Introductory and Advanced Topics. New Jersey:
Prentice Hall, 2003. ISBN 0-13-088892-3.

[13] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996.

[14] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, 2007. ISBN
3-540-49611-4.

[15] M. Fitzgerald. The future of antivirus.
http://www.pcadvisor.co.uk/news/index.cfm?newsid=12702, 2008.

[16] W. J. Frawley, P. G. Shapiro, and C. J. Matheus. Knowledge discovery in
databases - an overview. AI Magazine, 13:57–70, 1992.

[17] O. Henchiri and N. Japkowicz. A feature selection and evaluation scheme for
computer virus detection. In ICDM ’06: Proceedings of the Sixth International
Conference on Data Mining, pages 891–895, Washington, DC, USA, 2006. IEEE
Computer Society. ISBN 0-7695-2701-9.

[18] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences(USA), 89(22):10915–
10919, November 1992. ISSN 0027-8424.

[19] D. Higgins, F. Sievers, and A. Wilm. CLUSTALW. http://www.clustal.org/.

[20] J. Huang and D. J. Lilja. Exploiting basic block value locality with block reuse.
High-Performance Computer Architecture, International Symposium on, 0:106,
1999.

[21] Intel. Intel 64 and IA-32 architectures software developer’s manual.
http://www.intel.com/products/processor/manuals/index.htm.

[22] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley-Interscience, March 1990. ISBN 0-47-173578-7.

Bibliography 64

[23] J. O. Kephart and W. C. Arnold. Automatic extraction of computer virus
signatures. In Proceedings of the 4th Virus Bulletin International Conference,
pages 178–184, Virus Bulletin Ltd., Abingdon, England, 1994.

[24] J. Z. Kolter and M. A. Maloof. Learning to detect malicious executables in
the wild. In KDD ’04: Proceedings of the tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 470–478, New
York, NY, USA, 2004. ACM. ISBN 1-58113-888-1.

[25] J. Li, H. Liu, A. Tung, and L. Wong. Data mining techniques for the practical
bioinformatician. In L. Wong, editor, The Practical Bioinformatician, chapter 4,
pages 35–69. World Scientific, 2004.

[26] C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. The MIT Press, June 1999. ISBN 0262133601.

[27] M. Masud, L. Khan, and B. Thuraisingham. A hybrid model to detect malicious
executables. pages 1443–1448. IEEE International Conference on Communica-
tions, 2007. ICC ’07, 2007.

[28] G. McGraw and G. Morrisett. Attacking malicious code: A report to the infosec
research council. IEEE Software., 17(5):33–41, 2000. ISSN 0740-7459.

[29] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):
443–453, March 1970. ISSN 0022-2836.

[30] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data
mining. In 20th International Conference on Very Large Data Bases, September,
1994, Santiago, Chile, pages 144–155. Morgan Kaufmann Publishers, 1994.

[31] J. Oberheide, E. Cooke, and F. Jahanian. Rethinking antivirus: executable
analysis in the network cloud. In HOTSEC’07: Proceedings of the 2nd USENIX
workshop on Hot topics in security, pages 1–5, Berkeley, CA, USA, 2007.
USENIX Association.

[32] G. Salton and M. J. McGill. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc., New York, NY, USA, 1986. ISBN 0070544840.

[33] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for
detection of new malicious executables. In SP ’01: Proceedings of the 2001 IEEE

Bibliography 65

Symposium on Security and Privacy, pages 38–49, Washington, DC, USA, 2001.
IEEE Computer Society.

[34] E. Skoudis and L. Ziltser. Malware: Fighting Malicious Code. New Jersey:
Prentice Hall, 2003. ISBN 0-131-01405-6.

[35] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of Molecular Biology, 147(1):195–197, March 1981.

[36] K. Takeda. The application of bioinformatics to network intrusion detection. Se-
curity Technology, 2005. CCST ’05. 39th Annual 2005 International Carnahan
Conference, pages 130–132, Oct. 2005. doi: 10.1109/CCST.2005.1594860.

[37] J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res,
22(22):4673–4680, November 1994. ISSN 0305-1048.

[38] J. Wang, P. Deng, Y. Fan, L. Jaw, and Y. Liu. Virus detection using data
mining techinques. Security Technology, 2003. Proceedings. IEEE 37th Annual
2003 International Carnahan Conference, pages 71–76, Oct. 2003.

[39] S. R. White. Open problems in computer virus research. Germany, 1998. Virus
Bulletin Conference.

[40] W. Wien. R project for statistical computing. http://www.r-project.org/.

[41] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang. Using support vector machine
to detect unknown computer viruses. International Journal of Computational
Intelligence Research, 2(2):100–104, November 2006. ISSN 0973-1873.

Appendix A

Intel opcode grouping

This section is the detailed table to illustrate how we group about two hundreds
of Intel opcode. According to Intel R© IA-32 Architectures Software Developer’s Man-
ual from [21], general purpose opcodes are grouped into 13 groups. With a slight
modification, we group all the opcodes into 11 groups.

Intel group Opcode Our group
Data Transfer MOV Data Transfer(D)
Data Transfer CMOVE Data Transfer(D)
Data Transfer CMOVZ Data Transfer(D)
Data Transfer CMOVNE Data Transfer(D)
Data Transfer CMOVNZ Data Transfer(D)
Data Transfer CMOVA Data Transfer(D)
Data Transfer CMOVNBE Data Transfer(D)
Data Transfer CMOVAE Data Transfer(D)
Data Transfer CMOVNB Data Transfer(D)
Data Transfer CMOVB Data Transfer(D)
Data Transfer CMOVNAE Data Transfer(D)
Data Transfer CMOVBE Data Transfer(D)
Data Transfer CMOVNA Data Transfer(D)
Data Transfer CMOVG Data Transfer(D)
Data Transfer CMOVNLE Data Transfer(D)
Data Transfer CMOVGE Data Transfer(D)
Data Transfer CMOVNL Data Transfer(D)
Data Transfer CMOVL Data Transfer(D)

Continued on next page

66

Appendix A: Intel opcode grouping 67

Table A.1 continued from previous page
Intel group Opcode Our group
Data Transfer CMOVNGE Data Transfer(D)
Data Transfer CMOVLE Data Transfer(D)
Data Transfer CMOVNG Data Transfer(D)
Data Transfer CMOVC Data Transfer(D)
Data Transfer CMOVNC Data Transfer(D)
Data Transfer CMOVO Data Transfer(D)
Data Transfer CMOVNO Data Transfer(D)
Data Transfer CMOVS Data Transfer(D)
Data Transfer CMOVNS Data Transfer(D)
Data Transfer CMOVP Data Transfer(D)
Data Transfer CMOVPE Data Transfer(D)
Data Transfer CMOVNP Data Transfer(D)
Data Transfer CMOVPO Data Transfer(D)
Data Transfer XCHG Data Transfer(D)
Data Transfer BSWAP Data Transfer(D)
Data Transfer XADD Data Transfer(D)
Data Transfer CMPXCHG Data Transfer(D)
Data Transfer CMPXCHG8B Data Transfer(D)
Data Transfer PUSH Data Transfer(D)
Data Transfer POP Data Transfer(D)
Data Transfer PUSHA Data Transfer(D)
Data Transfer PUSHAD Data Transfer(D)
Data Transfer POPA Data Transfer(D)
Data Transfer POPAD Data Transfer(D)
Data Transfer CWD Data Transfer(D)
Data Transfer CDQ Data Transfer(D)
Data Transfer CBW Data Transfer(D)
Data Transfer CWDE Data Transfer(D)
Data Transfer MOVSX Data Transfer(D)
Data Transfer MOVZX Data Transfer(D)

Binary Arithmetic ADD Arithmetic(A)
Binary Arithmetic ADC Arithmetic(A)
Binary Arithmetic SUB Arithmetic(A)
Binary Arithmetic SBB Arithmetic(A)

Continued on next page

Appendix A: Intel opcode grouping 68

Table A.1 continued from previous page
Intel group Opcode Our group
Binary Arithmetic IMUL Arithmetic(A)
Binary Arithmetic MUL Arithmetic(A)
Binary Arithmetic IDIV Arithmetic(A)
Binary Arithmetic DIV Arithmetic(A)
Binary Arithmetic INC Arithmetic(A)
Binary Arithmetic DEC Arithmetic(A)
Binary Arithmetic NEG Arithmetic(A)
Binary Arithmetic CMP Arithmetic(A)
Decimal Arithmetic DAA Arithmetic(A)
Decimal Arithmetic DAS Arithmetic(A)
Decimal Arithmetic AAA Arithmetic(A)
Decimal Arithmetic AAS Arithmetic(A)
Decimal Arithmetic AAM Arithmetic(A)
Decimal Arithmetic AAD Arithmetic(A)

Logical AND Logical(L)
Logical OR Logical(L)
Logical XOR Logical(L)
Logical NOT Logical(L)

Shift and Rotate SAR Shift and Rotate(T)
Shift and Rotate SHR Shift and Rotate(T)
Shift and Rotate SAL Shift and Rotate(T)
Shift and Rotate SHL Shift and Rotate(T)
Shift and Rotate SHRD Shift and Rotate(T)
Shift and Rotate SHLD Shift and Rotate(T)
Shift and Rotate ROR Shift and Rotate(T)
Shift and Rotate ROL Shift and Rotate(T)
Shift and Rotate RCR Shift and Rotate(T)
Shift and Rotate RCL Shift and Rotate(T)

Bit and Byte BT Bit and Byte(H)
Bit and Byte BTS Bit and Byte(H)
Bit and Byte BTR Bit and Byte(H)
Bit and Byte BTC Bit and Byte(H)

Continued on next page

Appendix A: Intel opcode grouping 69

Table A.1 continued from previous page
Intel group Opcode Our group
Bit and Byte BSF Bit and Byte(H)
Bit and Byte BSR Bit and Byte(H)
Bit and Byte SETE Bit and Byte(H)
Bit and Byte SETZ Bit and Byte(H)
Bit and Byte SETNE Bit and Byte(H)
Bit and Byte SETNZ Bit and Byte(H)
Bit and Byte SETA Bit and Byte(H)
Bit and Byte SETNBE Bit and Byte(H)
Bit and Byte SETAE Bit and Byte(H)
Bit and Byte SETNB Bit and Byte(H)
Bit and Byte SETNC Bit and Byte(H)
Bit and Byte SETB Bit and Byte(H)
Bit and Byte SETNAE Bit and Byte(H)
Bit and Byte SETC Bit and Byte(H)
Bit and Byte SETBE Bit and Byte(H)
Bit and Byte SETNA Bit and Byte(H)
Bit and Byte SETG Bit and Byte(H)
Bit and Byte SETNLE Bit and Byte(H)
Bit and Byte SETGE Bit and Byte(H)
Bit and Byte SETNL Bit and Byte(H)
Bit and Byte SETL Bit and Byte(H)
Bit and Byte SETNGE Bit and Byte(H)
Bit and Byte SETLE Bit and Byte(H)
Bit and Byte SETNG Bit and Byte(H)
Bit and Byte SETS Bit and Byte(H)
Bit and Byte SETNS Bit and Byte(H)
Bit and Byte SETO Bit and Byte(H)
Bit and Byte SETNO Bit and Byte(H)
Bit and Byte SETPE Bit and Byte(H)
Bit and Byte SETP Bit and Byte(H)
Bit and Byte SETPO Bit and Byte(H)
Bit and Byte SETNP Bit and Byte(H)
Bit and Byte TEST Bit and Byte(H)

Control JMP Control(C)
Continued on next page

Appendix A: Intel opcode grouping 70

Table A.1 continued from previous page
Intel group Opcode Our group
Control JE Control(C)
Control JZ Control(C)
Control JNE Control(C)
Control JNZ Control(C)
Control JA Control(C)
Control JNBE Control(C)
Control JAE Control(C)
Control JNB Control(C)
Control JB Control(C)
Control JNAE Control(C)
Control JBE Control(C)
Control JNA Control(C)
Control JG Control(C)
Control JNLE Control(C)
Control JGE Control(C)
Control JNL Control(C)
Control JL Control(C)
Control JNGE Control(C)
Control JLE Control(C)
Control JNG Control(C)
Control JC Control(C)
Control JNC Control(C)
Control JO Control(C)
Control JNO Control(C)
Control JS Control(C)
Control JNS Control(C)
Control JPO Control(C)
Control JNP Control(C)
Control JPE Control(C)
Control JP Control(C)
Control JCXZ Control(C)
Control JECXZ Control(C)
Control LOOP Control(C)
Control LOOPZ Control(C)
Control LOOPE Control(C)

Continued on next page

Appendix A: Intel opcode grouping 71

Table A.1 continued from previous page
Intel group Opcode Our group
Control LOOPNZ Control(C)
Control LOOPNE Control(C)
Control CALL Control(C)
Control RET Control(C)
Control IRET Control(C)
Control INT Control(C)
Control INTO Control(C)
Control BOUND Control(C)
Control ENTER Control(C)
Control LEAVE Control(C)
Control RETF Control(C)

String MOVS String(S)
String MOVSB String(S)
String MOVS String(S)
String MOVSW String(S)
String MOVS String(S)
String MOVSD String(S)
String CMPS String(S)
String CMPSB String(S)
String CMPS String(S)
String CMPSW String(S)
String CMPS String(S)
String CMPSD String(S)
String SCAS String(S)
String SCASB String(S)
String SCAS String(S)
String SCASW String(S)
String SCAS String(S)
String SCASD String(S)
String LODS String(S)
String LODSB String(S)
String LODS String(S)
String LODSW String(S)
String LODS String(S)

Continued on next page

Appendix A: Intel opcode grouping 72

Table A.1 continued from previous page
Intel group Opcode Our group
String LODSD String(S)
String STOS String(S)
String STOSB String(S)
String STOS String(S)
String STOSW String(S)
String STOS String(S)
String STOSD String(S)
String REP String(S)
String REPE String(S)
String REPZ String(S)
String REPNE String(S)
String REPNZ String(S)

I/O IN I/O(I)
I/O OUT I/O(I)
I/O INS I/O(I)
I/O INSB I/O(I)
I/O INS I/O(I)
I/O INSW I/O(I)
I/O INS I/O(I)
I/O INSD I/O(I)
I/O OUTS I/O(I)
I/O OUTSB I/O(I)
I/O OUTS I/O(I)
I/O OUTSW I/O(I)
I/O OUTS I/O(I)
I/O OUTSD I/O(I)

Flag Control STC Flag Control(F)
Flag Control CLC Flag Control(F)
Flag Control CMC Flag Control(F)
Flag Control CLD Flag Control(F)
Flag Control STD Flag Control(F)
Flag Control LAHF Flag Control(F)
Flag Control SAHF Flag Control(F)

Continued on next page

Appendix A: Intel opcode grouping 73

Table A.1 continued from previous page
Intel group Opcode Our group
Flag Control PUSHF Flag Control(F)
Flag Control PUSHFD Flag Control(F)
Flag Control POPF Flag Control(F)
Flag Control POPFD Flag Control(F)
Flag Control STI Flag Control(F)
Flag Control CLI Flag Control(F)

Segment Register LDS Segment Register(R)
Segment Register LES Segment Register(R)
Segment Register LFS Segment Register(R)
Segment Register LGS Segment Register(R)
Segment Register LSS Segment Register(R)

Miscellaneous LEA Miscellaneous(M)
Miscellaneous NOP Miscellaneous(M)
Miscellaneous XLAT Miscellaneous(M)
Miscellaneous XLATB Miscellaneous(M)
Miscellaneous CPUID Miscellaneous(M)
Miscellaneous MOVBE Miscellaneous(M)

Table A.1: Opcode grouping

There is one group, Enter and Leave Instructions, from Intel manual that only
contains two instructions, ENTER and LEAVE. Both of the ENTER and LEAVE
instructions appear in the group of Control Transfer Instructions as well. According
to their functionality, we ignore this group and categorize both instructions into the
group of Control Transfer. Therefore, we obtain eleven groups by ignoring one group
and combining Binary and Decimal Arithmetic groups into one.

Appendix B

numerical experimental results

This appendix contains a list of tables with experimental results referring to
graphs in Chapter 5.

N-gram
8 10 12 14 16 18 20 22 24

DR 1 1 0.979 0.979 0.976 0.973 0.975 0.973 0.973
FPR 0.845 0.845 0.73 0.725 0.165 0.13 0.13 0.115 0.11
IR 0.717 0.689 0.807 0.814 0.786 0.823 0.828 0.789 0.82

OAD 0.578 0.578 0.625 0.627 0.906 0.922 0.923 0.929 0.932

Table B.1: Numerical results for individual segment examination referring to Fig-
ure 5.2.

N-gram
8 10 12 14 16 18 20 22 24

DR 0.976 0.939 0.938 0.952 0.931 0.928 0.928 0.921 0.925
FPR 0.835 0.490 0.545 0.57 0.12 0.12 0.1 0.095 0.095
IR 0.654 0.69 0.704 0.71 0.682 0.71 0.703 0.677 0.708

OAD 0.571 0.725 0.697 0.691 0.906 0.904 0.914 0.913 0.915

Table B.2: Numerical results for individual segment examination using the merged
feature list referring Figure 5.3.

74

Appendix B: numerical experimental results 75

N-gram
8 10 12 14 16 18 20 22 24

DR 0.994 0.99 0.979 0.97 0.95 0.95 0.951 0.946 0.945
FPR 0.735 0.73 0.485 0.48 0.06 0.06 0.045 0.045 0.04
IR 0.718 0.69 0.763 0.765 0.803 0.828 0.752 0.792 0.797

OAD 0.63 0.63 0.747 0.745 0.945 0.945 0.953 0.951 0.953

Table B.3: Numerical results for double segments examination referring to Fig-
ure 5.4.

N-gram
8 10 12 14 16 18 20 22 24

DR 0.965 0.954 0.944 0.91 0.902 0.902 0.886 0.87 0.851
FPR 0.725 0.18 0.205 0.2 0.025 0.025 0.02 0.02 0.02
IR 0.641 0.693 0.73 0.677 0.658 0.692 0.677 0.677 0.651

OAD 0.62 0.887 0.87 0.855 0.939 0.939 0.933 0.925 0.916

Table B.4: Numerical results for double segments examination using the merged
feature list referring to Figure 5.5.

Number of segments
1 2 3 4

DR 0.973 0.95 0.937 0.93
FPR 0.15 0.06 0.11 0.205
IR 0.823 0.828 0.741 0.72

OAD 0.912 0.945 0.914 0.863

Table B.5: Numerical results for varying the number of examining segments referring
to Figure 5.6.

Appendix B: numerical experimental results 76

Threshold
60% 70% 80% 90% 100%

DR 0.994 0.992 0.973 0.958 0.896
FPR 0.84 0.69 0.13 0.075 0.055
IR 0.761 0.789 0.823 0.827 0.818

OAD 0.577 0.651 0.922 0.942 0.921

Table B.6: Numerical results for varying classifier threshold for one segment exam-
ination referring to Figure 5.7.

Threshold
60% 70% 80% 90% 100%

DR 0.987 0.973 0.95 0.927 0.87
FPR 0.745 0.485 0.06 0.02 0.01
IR 0.794 0.832 0.828 0.817 0.783

OAD 0.621 0.744 0.945 0.954 0.93

Table B.7: Numerical results for varying classifier threshold for double segments
examination referrring to Figure 5.8.

	Dedication
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction
	Definitions of detection and identification
	Previous Solutions
	Signature based methods
	Heuristic methods
	Distributed system

	Motivation and challenges
	Motivation
	Challenges and opportunities

	Outline of the thesis

	Related work
	Binary-based detection
	Instruction-based detection
	Hybrid detection

	Background
	Malicious attacks
	Clustering algorithms from data mining
	Techniques from information retrieval
	Term Frequency/Inverse Document Frequency
	Cosine similarity

	Alignment algorithms from bioinformatics
	Performance measurement

	Malicious code detection and identification
	Data preparation
	Disassembly
	Opcode grouping
	s-opcode sequence transformation

	Clustering
	Distance measurement
	Clustering algorithm

	Feature extraction
	Applying features to the problems of detection and identification
	Summary

	Experiments and Performance Evaluation
	Datasets
	Experiment setup and simulation
	Results
	Parameter selection
	Analysis
	Experiments against the training set
	Experiments against the entire dataset

	Conclusions
	Limitations
	Future work

	Bibliography
	Intel opcode grouping
	numerical experimental results

