

University of Alberta

Library Release Form

Name of Author: Qiang Ye

Title of Thesis: Improving TCP Resilience

Degree: Doctor of Philosophy

Year this Degree Granted: 2007

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as herein before provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material form
whatsoever without the author's prior written permission.

Qiang Ye
Department of Computing Science
232 Athabasca Hall
University of Alberta
Edmonton, AB
Canada T6G 2E8

Date: __________________________

University of Alberta

Improving TCP Resilience

by

Qiang Ye

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Computing Science

Edmonton, Alberta

Spring 2007

University of Alberta

Faculty of Graduate Studies and Research�

�

�

�

�

�

�

���������	
��������
��

�����������
�	�������	�������������������������	
	���
������������	
��

����������
	���
����������	
��

�����
�������
����������������
�����	�����

�������������������
��
�����������

�

�

�

�

�

� �

Dr. M. H. MacGregor
�

� �

 Dr. J. Harms�
�

� �

Dr. P. Boulanger�
�

� �

 Dr. I. Fair�
�

� �

Dr. W. Robertson�
�

�

�

�

Date: __________________________
�

Abstract

The Transmission Control Protocol (TCP) was designed to provide a reliable end-to-end

connection between two hosts. Over time, it has become the de facto transport layer protocol in the

Internet. It is important to thoroughly understand the resilience behavior of TCP in the case of

network congestion and failure and improve the resilience performance of TCP if possible.

We studied the detailed resilience behavior of SACK, NewReno, and Reno TCP, and

recommended the proper resilience objectives for TCP transport in the Internet. Specifically, with

SACK TCP, we found two restoration objectives, τ1,S and τ2,S. With NewReno TCP, we also found

two restoration objectives, τ1,NR and τ2,NR. τ1,NR is approximately twice as large as τ1,S when rwnd

is large. τ2,NR is essentially the same as τ2,S. With Reno TCP, we found a recovery objective of

200ms for the DS0 access; for DS1 and OC-3c access, there seem to be no critical points from

15ms to 1s.

After understanding the detailed behavior of SACK TCP, we proposed two types of mechanisms,

Probing and Pacing, to improve the resilience of SACK TCP. SACK TCP with Probing and Pacing

were modeled with Petri nets. The Petri net models were formally analyzed to increase our

confidence about the correctness of the proposed changes. Our experimental results demonstrate

that SACK TCP with Probing and Pacing is much more resilient than standard SACK TCP.

To test the effectiveness of the proposed protocols, we proposed a hybrid protocol development

methodology, embedding formal models into simulation, that combines the use of formal methods

and simulation to obtain the advantages of deep formal verification with the broad spectrum

testing of simulation. With the assistance of this hybrid methodology, we tested α-min Paced

SACK TCP in a NSF-like network. The results show that α-min Paced SACK TCP performs

better than SACK TCP in terms of resilience, not only in single session scenarios, but also in

multiple session cases, even if these TCP sessions have varied RTTs.

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Dr. Mike H. MacGregor,

for his continuous support over the past six years. PhD takes a long time, without his guidance and

encouragement, I could not come this far.

Secondly, I would like to thank the members of my candidacy examination committee: Dr. Janelle

Harms, Dr. Pierre Boulanger, Dr. Ehab Elmallah, and Dr. Ivan Fair. Their thoughtful suggestions

make this thesis much more valuable.

Thirdly, I am grateful to all the members of the communication network research group for their

assistance and friendship. I would also like to thank all my friends in Edmonton who make my life

in Edmonton such a memorable period.

Finally, special thanks to my parents and elder sisters. They make such a great family that I feel so

warm whenever I think of it. Their confidence and encouragement means much to me.

Contents

1 Introduction ... 1

1.1 TCP: the Tranport Layer Protocol in the Internet..1
1.2 Network Resilience ...3
1.3 Thesis Contributions..5
1.4 Thesis Outline ...7

2 Related Work ... 8

2.1 TCP Congestion Control ...8
2.1.1 Congestion Control in Reno TCP...9
2.1.2 Congestion Control in NewReno TCP ...11
2.1.3 Congestion Control in SACK TCP..….12

2.2 Formal Analysis and Performance Evaluation with Petri Nets ...14
2.2.1 Elementary Net Systems ..15
2.2.2 Place/Transition Nets..17
2.2.3 Coloered Petri Nets ..19
2.2.4 Formal Analysis and Performance Evaluation with Colored Petri Nets.................23

2.3 Protocol Development with Formal Methods and Simulation ..25
2.3.1 Protocol Development with Formal Methods ..25
2.3.2 Protocol Development with Complex Simulation..28

3 Resilience Performance of SACK, NewReno, and Reno TCP ... 31

3.1 SACK TCP Resilience ..32
3.1.1 Petri Net Model of SACK TCP ..34
3.1.2 SACK TCP Resilience Performance ..40

3.1.2.1. Network Failures and SACK..42
3.1.2.2. Network Congestion and SACK ..52

3.2 NewReno TCP Resilience ...54
3.2.1 Simulations...54
3.2.2 NewReno TCP Resilience Performance...56

3.3 Reno TCP Resilience...60
3.4 Several Details of TCP Resilience...62

3.4.1 SACK TCP Details...63
3.4.2 NewReno TCP Details..66
3.4.3 Reno TCP Details ...69
3.4.4 Appropriate Restoration Objectives ...71

4 Reactive and Proactive Approach to Improving SACK TCP Resilience 73

4.1 Reactive Approach: Probing..74
4.1.1 The Details of the Probing Approach ...75
4.1.2 Resilience Improvements through Probing ..78
4.1.3 Formal Analysis of SACK TCP with Probing..82

4.2 Proactive Approach: Pacing ..86
4.2.1 Paced SACK TCP ..88

4.2.1.1 a-Paced SACK TCP ..91
4.2.1.2 a-min Paced SACK TCP ...94

4.2.2 Formal Analysis of a-min Paced SACK TCP...99

5 A Hybrid Method for Protocol Development .. 101

5.1 Embedding Petri Net Models into ns-2 ...101
5.2 Simulation ...105
5.3 Experimental Results...111

5.3.1 Continental Networks: Uniform 50 ms Round-trip Time.....................................112
5.3.2 Transoceanic Networks: Uniform 250 ms Round-trip Time113
5.3.3 NSFNET-Like Networks: Varied Round-trip Time ..115

6 Conclusions and Future Work.. 117

6.1 Conclusions ...117
6.2 Future Work...118

Bibliography ... 120

List of Tables

Table 2.1 SACK Acknowledgement... 13

Table 3.1 Token Arrival Sequence.. 39

Table 3.2 Parameter Settings .. 41

Table 3.3 Simulation Runs ... 53

Table 3.4 Comparison between Network Failure and Congestion ... 53

Table 3.5 Resilience Objectives for SACK, NewReno and Reno TCP .. 71

Table 4.1 Occurrence Graph Data for 0-Drop, 14-Drop and 15-Drop Case (SACK TCP) 85

Table 4.2 Occurrence Graph Data for 0-Drop, 19-Drop and 20-Drop Case (Probing SACK TCP)....... 87

Table 4.3 Achieved LTT for Different α (250 ms RTT) ... 94

Table 4.4 Chebyshev’s Inequality Example.. 98

Table 4.5 Occurrence Graph Data for SACK TCP, α-Paced TCP and α-min Paced TCP...................... 99

Table 5.1 Link Delays in the NSFNET-Like Network ... 108

Table 5.2 Routes of the TCP Flows in the NSFNET-Like Network ... 110

List of Figures

Figure 1.1 The ISO OSI Model and DoD Model ... 2

Figure 2.1 An Example EN System.. 16

Figure 2.2 An Example P/T Net ... 18

Figure 2.3 An Example CP Net .. 22

Figure 2.4 Occurrence Graph of the Example CP Net.. 23

Figure 2.5 An Example Timed CP Net ... 24

Figure 3.1 Top-Level View of the Petri Net Model .. 35

Figure 3.2 Detailed Petri Net of SACK TCP.. 37

Figure 3.3 Detailed View of ACK Delay Algorithm .. 38

Figure 3.4 State Changes without Network Failure or Congestion .. 43

Figure 3.5 State Changes for 14 Dropped Segments .. 45

Figure 3.6 Data Flow of Type I Failure and Type II Failure (in seconds) .. 47

Figure 3.7 State Changes for 15 Dropped Segments .. 49

Figure 3.8 Performance during Congestion and Failure... 52

Figure 3.9 Core Network Topology.. 55

Figure 3.10 Congestion Window vs. Transfer Time (NewReno DS1-32K Case)................................... 57

Figure 3.11 TTI vs. No. of Lost Segments (NewReno DS1-32K case).. 59

Figure 3.12 Congestion Window vs. Transfer Time (SACK DS1-32K Case) .. 59

Figure 3.13 Congestion Window vs. Transfer Time (Reno DS1-32K Case) .. 60

Figure 3.14 TTI vs. No. of Lost Segments (Reno DS1-32K Case) .. 62

Figure 3.15 TTI vs. Outage Duration (SACK DS0 Access) ... 64

Figure 3.16 TTI vs. Outage Duration (SACK DS1 Access) ... 64

Figure 3.17 TTI vs. Outage Duration (SACK OC-3c Access) ... 65

Figure 3.18 TTI vs. Outage Duration (NewReno DS0 Access).. 67

Figure 3.19 TTI vs. Outage Duration (NewReno DS1 Access).. 67

Figure 3.20 TTI vs. Outage Duration (NewReno OC-3c Access) .. 68

Figure 3.21 TTI vs. Outage Duration (Reno DS0 Access) ... 70

Figure 3.22 TTI vs. Outage Duration (Reno DS1 Access) ... 70

Figure 3.23 TTI vs. Outage Duration (Reno OC-3c Access).. 71

Figure 4.1 Modification to Petri Net Model of SACK TCP... 79

Figure 4.2 Congestion Window vs. Transfer Time (SACK with Probing) ... 80

Figure 4.3 TTI vs. No. of Lost Segments (SACK with Probing) ... 81

Figure 4.4 Abstract Topology of the Modeled System ... 89

Figure 4.5 Packet Arrival Pattern at Router PA (250 ms RTT)... 89

Figure 4.6 Packet Arrival Pattern at Router PA (50 ms RTT)... 90

Figure 4.7 The Number of Segments Queued at Router PA (250 ms RTT).. 91

Figure 4.8 The Number of Segments Queued at Router PA (50 ms RTT).. 91

Figure 4.9 SACK TCP vs. α-Paced TCP (250 ms RTT) .. 93

Figure 4.10 α-Paced TCP with Varying α (250 ms RTT)... 94

Figure 4.11 Petri Net Model of Chebyshev Inequality ... 97

Figure 4.12 Queue Length for Different α (50 ms RTT, α-min Paced TCP) ... 98

Figure 5.1 Embedding a Petri Net Model into ns-2.. 102

Figure 5.2 Synchronization between Two Discrete-Event Simulation Systems................................... 104

Figure 5.3 A General Event-Driven Message Exchange Mechanism... 105

Figure 5.4 Basic Simulation Topologies... 106

Figure 5.5 NSFNET-Like Network Topology .. 107

Figure 5.6 TCP Sessions in the NSFNET-Like Network.. 109

Figure 5.7 Physical and Virtual Links .. 109

Figure 5.8 A Specific Event-Driven Message Exchange Mechanism .. 111

Figure 5.9 Single TCP Session with 50 ms RTT .. 112

Figure 5.10 Two TCP Sessions with 50 ms RTT.. 113

Figure 5.11 Single TCP Session with 250 ms RTT .. 114

Figure 5.12 Two TCP Sessions with 250 ms RTT.. 114

Figure 5.13 Eight TCP Sessions with Varied RTTs in a NSFNET-Like Network 115

List of Symbols and Abbreviations

DS0 A basic digital signaling rate of 64 kbps.

DS1 A T-carrier signaling scheme devised by Bell Labs. The bandwidth is 1.544 Mbps.

OC-3c OC-3 is a network line with transmission speeds of up to 155.52 Mbps . When

 OC-3 carries the data from a single source, it is called OC-3c.

cwnd Congestion Window.

rwnd Receiver Window.

ssthresh Slow Start Threshold.

ACK Acknowledgement.

RTT Round Trip Time.

RTO Retransmission Timeout.

FlightSize The amount of data that has been sent but not yet acknowledged.

SMSS Sender Maximum Segment Size.

TTI Transfer Time Increase.

1

Chapter 1

Introduction

The Transmission Control Protocol (TCP) [1, 2] was designed to provide a reliable end-to-end

connection between two hosts. Over time, it has become the de facto transport layer protocol in the

Internet. It is so widely deployed that even a small improvement in TCP could lead to a large

change in overall network performance. Our research is focused on TCP resilience improvement.

We first studied the resilience performance of the most widely used TCP versions, SACK,

NewReno, and Reno [3]. Based on the resilience study, two types of mechanisms, Probing and

Pacing, were proposed to improve the resilience of the most recent version, SACK TCP. To test

Pacing in a relatively realistic environment, we came up with a hybrid method for protocol

development, “embedding formal models into simulation”. In this chapter, we first give an

introduction to TCP and network resilience. Then we present the contributions and outline of the

thesis.

1.1 TCP: the Transport Layer Protocol in the Internet

Most networks employ a layered architecture. That is, the software in the network is structured as

a stack of layers, each one built upon the one below it. In 1983, as a first step toward international

standardization, International Standards Organization proposed the ISO OSI (Open Systems

Interconnection) model [2], shown in Figure 1.1 [2]. The model was designed to connect systems

that are open for communication with other systems. Seven layers are included in this model.

From bottom up, these layers are Physical Layer, Data Link Layer, Network Layer, Transport

Layer, Session Layer, Presentation Layer, and Application Layer. Nowadays, the protocols

associated with the ISO OSI model are hardly used any more. However, the model is very general

2

so that the features mentioned at each layer are still valid and important.

 Another reference model, the DoD model is different than the ISO OSI model in that the

DoD model is simpler and consists of only four layers. The DoD model was first employed by the

predecessor of the Internet, ARPANET. As the Internet developed into the dominant worldwide

network, the DoD model became more and more popular and the protocols associated with the

model became the de facto protocols in practice. As shown in Figure 1.1, the DoD model has four

layers in total: Host-to-Network Layer, Internet Layer, Transport Layer, and Application Layer.

Internet Layer, Transport Layer, and Application Layer in the DoD model correspond to Network

Layer, Transport Layer, and Application Layer in the ISO OSI model, respectively. Also, the DoD

model does not have Presentation and Session Layer. In addition, Host-to-Network Layer has the

same function as Data Link and Physical Layer in the ISO OSI model. There are two commonly

used protocols defined in the Transport Layer of the DoD model. These are TCP and UDP (User

Datagram Protocol). UDP is an unreliable, connectionless protocol for applications in which

prompt delivery is more important than accurate delivery. On the contrary, TCP is a reliable

connection-oriented protocol that allows packets to be transferred from one host to the other

without error.

 (1) ISO OSI Model (2) DoD Model

Figure 1.1 The ISO OSI Model and DoD Model [2]

 TCP has evolved over the past decades. So far the main versions of TCP that are widely

deployed are Tahoe TCP, Reno TCP, NewReno TCP and SACK TCP [3]. Tahoe TCP is the oldest

3

version and it only includes the algorithms of Slow Start, Congestion Avoidance and Fast

Retransmit. Reno TCP is an improvement over Tahoe TCP in that it incorporates Fast Recovery

into Fast Retransmit. Reno TCP can survive single segment loss but suffers seriously from

multiple segment loss within one transmission window. NewReno TCP [4] and SACK TCP [5, 6]

are two major solutions to the multiple segment loss problem.

 As bandwidth has increased and new applications have appeared, various versions of TCP

were proposed to improve the congestion control performance of TCP. FAST TCP [7] is a new

TCP congestion control algorithm for high-speed long-latency networks. It aims to rapidly

stabilize high-speed networks into steady, efficient, and fair operating points. HighSpeed TCP [8]

is a modification to standard congestion control for use with TCP connections with large

congestion windows. TCP Westwood [9, 10] is based on NewReno TCP and it is aimed at better

handling large bandwidth-delay product paths with potential packet loss. XCP [11] generalizes the

Explicit Congestion Control Notification [12] proposal and introduces the new concept of

decoupling utilization control from fairness control. The decoupling concept allows a more

flexible protocol design and opens new avenues for service differentiation.

 Despite the outstanding experimental performance of these newer versions of TCP, Reno,

NewReno, and SACK TCP are still the most widely used versions [13]. Hence, in our research, we

are focused on the resilience of Reno, NewReno, and SACK TCP.

1.2 Network Resilience

Network resilience is the ability of a network to recover traffic in case of failures and it plays an

important role in network design. Resilience has been studied much in wired networks [14-24]. As

a result, resilience features are embedded into many wired communication protocols.

 In a typical TCP/IP/SONET network, separate resilience mechanisms exist in different layers.

At the SONET layer, there are two types of resilience mechanisms: Point-To-Point and

Self-Healing Ring. Three Point-to-Point mechanisms, One-Plus-One (1+1), One-For-One (1:1),

and One-For-n (1: n) [25-27], are defined in SONET. In 1+1 protection, a protection line is

provided for every working line, and the working and protection line are on two physically diverse

4

routes. Thus in the case of working line failure, traffic uses the protection line to reach the

destination. In 1:1 Protection, two diverse routes are provided for the same connection. What

makes 1:1 Protection different from 1+1 Protection is that, with 1:1 Protection, at the transmit end

traffic is not bridged to both the working and protection line. Rather it is transmitted only on the

working line under normal conditions. 1:1 Protection allows the protection line to carry

low-priority traffic in the absence of a failure. 1: n Protection is similar to 1:1 Protection. The only

difference is that in 1: n Protection one protection line is used to protect n working lines. A

SONET ring is “a collection of nodes forming a closed loop whereby each node is connected to

two adjacent nodes via a duplex communication facility” [26]. It is often referred to as

“Self-Healing Ring” because it can provide redundant bandwidth for protection.

 At the IP layer, resilience mechanisms are inherent in the protocol because Internet Protocol

(IP) was designed with survivability in mind. Internet pioneer Dave Clark pointed out in 1988 that

“Internet communications must continue despite loss of networks or gateways” [28]. Of course

this has much to do with the military origin of ARPANET, as well as the less reliable

communication at that time. IP restores network failures by rerouting, which is supported by the

dynamic routing protocols running at the IP layer. Broadly speaking, there are two types of routing

protocols in IP: Distance Vector Routing and Link State Routing [2]. Both of them are dynamic

routing protocols and thus can reroute traffic around failed links (or nodes) in the network. OSPF

[29] is one of the widely-deployed Link State Routing Protocols. We use OSPF as an example to

illustrate the inherently resilient nature of IP. All routers running OSPF periodically flood Link

State Advertisements (LSAs) over the whole network. Each router collects these LSAs in its link

state database. With the information stored in its database, each router can construct the topology

of the network. By running Dijkstra’s shortest path algorithm on the topology, every router builds

its own routing table. Topology changes result in some LSAs flooded in the network, and the

flooding process goes on until all routers in the network have received the information and

updated their routing tables. After this, the traffic is rerouted along the new path.

 At the TCP layer, TCP congestion control deals with packet loss events. TCP congestion

5

control does not distinguish network congestion from network failure. As long as packet loss

events are detected, TCP congestion control will take actions to restore the affected session. The

details of TCP congestion control are presented in Section 2.1

 Separate resilience mechanisms might result in redundancy and inefficiency. Hence, various

multi-layer resilience mechanisms were proposed [20, 30, 31]. The idea behind multi-layer

resilience mechanisms is that multiple layers in the protocol stack should coordinate with each

other in order to meet the resilience objectives and improve system efficiency. This has been an

active research area for both wired and wireless networks. T. H. Wu recognized the importance of

providing synergy between the healing actions of different network layers and summarized the

techniques that had been used in optical networks in [15]. P. Demeester and M. Gryseels

conducted an in-depth study on cross-layer survivability in wired networks and presented an

effective cross-layer resilience mechanism for ATM-over-SDH-over-WDM networks in [30]. In

May 2005, C. M. Sadler proposed “Cross-Layer Approach to Self-Healing”, in which nodes use

information from each layer of the protocol stack to help routing protocol maintain wireless ad hoc

network reliability in the presence of failures [31].

 This thesis is focused on TCP resilience. We would like to explore whether the resilience

performance of TCP is satisfactory. If not, we would like to propose some changes to improve its

resilience.

1.3 Thesis Contributions

In this thesis, we present the resilience behavior of SACK, NewReno, and Reno TCP. Two types

of mechanisms are also proposed to improve SACK TCP resilience. Finally, a hybrid method for

protocol development is illustrated to test the effectiveness of the improved version of SACK TCP.

The contributions of the thesis are summarized as follows.

� Most network researchers are aware that TCP has internal mechanisms to deal with packet

losses. Many have some idea that SACK TCP and NewReno TCP are two different

approaches to improving Reno TCP resilience. But few people really understand the detailed

step-by-step interactions that occur in TCP in response to network congestion or failure. This

6

thesis illustrates the detailed interaction in TCP in the case of packet losses.

� The physical layer of the transport network (SONET, SDH) incorporates the ability to restore

traffic in less than 50 ms. The 50 ms target was established when voice traffic was the

dominant load. Now that the volume of data traffic has surpassed voice, this target might be

too slack, or too exacting. Our experimental results demonstrate that the traditional 50 ms

target is not suitable for TCP transport on the Internet. Instead, varied resilience objectives

are proposed for SACK, NewReno, and Reno TCP, respectively.

� The most up-to-date TCP version, SACK TCP, was designed to be capable of surviving

multiple segment loss. However, we found that if too many segments in one transmission

window are lost, even if SACK TCP transitions into Fast Recovery, it is still possible that

timeout will finally occur and performance will be degraded significantly. In this thesis, we

propose two probing mechanisms that decrease the impact of lost segments significantly.

� SACK TCP tends to send out segments in clusters and congest bottleneck routers, which

could potentially degrade SACK TCP performance significantly. In this thesis, we present

α-min paced SACK TCP that spreads out outstanding segments and reduces the number of

segments queued at bottleneck routers.

� Traditionally, when a change in TCP is proposed, the change is often tested using simulation

tools. And usually improvement is reported by showing the simulation results. However, the

correctness of the implementation can never be proved by simulation itself. Petri nets,

originating from the early work of Carl Adam Petri [32], have well-defined semantics

that enable us to formally analyze Petri net models. We modeled the improved version of

SACK TCP with Petri nets and formally analyzed the Petri net models in order to

determine the correctness of our proposals.

� Formal methods enable us to verify the protocol of interest formally. Simulation excels in

testing a new protocol in a relatively realistic environment. In this thesis, we present a hybrid

protocol development methodology, embedding formal models into simulation, that

combines the use of formal methods and simulation to obtain the advantages of deep formal

7

verification with the broad spectrum testing of simulation.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, an introduction to TCP congestion

control mechanisms, modeling with Petri nets, protocol development with formal methods and

simulation are presented. In Chapter 3, we illustrate the detailed resilience performance of SACK,

NewReno, and Reno TCP and recommend the proper resilience objectives for TCP transport on

the Internet. In Chapter 4, two types of approaches to improving SACK TCP resilience, Probing

and Pacing, are presented. In Chapter 5, we talk about the hybrid method for protocol development.

Chapter 6 contains our conclusions and future work.

8

Chapter 2

Related Work

In this chapter we discuss TCP congestion control, modeling with Petri nets, and the role that

formal methods and complex simulation play in communication protocol development. Chapter 2

is organized as follows. Section 2.1 presents various TCP congestion control mechanisms. Petri

net model methodology is illustrated in Section 2.2. Section 2.3 talks about different formal

methods and simulation packages and their application to protocol development.

2.1 TCP Congestion Control

Broadly speaking, there are two types of congestion control mechanisms that can be used at the

transport layer in Internet: network-assisted congestion control and end-to-end congestion control.

With network-assisted congestion control, explicit feedback about network congestion status is

sent back to the transport-layer sender by the network-layer components. This approach was used

in IBM SNA and DEC DECnet [33]. It was also proposed for TCP/IP networks [12]. With

end-to-end congestion control, the transport layer is more independent of the network layer. No

feedback is provided by the network-layer components and the end nodes at the transport layer

infer network congestion status by observing the performance of the network, such as packet loss

and delay. TCP employs an end-to-end congestion control mechanism.

 TCP has evolved over the past decades. So far the main versions of TCP that are widely

deployed are Tahoe TCP, Reno TCP, NewReno TCP and SACK TCP [3]. Tahoe TCP is the oldest

version and few systems employ Tahoe TCP today. Hence, in our research, we are focused on the

resilience of Reno, NewReno, and SACK TCP. The detailed congestion control mechanisms that

are used in these versions are presented as follows.

9

2.1.1 Congestion Control in Reno TCP

As mentioned previously, Reno TCP employs four different congestion control algorithms: Slow

Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. These algorithms are illustrated

in detail in this section.

 Two terms are widely used in TCP. Sender Maximum Segment Size (SMSS) is the size of the

largest segment that the sender can transmit. In practice, we can set this value to a fixed number or

use the Path MTU Discovery [34] algorithm to determine the proper value. FlightSize is the

amount of data that has been sent but not yet acknowledged. A Retransmission Timer [35] is also

used in TCP. When a segment is sent, the retransmission timer is started. If the acknowledgement

(ACK) for the segment arrives before the timer expires, the timer is stopped. Otherwise, the sender

will assume that the segment is lost due to either congestion or failure and retransmit the segment.

 In Reno TCP, three state variables are maintained to deal with network congestion. The

congestion window (cwnd) is an upper bound imposed by the sender and limits the amount of data

that can be transmitted into the network. According to [36], the initial value of cwnd must be less

than or equal to 2x SMSS. In practice, cwnd is usually set to SMSS [1]. The receiver window

(rwnd) is a receiver limit on the amount of outstanding, unacknowledged traffic. This initial value

is set by the receiver during the negotiation process of a TCP connection. TCP never sends out

more than the minimum of cwnd and rwnd. Thirdly, the slow start threshold (ssthresh) is the

critical value that determines whether TCP is in the “Slow Start” state or in the “Congestion

Avoidance” state. The initial value of ssthresh may be arbitrarily high. But the de facto value in

practice is 64 KB [1]. When cwnd is less than ssthresh, the Slow Start algorithm is used, while the

Congestion Avoidance algorithm is used when cwnd is greater than ssthresh.

 After a TCP connection is established, the sender starts transmitting segments. Since TCP

incorporates an end-to-end congestion control mechanism, the sender has no idea of the

congestion status of the network when it is ready to send segments. To avoid congesting the

network with a large burst of data, TCP is designed to slowly probe the network to determine the

available bandwidth. Slow Start algorithm is used for this purpose at the beginning of a transfer.

10

During Slow Start, cwnd is increased by one SMSS for each ACK that acknowledges new data.

Namely, the following equation is used to update cwnd during Slow Start:

 cwndnew = cwndold + SMSS (2.1)

This way, as long as TCP is in Slow Start, the number of segments that can be inserted into the

network increases exponentially.

 Slow Start ends when cwnd exceeds ssthresh. Then TCP transitions into Congestion

Avoidance state. During Congestion Avoidance, cwnd is incremented by one SMSS per round-trip

time (RTT). TCP stays in Congestion Avoidance until congestion is detected. The following

equation is commonly used to update cwnd each time an ACK arrives acknowledging some new

data:

 cwndnew = cwndold + SMSS x (SMSS / cwndold) (2.2)

 At any time during a transfer, when the sender detects a segment loss event using the

Retransmission Timer, it will retransmit the lost segment. In addition, cwnd must be set to one

SMSS and ssthresh must be set to no more than the value given in equation 2.3.

 ssthresh = (FlightSize / 2, 2 x SMSS) (2.3)

 With TCP, a receiver sends an immediate duplicate ACK when an out-of-order segment

arrives. Thus when a segment is dropped on the way from the sender to the receiver, all segments

after the dropped segment will generate duplicate ACKs. From the sender’s perspective, the arrival

of duplicate ACKs can be viewed as a sign of segment loss. If this sign can be used effectively, the

sender will be able to retransmit the lost segment shortly after the loss event occurs before

resorting to the costly Retransmission Timer to detect a segment loss event. Fast Retransmit

algorithm, based on duplicate ACKs, was designed to detect segment loss and retransmit the lost

segment in a much more timely fashion than the Retransmission Timer approach. With Fast

Retransmit, the arrival of three duplicate ACKs is considered an indication that a segment has been

lost. After Fast Retransmit algorithm retransmits the lost segment, Fast Recovery algorithm

governs the transmission of new data until a non-duplicate ACK arrives. Fast Recovery algorithm

is used in this phase to prevent the communication path from going empty after Fast Retransmit,

11

thus avoiding the need to Slow-Start to refill the path after a single segment loss. Usually the Fast

Retransmit and Fast Recovery algorithms are implemented together as follows:

(1) When the third duplicate ACK arrives, the sender retransmits the lost segment, updates

ssthresh according to Eq. 2.3, and sets cwnd to (ssthresh + 3 x SMSS).

(2) For each additional duplicate ACK, cwnd is increased by one SMSS.

(3) During Fast Recovery, the sender should send a segment if it is allowed by the value of

cwnd and rwnd.

(4) When an ACK that acknowledges new data arrives, cwnd should be set to ssthresh.

Then TCP transitions into Congestion Avoidance from Fast Recovery.

2.1.2 Congestion Control in NewReno TCP

As illustrated in previous section, each invocation of Reno Fast Retransmit/Fast Recovery results

in the retransmission of only one lost segment. If there is only one lost segment, then the ACK

corresponding to this retransmitted segment will acknowledge all of the segments that were

transmitted before TCP transitioned into Fast Retransmit. In this case, Reno Fast Retransmit/Fast

Recovery helps TCP recover from the segment loss event efficiently. However, if there are

multiple segments that are dropped from a single window of data, the ACK corresponding to the

retransmitted segment will only acknowledge some but not all of the segments transmitted before

the Fast Retransmit. This kind of ACK is called a Partial ACK. With Reno Congestion Control, a

Partial ACK also makes TCP transition from Fast Retransmit/Fast Recovery to Congestion

Avoidance. However, since the Partial ACK does not acknowledge all the segments transmitted

before the Fast Retransmit, the FlightSize is still very large after TCP switches to Congestion

Avoidance. Actually the FlightSize is very likely to be greater than cwnd. Since TCP never sends

out more than the minimum of cwnd and rwnd, the sender will not send anything until the

Retransmission Timer expires in this case of multiple segment loss. Then TCP transitions into

Slow Start and starts retransmitting the second, the third, etc. lost segment. In short, Reno

Congestion Control has to resort to the Retransmission Timer to recover from multiple segment

loss. To avoid triggering the costly retransmission timeout, NewReno Congestion Control was

12

proposed [4, 37]. With NewReno Congestion Control, as long as Partial ACKs keep arriving, the

lost segments will be retransmitted step by step, and the costly retransmission timeout is thus

avoided. NewReno Congestion Control is the same as Reno Congestion Control except that the 4th

step of the Reno Fast Retransmit/Fast Recovery algorithm is changed to the following:

(4) When an ACK that acknowledges new data arrives, the sender checks to see if this

ACK is a Partial ACK. If it is a not Partial ACK, cwnd should be set to ssthresh, then TCP

transitions into Congestion Avoidance from Fast Recovery. If it is a Partial ACK, the

sender should retransmit the first unacknowledged segment, deflate cwnd by the amount of

new data acknowledged, then add back one SMSS. Whether it is a Partial ACK, the sender

should always send a new segment if allowed by the new value of cwnd.

2.1.3 Congestion Control in SACK TCP

NewReno TCP can survive multiple segment loss. SACK TCP [5, 6, 38] is another solution to the

multiple segment loss problem. Selective acknowledgement (SACK) together with selective

retransmission helps improve TCP performance when multiple segments are dropped within one

window of data. Selective acknowledgement is achieved by adding to the ACK a list of the

non-contiguous blocks of data that have been received by the receiver. When a valid segment

arrives that is in the receive window but is not the next expected segment, the receiver sends back

a selective acknowledgement to inform the sender that non-contiguous blocks of data have been

received.

 Table 2.1 shows how SACK acknowledgements work in an example where all segments are

500 bytes in length. The successful arrival of the first segment with sequence number 500 triggers

the receiver to send a normal ACK with acknowledgement number 1000. As sequence numbers

really indicate byte offsets in the transmission stream, this ACK indicates that the receiver is

requesting the data that begins at offset 1000. If segments 2 through 4, and then 7 and 8 are

dropped, they will not result in any ACKs. When segment 5 is received it triggers the receiver to

send a selective acknowledgement indicating the span of data that has been received (left edge of

2500 and right edge of 3000) while the data starting at offset 1000 has not been received (ACK

13

number of 1000). When segment 6 is received it again triggers an ACK with number 1000 but this

time the left and right edge are 2500 and 3500. If segments 7 and 8 are dropped, the receipt of

segment 9 leads to a selective acknowledgement indicating that two non-contiguous data blocks

have been received. One block corresponds to segment 5 and 6, and extends from byte 2500 to

byte 3499; the receiver indicates this with a left edge of 2500 and a right edge of 3500 because

3500 is the offset of the next byte following the data received in the first block. The left and right

edges of the other non-contiguous block of data that has been received are 4500 and 5000,

corresponding respectively to the beginning of segment 9 (received) and 10 (not yet seen). SACK

reports blocks from most to least recent, so the block from 4500 to 5000 is reported first, and the

block from 2500 to 3500 is reported second, as noted in Table 2.1.

Table 2.1 SACK Acknowledgement

Arriving Segment Returning ACK

First Block Second Block Sequence

Number

Transmission

Status

ACK

Number Left Edge Right Edge Left Edge Right Edge

500 Successful 1000

1000 Dropped No ACK

1500 Dropped No ACK

2000 Dropped No ACK

2500 Successful 1000 2500 3000

3000 Successful 1000 2500 3500

3500 Dropped No ACK

4000 Dropped No ACK

4500 Successful 1000 4500 5000 2500 3500

 In addition to the three state variables maintained in Reno TCP, SACK TCP has another state

variable called pipe. SACK TCP uses pipe to represent the estimated number of segments

outstanding in the path during Fast Recovery. SACK TCP also has a data structure called the

scoreboard that keeps track of the contiguous data blocks that have arrived at the receiver. SACK

TCP employs the same Slow Start and Congestion Avoidance algorithm as Reno TCP. However,

SACK TCP Fast Retransmit and Fast Recovery algorithm are completely different than those used

14

in Reno TCP. The details are as follows:

(1) When the third duplicate ACK arrives, the sender retransmits the lost segment, updates

ssthresh according to Eq. 2.3, sets cwnd to ssthresh, and sets pipe to FlightSize.

(2) During Fast Recovery, pipe is increased by one SMSS when the sender either sends a

new segment or retransmits an old segment. It is decreased by one SMSS when the sender

receivers a selective acknowledgement reporting that new data has been received at the

receiver.

(3) When pipe is less than cwnd, the sender will retransmit the earliest unacknowledged

segment or send a new segment when there are no such segments.

(4) When an ACK that acknowledges new data arrives, TCP transitions into Congestion

Avoidance from Fast Recovery.

2.2 Formal Analysis and Performance Evaluation with Petri Nets

The area of Petri nets, originating from the early work of Carl Adam Petri [32], has been

developed tremendously in both the theory and the applications [39-45]. The Petri net method was

designed specifically to study information processing systems that are characterized as being

concurrent, asynchronous, and distributed [39]. One of the main attractions of Petri nets is the way

in which the basic aspects of concurrent systems are modeled both graphically and mathematically

[39, 40]. Essentially, a Petri net is a clear graphical representation of a concurrent system. This

graphical representation can be used to present an animated view of a simulation, demonstrating

how the system works in great detail. In addition, Petri nets have well-defined mathematical

semantics which unambiguously define the behavior of the model. The formal semantics of Petri

nets form the theoretical foundation that allows us to analyze structural and behavioral properties

of Petri net models.

 “Petri net” is actually a generic name that is used for a class of net-based models. This class

of model can be divided into three main levels. The first level is very fundamental and is

especially suitable for a thorough investigation of concurrent systems. The basic model here is

called Elementary Net Systems, or EN systems [46]. Although this is the most fundamental type, it

15

is not suited for practical applications because the size of the model explodes even for simple

applications. The second level is an intermediate model that is more practical than EN systems.

The basic model at this level is Place/Transition nets, or P/T nets [47]. With P/T nets, some

repetitive features of EN systems are folded in order to get more compact representations. Finally,

the third level is the most advanced and practical. The Petri nets at this level are called high-level

nets. With high-level nets, algebraic and logical tools are used to yield compact nets that are

suitable for real-life applications. Predicate/Transition nets [48] and Colored Petri nets [40] are the

most widely used high-level nets. In our research, Colored Petri nets are chosen to study the

performance of TCP resilience. Thus, we are focused on formal analysis and performance

evaluation of Colored Petri nets.

 In this section, Elementary Net Systems, Place/Transition nets, and Colored Petri nets are

first introduced briefly; then we present how to formally analyze Colored Petri nets and how to

evaluate the performance of concurrent systems modeled with Colored Petri nets.

2.2.1 Elementary Net Systems

Elementary Net Systems form the most fundamental class of Petri nets [46]. As a net-based model,

every EN system is composed of a net, a certain number of tokens, and a set of rules that control

the way that tokens move in the net. The net determines the static structure of a concurrent system

and the rules decide the dynamic behavior of the system. Actually, different types of nets and rules

lead to different classes of Petri nets. We are focused on EN systems in this section.

 The net in an EN system is a directed bipartite graph. There are two types of nodes in the

graph, “places” and “transitions”. In graphical representation, places are drawn as circles or

ellipses; transitions are drawn as rectangles. All arcs in the graph are either from a place to a

transition or from a transition to a place. Since arcs are directed, we can define the input place of a

transition as the place that is linked to the transition by an arc pointing to the transition. Similarly,

the place that is linked to a transition by an arc leaving the transition is called its output place. The

tokens in the EN system are assigned to the places in the net. In EN systems, each place can hold

at most one token, denoted by a dot in the corresponding circle or ellipse. Theoretically, the way

16

that tokens are assigned to places in EN systems can be formulated as a function that maps places

to either 0 or 1. If a place is mapped to 0, then there is no token in the place. And if it is mapped to

1, then the place has one token. In EN systems, this kind of function is called a marking, M.

Essentially, each marking represents a particular state of the modeled system. Every EN system is

associated with an initial marking that determines the way that tokens are assigned to the places in

the system. This initial marking is denoted by M0. In addition, we use N and N+ to denote

non-positive integers {0, 1, 2, …} and positive integers {1, 2, 3, …}, respectively. Now we are

ready to define EN systems formally.

Definition 1. An Elementary Net System, or an EN system for short, is a 4-tuple EN = (P,

T, A, M0), where:

(1) P is a finite set of places: {P1, P2, … , Pm}, where m N.

(2) T is a finite set of transitions: {T1, T2, … , Tn}, where n N.

(3) A is a set of arcs: A ⊆ (P x T) (T x P).

(4) M0 is the initial marking, which maps the elements in P to either 0 or 1.

 The dynamic behavior of an EN system is simulated by moving tokens from places to places,

namely, changing the state of the system from one marking to another one. In EN systems, a

marking is changed according to the following transition firing rules:

(1) A transition is said to be enabled if each input place of the transition has one token.

(2) A firing of an enabled transition removes the token from each of its input places and

deposits one token to each of its output places.

P3

P4

T1

P2

P1

P3

P4

T1

P2

P1

 (a) A Simple EN System (b) After T1 Fires

Figure 2.1 An Example EN System

 An example EN system is shown in Figure 2.1 (a). Formally, the example EN system is

17

defined as a 4-tupe ENex = (P, T, A, M0), where:

(1) P = {P1, P2, P3, P4}.

(2) T = {T1}.

(3) A = {(P1, T1), (P2, T1), (T1, P1), (T1, P2)}.

(4) M0 (p) = 1 if p = P1

 1 if p = P2

 0 if p = P3

 0 if p = P4

 With the initial marking in the example EN system, transition T1 is already enabled since

each input place of T1 has a token. After T1 fires, the tokens on P1 and P2 are removed and one

token is deposited to each of the output places of T1 , P3 and P4. At this moment, since no

transition is enabled any more, the system arrives at the final stable state, shown in Figure 2.1 (b).

This simple example is used to illustrate how EN systems work. We should be aware that, in real

applications, the net could be much more complex and there could be a large number of

concurrently enabled transitions.

2.2.2 Place/Transition Nets

As mentioned previously, size explosion is a problem with EN system modeling. To make Petri net

modeling more practical, a new class of Petri nets, Place/Transition nets, was proposed [47]. There

are two main differences between EN systems and P/T nets. First of all, in P/T nets, each place can

hold multiple tokens, as opposed to only one token in EN systems. Thus, a marking in P/T nets

maps places to non-negative integers. Secondly, in P/T nets, arcs are labeled with their weights

(positive numbers). An n-weighted arc in a P/T net can be viewed as n parallel arcs in an EN net.

Labels for unit weight are usually omitted. Formally, a P/T net is defined as follows.

Definition 2. A Place/Transition net, or P/T net, is a 5-tuple PTN = (P, T, A, W, M0), where:

(1) P is a finite set of places: {P1, P2, … , Pm}, where m N.

(2) T is a finite set of transitions: {T1, T2, … , Tn}, where n N.

(3) A is a set of arcs: A ⊆ (P x T) (T x P).

18

(4) W is a weight function that maps the elements in A to non-negative integers: A

N+.

(5) M0 is the initial marking. Namely, it is a function that maps the elements in P to

non-negative integers: P N+.

 Due to the definition change, the transition firing rules in P/T nets are changed as follows:

(1) A transition t is enabled if each input place pin of t has at least w[(pin, t)] tokens, where

w[(pin, t)] is the weight of the arc from pin to t.

(2) A firing of an enabled transition t removes w[(pin, t)] tokens from each input place pin

of t and deposits w[(t, pout)] tokens to each outplace pout of t.

P3

P4

T1

P2

P1

3

2

P3

P4

T1

P2

P1

3

2

 (a) A Simple P/T Net (b) After T1 Fires

Figure 2.2 An Example P/T Net

 An example P/T net is shown in Figure 2.2 (a). This P/T net is similar to the example EN

system mentioned previously. However, in the P/T net, there are two tokens on P1. In addition, the

arc (P1, T1) and (T1, P4) are associated with arc weight 2 and 3, respectively. Formally, the P/T

net is defined as a 5-tupe, PTNex = (P, T, A, W, M0), where:

(1) P = {P1, P2, P3, P4}.

(2) T = {T1}.

(3) A = {(P1, T1), (P2, T1), (T1, P1), (T1, P2)}.

(4) W (a) = 2 if a = (P1, T1)

 1 if a = (P2, T1)

 1 if a = (T1, P3)

 3 if a = (T1, P4)

19

(5) M0 (p) = 2 if p = P1

 1 if p = P2

 0 if p = P3

 0 if p = P4

 In the example P/T net, T1 is already enabled with the initial marking. After T1 fires, one

token is removed from P2 while two tokens are removed from P1 due to the weight associated

with the arc from P1 to T1. The firing of T1 also results in one and three tokens deposited into P3

and P4, respectively. After this event, the P/E net reaches a stable state and do not change any

more. This is shown in Figure 2.2 (b).

2.2.3 Colored Petri Nets

In both EN systems and P/T nets, there is only one type of token. This limits the descriptive

capability of Petri nets and contributes to the size explosion problem significantly. If we can equip

each token with an attached data value, these problems can be alleviated dramatically.

Traditionally, the data value is called the color of the token. Further, if there could be different

types of colors, Petri nets could be even more compact. By tradition, each type of token color is

called a color set. Actually, the use of “color” and “color set” in Petri nets is very analogous to the

use of “value” and “type” in programming languages. This innovative class of Petri nets is called

Colored Petri nets, or CP nets [40]. We mentioned previously that P/T nets are more advanced than

EN systems since each place in P/T nets can hold any number of tokens. Now we know that CP

nets go one step further so that the tokens on a place are distinguishable.

 In CP nets, a place is associated with only one color set. All tokens on a given place have

token colors that belong to the color set associated with the place. A place in a CP net can have a

multi-set of tokens. Intuitively, a multi-set is similar to a set except that all elements in a set are

different whereas there could be multiple appearances of the same element in a multi-set. For

example, if we add set {a, b, c} to set {c}, we still have the set {a, b, c}. However, if we add

multi-set {a, b, c} to multi-set {c}, the result is a multi-set {a, b, c, c}. By convention, the

multi-set {a, b, c, c} is usually denoted as 1`a+1`b+2`c, where the number before the `-operator

20

indicates the number of tokens of each color. Since each place could have a multi-set of tokens, a

marking in a CP net maps places to multi-sets. Furthermore, in CP nets, each arc is associated with

an arc expression instead of just a weight as in P/T nets. The arc expressions on all input places of

a transition determine whether the transition is enabled. In addition, guard expressions can be

attached to transitions in CP nets. A guard expression is a Boolean expression defining an

additional constraint that must be satisfied before the transition is enabled. Now we are ready to

define CP nets formally.

Definition 3. A Colored Petri net, or a CP net, is a 8-tuple CPN = (�, P, T, A, C, G, E, M0),

where:

(1) � is a finite set of non-empty types, called color sets.

(2) P is a finite set of places: {P1, P2, … , Pm}, where m N.

(3) T is a finite set of transitions: {T1, T2, … , Tn}, where n N.

(4) A is a set of arcs: A ⊆ (P x T) (T x P).

(5) C is a node function that maps the elements in P to the elements in �. C determines

the color set associated with each place.

(6) G is a guard function. It is defined from T into expressions. If the expression is

simply “true”, the expression is usually omitted in CP nets.

(7) E is an arc expression function. It is defined from A into expressions. These

expressions determine how tokens are removed from or added to places.

(8) M0 is the initial marking. Namely, it is a function that maps each element in P to a

multi-set whose elements belong to the same color set.

 In CP nets, the transition firing rules are as follows:

(1) When all the input places of a transition contain at least the number of tokens

prescribed by the expression associated to each corresponding arc and the guard

expression evaluates to “true”, the transition is said to be enabled.

(2) A firing of an enabled transition removes tokens from each input place and deposits

tokens to each outplace according to the arc expressions associated with each

21

corresponding arc.

 An example CP net is shown in Figure 2.3 (a). In the example net, there are three places,

Num_P, Div2_P, and Div3_P; there is only one transition, Tran_1. The color set of Num_P is INT

and a multi-set of token 1`1 is associated with Num_P. Div2_P and Div3_P have the same color

set BOOL and the same multi-set 1`false. Tran_1 has one guard, “n<4”. Several different

expressions are attached to the arcs in this example net. In these expressions, we use n to denote an

INT variable; we also use b2 and b3 to denote two boolean variables. Formally, the example net

can be defined as an 8-tuple CPNex = (�, P, T, A, C, G, E, M0), where:

(1) � = {INT, BOOL}.

(2) P = {Num_P, Div2_P, Div3_P}.

(3) T = {Tran_1}.

(4) A = {(Num_P, Tran_1), (Tran_1, Num_P), (Div2_P, Tran_1), (Tran_1, Div2_P),

(Div3_P, Tran_1), (Tran_1, Div3_P)}.

(5) C(p) = INT if p = Num_P

 BOOL if p = Div2_P

 BOOL if p = Div3_P

(6) G(t) = n<4 if t = Tran_1

 true otherwise

(7) E(a) = n if a = (Num_P, Tran_1)

 n+1 if a = (Tran_1, Num_P)

 if (n mod 2) = 0 then true else false if a = (Tran_1, Div2_P)

 b2 if a = (Div2_P, Tran_1)

 if (n mod 3) = 0 then true else false if a = (Tran_1, Div3_P)

 b3 if a = (Div3_P, Tran_1)

(8) M0 (p) = 1`1 if p = Num_P

 1`false if p = Div2_P

 1`false if p = Div3_P

22

 The example CP net is more complex than previous example nets. It actually accomplishes a

simple task: each time Tran_1 fires, if 2 divides into the token from Num_P, a multi-set 1`true will

be added to Div2_P, otherwise 1`false will be added; and if 3 divides into the token from Num_P,

a multi-set 1`true will be added to Div3_P, otherwise 1`false will be added. Now let us have a look

at the details. When the net is in the initial state shown in Figure 2.3 (a), Tran_1 is already enabled.

At this moment, the multi-set on Num_P is 1`1. Since both 2 and 3 do not divide into 1, after the

transition fires, the multi-sets on Div2_P and Div3_P remain the same. However, due to the arc

expression n+1, the multi-set on Num_P changes to 1`2 after the firing. The state of the net is

shown in Figure 2.3 (b). When this event is over, Tran_1 is enabled again. This time since 2

divides into 2 and 2 does not divides into 3, after Tran_1 fires, 1`true is added to Div2_P and

1`false is deposited in Div3_P. Of course, the multi-set on Num_P becomes 1`3 at the same time.

This is shown in Figure 2.3 (c). At this state, Tran_1 is still enabled, as a result of the firing,

Num_P has a multi-set 1`4, Div2_P has 1`false, and Div3_P has 1`true. Figure 2.3 (d) illustrates

the state of the net after this event. At this moment, Tran_1 is not enabled any more because the

guard expression attached to Tran_1 is n<4 while the multi-set on Num_P has only one element 4

which does not satisfy the guard expression. Thus the state corresponding to Figure 2.3 (d) is

actually the final state of the CP net.

Div3_P

Div2_PNum_P

1’false

1’false
Tran_1

BOOL

b3

n+1 b2

if (n mod 2)=0 then true else false

1’1INT

BOOL

[n<4]

if (n mod 3)=0 then true else false

n

Div3_P

Div2_PNum_P

1’false

1’false
Tran_1

BOOL

b3

n+1 b2

if (n mod 2)=0 then true else false

1’2INT

BOOL

[n<4]

if (n mod 3)=0 then true else false

n

 (a) A Simple CP Net (b) T1 Fires Once

Div3_P

Div2_PNum_P

1’false

1’true
Tran_1

BOOL

b3

n+1 b2

if (n mod 2)=0 then true else false

1’3INT

BOOL

[n<4]

if (n mod 3)=0 then true else false

n

Div3_P

Div2_PNum_P

1’true

1’false
Tran_1

BOOL

b3

n+1 b2

if (n mod 2)=0 then true else false

1’4INT

BOOL

[n<4]

if (n mod 3)=0 then true else false

n

 (c) T1 Fires Twice (d) T1 Fires Three Times

Figure 2.3 An Example CP Net

23

2.2.4 Formal Analysis and Performance Evaluation with Colored Petri Nets

Petri nets have been widely used to formally analyze system properties [39, 49, 50] and evaluate

system performance [39, 51, 52]. Petri nets have many behavioral properties that are worth

analyzing, such as reachability, boundedness, liveness, fairness, etc. In our research, we are

focused on reachability and boundedness. Occurrence Graphs and Place Invariants are two typical

formal analysis methods used in Petri nets [40]. However, the use of Place Invariants is less

automatic and involves a great deal of human reasoning. In comparison, an occurrence graph can

be constructed automatically. Hence, the occurrence graph is a more error-free and convenient tool

with which Petri net models can be analyzed. In our study, we use occurrence graphs to formally

analyze CP nets.

 We know that the first firing of transitions moves a CP net from the initial marking M0 to the

next marking M1. This process goes on until there are no more enabled transitions. Then the CP

net stays at the final marking, Mn. This sequence of markings, “M0, M1, … , Mn” is called an

occurrence sequence. A marking Mk is said to be reachable from the initial marking M0 if there

exits an occurrence sequence M0 , M1 , … , Mk. Essentially, the reachability problem is the

problem of finding whether a certain marking Mj is reachable from the initial marking M0. In

addition, a CP net is said to be k-bounded if the number of tokens in each place does not exceed a

positive integer k for any marking reachable from M0.

Tran_1 Tran_1 Tran_1

Div3_P:1‘false

Num_P:1‘1

Div2_P:1‘false

M0

Div3_P:1‘false

Num_P:1‘2

Div2_P:1‘false

M1

Div3_P:1‘false

Num_P:1‘3

Div2_P:1‘true

M2

Div3_P:1‘true

Num_P:1‘4

Div2_P:1‘false

M3

Figure 2.4 Occurrence Graph of the Example CP Net

 The basic idea behind Occurrence Graphs is to construct a graph containing a node for each

reachable marking and an arc for each enabled transition. Once the occurrence graph is available,

reachability and boundedness can be easily analyzed. Using the previous CP net as an example, we

can construct the corresponding occurrence graph shown in Figure 2.4. There are altogether four

markings for this CP net, M0, M1, M2 , and M3. M0 is changed to M1 due to the firing of Tran_1,

24

then to M2 and M3 sequentially. From the occurrence graph, we can conclude that M1, M2 , and M3

are reachable from M0; no other markings are not reachable from M0. And since there is at most

one token on each place for any marking reachable from M0, we can also reach the conclusion that

the example CP net is 1-bounded.

 So far we have been talking about investigating the logical correctness of a CP net by

formally analyzing its behavioral properties. However, CP nets can also be used to evaluate the

performance of the modeled system via simulation. To perform this kind of analysis, it is

convenient to extend CP nets with a time concept. This type of CP net is called a timed CP net [40].

In our research, a global clock is introduced to represent the modeling time. A timestamp is

attached to each token. The execution of a timed CP net is time-driven and it works in a similar

way to discrete event simulation.

Div3_P

Div2_PNum_P

1’false

1’false
Tran_1

BOOL

b3

b2

if (n mod 2)=0 then true else false

1’1INT

BOOL

[n<4]

if (n mod 3)=0 then true else false

n

(n+1)@+10

Figure 2.5 An Example Timed CP Net

 To see how a timed CP net simulation works, let us consider the timed CP net in Figure 2.5.

This timed CP net is similar to the previous example CP net except that the expression associated

with the arc from Tran_1 to Num_P is changed from n+1 to (n+1)@+10. Now let us see how the

simulation progresses. When the simulation starts, all tokens are available and Tran_1 will fire

immediately. After the firing, 1`false is added to Div2_P and Div3_P; 1`2 is added to Num_P, but

it can not be used to enable Tran_1 until 10 time units later because of the arc expression

(n+1)@+10. We should be aware that in timed CP nets, arc expressions without special notations,

such as “if (n mod 2) = 0 then true else false” that is associated with the arc from Tran_1 to

Div2_P, are available immediately after the firing. At this moment, the CP net is in a state similar

to the one shown in Figure 2.3 (b). After 10 time units pass, 1`2 becomes available and Tran_1

will be enabled. As a result of the firing of Tran_1, the CP net will change to a state similar to the

25

one shown in Figure 2.3 (c). After this, again, 1`3 is not available until 10 time units later. Then 10

time units go by and Tran_1 fires, the CP net is changed to a state similar to the one shown in

Figure 2.3 (d). However, the simulation is not over until 10 time units later. At that time, 1`4

becomes available, but since the guard expression cannot be satisfied, the CP net will not change

any more. In total, the simulation of the example timed CP net lasts 30 time units. The data

gathered from a simulation can help us to evaluate the performance of the system modeled with a

timed CP net.

2.3 Protocol Development with Formal Methods and Simulation

Reliable communication protocols play an important role in providing effective communication

services. Hence, measures should be taken to guarantee the quality of protocols during the

development process. Formal methods [53] and simulation [54] are two important methodologies

that have been widely used to develop new communication protocols. This section presents an

overview of several formal methods and simulation packages, and illustrates their application to

protocol development using real-life examples.

2.3.1 Protocol Development with Formal Methods

In the early days of protocol development, the process was carried out in an informal way that

relied on informal textual documentation, graphical description techniques, etc. The informal

methodology, lacking scientific foundation and relying on human expertise, leads to ambiguous

definitions and provides no means to analyze protocols of interest. Later, mathematically-based

techniques were adopted in protocol development, introducing rigor and reliability into the various

steps of the development process. Such techniques are called formal methods (FM). Formal

methods allow us to formally analyze the protocol of interest and increase our confidence about

the correctness of the protocol. There are many formal methods that can be used for protocol

development [53]. An overview of several widely-used formal methods is presented as follows.

 SDL (Specification and Description Language) is a formal description language standardized

by ITU-T [55]. The latest version is SDL-2000, an object-oriented description language. The

effectiveness and the intuitive graphical format of SDL have made it a very popular formal method

26

in both academia and industry. Several standard institutes, including ETSI (European

Telecommunications Standards Institute) [56] and 3GPP (Third Generation Partnership Project)

[57], have included SDL diagrams in their official specification documents. With SDL, structural

and functional aspects are separated. The system structure is described by drawing the building

blocks and the channels connecting them. The function of each block is specified by editing the

internal processes in the block. SDL is based on Finite State Machine (FSM). Formal analysis of

static and dynamic properties of the model in SDL is performed by analyzing the equivalent FSM

produced by the combination of control states and data values. SDL has been applied to system

specification and analysis in many application areas. The details are documented in SDL

proceedings [58].

 LOTOS (Language of Temporal Ordering Specifications) is a formal description language

approved by ISO in 1989 [59]. Different than SDL, LOTOS is based on process algebra. Process

algebras are a diverse family of related approaches to formally modeling concurrent systems.

Process algebras provide a tool for the high-level description of interactions, communications, and

synchronizations between a collection of independent processes. Although LOTOS was designed

for information processing system modeled after the OSI reference model, it has been widely used

to specify and validate sequential, concurrent, and distributed systems in various domains. Due to

textual format and strong abstraction, LOTOS requires greater effort than SDL to be employed.

Some effort has been devoted to support specifications in graphical LOTOS, but there have been

no mature products. Nevertheless, LOTOS has been used to prove the validity of formal methods

in development of real communication systems.

 Estelle, standardized by ISO in 1989, is a formal description technique for specifying

distributed and concurrent systems. SDL, LOTOS, and Estelle are commonly referred to as the

three Formal Description Techniques (FDTs) that are used for the specification of protocols in

standardization documents [60]. Estelle is based on Finite State Machines and it employs Pascal to

describe protocols. Due to the inclusion of a programming language, Estelle is more

implementation-oriented than SDL and LOTOS. Actually, the formal specification in Estelle can

27

be compiled into an executable model automatically. Estelle has also been used to specify and

analyze real-life communication protocols.

 PROMELA (Process Meta Language) is a widely-used description language for specification,

simulation, and validation of communication protocols [61]. It is based on FSM and supports

validation of consistency requirements and invariant assertions. It employs C-like syntax, which

increases its applicability in the early stages of the design and makes the implementation phase an

automatic process. SPIN (Simple PROMELA Interpreter) is a popular tool for simulating and

validating protocols specified in PROMELA. Due to its effectiveness, SPIN has become the most

exploited among freeware FM-based tools for formal analysis of communication protocols.

Extensive work has been carried out using PROMELA. Theoretical advancements and practical

applications are continuously documented in the proceedings of the International SPIN

Workshops.

 Petri nets are an effective tool for describing and analyzing concurrent and distributed

systems. As mentioned in Section 2.2, Petri nets provide a clear graphical representation of

protocols of interest. This graphical representation can be used to present an animated view of a

simulation, demonstrating how the system works in great detail. In addition, Petri nets have

well-defined mathematical semantics that form the theoretical foundation, allowing us to analyze

structural and behavioral properties of Petri net models. Petri nets have been widely used in both

academic and industrial areas [62].

 All of the above formal methods can be applied to protocol development. In this section, we

use a real-life example project [63] of Petri net application to illustrate the effectiveness of formal

methods. Chapter 4 also illustrates the application of Petri nets to protocol development by

modeling two revised versions of SACK TCP with Petri nets. In the real-life example project at

Ericsson Telebit A/S, CP nets were used for the specification and validation of an edge router

discovery protocol (ERDP) for mobile ad hoc networks. Ad hoc networking is different from

traditional networks in that the nodes in the ad hoc network operate in a fully independent and

distributed fashion, without any existing communication infrastructure. The mobile nodes in an ad

28

hoc network, such as laptops, personal digital assistants, and mobile phones, are capable of

establishing a communication infrastructure for their common use. In a hybrid network where the

nodes in the ad hoc networks communicate with the nodes in the core network, ERDP is used

between the gateways in the ad-hoc networks and the edge routers in the core network. ERDP

supports gateways to discover edge routers and supports edge routers to configure gateways with a

globally routable IPv6 address prefix so that all nodes in the hybrid network can communicate

with each other. The development of ERDP started with a specification of the initial ERDP in

natural language. Then a CP net model corresponding to the specification was created using

Design/CPN [62]. The act of creating the CP net model led to the identification of several

problems with the initial version of ERDP. After revising the initial specification, the CP net model

was modified accordingly. One important feature of ERDP is to configure the gateway with

prefixes properly. Occurrence Graphs were used to formally analyze this property of ERDP. The

results showed that for a given prefix and state where the gateway has not yet been configured

with that prefix, the protocol is able to configure the gateway with the prefix; furthermore, when

the gateway has been configured with the prefix, the edge router and the gateway are properly

synchronized. Hence, it was concluded that the proposed ERDP functions properly and this is

proved by formal analysis. Details of the project can be found in [63].

2.3.2 Protocol Development with Complex Simulation

Simulation is an effective method for protocol design and development [54]. An individual

researcher can start from scratch and write specific simulation programs to evaluate protocols of

interest. However, this kind of simulation usually employs small-scale topologies and simplified

assumptions. High costs prevent an individual researcher from creating a comprehensive and

advanced networking simulation environment to run realistic simulations. This limits the

understanding of protocols of interest and the reproducibility of simulations constructed by

different groups.

 Multiprotocol network simulators allow us to run complex simulations in a common

simulation environment to solve the previously mentioned problem. Normally, multiprotocol

29

network simulators have abundant built-in protocol models and internal mechanisms to generate

complex simulation scenarios. They provide the opportunity to investigate large-scale protocol

interaction in a controlled environment and enable easy comparison of proposals from different

research groups. Many communication protocols were developed with the assistance of various

multiprotocol network simulators. An overview of several multiprotocol network simulators is

presented as follows.

 GloMoSim (Global Mobile Information System Simulator) [64] is a scalable simulation

environment for wireless network systems. It is designed using the parallel discrete-event

simulation capability provided by Parsec [65]. GloMoSim 2.0 is the latest version and it supports

protocols for a purely wireless network. At the data link layer, CSMA, MACA, and 802.11 are

implemented. The network layer protocols that have been included in the simulator are AODV,

DSR, Bellman-Ford, Fisheye, LAR scheme 1, ODMRP, and WRP. At the transport layer, TCP and

UDP are implemented. The successor to GloMoSim is QualNet, a GloMoSim-based commercial

product from Scalable Network Technologies. QualNet extends the base capabilities of GloMoSim

and includes some specialized libraries, such as the libraries for MANET, Satellite, and WiMAX.

GloMoSim is widely used in wireless network research due to its open source nature.

 OPNET [66] is a commercial modeling tool for designing and evaluating communication

networks, devices, protocols, and applications with flexibility and scalability. OPNET Modeler is

the simulator for wired networks and Modeler Wireless Suite is used for wireless network study.

OPNET offers a comprehensive library of detailed protocol and application models, including

Voice, HTTP, TCP, IPv4, BGP, EIGRP, RIP, VoIP, OSPFv3, RSVP, Frame Relay, FDDI, Ethernet,

ATM, 802.11 Wireless LANs, 802.16, WiMAX, IPv6, MPLS, PNNI, DOCSIS, UMTS, IP

Multicast, Circuit Switch, MANET, Mobile IP, IS-IS, satellite capabilities, and many more. Aside

from standard protocols, OPNET Modeler and Modeler Wireless Suite have built-in

vendor-specific models, allowing more realistic simulations. Compared with GloMoSim, OPNET

is more widely used in industry than in research.

 ns-2 [67] is a discrete event simulator for networking research. It especially excels in

30

modeling of TCP, routing, and multicast protocols over wired and wireless networks. ns-2 was

simply a variant of the REAL network simulator in 1989 and has evolved much over the past

decades. ns-2 development was supported by DARPA through the VINT project [68] in 1995.

Currently, ns-2 development is support through DARPA with SAMAN [69] and through NSF with

CONSER [70]. ns-2 has abundant built-in protocols, especially the protocols for wired networks.

Due to its open source nature, ns-2 keeps adding contributed models from other researchers to its

library. For example, the wireless code in ns-2 is actually from UCB Daedelus, CMU Monarch

Project, and Sun Microsystems. ns-2 is the de facto multiprotocol network simulator for wired

network research. Hence, many research projects chose ns-2 as the simulation environment.

 All of the above multiprotocol network simulators enable us to run complex simulations to

develop communication protocols. In this section, we use ns-2 as the example simulator to

illustrate the effectiveness of running complex simulations for protocol development purposes. T.

R Henderson and R. H. Katz studied whether some modified TCP congestion avoidance

algorithms can improve TCP fairness using ns-2 [71]. Two problems were investigated in the

project. The first problem is to examine whether a change to TCP congestion control, as proposed

by Floyd, that results in a ‘constant rate’ cwnd increase during Slow Start can correct the bias

against connections with long round trip times (RTTs). The second problem is to explore whether

TCP connections with long RTTs could independently improve their own throughputs by

becoming slightly more aggressive during Slow Start. ns-2 was used to model the several different

experimental scenarios and the relatively complex simulations were carried out, resulting in the

following conclusions. With regard to the first problem, it is concluded that despite the fact that

the constant rate algorithm can improve fairness significantly, it was also found that such a policy

is difficult to implement in heterogeneous networks. As for the second problem, the experimental

results show that long RTT connections benefit from the aggressive policy and peer connections

are not influenced dramatically. Hence, the aggressive policy should be included in the new

version of TCP and the constant rate policy should not.

31

Chapter 3

Resilience Performance of SACK, NewReno,
and Reno TCP

The reaction of TCP to packet loss events is a key issue because TCP currently accounts for over

90% of the traffic on the Internet [72]. If TCP reacts inefficiently when packet loss events are

experienced, the performance of the Internet will be degraded significantly. Packet loss events can

be caused by either network failures or congestion. Physical failures are relatively common in the

fiber-optic networks that form the core of the Internet: a top-tier carrier will, on average,

experience one fiber failure every three hours [73]. We should be careful to note that the frequency

of failure in optical networks, and the massive potential impact of such failures, is hidden from

end-users (and availability measures) by sophisticated protection and recovery mechanisms.

Optical networks use redundancy to prevent the unreliability of a single component, such as a fiber

link, from directly becoming the unavailability of the network. Failures in end-equipment (fiber

terminals, cross-connects, switches, etc.) are more common than fiber failures, and again

equipment designers use redundancy to ameliorate the effects of individual failures. Of course, as

we are all too aware as users of various networks, simple congestion events are even more

frequent than failures.

 To prevent a fiber failure from making a portion of the network unavailable, the physical

layer of the transport network (SONET, SDH) incorporates the ability to restore traffic in less than

50 ms. The 50 ms target was established when voice traffic was the dominant load. Now that the

volume of data traffic has surpassed voice, we would like to know whether this target is too slack,

or too exacting, in the context of providing service for Internet traffic over optical networks. In the

32

course of this work, we studied the resilience performance of SACK, NewReno, and Reno TCP.

 In our research, we consider the reaction of a single TCP session to packet losses on the link

from the sender to the receiver. Interactions between multiple TCP flows are not taken into

account. We believe that the TCP protocol itself is complex enough that it is necessary to first

understand how TCP behaves in this baseline scenario, before setting standards, proposing

mechanisms, or exploring the impact of additional variables. The general behavior of SACK,

NewReno, and Reno TCP is presented in Section 3.1, 3.2, and 3.3. More details of their resilience

performance are included in Section 3.4.

3.1 SACK TCP Resilience

SACK TCP is the most up-to-date version of TCP [3, 5, 6, 38] and has been widely deployed in

the Internet [13]. In this section we detail and quantify the reactions of SACK TCP to packet loss

events due to network failures and congestion episodes. We present a Petri net model of the

resilience aspects of SACK TCP and use it to explain the step-by-step behavior of the protocol in

various circumstances. We also use simulation results derived from the Petri net to relate the

protocol’s behavior during network failures to its reactions to congestion. The step-by-step

analysis of TCP’s reactions leads to a simple algebraic model that can be used to predict the

number of lost segments above which TCP’s performance degrades significantly.

 Most networkers are aware that SACK TCP has the best resilience mechanism of the versions

of TCP released to date. Many have some idea how SACK TCP makes use of selective

acknowledgements to recover more quickly from dropped packets. But few people really

understand the detailed step-by-step interactions that take place in response to network congestion

or failure. We believe that one of the contributors to this lack of detailed understanding is the

traditional use of graphs of sequence number vs. time or congestion window vs. time to illustrate

the behavior of TCP [3] [74] [75]. Such graphs can present parameter value changes over time

clearly, but they lack the ability to demonstrate the internal behavior of TCP.

 In contrast, Petri nets can be used to give a clear, step-by-step illustration of the behavior of a

protocol in specific circumstances. As mentioned in Section 2.2, Petri nets have many advantages.

33

First of all, a Petri net is a clear graphical representation of a system. Secondly, Petri nets have

well-defined semantics which unambiguously define the behavior of the model. The formal

semantics of Petri nets form the theoretical foundation that allows us to analyze Petri net models

for properties such as reachability and boundedness. Such analyses can be used to check whether

proposed changes in a protocol preserve its correctness, or introduce faults [53, 76, 77]. Thirdly,

the Petri net model of a system can be used in simulation mode, in order to sample the system’s

behavior statistically over a range of parameter values.

 Ref. [78] presents a simplified Petri net model of TCP and is focused on the performance

analysis of Tahoe and Reno TCP. A generic Petri net model of TCP is illustrated in [76] and it is

used to study the performance of a TCP variant, ARTCP [76]. In this section, we present a much

more detailed Petri net model than was exhibited in either [76] or [78], and use it to study SACK

TCP. Our model has two large components, called TCP Sender and TCP Receiver. The TCP

Sender follows the formal specifications for TCP as set out in [3, 5, 6] and is capable of dealing

with selective acknowledgements. The TCP Receiver accepts TCP segments and sends out

corresponding acknowledgements. The combined behavior of these two components was validated

against simulation results from a popular commercial simulator, OPNET [66], and has been shown

to reproduce the actions of SACK TCP both qualitatively in terms of the steps it takes, as well as

quantitatively in terms of delays, cwnd, rwnd, and ssthresh. And further, we have used our Petri

net model to test both SACK TCP and our modified version for reachability, boundedness, and

liveness [77]; these are formal, fundamental properties of SACK TCP that have not been tested by

others.

 This section focuses on leveraging a Petri net model, and the algebraic model for delay

derived from it, to explain SACK TCP resilience in detail. The graphical representation of our

Petri net model of SACK TCP enabled us to observe visually the detailed interactions that occur

inside TCP when network congestion or failure takes place, and lead to the illustrations in this

thesis. We also used our Petri net model in “simulation mode” to obtain insight into scenarios with

a large number of protocol instances. These simulation results are unique in that this research is

34

the only work we are aware of that focuses on the resilience behavior of SACK TCP, and then

derives an algebraic performance model based on results from something that is formally

analyzed. We present the Petri net model of SACK TCP in Section 3.1.1 and illustrate the detailed

resilience performance of SACK TCP in Section 3.1.2.

3.1.1 Petri Net Model of SACK TCP

SACK TCP is a complex protocol [38]. We focus here on the resilience of the protocol to packet

losses caused by network congestion or failure, so only the SACK TCP functions that are closely

related to resilience are included in our Petri net model. Other loosely related functions, such as

connection establishment, persistence timer and keep-alive timer, are purposely omitted.

 We have used Colored Petri Nets (CP nets), one of the many varieties of High-level Petri

Nets, together with a Petri net modeling environment called Design/CPN [62]. As mentioned in

Section 2.2, CP nets are composed of places, transitions and (directed) arcs. In CP nets, each place

has an associated type defining the kind of tokens that a place can contain. The type may be a

simple (e.g. integer) or compound (e.g. product type, list type). In Design/CPN, a timestamp can

be attached to each token. The timestamp defines the earliest time at which the token can be used

to enable a transition. The timestamp concept makes it possible to model concurrent systems

involving time using CP nets. Design/CPN also facilitates the modeling of complex systems by

providing the capability to describe them top-down as a hierarchy of gradually more detailed

behaviors. One transition in the top level of a hierarchy may correspond to tens of transitions and

places at the next level of detail. This ability to abstract details into more general behaviors is

crucial to assembling complex models, such as that for SACK TCP.

 The top-level description of the system is illustrated in Figure 3.1. A function called Segment

Discarder is placed on one of the links connecting a SACK TCP sender and receiver. The Segment

Discarder is used to simulate packet losses due to congestion or failure. We can specify the

number of segments to be dropped within a transmission window as well as being able to drop

segments consecutively or at random within a transmission window.

 At this level of detail, the SACK TCP Sender (on the left-hand side of the figure) is

35

composed of four parts. Send Segment takes care of sending TCP segments when they are ready

and Receive ACK handles receiving acknowledgements from the receiver when they arrive.

Parameter Management manipulates the important status parameters at the sender. These

include the congestion window (cwnd) and the slow start threshold (ssthresh). Retran Timer

Management is responsible for starting, updating and stopping the retransmission timer. When

the retransmission timer expires it signals Send Segment and Parameter Management to

retransmit the corresponding segment and update the status parameters.

Figure 3.1 Top-Level View of the Petri Net Model

 We have used rectangles to draw all four parts of the sender. In Petri net notation these

denote transitions. However, in the upper layers of a hierarchical description we use rectangles to

denote collections of places and transitions, rather than denoting a top-level transition. This

practice also applies to the receiver components on the right-hand side of Figure 3.1.

 The top-level description of the SACK TCP receiver contains four parts in series. Receive

Segment and Send ACK manage the functions related to receiving segments and sending ACKs.

ACK Number Management generates ACK numbers. Generally, acknowledgements should be

sent after the arrival of every second full-sized segment, and they must be sent within 500ms of

the arrival of the first unacknowledged segment [36]. Most implementations use a delay of 200ms

instead of 500ms [1]. We follow this common practice in our model. This delayed ACK

mechanism is modeled in the transition called ACK Delay Algorithm.

Receive Segment

Send

ACK

ACK Delay

Algorithm

ACK Number

Management

Send

Segment

Retran Timer

Management

Parameter

Management

Receive

ACK

SegmentDiscarder

36

The detailed Petri net model of our system is shown in Figure 3.2. For clarity, the original

Petri net model was split into two parts. Figure 3.2 (a) shows the model for SACK TCP sender and

Figure 3.2 (b) illustrates the model for SACK TCP receiver and Segment Discarder. Note that

transition “SendSeg” and “TransmitACK” appear in both Figure 3.2 (a) and Figure 3.2 (b).

They are actually the splitting points, meaning that removing one copy of them and then

combining Figure 3.2 (a) and Figure 3.2 (b) will result in the original Petri net model.

Send

INT 1‘1

Send Segment

if IsFR=0 then [n<=(w+ww-1) andalso n<=(w+rwnd-1)]
else [pipe<ww andalso n<=(w+rwnd-1)]

Receive ACK RecAck

ACKTYPE

SND_NXT
INT

1

INT

1 TxDelay

SND_UNAINT
1

SND_SEG

INT

Buffer
INTLIST

nil

IfSetTimer

SToT

Timer

INT

Timeout

LIST

nil
ToContral

INT
ToTemp

TIMEOUT

CWND

INT

InitCwnd

SSTHRESH
INT

Ssthresh

TimerNo

INT

PreviousAck

INT

0

DupCounter

INT

0

INT

ResetTimer

RTT

IsInFR
INT

0

INT

0Remainder

StatusTupe

STATUS (0,0,0,0,Rwnd) TimerExpire
INT

TO_CHPA

INT

FRPath

RTX_SEG2

INT
FirstRetx

RTX_SEG1

INT

0

TO_NO

@+PD

SendSeg

RCV_ACK
INT

2

TransmitACK

@+(PD+RATD)

Sender

tp

n

m+1@+STD

n@+STD

w
w

w n

l

if (null l)
then l^^[1]
else l

if (null l)
then 1‘RTO
else empty

n

n@+RTO

n

l

AddQueue(IsFR,
pa, n,l,dc)

if (null l)
then 1‘n
else empty

n
n*2@+n*2

if n=TotalPacket
then empty
else 1‘(tp+1)

l
if (null l)
then l
else tl l

w

w

SetNxt(IsFR, n, low, high, hs)

m

m

if (null l)
then w
else m

ww

ww

ww

SetWw(IsFR, n, pa, ww,
ssthre,w,re, dc, out)

ssthre

if (FR(IsFR, dc) andalso ssthre>2)
then (if ((out-w) div 2)>2 then ((out-w)div 2) else 2)
else ssthre

ww

if (null l)
then 1
else ww

ssthre

SetSsthre(l,IsFR,ssthre, m, w)

n

n*2

m

m SetM(IsFR,pa,n,out,
m,dc,hs,RTO)

pa

if n=pa then pa
else n

dc

if IsFR=1
then 0
else (
if n=pa
then dc+1
else 0)

RestartTimer(IsFR,
pa,n,out,m,dc,hs,RTO)

m

m@+m
l1

ResetTimer(IsFR,
pa,n,out,l1,dc,hs)

out

IfFR(IsFR,n,pa,dc,hs)

IsFR

re

CalRe(IsFR,n,pa,ww,ssthre,w,re)

if FR(IsFR,dc)
then empty
else (if n>out
 then 1‘n
 else 1‘out)

SetStatus(IsFR, dc, out, w,
 rwnd, pipe, b1, b2, hs, pa)

if (null l)
then 1‘1
else empty

IsFRIsFR

(pipe,low,high,hs,rwnd2)

(pipe, low, high, hs,rwnd)

if IsFR=1 then (pipe+1, low, high, hs,rwnd)
else (pipe,low,high,hs,rwnd)

IsFR

IsFR

re

dc

0

IsFR

0

0

n

n

SetFRPath(IsFR,dc, n, out, b1, b2)

n@+STD

if FR(IsFR,dc)
then 1‘w
else empty

n

l^^[1]
l

RTO

n@+STD

(0,low, high, 0, rwnd2)

(pipe, low, high, hs, rwnd2)

if k=5 then empty
else 1‘(k+1)

k

n

n

rcvack

(n, rwnd, b1, b2)

(n,rwnd, b1, b2)

(a) Petri Net Model of SACK TCP Sender

37

A

LIST

nil

Queue
Input

INT
Discarder
Output

INT

1DropNo

DiscarderT

@+PD

SendSeg

INT

Discarder
 Input

Receive Segment

[not (null l)]

RPT

AckToSend
INT

TransmitACK

@+(PD+RATD)

NextAck
INT

1

IsFirst
INT

0

Classifier

INTxINT

[rcvse=2]

SecondSeq

[rcvse=1]

FirstSeq

INT

DelayedACK

Delayed
ACKCheck

FirstSeq
 List

LIST

nil

SecondSeq
 List

LIST nil

Low
INT

1

High

INT

1INT

RCV_SEG

Transmit ACK

ACKTYPE

SendAck

TranDelay

INT

1

Q_LENGT
H

INT
0

Segment Discarder

Receiver

l^^[n]

l

if (k<=(LNo-FNo+1) andalso
 (n>=FNo andalso n<=LNo))
then empty
else 1‘n

n

k if (n>=FNo andalso
n<=LNo) then k+1 else k

n
n

l

tl l

kif n=k
then (if (n+1)=low
 then high+1
 else k+1)
else k

j

if n=k
then (if (n+1)<= low
 then 0
 else (if j=0 then 1 else 0))
else 0

if n=k
then (if (n+1)=low
 then (1, high+1)
 else (if (n+1)< low
 then (1, k+1)
 else (j, k+1)))
else (1,k)

(rcvse,ackno)

ackno

(rcvse,ackno)

ackno@+AckDelay

ackno

if (null list2)
then 1‘ ackno
else empty

list1^^[1]

list1

list1

if (null list1)
then list1
else tail list1

if (null list1)
then list2
else list2^^[2]

list2

list2

if (null list2)
then list2
else tail list2

list1
if (null list2)
then tail list1
else list1

m

if (null l2)
then 0
else m

if n<k then high else
(if n=k then (if n=high then k+1else (if (n+1)=low
 then high+1
 else high))
else (if n>high then n else high))

low

if n<k then low else
(if n=k then (if n=low then k+1 else(if (n+1)=low
 then high+1
 else low))
else (if low=k then n else low))

high
n

(hd l)@+RSTD

n

low low

high

high

if k<low then (n, Rwnd , low, high)
else (n,Rwnd, 0, 0)

(n,rwnd, b1, b2)

kk

m@+RSTD

m

k length l

(b) Petri Net Model of SACK TCP Receiver and Segment Discarder

Figure 3.2 Detailed Petri Net of SACK TCP

 In this section, we only use ACK Delay Algorithm as an example to illustrate this level

of detail in the hierarchical description of the protocol. As shown in Figure 3.3, ACK Delay

Algorithm is composed of five places and three transitions. Both FirstSeqList and

SecondSeqList are of type LIST. DelayedAck and ACKToSend are integer type (INT), and

Classifier has the product type (INT x INT). INT x INT is a Cartesian product of integers.

Sample values of this type include (1, 5) and (6, 2). ACK Delay Algorithm receives tokens

bearing two-tuples denoted as (rcvse, ackno), where rcvse and ackno are two integer variables. The

two-tuples carry information about the acknowledgements to be sent. The variable rcvse means

38

“receive sequence”. If rcvse is 1, the two-tuple corresponds to the first segment received by the

TCP receiver after the receiver has acknowledged the previous segment. Thus, the corresponding

acknowledgement should be delayed. If rcvse is 2, then the two-tuple corresponds to the second

received segment, and the acknowledgement should be transmitted immediately. The variable

ackno specifies the acknowledgement number to be included in the final acknowledgement. When

ACK Delay Algorithm decides that it is time to send out an acknowledgement, it simply

outputs the current ackno from ACKToSend. After receiving the ackno, the module responsible

for packaging and sending the acknowledgement will finalize the transmission.

AckToSend
INT

Classifier

INTxINT

[rcvse=2]

SecondSeq

[rcvse=1]

FirstSeq

INT

DelayedACK

DelayedACK
 Check

FirstSeq
 List

LIST nil

SecondSeq
 List

LIST nil

(rcvse, ackno)

ackno

(rcvse, ackno)

ackno@+AckDelay

ackno

if (null list2)
then ackno
else empty

list1^^[1]

list1list1

if (null list1)
then list1
else tail list1

if (null list1)
then list2
else list2^^[2]

list2

if (null list2)
then list2
else tail list2

list1
if (null list2)
then tail list1
else list1

list2

Figure 3.3 Detailed View of ACK Delay Algorithm

 To illustrate how the delayed acknowledgement mechanism works in detail, let us consider

the arrival sequence of tokens given in Table 3.1. If we assume that all previously received

segments have been acknowledged before the token labeled (1, 1000) arrives, then the lists at

FirstSeqList and SecondSeqList will be empty and there will be no tokens in any of the

places in ACK Delay Algorithm at 100 ms. When Classifier receives (1, 1000), rcvse is

equal to 1 so only FirstSeq is enabled. This is the result of the guard [rcvse=2] on

SecondSeq. After FirstSeq fires, an element “1” is inserted in the list on FirstSeqList.

This is indicated by the expression list1^^[1] in Figure 3.3. The token 1000 corresponding to the

current value of ackno is also moved to DelayedACK. This token is not available until 200 ms

39

later due to the arc expression ackno@+AckDelay where AckDelay is defined to be 200 ms. After

this no transition is enabled until the token labeled (2, 1500) arrives at 200 ms. When this occurs,

only SecondSeq is enabled because rcvse is now 2 and the guard on FirstSeq is [rcvse=1].

After SecondSeq fires an element “2” is inserted in the list on SecondSeqList. This is

indicated by the expression list1^^[2] in Figure 3.3. The ackno value of 1500 is also moved in a

token to AckToSend. A token at AckToSend means that an acknowledgement corresponding to

the current token should be sent immediately. This illustrates a sequence of events where an

acknowledgement is generated for every second full-sized segment.

Table 3.1 Token Arrival Sequence

Received Token Arrival Time (ms)

(1, 1000) 100

(2, 1500) 200

(1, 2000) 400

 The scheduled token at DelayedACK becomes available at 300 ms, enabling

DelayedAckCheck. After DelayedAckCheck fires, the current ackno is not moved to

AckToSend because of the expression “if (null list2) then ackno else empty” on the arc from

DelayedAckCheck to AckToSend. Recall that the previous firing of SecondSeq inserted

“2” in the list list2 at SecondSeqList. As a result, the (null list2) clause in the expression is

false so the “else empty” action is performed. The firing of DelayedAckCheck removes the

element “2” from list2 due to the expression “if (null list2) then list2 else tail list2” associated

with the arc from DelayedAckCheck to SecondSeqList. This sequence of events illustrates

how the Petri net manages the expiry of the timer that would have forced an acknowledgement to

be sent for (1,1000) if (2,1500) had not arrived and triggered an ACK for both segments.

 At 400 ms, the token labeled (1, 2000) arrives. The value rcvse=1 indicates that this is the

first segment after the last acknowledged segment, so FirstSeq is enabled. This moves a token

of value 2000 to DelayedAck. That token will not be available until 600 ms. If the next input

token arrives after 600 ms, then the scheduled token will enable DelayedAckCheck. After

40

DelayedAckCheck fires, a token with value 2000 is moved to AckToSend to trigger the

immediate transmission of an acknowledgement as list2 is empty. This illustrates a sequence of

events where an acknowledgement is forced by the timing rule that no more than 200 ms should

elapse after the arrival of the first unacknowledged segment until the sending of an ACK.

3.1.2 SACK TCP Resilience Performance

When network congestion or failures occur, some segments are dropped. In this section, we focus

on situations where multiple segments are dropped within one transmission window. Network

failure - either node or link failure - will most likely lead to the loss of several consecutive

segments. This is because no segments will be able to traverse the network during the outage. In

comparison, network congestion usually results in nonconsecutive segments being dropped

because the network is still working although it is not in perfect condition. Congestion avoidance

mechanisms such as random early detection (RED) [79] can also result in nonconsecutive segment

loss.

 Network failure and network congestion are completely different by definition. However, in

terms of their segment loss patterns, network failure is “just” an extreme form of network

congestion. During light network congestion, most of the segments in the current transmission

window will traverse the network successfully; and any dropped segments will be spaced widely

apart. As the network becomes more congested, segments will be discarded more frequently.

Viewed through the transmission window at the sender, the losses become more frequent and more

consecutive losses are observed. When congestion becomes extremely serious, or when network

failure occurs, many consecutive segments will be discarded. The effects of a temporary network

failure can thus be looked at as an extreme congestion event. We note that failures in modern

transport networks are in fact quite brief, and are usually restored in 50 ms or less [80, 81].

 TCP does not distinguish network failure from network congestion. This is because both

situations lead to segment losses which trigger TCP’s congestion control mechanisms. RFC 2018

[5] does not specify in detail the congestion control algorithms for implementations of SACK TCP.

It only requires that all implementations preserve the congestion control algorithms present in the

41

de facto standard [1]. RFC 3517 [38] presents a conservative SACK-based loss recovery algorithm

for TCP. The model discussed here conforms to the algorithm illustrated in [38].

 In the following we discuss the specific example of a client with a relatively high-speed

access link (DS1, i.e. 1.544 Mbps) connecting to a continental OC-3c backbone. The client is

assumed to be downloading a large file from a distant server. The TCP session in our simulation

must be long enough to test failures and congestion episodes with varying durations, so we studied

the example of a 10 MB file transfer. This is large enough to enable us to study a range of

situations given the link rates noted above. In reality, the duration of TCP flows covers a very

large range. Although there are many short flows in terms of number, long-running flows account

for up to 50% of all traffic [82].

Table 3.2 Parameter Settings

initial cwnd 1

ssthresh 45

rwnd 23

Propagation Delay (One Way) 16 ms

RTO 1500 ms

 In these experiments, SMSS was set to 1460 bytes. The values of cwnd, rwnd and ssthresh

were initialized to 1460 bytes, 32 KB (kilobyte) and 64 KB, respectively. By 32 KB or 64 KB,

we mean a multiple of SMSS that is just above 32 KB or 64KB. For example, with an SMSS of

1460 bytes, by 32 KB we mean 1460 * 23= 33580 bytes. For clarity, we consider 1460 byte

segments as the data units. Thus, cwnd, rwnd and ssthresh were set to 1, 23 and 45, respectively.

Retransmission Timeout (RTO) is also an important parameter in TCP congestion control. RFC

2988 [35] presents a detailed method to calculate RTO. For simplicity, in our experiment we chose

a fixed value of 1500 ms. This value approximates the RTO when network failure or congestion

occurs in the corresponding OPNET scenario. We know that RTO does not change the TCP

performance until network failure and congestion takes place and a segment is retransmitted due to

timeout. Thus our simplification does not change the behavior of TCP. A list of all parameters and

42

their values is presented in Table 3.2.

3.1.2.1 Network failures and SACK

A network failure will result in the loss of multiple consecutive segments. If the size of the receive

buffer for the TCP session does not change over time, the size of the transmission window during

the session is fixed once cwnd becomes greater than rwnd. In the following we focus on the period

during which cwnd is already greater than rwnd because this accounts for the major part of a long

TCP session. Also, the transmission window is normally shifted by one or two segments after the

sender receives an ACK. When considering network failures, we assume that the first n

consecutive segments in the transmission window are discarded. This is equivalent to studying all

the other possibilities (i.e. the loss of segments 2 through n+1, 3 through n+2, etc.) because the

reaction of TCP is invariant under such shifts.

 We define a new metric called Transfer Time Increase, TTI, to quantify the additional time

required to complete the download as a result of the failure:

 TTI = ATT - NTT (3.1)

where ATT stands for Actual Transfer Time of the file when a network failure or congestion are

experienced, and NTT is the Normal Transfer Time when there is no network failure or

congestion.

 In the following, a 10 MB file transfer starts at time 0. The Segment Discarder begins to drop

segments at time 30 seconds. When viewed graphically, the Petri net shows tokens flowing in

different patterns under different segment loss conditions. However, we do not have the liberty of

using a dynamic presentation in this thesis. As an alternative we present explanations based on a

subset of the full Petri net. This subset includes only the places Cwnd, Ssthresh and Pipe, and

the transitions Send Segment, Receive ACK and RTimeout (denoting “Retransmition

Timeout”). These components are all on the sender side of the TCP session.

The resilience behavior of SACK TCP can be categorized into four cases:

 Case 1: No Dropped Segments

 Figure 3.4 illustrates the scenario where no segment is discarded. When the session is first

43

initiated, TCP is in Slow Start. The initial values of cwnd, ssthresh and pipe are 1, 45 and 0,

respectively, as shown in Figure 3.4 (a). After the beginning of the file transfer, cwnd increases by

one for every ACK received until cwnd equals ssthresh. Figure 3.4 (b) shows the state of the Petri

net after the sender receives the first ACK, and Figure 3.4 (c) shows the situation when cwnd

becomes equal to ssthresh. After this, TCP transitions into Congestion Avoidance. Without a

network failure, TCP stays in Congestion Avoidance until the file is completely transferred.

During Congestion Avoidance, cwnd only increases by one every round trip time (RTT). Hence,

although many ACKs arrive at the sender during Congestion Avoidance, the final value of cwnd is

just 125, as shown in Figure 3.4 (d). Note that throughout the file transfer, pipe remains at 0

because there are no segments dropped. In short, when there is no failure and thus no dropped

segments, cwnd increases as ACKs arrive, and ssthresh and pipe remain fixed.

 (a) Initial State (b) After Receiving 1st ACK

 (c) When cwnd Equals ssthresh (d) Final State

Figure 3.4 State Changes without Network Failure or Congestion

0 45 2

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 45 1

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 45 125

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 45 45

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 45 2

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

44

 Case 2: Dropped Segments, Duplicate ACKs and No Timeout

 Now we consider the case in which some segments are dropped due to a failure. In this

scenario, although the first several segments in the transmission window are discarded, the rest of

the segments arrive at the client. The idea that the session will persist across the span of a network

failure may appear odd, but recall that current physical-layer restoration mechanisms will react

within 50 ms or less. For a client receiving data at 1.5 Mbps in 1460 byte segments, a 50 ms

failure corresponds to a loss of no more than 7 segments.

 Recall that the concepts of “duplicate ACK” and “Partial ACK” were mentioned in Section

2.1. Namely, a “duplicate ACK” is defined as an acknowledgement for a segment that has been

acknowledged before. A “Partial ACK” is defined as an acknowledgement received during Fast

Recovery that acknowledges new data, but does not acknowledge all the segments that were

outstanding when TCP switched into Fast Retransmit/Fast Recovery.

 In Case 2, the arrival of the segments following those that were dropped during the failure

triggers the client to send out duplicate ACKs, in order to request the segments that were dropped.

TCP transitions into Fast Retransmit/Fast Recovery after the sender receives three duplicate ACKs.

It then retransmits the earliest unacknowledged segment and sets pipe to the number of

outstanding segments (nO). In normal conditions, nO should be equal to the size of the receiver

window, rwnd, which as stated earlier is equal to 23. However, during Fast Retransmit/Fast

Recovery, three duplicate ACKs indicate that three segments have been received successfully, but

out of order. Thus nO should be decreased to (rwnd – 3). nO is further decremented to [(rwnd –3)–

1] = (rwnd – 4) because the sender assumes that one segment has been dropped. After the earliest

unacknowledged segment is retransmitted, nO is increased to [(rwnd – 4) +1] = (rwnd – 3) because

one more segment has been inserted into the network. In our file transfer example, pipe is set to

(23 – 3) = 20. RFC 3517 [38] also requires the sender to set ssthresh and cwnd to �rwnd / 2� which

in this scenario is �23 / 2� =11. Thus, we have:

 � �2/rwndcwnd = (3.2)

 We now discuss the particular instance of the file transfer example where 14 segments are

45

dropped. TCP starts from the state shown in Figure 3.4 (a); cwnd increases exponentially from the

time at which the session is started until the time at which the failure occurs. The state of the Petri

net model immediately before the failure is shown in Figure 3.5 (a). Just before the failure, cwnd

has a value of 98, which is greater than rwnd. After the failure, TCP receives three duplicate ACKs,

and transitions into Fast Retransmit/Fast Recovery, setting its parameters accordingly. The state of

the Petri net at that moment is shown in Figure 3.5 (b).

 (a) State Before the Failure

(b) After Fast Retransmit/Fast Recovery (c) pipe Less Than cwnd

 (d) Fast Recovery Termination (e) Final State in Case 2

Figure 3.5 State Changes for 14 Dropped Segments

0 45 98

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

20 11 11

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

10 11 11

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 11 11

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 11 78

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

46

 Recall that pipe is the sender’s estimate of the number of outstanding segments in the

network. During Fast Recovery, pipe is increased by one when the sender transmits any segment.

This could be either a retransmission of an old segment or the first transmission of a new segment.

pipe is decreased by one for each duplicate ACK received because the duplicate ACK is a signal

from the receiver that a segment has left the network. For each Partial ACK, pipe is decreased by

two because a Partial ACK indicates that two segments have left the transmission link: the original

segment that is assumed to have been dropped, and the retransmitted segment. The sender does not

transmit any segments during Fast Recovery until pipe becomes less than cwnd. At that time, the

sender will check the scoreboard and either retransmit the earliest unacknowledged segment, or

transmit a new segment when there are no unacknowledged segments.

 We use nD to denote the number of duplicate ACKs that have been received by the sender by

the time that pipe has just become less than cwnd (i.e. pipe = cwnd -1) due to duplicate ACKs and

the first Partial ACK. Note that when TCP transitions into Fast Retransmit/Fast Recovery, pipe is

set to (rwnd – 3) and the earliest unacknowledged segment is retransmitted. This retransmission

will lead to a Partial ACK if the ACK triggered by the retransmission will not take TCP out of Fast

Retransmit/Fast Recovery. This Partial ACK will decrease pipe by two, so that pipe = [(rwnd - 3) -

2] = (rwnd – 5). In addition, pipe will be decreased by nD when the duplicate ACKs arrive. Thus

we have:

 1)5(−=−− cwndnrwnd D (3.3)

So:

 4−−= cwndrwndnD (3.4)

From Eq. 3.2 and 3.4, we have:

 � � 42/ −−= rwndrwndnD (3.5)

If we use nC,S to denote the number of segments dropped in this case, we arrive at:

 , / 2 4C S Dn rwnd n rwnd= − = +� �� � (3.6)

We will refer to nC,S as the “critical number” for reasons which will become clear subsequently.

47

 In the normal state the receiver only sends out an ACK for every second full-sized segment,

or within 200ms of the arrival of the first unacknowledged segment. Also, out-of-order segments

must be acknowledged immediately [36]. Thus when the first out-of-order segment in the window

arrives, if there is no unacknowledged segment at the receiver, this segment will trigger the

receiver to send out a duplicate ACK. We call this a Type I failure. If instead the first out-of-order

segment arrives within 200 ms of an unacknowledged segment, the receiver will not send out a

duplicate ACK. The receiver will only transmit an acknowledgement of the

previously-unacknowledged segment. We call this a Type II failure. In both Type I and Type II

failure, each segment following the first out-of-order segment results in a duplicate ACK.

ack 2

ack 5

segment 4

segment 5

ack 2

ack 6
0.333
0.332
0.325
0.324

segment 3

segment 2

segment 7

segment 1

ack 4

Type II Failure

Sender Receiver

0.001

0.242
0.244
0.245

0.291
0.292
0.293

0.294
0.295

0.341

0.349

0.026
0.226

0.267
0.274
0.275

0.316

segment 4

segment 3

segment 2

segment 6 (dropped)

segment 7

segment 1

ack 4

Type I Failure

Sender Receiver

0.001

0.242
0.244
0.245

0.291
0.292
0.293

0.294
0.295

0.341

0.349

0.026
0.226

0.267
0.274
0.275

0.316
0.324

0.325

0.333
0.332

ack 6

segment 6

segment 5 (dropped)

ack 5

Figure 3.6 Data Flow of Type I Failure and Type II Failure (in seconds)

 Figure 3.6 presents the initial data flow of two scenarios to illustrate the difference between

Type I failure and Type II failure. The instance where the sixth segment is dropped is a Type I

failure, and that where the fifth segment is dropped is a Type II failure. Eq. 3.6 above applies to

Type I failure. For Type II failures, Eq. 3.6 must be modified slightly, decreasing nC,S by one to

48

account for the segment triggering the ACK for the previously-unacknowledged segment. Thus,

we have:

 , / 2 4C Sn rwnd= +� �� � (Type I failure)

 , / 2 3C Sn rwnd= +� �� � (Type II failure) (3.7)

 The instance of the file transfer example in which 14 segments are lost illustrates a Type II

failure, so nC,S is 14. If nC,S or fewer segments within the transmission window are dropped, there

are still many segments that arrive at the receiver, triggering a large number of duplicate ACKs.

These duplicate ACKs, possibly together with the Partial ACK due to the first retransmission when

TCP transitions into Fast Retransmit/Fast Recovery, are enough for the sender to make pipe less

than cwnd. Then the sender can retransmit other dropped segments after retransmitting the earliest

unacknowledged segment when it first switches into Fast Retransmit/Fast Recovery.

 In the instance that 14 segments are dropped, Figure 3.5 (c) shows the state of the Petri net

when pipe first becomes less than cwnd. After this, the sender keeps transmitting segments until a

non-duplicate ACK arrives acknowledging all data that was outstanding when Fast

Retransmit/Fast Recovery was entered. Then TCP exits Fast Retransmit/Fast Recovery. Because

cwnd is equal to ssthresh after TCP gets back to its normal state, TCP is actually in Congestion

Avoidance after Fast Retransmit/Fast Recovery. Figure 3.5 (d) illustrates the state of the Petri net

at this moment. TCP stays in Congestion Avoidance until the file transfer is finished, and the final

state of the Petri net is shown in Figure 3.5 (e). In the 10 MB file transfer example, cwnd has a

final value of 78 instead of 125 due to the impact of the network failure. In the instances where

from 1 to 13 segments are dropped, cwnd, ssthresh and pipe change in a similar fashion to the

instance of 14 dropped segments. Thus from 1 dropped segment to 14 dropped segments, there is

no significant difference in terms of TTI.

Case 3: More Than nC,S Segments Dropped, Timeout Occurs

 If more than nC,S segments in the transmission window are dropped and there are still at least

three (in Type I failure) or four segments (in Type II failure) remaining in the window, SACK TCP

can still transition into Fast Retransmit/Fast Recovery and retransmit the earliest unacknowledged

49

segment. This is because the segments left in the transmission window can still trigger at least

three duplicate ACKs. However, these duplicate ACKs together with the ACK due to the first

retransmission will never make pipe less than cwnd.

 (a) Lowest Posssible Value of pipe =11 (b) Retransmission Timer Timeout

 (c) cwnd Equals ssthresh (d) Final State

Figure 3.7 State Changes for 15 Dropped Segments

 We use the instance of the file transfer example where 15 segments are dropped to illustrate

SACK TCP resilience in Case 3. The protocol goes through the same process as in Case 2 until the

transition to Fast Retransmit/Fast Recovery. However, after the transition to Fast Recovery pipe

cannot become less than cwnd. For the instance where 15 segments are dropped, Figure 3.7 (a)

shows the state of the Petri net when pipe reaches its minimum value of 11. This is equal to, but

not less than the current cwnd value of 11. Thus the sender will not retransmit other dropped

segments after retransmitting the earliest unacknowledged segment. It will simply wait until

timeout occurs. Then TCP will transition into Slow Start. At that time, cwnd is set to one and then

starts increasing. In these circumstances, the transition RTimeout will fire. As a result, cwnd is

0 11 11

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 11 1

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

0 11 78

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

11 11 11

Send Segment

Cwnd Ssthresh Pipe RTimeout

Receive ACK

50

changed to 1 and pipe is set back to 0. The state of the model at that point is presented in Figure

3.7 (b).

 After this, TCP starts from the beginning, following the process presented in Case 1. That is,

cwnd first increases exponentially. After cwnd becomes equal to ssthresh, illustrated by Figure 3.7

(c), TCP switches into Congestion Avoidance. After the failure, ssthresh is 11 instead of the

original 45. In the file transfer example, TCP remains in Congestion Avoidance until the session is

terminated. The final state is presented in Figure 3.7 (d).

 The overall transfer time increases significantly in this case because timeout takes place. This

is why we call nC,S the “critical” number of segments dropped. At or below this number, TCP will

not experience timeout. However, when more than nC,S segments are lost, TCP is doomed to

timeout and suffer a significant performance degradation due to timeout. In addition, setting cwnd

back to 1 after the failure also impacts TCP performance after the failure because the available

bandwidth is not fully utilized. In short, SACK TCP suffers significantly in this scenario. In the

file transfer example, this sequence of events occurs in the instances where 15 to 19 segments are

dropped.

 If less than three (in Type I failure) or four (in Type II failure) segments remain in the

transmission window, Fast Retransmit/Fast Recovery will not occur because there will be less than

three duplicate ACKs. This also leads to timeout. When the retransmission timer expires TCP will

transition into Slow Start. In this scenario, TCP switches into the timeout state shown by Figure

3.7 (b) directly from the state shown in Figure 3.5 (a), without going through the pipe decrease

process illustrated by Figure 3.7 (a). During the rest of the file transfer, TCP experiences the same

sequence of events after timeout occurs as in the instances of 15 to 19 dropped segments. In the

file transfer example, the instances where 20 to 23 segments are dropped belong to this category.

There is no significant difference in terms of TTI between the instances of 15 to 19 dropped

segments, and those where 20 to 23 segments are dropped. This is because timeout is the main

factor influencing transfer time increase. Hence, although TCP does not experience Fast

Retransmit/Fast Recovery in the instances of 20 to 23 dropped segments, it still suffers timeout

51

and we categorize these instances as Case 3.

 For TCP, resorting to timeout is very costly. RFC 2988 [35] specifies that the value of the

timeout should be at least 1 second. If SACK TCP does not experience timeout it can recover

relatively quickly. There is some performance degradation in a non-timeout case due to the

reduction in cwnd. However this is not very serious compared to the impact of the session having

to wait at least 1 second for timeout. Thus, the increase in TTI from Case 2 to Case 3 is large.

 Case 4: Retransmitted Segment Also Dropped

 If the network failure lasts long enough that the segment retransmitted due to timeout is also

dropped, performance decreases again. This is because when the first retransmitted segment is sent

out, the retransmission timer has been doubled [35]. If the retransmission fails, the sender will

wait for twice the previous RTO before timing out and retransmitting the earliest unacknowledged

segment a second time. This corresponds to the instance of the file transfer example in which 24

segments are dropped. In this case, TCP first switches from Congestion Avoidance into Slow Start

because of the first timeout. It stays in Slow Start until the second timeout occurs. Then TCP

retransmits the earliest unacknowledged segment again. If this second retransmission is successful,

after receiving the acknowledgement for the second retransmission, cwnd starts increasing. Then

the session follows the process discussed in Case 1 until the end of the transfer. In terms of state

transitions, the behavior of the file transfer in Case 4 is very similar to the instances of 20-23

dropped segments. The difference is that TCP has to wait much longer in Case 4 before cwnd

starts increasing exponentially. Waiting for twice the previous RTO increases TTI significantly. If

the second retransmission also fails, the timeout doubling process goes on until TCP gives up on

the session.

 In the file transfer example, any segments discarded after the first 23 are actually outside the

current transmission window. However, because they are not normal segments but segments

retransmitted due to timeout, and their loss has a significant impact on SACK TCP resilience, we

have documented these instances as well.

Figure 3.8 presents the performance of the SACK TCP file transfer example as a graph of

52

TTI as a function of the number of dropped segments. From 1 to 14 dropped segments, TTI does

not increase much. At 15 dropped segments, TTI increases dramatically. Once 24 segments are

dropped, TTI increases dramatically again. The large increases in TTI correspond to the instances

where first one and then two timeouts occur.

Figure 3.8 Performance during Congestion and Failure

3.1.2.2. Network Congestion and SACK

To study the impact of network congestion on SACK TCP, the Segment Discarder can be

configured to simulate losses of nonconsecutive segments. As with consecutive segment loss we

consider those transmission windows in which the first segment is dropped. In the file transfer

example, the transmission window has room for 23 segments. If we study only those instances

where the first segment is dropped, there are 222 or about 4 million possible different sequences of

segments being either successfully received or dropped. To study this large set of possibilities, we

use the Petri net model in simulation mode to sample the behavior of the protocol. For the file

transfer example, we ran the model ten times for each possible number of nonconsecutive discards,

from 1 to 23. Each time, the segment discarder generated a different drop pattern. These runs

could more accurately be characterized as “not necessarily consecutive discards” because it is still

possible for consecutive segments to be discarded. However, the loss pattern does allow for

nonconsecutive discards, whereas the earlier study of link failure enforced strictly consecutive

losses. Table 3.3 illustrates ten runs during each of which 5 segments are discarded. In the first run,

53

segments 1, 4, 10, 16, 22 are dropped.

Table 3.3 Simulation Runs

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9
Run

10

1st Drop 1 1 1 1 1 1 1 1 1 1

2nd Drop 4 3 3 3 3 3 3 3 3 3

3rd Drop 10 8 4 4 6 5 17 8 5 10

4th Drop 16 14 5 10 11 10 18 13 14 11

5th Drop 22 21 14 13 22 19 20 15 22 21

Table 3.4 Comparison between Network Failure and Congestion

 When subjected to these loss patterns, the numerical results show that SACK TCP behaves

almost the same during congestion as during a network failure, both in terms of Petri net

transitions and in terms of TTI. In the file transfer example, from 1 to 14 dropped segments, Fast

Retransmit/Fast Recovery is triggered, but timeout does not occur. As a result, TTI does not

change much. When it comes to 15 drops, timeout takes place and TTI increases significantly.

After that, TTI remains nearly constant until 24 segments are dropped whereupon TTI increases

significantly again. Hence, whether the dropped segments are consecutive or not does not matter –

it is the absolute number of dropped segments that is important. This is because the segments in

the current transmission window following the first dropped segment will all lead to duplicate

ACKs. As long as the number of segments that are transmitted successfully remains the same,

there will be the same number of duplicate ACKs arriving at the sender. As a result TCP behaves

in the same manner for congestion events as it does during network failures, as long as the number

Cases 5 Drops 9 Drops 14 Drops 15 Drops 19 Drops

TTI Mean (Network Congestion) 0 s 0.000479 s 0.086865 s 1.911193 s 1.917387 s

TTI Variance (Network Congestion) 0 2.29E-06 0.000171 8.32E-05 1.15E-05

TTI (Network Failure) 0 s 0 s 0.082161 s 1.961781 s 1.918702 s

Cases 20 Drops 21 Drops 22 Drops 23 Drops 24 Drops

TTI Mean (Network Congestion) 1.928925 s 1.926476 s 1.927976 s 2.139896 s 4.539896 s

TTI Variance (Network Congestion) 2.80E-05 1.05E-08 1.07E-05 0 0

TTI (Network Failure) 1.926474 s 1.926474 s 1.926474 s 2.139896 s 4.539896 s

54

of dropped segments is the same. Table 3.4 summarizes the sample mean and variance of TTI in

the file transfer example for situations of network congestion. The TTI for the network failure

scenario is also included for comparison.

3.2 NewReno TCP Resilience

In Section 3.1, we talked about SACK TCP resilience in the case of network failures and

congestion. In Section 3.2, 3.3, and 3.4, we are focused on the reaction of TCP to network failures.

Specifically, we present the general resilience performance of NewReno and Reno TCP in Section

3.2 and 3.3, respectively; the detailed resilience performance of SACK, NewReno, and Reno TCP

in the scenario of network failures is discussed in Section 3.4. In this section, we describe the

details of our simulations and present NewReno TCP resilience.

3.2.1 Simulation

We carried out simulations using OPNET [66] to study the resilience of SACK, NewReno, and

Reno TCP in the case of network failures. The experimental results illustrated the resilience

behavior of SACK, NewReno, and Reno TCP. As mentioned previously, the results were also

used to validate our Petri net model of SACK TCP. For this study, a client and server are

connected across a continental-scale network. Each node is connected to a local router via a

high-speed LAN link. The local routers are connected to the core network via access links. Three

access link rates are commonly used in real-life systems: DS0 (64 Kbps), DS1 (1.544 Mbps) and

OC-3c (155 Mbps). Based on the fact that servers are usually connected to the Internet via

high-speed links while client-side access link rates vary a lot, our simulation fixes the server-side

access at OC-3c and varies the client-side access link from DS0 to DS1 and OC-3c. The core

network in our simulation has an NSFNET-like topology shown in Figure 3.9. Core routers (Cisco

12008) are connected via OC-192, which is common in backbone networks nowadays. The client

resides in Palo Alto and the server is located at Princeton.

As shown in Figure 3.9, a packet discarder model, used to simulate outages, is on the link

connecting Salt Lake City to Palo Alto. We can specify either the number of packets to be dropped

or a certain time period during which all packets are dropped. Our experiments simulate a

55

unidirectional failure of packets going from Salt Lake City to Palo Alto (i.e. in the server-to-client

path). Packets traveling the other way get to their destination safely. A unidirectional failure would

be unusual in a transport network. However, this assumption was made by many network

researchers to reflect the reality of today’s Internet: routes for IP packets are often asymmetric

[12]. Thus a failure in the underlying network will often only affect a session in one direction.

Figure 3.9 Core Network Topology

There is only one routing domain in our simulations, and the NSFNET-like topology is

relatively old. However, this thesis focuses on the TCP-layer view of failures. That is, this thesis

tries to find out, in the absence of any compensating mechanisms, how TCP congestion control

mechanisms will react to outages. This first-step experiment generated many valuable results. We

believe it is an important first step in understanding TCP resilience thoroughly.

 The receiver window rwnd advertised by the receiver plays an important role in TCP

performance. During a TCP session, the sending TCP continuously compares the outstanding

unacknowledged traffic with cwnd and rwnd. Whenever the outstanding traffic is less than the

smaller of these two variables by at least one SMSS (sender maximum segment size), the sender

will send out some segments if there are any waiting to be sent. Note that rwnd is different from

the receive buffer because rwnd only represents the space that has not been occupied in the receive

buffer. However, for simplicity, we assume that any data is read immediately after it is written into

the buffer. Thus, in our research, rwnd is a constant that is always equal to the receive buffer.

Generally the receive buffer size (rbuff) is set as:

 bandwidth * round-trip-time * rbuff r= = τ (3.8)

56

where r stands for bandwidth and τ is round-trip-time (RTT). Namely, in TCP, rwnd should be set

using Eq. 3.8. This is commonly called the bandwidth-delay product [1].

 The TCP session in our simulation must be long enough to test scenarios with varying failure

durations. We chose FTP as the application-layer protocol and made the transmitted file large

enough to fulfill this requirement. For DS0, DS1 and OC-3c client-side access links, we used 5

MB, 10 MB and 20 MB files, respectively. In reality, the duration of TCP flows covers a very

large range. Although there are many short flows in terms of number, long-running flows account

for up to 50% of all traffic [82]. Our research focuses on long-running TCP flows.

3.2.2 NewReno TCP Resilience Performance

We use a scenario with DS1 client access and 32 KB receiver window as a typical example to

illustrate the general behavior of NewReno TCP in the case of network failures. Reno TCP general

behavior in the DS1-32KB case will be presented in Section 3.3. Note that actually the general

behavior of SACK TCP has already been presented using Petri nets in Section 3.1. In our

simulations, SMSS is 1460 bytes; cwnd and ssthresh were initialized to 1460 bytes and 64KB,

respectively. By 32KB or 64KB, we mean a multiple of SMSS that is just above 32KB or 64KB.

For clarity, we consider 1460 byte segments as the data units. Thus, cwnd, rwnd, and ssthresh

were equal to 1, 23, and 45, respectively.

 In our example, a long NewReno TCP session starts at time 0 and the Packet Discarder

begins to drop packets at 30 seconds, as shown in Figure 3.10. The four curves in Figure 3.10

illustrate the changes in the sender’s congestion window over time in four different cases. Before

the failure starting point (marked by “X”), the four curves overlap each other because during that

period they describe essentially the same conditions. After point “X”, they split into four different

curves.

 When the TCP session starts, the congestion window is equal to one and TCP is in

Slow Start. cwnd increases exponentially as the sender receives acknowledgements, until

cwnd equals ssthresh (initially ssthresh is 45). The sparse points at the beginning of the

curve correspond to this Slow Start period. Then TCP transitions into Congestion

57

Avoidance during which cwnd increases by one every RTT. This increase is

comparatively slow and as a result the points for the Congestion Avoidance period are

very close together. Without a network failure, TCP stays in Congestion Avoidance until

the file is completely transmitted and the TCP session is terminated. This is shown by the

curve labeled “0 Drop”.

Figure 3.10 Congestion Window vs. Transfer Time (NewReno DS1-32K Case)

 Now we consider the case in which some segments are lost during a failure. In this case, after

the lost segments, the client receives subsequent segments over the restored link. As the result, the

sender gets three duplicate ACKs. Then it transitions into Fast Retransmit/Fast Recovery and

retransmits the earliest unacknowledged segment. It also sets ssthresh and cwnd to �rwnd / 2� and

(�rwnd / 2� + 3), respectively. If we use nC,NR to denote the critical number of lost segments when

there are just enough subsequent surviving segments in the window of data to trigger three

duplicate ACKs, it is easy to know usually the critical number is equal to (rwnd - 3). Due to the

TCP acknowledging mechanism illustrated in Section 3.1.2.1, we can get the following formula:

,

 - 3 in T ype I Failure
 =

 - 4 in Type II Failure
C NR

rw nd

n

rw nd

�
�
�
�
�

 (3.9)

Note that the NewReno DS1-32K example also illustrates a Type II failure, thus nC,NR is 23 - 4

=19.

58

 If less than nC,NR segments in a window of data are lost, enough surviving segments can

arrive at the receiver and trigger enough duplicate ACKs to make TCP transition into Fast

Retransmit/Fast Recovery. In this case, the earliest unacknowledged segment is retransmitted and

the retransmission leads to a partial ACK. The partial ACK will then make the sender retransmit

the earliest unacknowledged segment at that moment. This retransmitted segment will result in

another partial ACK, and thus leads to another retransmission. This process goes on until a

non-duplicate ACK arrives acknowledging all data that was outstanding when TCP transitioned

into Fast Retransmit/Fast Recovery, then TCP switches into Congestion Avoidance by setting

cwnd back to ssthresh. We should note that each time the sender receives a partial ACK, it does

one retransmission and thus recovers one lost segment. Namely, it takes NewReno TCP a whole

RTT to recover one lost segment. Thus in a sense, RTT determines the final TTI value. If RTT is

comparatively long, TTI increases dramatically with the number of lost segments; otherwise, TTI

almost remains unchanged. In the NewReno DS1_32K case, RTT is relatively small, thus TTI

does not increase much. In this case nC,NR is 19, so from 1 lost segment to 19 lost segments, all the

curves are similar. For clarity, we only include the 19-drop curve in Figure 3.10.

 SACK TCP has a different mechanism to deal with partial ACKs. In Section 3.1.2.1, we have

mentioned that pipe is decremented by one for each additional duplicate ACK, but it is decreased

by two rather than one for each partial ACK. This additional decrease in pipe results in a faster

recovery process: one partial ACK leads to two retransmissions. The two retransmissions will

trigger another two partial ACKs and eventually will lead to another four retransmissions. This

process goes on until a non-duplicate ACK arrives acknowledging all data that was outstanding

when TCP transitioned into Fast Retransmit/Fast Recovery. Hence, within one RTT, usually many

more lost segments can be recovered with SACK TCP than with NewReno TCP. This is why with

SACK TCP, TTI does not increase much when less than nC,S segments within one window are lost,

regardless of the length of RTT. In contrast, the TTI of NewReno is influenced by RTT in this

situation.

59

 On the other hand, if more than nC,NR segments in a window of data are dropped, Fast

Retransmit/Fast Recovery will not occur because there will not be enough duplicate ACKs. This

leads to timeout. When the retransmission timer expires TCP will transition into Slow Start and

retransmit the first lost segment. In this scenario, timeout plays the major role in terms of TTI, and

thus the overall transfer time does not increase much with the number of lost segments. In the

NewReno DS1_32K case, from 20 lost segments to 23 lost segments, all the curves are similar.

We only include the 20-drop curve in Figure 3.10 for clarity.

Figure 3.11 TTI vs. No. of Lost Segments (NewReno DS1-32K case)

Figure 3.12 Congestion Window vs. Transfer Time (SACK DS1-32K Case)

60

 If the network failure lasts long enough so that the segment retransmitted due to timeout is

also dropped, NewReno TCP will experience the same doubling calculation that is illustrated in

Section 3.1.2.1. A similar 24-drop curve is included in Figure 3.10. For clarity, we did not include

the curves of 25, 26, etc. dropped segments. Figure 3.11 illustrates the overall trend by presenting

TTI changes vs. the number of dropped segments. We presented the figure of “TTI changes vs. the

number of dropped segments” for SACK TCP in Section 3.1.2.1. For comparison and

completeness, the way that cwnd changes with transfer time in the case of SACK TCP is

summarized in Figure 3.12.

3.3 Reno TCP Resilience

For Reno TCP, again, we use a similar experimental setup. As shown in Figure 3.13, a long Reno

TCP session also starts at time 0 and the Packet Discarder begins to drop packets at 30 seconds.

Before the failure starting point (marked by “X”), the four curves overlap; after point “X”, they

split into four different curves. Similarly, the curve labeled “0 Drop” is the same one presented in

Section 3.3.1.A. Without network failures SACK and Reno TCP behave in the same fashion.

Figure 3.13 Congestion Window vs. Transfer Time (Reno DS1-32K Case)

 Now we consider the case in which one segment is lost during a failure. As a result of the

client receiving subsequent segments, TCP transitions into Fast Retransmit/Fast Recovery after the

sender gets three duplicate acknowledgements. The sender retransmits the earliest

61

unacknowledged segment, sets ssthresh to �rwnd / 2� and sets cwnd to (�rwnd / 2� + 3). For each

additional duplicate ACK, cwnd increases by one. This process goes on until the retransmitted

segment reaches the receiver and a new ACK acknowledgement for all outstanding segments is

received by the sender. At that point cwnd is set back to the current ssthresh, and Congestion

Avoidance starts again because cwnd is now equal to ssthresh. In short, Reno TCP can usually

recover effectively from the loss of one segment. The overall transfer time does not increase much

in this case.

 Losing two segments makes a difference. Before the ACK for the first retransmission is

received by the sender, the recovery process is similar to that when only one segment is lost. As

before, the ACK for the first retransmission only acknowledges the first lost segment. This

segment has been retransmitted due to Fast Retransmit/Fast Recovery, while the second lost

segment has not been retransmitted yet. The Fast Retransmit/Fast Recovery algorithm in Reno

TCP assumes that only one segment has been lost, so the sender does not immediately retransmit

the second lost segment. Because two segments have been lost, TCP will eventually time out, and

switch into Slow Start. TCP will have to retransmit the earliest segment that has not been

acknowledged, which in this case is the second lost segment. This timeout results in the large gap

between the 1-drop and 2-drop curves in Figure 3.13.

 In the case of more than two lost segments, if there are still three or more non-retransmitted

segments following the lost segments that arrive at the receiver, enough duplicate ACKs will reach

the sender to trigger Fast Retransmit/Fast Recovery. In this scenario, losing more than two

segments leads to the same recovery process as losing two segments. On the other hand, if less

than three segments follow the lost segments, Fast Retransmit/Fast Recovery will not occur

because there will not be enough duplicate ACKs. When the retransmission timer expires, TCP

transitions into Slow Start and retransmits the first lost segment. Although TCP experiences

different transitions than in the case of two lost segments, total transfer time does not increase

dramatically because timeout is the main factor. Hence, from 3 lost segments to 23 lost segments,

all the curves are similar to the 2-drop curve in Figure 3.13.

62

 If the network failure lasts long enough so that the segment retransmitted due to timeout is

also dropped, things change again. This is because when the retransmitted segment is sent out, the

retransmission timer has been doubled. If the retransmission fails, the sender will wait for twice

the previous RTO before timing out and retransmitting the earliest unacknowledged segment again.

This corresponds to the 24-drop curve in Figure 3.13. If the repeated retransmission does not

succeed, the sender has to wait for four times the original RTO to retransmit a third time. This

process goes on until TCP gives up this connection. For clarity, we did not include the curves of

25, 26, etc. segments dropped, but it is not difficult to imagine what they should look like in

Figure 3.13. We can observe the Reno TCP general behavior in terms of TTI in Figure 3.14.

Figure 3.14 TTI vs. No. of Lost Segments (Reno DS1-32K Case)

3.4 Several Details of TCP Resilience

The bandwidth-delay product, rτ, is commonly used to size rwnd. In our simulations, the RTT for

DS0, DS1 and OC-3c access is 210ms, 41ms and 26ms respectively, so rτ has values of 1680,

7913 and 505440 bytes respectively. For each access link rate, we experimented with 8 different

rwnd sizes, from 8 KB to 1024 KB. By 8 KB, we mean a multiple of SMSS that is just above 8

KB. For example, in our simulation, SMSS is 1460 bytes, so by 8 KB, we mean 1460 * 6= 8760

bytes.

63

3.4.1 SACK TCP Details

We have demonstrated that losing less than nC,S segments typically does not increase SACK TCP

transfer time significantly. Losing (nC,S + 1) segments makes a difference, and subsequent losses

have little impact until it comes to the loss of the retransmitted copy. To link the number of lost

segments to outage duration, we define SACK Level-1 Fault Tolerance Time (τ1,S) as the period

from the moment network failure occurs to the moment just before the segment following the

dropped nC,S segments arrives. We define SACK Level-2 Fault Tolerance Time (τ2,S) as the period

from the moment network failure occurs to the moment just before the copy retransmitted due to

timeout arrives. Thus τ1,S is the time during which (�rwnd / 2� + 4) or (�rwnd / 2� +3) segments

pass the failure point. In our simulations, this is mostly influenced by the client access rate, which

is essentially the bandwidth of “r” used to calculate the bandwidth-delay product, so that:

1,S

((/ 2 4) *SMSS) / in Type I Failure

((/ 2 3) *SMSS) / in Type II Failure

rwnd r

rwnd r

� � � +
�τ = �
� � � +�

 (3.10)

Obviously, τ1,S increases with rwnd. If rwnd is large enough so that we can approximate τ1,S as

follows:

1,S ((/ 2 *SMSS) /rwnd rτ = � �) (3.11)

then τ1,S approximately doubles as rwnd doubles. This is illustrated in Figure 3.15, 3.16 and 3.17.

τ2,S is not as straightforward because it is slightly greater than RTO, and RTO is influenced by

many factors [1]. RTO usually increases with rwnd, and has a minimum value of 1 second. Thus,

when RTO is greater than 1 second, τ2,S increases with rwnd. In our experiments, when the client

access is DS0 or DS1, the RTO is greater than 1 second, resulting in τ2,S increasing with rwnd. For

example, τ2,S ,corresponding to the second significant TTI increase, is around 3.8 seconds in the

case of DS0-8K and it is about 6.4 seconds in the scenario of DS0-16K. The details are illustrated

in Figure 3.15 and 3.16. When RTO is at its minimum of 1 second, τ2,S does not change much and

is independent of rwnd. In our experiments, when the client access is OC-3c, the RTO is fixed at 1

second, leading to an independent τ2,S. Figure 3.17 shows that no matter how large rwnd is, the

64

second significant TTI increase always takes place at around 1.3 seconds. In any case, τ2,S is

always greater than 1 second.

 Either τ1,S or τ2,S can be chosen as a restoration objective. If the restoration can be finished

within τ1,S, the overall transfer time will not increase much in the case of network failures. If the

restoration time is in the range of τ1,S to τ2,S, the overall transfer time is increased but it is

guaranteed that the TTI is a fixed value. Other thresholds can be defined on the basis of a third

timeout and so on. However, we know that τ2,S is certainly greater than 1 second. This is already

much larger than the de facto target of 50 ms.

 0.1

 1

 10

 100

 0.1 1 10 100

Tr
an

sm
is

si
on

 T
im

e
In

cr
ea

se
 (s

)

Outage Duration (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.15 TTI vs. Outage Duration (SACK DS0 Access)

 0.1

 1

 10

 0.01 0.1 1 10

Tr
an

sm
is

si
on

 T
im

e
In

cr
ea

se
 (s

)

Outage Duration (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.16 TTI vs. Outage Duration (SACK DS1 Access)

65

 1

 2

 3

 4

 5

 6

 0.0001 0.001 0.01 0.1 1

Tr
an

sm
is

si
on

 T
im

e
In

cr
ea

se
 (s

)

Outage Duration (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.17 TTI vs. Outage Duration (SACK OC-3c Access)

An interesting observation is that TTI is not always greater than outage duration. When rwnd

is greater than rτ, some segments will be buffered in the network. These buffered segments help

keep traffic flowing between the sender and the receiver in the case of network failures. Thus TTI

could be shorter than outage duration in some scenarios. We can observe this trend in Figure 3.15

and 3.16.

 There are some exceptions to these typical cases. First, the 512 KB and 1024 KB curve in

Figure 3.15 illustrate situations in which very large receive buffers lead to a calculated value of

RTO that is greater than the TCP-defined maximum of 64 seconds. This puts TCP into Slow Start

many times unnecessarily and dramatically changes the normal recovery process. Thus the 512

KB and 1024 KB curve are very irregular. Secondly, in Figure 3.17, we note that a 1024 KB

buffer mostly leads to a shorter TTI than does a 512 KB buffer. This is exceptional because

generally TTI increases with rwnd. However, the bandwidth-delay product for OC-3c access is

505440 B, and after the failure ssthresh is set to half the current flight size, which is around 256

KB in the case of a 512 KB buffer. Setting ssthresh to a value less than rτ hurts link utilization and

leads to a longer TTI. Thirdly, in Figure 3.17, we observe that when outage duration is between

τ1,S and τ2,S, TTI decreases dramatically with outage duration. This is again the result of the large

value of rτ. When outage duration is in this range, the sender times out and finally gets into

66

Congestion Avoidance. In the case of OC-3c access, cwnd increases with the number of lost

segments (corresponding to longer outage duration) when TCP transitions into Congestion

Avoidance. In this scenario, the network connection is not fully utilized after the failure because

cwnd is always less than rτ, so a larger cwnd due to longer failure time leads to shorter TTI.

Fourthly, in Figure 3.17, after τ1,S, TTI increases as the rwnd increases from 8 KB to 256 KB and

it decreases as the rwnd increases from 256 KB to 512 KB. We know that in the case of OC-3c

access rτ is 505440 bytes. Hence, the curves for 8 KB to 256 KB are for receiver window sizes of

less than rτ and those for 512 KB to 1024 KB are for sizes greater than rτ. A value for rwnd less

than rτ leads to poorer link utilization and so to larger NTT [1]. NTT is the baseline value used to

calculate TTI in Eq. 3.1. Thus, we have two different classes in terms of TTI, above and below rτ.

They are essentially not comparable.

 The receiver window size plays a significant role in SACK TCP resilience. First, from the

viewpoint of network link utilization, rwnd should be set to at least 2rτ to anticipate the case that

one network failure takes place during the transmission. Anything lower results in impaired

resilience. This is because even if a timeout occurs, ssthresh is still equal to at least rτ when it is

initially set to 2rτ. Secondly, the rwnd should be set as large as possible in order to increase τ1,S.

Finally, when RTO is at its minimum of 1 second, receive buffer size does not affect τ2,S; when

RTO is greater than 1 second, larger receive buffers lead to longer τ2,S. We can observe these

trends in Figure 3.8, 3.9 and 3.10.

3.4.2 NewReno TCP Details

We have illustrated that when less than nC,NR segments are lost, TTI is affected by RTT. Losing

(nC,NR +1) segments makes a difference, and subsequent losses have little impact until it comes to

the loss of the retransmitted copy. We define NewReno Level-1 Fault Tolerance Time (τ1,NR) as

the period from the moment of network failure to the moment just before the segment following

the dropped nC,NR segments arrives. τ1,NR is the time during which (rwnd - 3) or (rwnd - -4)

segments pass the failure point. In our simulation, it is mostly affected by the client access rate,

which is essentially r, so:

67

1,NR

((-3) *) / in Type I Failure

((-4) *) / in Type II Failure

rwnd SMSS r

rwnd SMSS r

�
�τ = �
�
�

 (3.12)

 Apparently, τ1,NR increases with rwnd. If rwnd is large enough so that we can approximate

τ1,NR as follows:

1,NR (*) /rwnd SMSS rτ = (3.13)

then τ1,NR approximately doubles as rwnd doubles. This is illustrated in Figure 3.18, 19 and 20.

From Eq. 3.11 and 3.13, we conclude that τ1,NR is approximately twice as large as τ1,S when rwnd

is large.

 0.1

 1

 10

 100

 0.1 1 10 100

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.18 TTI vs. Outage Duration (NewReno DS0 Access)

 0.1

 1

 10

 0.01 0.1 1 10

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.19 TTI vs. Outage Duration (NewReno DS1 Access)

68

 1

 10

 0.0001 0.001 0.01 0.1 1

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

Figure 3.20 TTI vs. Outage Duration (NewReno OC-3c Access)

 We define NewReno Level-2 Fault Tolerance Time (τ2,NR) as the period from the moment

network failure occurs to the moment just before the copy retransmitted due to timeout arrives.

τ2,NR is essentially the same as τ2,S. So all conclusions about τ2,S also apply to τ2,NR.

 Either τ1,NR or τ2,NR can be chosen as a restoration objective. But with NewReno TCP, if the

restoration can be finished within τ1,NR, the overall transfer time is influenced by RTT. This is

because it takes NewReno TCP one RTT to recover one lost segment, as illustrated in Section

3.2.2. Thus if RTT is relatively small, the overall transfer time does not change much as

restoration time increases; otherwise, TTI increases with restoration time. In Figure 3.18, 3.19 and

3.20, we observe that, when restoration time is less than τ1,NR, TTI does not change much in the

DS0 scenario, but RTT plays a role in the DS1 scenario and TTI increases dramatically with

outage duration in the OC-3c scenario. It is interesting that in the OC-3c scenario, for large receive

buffers, restoration times longer than τ1,NR lead to better resilience (i.e. decreased TTI). In addition,

TTI could be less than outage duration in some cases due to large receiver buffer and this can be

observed in Figure 3.18 and 3.19.

 The exceptions due to large rwnd, ssthresh halving and insufficient rτ presented in Section

3.4.1 also apply to NewReno TCP and they can be observed in Figure 3.18, 3.19 and 3.20. The

exception with SACK TCP that TTI decreases with outage duration when restoration is finished

between τ1,S and τ2,S in the OC-3c access case does not occur in NewReno TCP because with

69

NewReno TCP, after τ1,NR there are only 3 or 4 segments left in the window of data, these

segments do not make a significant change to TTI. For receive buffer sizing, all rules illustrated

for SACK TCP previously also apply to NewReno TCP.

3.4.3 Reno TCP Details

Previously, we demonstrated that losing one segment typically does not change Reno TCP

performance dramatically. However, two losses make a difference, and subsequent losses have

little impact until it comes to the loss of the retransmitted copy due to timeout. Considering the

absolute time period rather than the number of lost segments, we can find the relationship between

TTI and network failure duration. Since two losses make a difference, the segment arrival pattern

and not the raw outage duration determines the final result. The mechanism of generating

acknowledgements is related to the segment arrival pattern. RFC 2581 [36] suggests that an ACK

should be generated for at least every second segment or within 500 ms of the arrival of the first

unacknowledged segment (typically it is 200 ms instead). Based on this mechanism, for DS0

access, an ACK usually acknowledges just one segment and thus triggers transmitting only one

segment; for DS1 access and OC-3c access, the link is so fast that it is usually two consecutive

segments that result in an ACK, which makes the sender transmit segments in pairs. As a result,

for DS0 access, there is usually a 200ms gap between segments. For DS1 access and OC-3c access

(with buffer sizes of 512 K and 1024 K), segments cluster in pairs, and the gaps between two

consecutive clusters are 15ms and 0.15 ms, respectively. If the receive buffer is less than rτ, there

will be some additional gaps because the network is not fully utilized and sometimes the sender

has to wait when actually there are some segments to be transmitted. OC-3c access with buffer

size less than 512 K corresponds to this scenario. Figure 3.21, 3.22 and, 3.23 show the impact of

network failure on Reno TCP performance. For DS0 access with buffer size less than 512 K, 200

ms is a critical value. With a 200 ms restoration time, TCP can guarantee recovery with a

comparatively low impact; if the restoration time is longer, TCP has a much larger transfer time

increase. For DS1 access and OC-3c access, there seem to be no critical points from 15ms to 1s.

Since 15 ms is too small for recovery to be accomplished, 1s is recommended.

70

 The exceptions due to large receive buffers, ssthresh halving and insufficient rτ presented in

Section 3.4.1 also apply to Reno TCP and they can be observed in Figure 3.21, 3.22, and 3.23. The

exception with SACK TCP that TTI decreases with outage duration when restoration is finished

between τ1,S and τ2,S in the OC-3c access case does not apply to Reno TCP because there is no

Level-1 Tolerance time in Reno TCP.

 To size rwnd properly, first of all, rwnd should be set to at least 2rτ to fully utilize network

link capacity in the case of network failure. Secondly, when RTO is at its minimum of 1 second,

rwnd does not affect resilience; when RTO is greater than 1 second, larger receive buffers lead to

better resilience performance. We can observe these trends in Figure 3.21, 3.22, and 3.23.

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1 1.2

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

 Figure 3.21 TTI vs. Outage Duration (Reno DS0 Access)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1 1.2

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

 Figure 3.22 TTI vs. Outage Duration (Reno DS1 Access)

71

 0

 1

 2

 3

 4

 5

 6

 7

 0.0001 0.001 0.01 0.1 1

TT
I (

s)

Outage Time (s)

8k Buffer
16k Buffer
32k Buffer
64k Buffer

128k Buffer
256k Buffer
512k Buffer

1024k Buffer

 Figure 3.23 TTI vs. Outage Duration (Reno OC-3c Access)

3.4.4 Appropriate Restoration Objectives

The results presented here demonstrate that the traditional 50 ms recovery time is not suitable for

TCP transport on the Internet. With SACK TCP, we found two restoration objectives, τ1,S and τ2,S.

τ1,S is given by Eq. 3.10, and τ2,S is closely related to RTO. With NewReno TCP, we also found

two restoration objectives, τ1,NR and τ2,NR. τ1,NR is given by Eq. 3.12, and τ2,NR is essentially the

same as τ2,S. τ1,NR is approximately twice as large as τ1,S when rwnd is large. With Reno TCP, we

found a recovery objective of 200ms for the DS0 access; For DS1 and OC-3c access, there seem to

be no critical points from 15ms to 1s. For SACK TCP, if restoration can be finished within τ1,S,

TTI does not increase much with recovery time. For NewReno TCP, if network failures can be

restored within τ1,NR, TTI is influenced by RTT. If RTT is relatively small, TTI does not change

much; otherwise, TTI increases with restoration time. In addition, we find that TTI could be less

than outage duration in some cases due to large receive buffer.

Table 3.5 Resilience Objectives for SACK, NewReno and Reno TCP

 Types

Access Rates
SACK TCP NewReno TCP Reno TCP

Low-rate Access τ1,S τ1,NR 200ms

High-rate Access τ2,S τ2,NR 1s

 For low-rate access, we recommend τ1,S or τ1,NR to be the recovery objective if SACK and

NewReno TCP are used. This is because in this situation τ1,S or τ1,NR is the threshold after which

72

TTI increases markedly. In the DS0 access scenario, both values are above 600 ms in all

experimental cases. If Reno TCP is the transportation layer protocol, 200ms is recommended.

 For high-rate access, if SACK and NewReno are used, τ2,S or τ2,NR is recommended because

τ1,S or τ1,NR is probably too small to be realistically attainable, and any additional outage up to τ2,S

or τ2,NR does not increase TTI significantly. In the OC-3c access scenario, both τ1,S and τ1,NR are

below 15 ms in almost all experimental cases. Hence, a recovery objective of τ2,S or τ2,NR is

appropriate. In the OC-3c access scenario, τ2,S and τ2,NR are approximately 1 s. For Reno TCP, 1s

can be set to be the recovery objective.

Table 3.5 summarizes the resilience objectives for SACK, NewReno and Reno TCP. For real

systems, Table 3.5 can be used as a guideline to design transport networks carrying TCP traffic.

For example, if the TCP variant used in a transport network (e.g. SONET) is SACK TCP and the

client access rate is DS0, then according to Table 3.5, τ1,S should be adopted as the restoration

target for the transport network. If we can further assume that rwnd is 16 KB, the segment size is

1460 bytes, and the failures involved are Type II Failure, then we will arrive at a restoration

objective of 1643 ms using Eq. 3.10.

73

Chapter 4

Reactive and Proactive Approaches to
Improving SACK TCP Resilience

SACK TCP, the most up-to-date TCP version, was designed to be capable of surviving

multiple segment loss. However, as mentioned previously, if more than nC,S segments in one

transmission window are lost, even if SACK TCP transitions into Fast Retransmit/Fast

Recovery, a timeout will still occur and performance will be degraded dramatically. Also,

SACK TCP tends to send out segments in clusters and congest bottleneck routers, which could

potentially degrade SACK TCP resilience significantly. In this chapter, we present two types of

approaches to improving SACK TCP Resilience. The first approach, “Probing”, is a reactive

approach that is used to solve the avoidable timeout problem. The second approach, “Pacing”,

is a proactive approach that spreads out outstanding segments and reduces the number of

segments queued at bottleneck routers.

 Traditionally, when a change in TCP is proposed, the change is often implemented in

simulation tools, such as ns-2 [67] or OPNET [66]. And usually improvement is reported by

showing the simulation results. However, the correctness of the implementation can never be

proved by simulation itself. Delaying the proof of the correctness to real system implementation is

of high risk and could lead to a significant waste of time and money. Petri nets have well-defined

semantics which unambiguously define the behavior of each Petri net model. These semantics

form the theoretical foundation that allows us to formally analyze Petri net models. By formally

analyzing system properties such as reachability, boundedness and liveness, researchers can be

more confident about the correctness of their models.

74

 We developed Petri net models of SACK TCP with the proposed changes, based on the

Petri net model presented in Section 3.1, and verified formally that our changes leave TCP

“correct” in the sense that all states are bounded and the desired final state is always reachable

from the initial state. The details of “Probing” and “Pacing” are presented in Section 4.1 and

4.2, respectively.

4.1 Reactive Approach: Probing

In Section 3.1.2.1 we noted that when more than nC,S segments are dropped and there are still at

least three (in Type I Failure) or four (in Type II Failure) non-retransmitted segments following the

lost segments that arrive at the receiver, the sender will transition into Fast retransmit/Fast

recovery and retransmit the earliest unacknowledged segment. The retransmitted segment leads to

a Partial ACK, but in this case this single Partial ACK, possibly together with the duplicate ACKs

before this Partial ACK, will not make pipe less than cwnd. The sender will finally time out and

this results in a serious TTI increase. However, this increase is preventable. When the Partial ACK

arrives at the sender, it indicates that after the sender transitions into Fast retransmit/Fast recovery,

the transmission link is somehow working although it may not be in perfect condition. In this case,

the sender should try transmitting some segments after the Partial ACK arrives. Of course, the

sender should not insert too many segments into the network because it is already congested.

 We also noted that if less than three (in Type I Failure) or four (in Type II failure) segments

follow the lost segments, Fast retransmit/Fast recovery will not occur because there will not be

enough duplicate ACKs. In this case, TCP is again doomed to timeout. For TCP, timeout is always

the last way to restore failures. This is because on the one hand, a timeout puts TCP into Slow

Start which requires cwnd to increase from one. This limits the number of outstanding segments

and leads to inefficient bandwidth usage. On the other hand, the period for the retransmission

timer to expire is very costly. RFC 2988 [35] specifies a detailed way to calculate RTO and

recommends that if the calculated value is less than 1 second then RTO should be rounded up to 1

second. This means that RTO is at least 1 second. Hence, when TCP is not in Fast retransmit/Fast

recovery, after stopping receiving ACKs for some time, TCP should also do something to avoid

75

the costly timeout.

 In both of these situations, a reactive approach, “probing” the link, can be used to solve the

timeout problem. The sender can insert “probe” segments into the link instead of simply waiting

for timeout. Probing the link helps the sender to try to transmit some segments during the time it

would otherwise just spend waiting for timeout. When TCP is in Fast retransmit/Fast recovery, this

may also lead to more Partial ACKs. These Partial ACKs may make pipe less than cwnd, and the

timeout will then be avoided. The reason that we consider “probing” a reactive approach is that it

is triggered after some packets are already dropped, namely, a failure occurs before “probing”

takes action. The details of the proposed “probing” approach are presented Section 4.1.1. The

resilience improvement through probing and the formal analysis of the changed SACK TCP are

described in Section 4.1.2 and Section 4.1.3, respectively.

4.1.1 The Details of the Probing Approach

Formally, we propose the following two types of probing mechanisms to improve SACK TCP

resilience:

(1) Type I Probing: In the case that TCP is in Fast retransmit/Fast recovery, when a Partial

ACK arrives, TCP checks to see whether this Partial ACK will make pipe less than cwnd.

If so, TCP behaves as usual. If not, TCP will either retransmit the earliest unacknowledged

segment, or transmit a new segment when there are no unacknowledged segments.

(2) Type II Probing: When TCP stops receiving acknowledgements for max(300ms,

2RTT) and the retransmission timer has not yet expired, TCP switches into Fast

retransmit/Fast recovery (if it is not yet in Fast retransmit/Fast recovery), retransmits the

latest unacknowledged segment, and then retransmits the earliest unacknowledged

segment.

 Traditionally, only ACKs are used to determine the condition of the network. The arrival of

three duplicate ACKs is considered to be a strong indication that the network has become

congested. Hence, TCP transitions into Fast retransmit/Fast recovery after receiving three

duplicate ACKs. However, a relatively long “quiet period” without any ACKs arriving at the

76

sender also indicates the network is probably not working normally. The general idea behind

probing is to use retransmitted segments to determine the condition of the network, and actively

generate new ACKs. This is particularly useful in the case of a network that can fail and then

quickly and automatically be restored, as is the case in the modern SONET / SDH transport

systems that carry much of today’s Internet. The rather brief 50 ms failure window of these

transport systems is likely to leave all the TCP sessions carried by a restored link waiting for

timeout. We propose to use probes to bring these sessions into Fast retransmit/Fast recovery

without suffering timeouts.

 Type I Probing is relatively straightforward. The idea is to generate enough Partial ACKs

so that pipe can become less than cwnd, thus avoiding timeout. Type II Probing is somewhat

more complex. The general idea is to signal to the receiver the sender’s picture of the

segments that have not been acknowledged, and thus may need to be retransmitted. There are

several reasons that we choose max(300 ms, 2RTT) as the length of the “quiet period”.

Intuitively, the length of this period should be related to RTT. If the link has just been restored,

it has likely been rerouted over physical facilities that follow a longer geographical route so

that the RTT for the session will increase after the link is restored. Thus some multiple of the

pre-failure RTT should be used. Here, we use 2RTT to illustrate the benefits of probing.

Further study and optimization is required. The value of 300 ms was chosen because the TCP

receiver only sends out an ACK for every second segment, or within 200 ms of the arrival of

the first unacknowledged segment. Therefore, an ACK could reasonably be delayed 200 ms

and we do not want to burden the network unnecessarily by sending probes before this

interval expires.

 Type II Probing triggers TCP to send out both the latest and the earliest unacknowledged

segment to avoid the 200 ms ACK delay that could result if only the earliest unacknowledged

segment was sent. Recall that the receiver sends out an ACK immediately after receiving an

out-of-order segment. Thus if the latest unacknowledged segment in the current transmission

window has actually been properly received, all following retransmissions will be seen as

77

out-of-order segments with each generating an immediate ACK rather than a 200 ms wait. The

sender does not know whether the receiver has received the latest unacknowledged segment. With

Type II Probing, the sender assumes that the latest unacknowledged segment has been lost and

retransmits it before retransmitting any other unacknowledged segments. The cost is just one more

duplicate ACK if the receiver actually has received the latest unacknowledged segment.

 Type I Probing takes place when TCP is in Fast retransmit/Fast recovery and a Partial ACK

arrives. Type II Probing occurs when less than three (in Type I Failure) or four (in Type II failure)

segments follow the lost segments and thus TCP can not transition from Congestion Avoidance

into Fast retransmit/Fast recovery. These two probing mechanisms eliminate the timeout problems

in the two cases above.

 However, Type II Probing also deals with a wider picture. That is, when the sender does not

receive an ACK for max (300ms, 2RTT), it will assume that the network is malfunctioning and

send out two segments to probe the network. This occurs whether TCP is in Congestion Avoidance,

Fast retransmit/Fast recovery, or even Slow Start. And this will always save TCP from unnecessary

timeouts and thus lead to better resilience performance.

 The Petri net model of standard SACK TCP is presented in Section 3.1.1. We modified the

model and incorporated our proposed mechanisms. Figure 4.1 shows the Petri net model of SACK

TCP with our proposed changes. For clarity, the original Petri net model was split into two parts.

Figure 4.1 (a) shows the model for the modified SACK TCP sender and Figure 4.1 (b) illustrates

the model for the modified SACK TCP receiver and Segment Discarder. Note that transition

“SendSeg” and “TransmitACK” are the splitting points. Since our proposed mechanisms only

modify the sender side TCP, Figure 4.1 (b) is essentially the same as Figure 3.2 (b). The

components drawn with dashed thick lines correspond to Type I Probing and the components

drawn with solid thick lines correspond to Type II Probing. The place PROBE1 is connected to the

transitions Send Segment and Receive ACK. When the sender is in Fast retransmit/Fast

recovery and a Partial ACK arrives, if this Partial ACK will not make pipe less than cwnd, the

token on PROBE1 will be changed from “0” to “1”, which will trigger the sender to either

78

retransmit the earliest unacknowledged segment or transmit a new segment. The place PROBE2 is

connected to Receive ACK and RTX_SEQ3. When the sender stops receiving ACKs for max

(300ms, 2RTT) and the retransmission timer has not expired, TCP switches into Fast

retransmit/Fast recovery if it is not yet in Fast retransmit/Fast recovery. The latest

unacknowledged segment will then be passed to PROBE2 to be transmitted by SND_SEG.

4.1.2 Resilience Improvements through Probing

We noted in Section 3.1.2.1 that when there are only three (in Type I Failure) or four (in Type II

Failure) segments remaining in the transmission window, the sender can still transition into Fast

retransmit/Fast recovery. We define n`C,S as the critical number of dropped segments when there

Send

INT 1‘1

Send Segment

if IsFR=0 then [n<=(w+ww-1) andalso n<=(w+rwnd-1)]
else [pipe<ww andalso n<=(w+rwnd-1)]

Receive ACK RecAck

ACKTYPE

SND_NXT
INT

1

INT

1 TxDelay

SND_UNAINT
1

SND_SEG

INT

Buffer
INTLIST

nil

IfSetTimer

SToT

Timer

INT

Timeout

LIST

nil
ToContral

INT
ToTemp

TIMEOUT

CWND

INT

InitCwnd

SSTHRESH
INT

Ssthresh

TimerNo

INT

PreviousAck

INT

0

DupCounter

INT

0

INT

ResetTimer

RTT

IsInFR
INT

0

INT

0Remainder

StatusTupe

STATUS (0,0,0,0,Rwnd) TimerExpire
INT

TO_CHPA

INT

FRPath

RTX_SEG2

INT
FirstRetx

RTX_SEG1

INT

0

TO_NO

@+PD

SendSeg

RCV_ACK
INT

2

TransmitACK

@+(PD+RATD)

Sender

PROBE 1

INT

0

PROBE 2

INT

RTX_SEG3

Temp

TlkenCounterTokens

FRTimeout

StoreToken

tp

n

m+1@+STD

n@+STD

w
w

w n

l

if (null l)
then l^^[1]
else l

if (null l)
then 1‘RTO
else empty

n

n@+RTO

n

l

AddQueue(IsFR,
pa, n,l,dc)

if (null l)
then 1‘n
else empty

n
n*2@+n*2

if n=TotalPacket
then empty
else 1‘(tp+1)

l
if (null l)
then l
else tl l

w

w

SetNxt(IsFR, n, low, high, hs)

m

m

if (null l)
then w
else m

ww

ww

ww

SetWw(IsFR, n, pa, ww,
ssthre,w,re, dc, out,ste)

ssthre

if (FR(IsFR, dc,ste) andalso ssthre>2)
then (if ((out-w) div 2)>2 then ((out-w)div 2) else 2)
else ssthre

ww

if (null l)
then 1
else ww

ssthre

SetSsthre(l,IsFR,ssthre, m, w)

n

n*2

m

m SetM(IsFR,pa,n,out,
m,dc,hs,RTO,ste)

pa

if n=pa then pa
else n

dc

if IsFR=1
then 0
else (
if n=pa
then (if ste=1 then dc else dc+1)
else 0)

RestartTimer(IsFR,
pa,n,out,m,dc,hs,RTO,ste)

m

m@+m
l1

ResetTimer(IsFR,
pa,n,out,l1,dc,hs,ste)

out

IfFR(IsFR,n,pa,dc,hs,ste)

IsFR

re

CalRe(IsFR,n,pa,ww,ssthre,w,re)

if FR(IsFR,dc,ste)
then empty
else (if n>out
 then 1‘n
 else 1‘out)

SetStatus(IsFR, dc, out, w,
 rwnd, pipe, b1, b2, hs, pa,ste)

if (null l)
then 1‘1
else empty

IsFRIsFR

(pipe,low,high,hs,rwnd2)

(pipe, low, high, hs,rwnd)

if IsFR=1 then (pipe+1, low, high, hs,rwnd)
else (pipe,low,high,hs,rwnd)

IsFR

IsFR

re

dc

0

IsFR

0

0

n

n

SetFRPath(IsFR,dc, n, out, b1, b2,ste)

n@+(STD+STD)

if FR(IsFR,dc,ste)
then 1‘w
else empty

n

l^^[1]
l

RTO

n@+(STD+STD)

(0,low, high, 0, rwnd2)

(pipe, low, high, hs, rwnd2)

if k=5 then empty
else 1‘(k+1)

k

n

n

rcvack

(n, rwnd, b1, b2)

sendprobe

if (IsFR=1 andalso n>pa
andalso (pipe-2)>=ww)
then 1‘1 else 1‘0

sendprobe 0

if ste=1 then 1‘(out-1_
eles empty)

n

n@+STD

(n,rwnd,b1,b2,0)

(n,rwnd,b1,b2,ste)
(n,rwnd,b1,b2,ste)

(n,rwnd,b1,b2,ste)
@+ShortRTO tc+1

tc

tc
tc-1(n,rwnd,b1,b2,ste)

if (tc=1 andalso n<TotalPacket)
then 1‘(n,rwnd,b1,b2,1) else empty

(a) Petri Net Model of Modified SACK TCP Sender

79

A

LIST

nil

Queue
Input

INT
Discarder
Output

INT

1DropNo

DiscarderT

@+PD

SendSeg

INT

Discarder
 Input

Receive Segment

[not (null l)]

RPT

AckToSend
INT

TransmitACK

@+(PD+RATD)

NextAck
INT

1

IsFirst
INT

0

Classifier

INTxINT

[rcvse=2]

SecondSeq

[rcvse=1]

FirstSeq

INT

DelayedACK

Delayed
ACKCheck

FirstSeq
 List

LIST

nil

SecondSeq
 List

LIST nil

Low
INT

1

High

INT

1INT

RCV_SEG

Transmit ACK

ACKTYPE

SendAck

TranDelay

INT

1

Q_LENGT
H

INT
0

Segment Discarder

Receiver

l^^[n]

l

if (k<=(LNo-FNo+1) andalso
 (n>=FNo andalso n<=LNo))
then empty
else 1‘n

n

k if (n>=FNo andalso
n<=LNo) then k+1 else k

n
n

l

tl l

kif n=k
then (if (n+1)=low
 then high+1
 else k+1)
else k

j

if n=k
then (if (n+1)<= low
 then 0
 else (if j=0 then 1 else 0))
else 0

if n=k
then (if (n+1)=low
 then (1, high+1)
 else (if (n+1)< low
 then (1, k+1)
 else (j, k+1)))
else (1,k)

(rcvse,ackno)

ackno

(rcvse,ackno)

ackno@+AckDelay

ackno

if (null list2)
then 1‘ ackno
else empty

list1^^[1]

list1

list1

if (null list1)
then list1
else tail list1

if (null list1)
then list2
else list2^^[2]

list2

list2

if (null list2)
then list2
else tail list2

list1
if (null list2)
then tail list1
else list1

m

if (null l2)
then 0
else m

if n<k then high else
(if n=k then (if n=high then k+1else (if (n+1)=low
 then high+1
 else high))
else (if n>high then n else high))

low

if n<k then low else
(if n=k then (if n=low then k+1 else(if (n+1)=low
 then high+1
 else low))
else (if low=k then n else low))

high
n

(hd l)@+RSTD

n

low low

high

high

if k<low then (n, Rwnd , low, high)
else (n,Rwnd, 0, 0)

(n,rwnd, b1, b2)

kk

m@+RSTD

m

k length l

(b) Petri Net Model of Modified SACK TCP Receiver and Segment Discarder

Figure 4.1 Modifications to Petri Net Model of SACK TCP

are only three or four segments remaining in the window. The following formula illustrates the

relation between n`C,S and rwnd:

C,S

3 in Type I Failure
 n` =

 in Type II Failure

rwnd

rwnd

−�
�
�
� − 4�

 (4.1)

Our experiment illustrates a Type II Failure, and in this particular scenario n`C,S is 23-4=19.

 In our experiments the RTT is approximately 200 ms, thus max (300 ms, 2RTT) = 400 ms.

That is, when TCP stops receiving acknowledgements for 400 ms and the retransmission timer has

not expired, Type II Probing should take place.

80

Figure 4.2 Congestion Window vs. Transfer Time (SACK with Probing)

 The four curves in Figure 4.2 illustrate the typical changes in the sender’s congestion window

over time. The “0 drop” curve is the same curve as in Figure 3.12. If less than nC,S segments within

one window are dropped, TCP can usually recover. The transfer time does not increase much in

this case. This was already illustrated in Section 3.1.2.1. If the number of dropped segments falls

in the range nC,S to n`C,S , Type I Probing is started. The first several Partial ACKs help decrease

pipe and also trigger the sender to transmit some probes. This saves the sender from timing out

and thus decreases the transfer time. Thus from 1 drop to n`C,S drops, TCP experiences almost the

same cwnd change and transfer time increase. For clarity, only the 19 drop curve is included in

Figure 4.2. Note that TCP experiences different recovery processes with less than and more than

nC,S losses. That is, with less than nC,S losses TCP recovers using the standard Fast retransmit/Fast

recovery mechanism. When more than nC,S losses occur TCP returns to a normal state because of

both Type I Probing and the standard Fast retransmit/Fast recovery mechanism.

 If more than n`C,S segments are dropped, less than three (in Type I Failure) or four (in Type II

failure) segments follow the lost segments. In this case, normally TCP will not transition into Fast

retransmit/Fast recovery because there will not be enough duplicate ACKs. However, Type II

Probing will start once 400 ms have passed without an ACK. TCP then transitions into Fast

retransmit/Fast recovery and two more probes, segments (rwnd+1) and (rwnd+2), are sent out. If

these two probes arrive at the receiver safely, TCP will avoid timeout, and the transfer time will

81

increase only slightly. The curves for these scenarios are not included because they are similar to

the 19 drop curve. If segment (rwnd+1), the latest unacknowledged segment, is lost and segment

(rwnd+2) arrives at the receiver, Fast Recovery will occur until TCP transitions from Fast

retransmit/Fast recovery into Congestion Avoidance. Although in this case TCP goes through Fast

Recovery, the transfer time increases significantly. This is because the latest unacknowledged

segment is already lost, and thus all following retransmissions will experience the 200 ms ACK

delay when one ACK can trigger only one retransmitted segment. The (rwnd+1) drop curve is not

included for clarity. If segment (rwnd+2) is also dropped, TCP will finally time out and the

transfer time will increase dramatically. This is illustrated by the 25 drop curve; this corresponds

to the 23 drop scenario in Section 3.1.2.1. The 26 drop curve is actually the counterpart of the 24

drop curve in Figure 3.12.

Figure 4.3 TTI vs. No. of Lost Segments (SACK with Probing)

 Figure 4.3 presents the resilience of our improved SACK TCP from the perspective of TTI vs.

the number of dropped segments. From 1 drop to 23 drops, TTI does not change much. But TCP

experiences three different recovering stages when the number of dropped segment is in this range:

Fast retransmit/Fast recovery, Type I Probing and Type II Probing. The cases of 24 and 25 drops

show TTI increases, but the former increase is because of the 200 ms ACK delay and the latter is

due to timeout. With 26 drops, a second timeout occurs leading to a further large increase in TTI.

The combination of Type I and Type II Probing decreases TTI by at least 50% over the range from

82

1 drop to 23 drops. SACK TCP with Type I and Type II Probing has much better resilience than

the original protocol.

4.1.3 Formal Analysis of SACK TCP with Probing

Petri nets can be used to study the performance of concurrent systems by simulation. More

importantly, Petri nets allow us to formally analyze systems of interest, increasing our confidence

about the correctness of Petri net models. In our research, we formally analyzed both the Petri net

model of standard SACK TCP and the model of SACK TCP with Probing. We first present the

analysis results of standard SACK TCP.

 As mentioned in Section 2.2.4, Occurrence Graphs are commonly used in the analysis of

Petri nets. For example, the occurrence graph of a Petri net can be used to determine whether a

particular final state is always reachable from a given initial state, no matter what trajectory the

model follows through its state space. In the case of file transfer, for example, we need to be

certain that it is always possible to reach the state where all segments have arrived at the receiver

and been acknowledged. Reachability analysis allows us to verify this property of the protocol

more generally than by just examining the execution of some finite number of simulation runs.

Occurrence Graphs also allow us to make sure the number of tokens at any place in the model (for

example, the number of segments or acknowledgements) remains bounded by certain pre-specified

values. Again, formal analysis allows us to be certain that these bounds are always obeyed.

 We used Design/CPN to derive the occurrence graph of our Petri net model of standard

SACK TCP and analyze its boundedness and reachability. We constructed occurrence graphs for

three typical scenarios: 0 drop, 14 drops and 15 drops. The “Overview” section in Table 4.1

summarizes the number of nodes and arcs in each of the three occurrence graphs. The properties

of these graphs are summarized in Table 4.1. For clarity, we present the boundedness for only the

major places in the Petri net model.

 Design/CPN defines the upper integer bound as the maximum possible number of tokens in

an individual place and defines the lower integer bound as the minimum possible number of

tokens in an individual place. Further, the upper multi-set bound of a place is defined as the

83

smallest multi-set which is larger than all reachable markings of the place. The lower multi-set

bound of a place is the largest multi-set which is smaller than all reachable markings of the place.

 In our model, the places Sender.RCV_ACK, Sender.CWND, Sender.SSTHRESH and

Receiver.Q_LENGTH should have one token at any time. The “Integer Bounds” information in

Table 4.1 verifies this because the upper integer bound and the lower integer bound for these

places are always 1. Receiver.SND_ACK should have either one token or no token in any case

and this is confirmed by the upper integer bound of 1 and lower integer bound of 0.

Sender.SND_SEG and Sender.RCV_SEG should have zero, one or two tokens at any time;

the fact that their upper integer bounds are 2 and their lower integer bounds are 0 verifies this

behavior.

 In the 0 drop case, the upper multi-set bound of Sender.SSTHRESH includes only 45

because there is no failure in this scenario and ssthresh stays at 45. In the 14 drop and 15 drop case,

the bound contains both 11 and 45 because ssthresh is set to �rwnd / 2� after the failure occurs and

thus ssthresh could be either 11 or 45 in these cases. In all three cases, the upper multi-set bound

of Receiver.Q_LENGTH has 19 elements and the largest is 18. This shows that there are at

most 18 segments waiting for service at the receiver. This is reasonable because rwnd is set to 23

in this scenario and the number of segments queued at the receiver should be less than rwnd. The

lower multi-set bounds for the two places are rather simple. They have either one element or no

element at all. This is reasonable because both of these places should have one token at any time.

In this case, if the upper multi-set bound of the place has only one token, then the corresponding

lower multi-set bound should also only contain that token; if the upper multi-set bound of the

place has multiple tokens, the corresponding lower multi-set bound should be empty. In short, the

boundedness results provided by the occurrence graphs show that the places are bounded as

SACK TCP requires.

 In Design/CPN, a dead marking is a marking with no enabled transitions. When deriving an

occurrence graph, Design/CPN numbers the markings sequentially. That is, the initial marking is

numbered one and the next calculated marking is numbered consecutively. In the “Liveness

84

Properties” section of Table 4.1, each of the three scenarios has a dead marking. Knowing the

numbers of the dead markings, we analyzed the dead markings and verified that they are the

markings corresponding to the last steps of the data transfer where all segments have arrived at the

destination. With the query tool of Design/CPN, we verified that these markings are reachable

from the initial markings where all segments are at the source. This shows that all the segments at

the sender can be transmitted successfully in the three scenarios.

 In the simulation of a concurrent system, multiple transitions will often be enabled at the

same time. Most simulators will simply select from the enabled transitions randomly. Hence, a

successful simulation only indicates the correctness of one of many possible execution sequences.

By generating occurrence graphs for our Petri net model and analyzing its reachability, we can

conclude that for all possible execution sequences, the data transfer always completes successfully.

This is because each occurrence graph has only one dead marking that corresponds to the last step

of the corresponding data transfer and this dead marking is always reachable from the initial

marking. The reachability information in Table 4.1 verifies the correctness of our SACK TCP

model.

 In Design/CPN, a dead transition is defined as a transition that is never enabled in any

reachable marking. In our model, Sender.RTX_SEG1 and Sender.RTX_SEG2 are related to

Fast retransmit/Fast recovery. Sender.TIMEOUT and Sender.TO_CHPA are related to

timeout. In the 0 drop case, TCP should not experience Fast retransmit/Fast recovery and timeout,

so the above four transitions should never be enabled. The occurrence graph shows that these

transitions are dead in the 0 drop case. In the 14 drop case, Fast retransmit/Fast recovery occurred,

thus only the transitions related to timeout appeared to be dead transitions. In the 15 drop case,

TCP did not switch into Fast retransmit/Fast recovery because there were not enough ACKs.

Instead it finally timed out. As a result, the two transitions related to Fast retransmit/Fast recovery

became dead transitions. The dead transition information in Table 4.1 further verifies the

correctness of our model.

 We analyzed the boundedness and reachability of the Petri net model of SACK TCP with

85

Probing in a manner similar to the studies performed for the standard SACK TCP. Results for the 0

drop, 19 drop and 20 drop cases are included in Table 4.2.

Table 4.1 Occurrence Graph Data for 0-Drop, 14-Drop and 15-Drop Case (Standard SACK TCP)

 Table 4.2 is very similar to Table 4.1. However, Table 4.2 has data for the places

Sender.PROBE1 and Sender.PROBE2. In normal conditions, Sender.PROBE1 has only

one token of 0. When the number of dropped segments falls in the range nC,S to n`C,S , the token is

changed to 1 a few times triggering the sender to transmit some probes. This is verified by the data

Occurrence Graph Statistics 0 Drop Case 14 Drop Case 15 Drop Case

Nodes 95921 96474 96040
Overview

Arcs 123331 124466 123489

Typical Places Upper Lower Upper Lower Upper Lower

Sender.SND_SEG 2 0 2 0 2 0

Sender.RCV_ACK 1 1 1 1 1 1

Sender.CWND 1 1 1 1 1 1

Sender.SSTHRESH 1 1 1 1 1 1

Receiver.RCV_SEG 2 0 2 0 2 0

Receiver.SND_ACK 1 0 1 0 1 0

Integer

Bounds

Receiver.Q_LENGTH 1 1 1 1 1 1

Sender.SSTHRESH 1`45 1`11+1`45 1`11+1`45

Upper

Multi-set

Bounds
Receiver.Q_LENGTH

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

Sender.SSTHRESH empty empty empty Lower

Multi-set

Bounds
Receiver.Q_LENGTH 1`45 empty empty

Dead Markings [95921] [96474] [96040]

Liveness

Properties Dead Transitions

Sender.RTX_SEG1

Sender.RTX_SEG2

Sender.TIMEOUT

Sender.TO_CHPA

Sender.TIMEOUT

Sender.TO_CHPA

Sender.RTX_SEG1

Sender.RTX_SEG2

86

in Table 4.2. Normally, Sender.PROBE2 has zero tokens. When TCP stops receiving

acknowledgements for 400 ms and timeout has not occurred, Sender.PROBE2 gets the token

representing the latest unacknowledged segment, which is 3855.

 With regard to dead transitions, Table 4.2 is also different than Table 4.1. For the 0 drop and

19 drop case, Table 4.2 has an extra dead transition of Sender.RTX_SEG3. This transition is

related to Type II Probing and hence in the 0 drop and 19 drop cases, it is never invoked. For the

20 drop case, Sender.TIMEOUT and Sender.TO_CHPA appear in Table 4.2, while

Sender.RTX_SEG1 and Sender.RTX_SEG2 do not. As mentioned previously,

Sender.TIMEOUT and Sender.TO_CHPA are related to timeout; Sender.RTX_SEG1 or

Sender.RTX_SEG2 are related to Fast retransmit/Fast recovery. With Type II Probing, timeout

is avoided and TCP transitions into Fast retransmit/Fast recovery in the 20 drop case. The

corresponding dead transition information confirms this improvement due to Type II Probing.

 Based on the occurrence graph data and applying the same analysis method, we also verified

that the improved version of SACK TCP is bounded, and the final step of the successful transfer is

always reachable from the initial state. Thus, the correctness of the improved SACK TCP is also

verified by formal analysis.

4.2 Proactive Approach: Pacing

SACK TCP can survive multiple segment loss. However, there exists a critical number nC,S above

which SACK TCP will resort to timeout instead of Fast Recovery to recover from the loss event.

Resorting to timeout degrades TCP performance significantly. Spreading the outstanding segments

across each RTT reduces the possibility that SACK TCP loses more than nC,S segments within one

transmission window. This corresponds to the traditional paced TCP. However, this version of

paced TCP might suffer from negative feedback and could possibly congest bottleneck routers. In

this section, we introduce a simple but effective method, leveraging Chebyshev Inequality, to

calculate the bottleneck bandwidth and present a new pacing approach, α-min Paced SACK TCP,

that improves standard SACK TCP resilience. Our results show that α-min Paced SACK TCP

works well over a relatively wide range of RTT. In our research, α-min Paced SACK TCP was

87

modeled with Petri nets. The Petri net model was formally analyzed to prove its “correctness”. The

details of α-min Paced SACK TCP is presented in Section 4.2.1 and the formal analysis results are

summarized in Section 4.2.2.

Table 4.2 Occurrence Graph Data for 0-Drop, 19-Drop and 20-Drop Case (Probing SACK TCP)

Occurrence Graph Statistics 0 Drop Case 19 Drop Case 20 Drop Case

Nodes 102773 103045 103079
Overview

Arcs 130183 130618 130673

Typical Places Upper Lower Upper Lower Upper Lower

Sender.PROBE 1 1 1 1 1 1 1

Sender.PROBE 2 0 0 0 0 1 0

Sender.SND_SEG 2 0 2 0 2 0

Sender.RCV_ACK 1 1 1 1 1 1

Sender.CWND 1 1 1 1 1 1

Sender.SSTHRESH 1 1 1 1 1 1

Receiver.RCV_SEG 2 0 2 0 2 0

Receiver.SND_ACK 1 0 1 0 1 0

Integer

Bounds

Receiver.Q_LENGTH 1 1 1 1 1 1

Sender.PROBE 1 1`0 1`0+1`1 1`0+1`1

Sender.PROBE 2 empty empty 1`3855

Sender.SSTHRESH 1`45 1`11+1`45 1`11+1`45

Upper

Multi-set

Bounds
Receiver.Q_LENGTH

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

Sender.PROBE 1 1`0 empty empty

Sender.PROBE 2 empty empty empty

Sender.SSTHRESH 1`45 empty empty

Lower

Multi-set

Bounds
Receiver.Q_LENGTH empty empty empty

Dead Markings [102773] [103045] [103079]

Liveness

Properties Dead Transitions

Sender.RTX_SEG1

Sender.RTX_SEG2

Sender'RTX_SEG3

 Sender.TIMEOUT

Sender.TO_CHPA

Sender'RTX_SEG3

Sender.TIMEOUT

Sender.TO_CHPA

Sender.TIMEOUT

Sender.TO_CHPA

88

4.2.1 Paced SACK TCP

To investigate the performance of α-min Paced SACK TCP, a simulation configuration similar to

that in Section 4.1 was set up. Namely, cwnd, rwnd, and ssthresh were set to 1, 23 and 45,

respectively; the receiver access rate is DS1 and the sender access rate is OC-3c; a network

topology shown in Figure 3.9 is adopted. However, to study α-min Paced SACK TCP, we do not

need the packet discarder any more. Figure 4.4 shows the abstract topology used in this section.

Also, rather than studying the behavior of a 10 MB file transfer, we consider a 1 MB file transfer

from the sender to the receiver. This change shortens simulation time and does not have any

impact on TCP performance. In addition, the simulation in this section is trace-driven. We

gathered a network delay trace from an OPNET TCP model [83] for the same network model and

scenario. The average round trip time (RTT) in the trace is 48.24 ms. To study the performance of

TCP with longer RTT, we scaled the trace to have an average RTT of 250 ms.

 As mentioned previously, nC,S is vital to SACK TCP because it suffers from timeout when

more than nC,S segments within one transmission window are lost. Since timeout is such a costly

event, we should try to constrain the number of lost segments below nC,S. We define Loss

Tolerance Time (LTT) as the shortest period of time during which nC,S segments could be

discarded during a TCP session. Although the exact discarding pattern of each network varies,

from the viewpoint of TCP, if LTT is longer then it is less likely nC,S segments could be discarded

resulting in better TCP resilience. In our experiment, rwnd is 23, thus nC,S is equal to 14 or 15

according to Eq. 3.7. Either value can be used to illustrate TCP resilience. We chose the Type II

case to study the resilience of SACK TCP in this section. Thus, to improve TCP resilience, any 14

consecutive segments should be spread out as far as possible.

 As an ACK-clocking protocol, TCP uses the minimum of cwnd and rwnd to determine the

number of segments that are allowed to be sent out and uses the receipt of acknowledgements to

trigger the sending of packets. We define the minimum of cwnd and rwnd as “usable window”. In

this thesis, we use wU to denote “usable window”. Intuitively, ACK-clocking should spread the

data across each RTT. However, a number of factors, including bandwidth-delay product, cwnd,

89

rwnd, etc., cause TCP to be bursty.

Figure 4.4 Abstract Topology of the Modeled System

 Figure 4.5 presents the packet arrival pattern at the Palo Alto router (PA) for 1 MB file

transfer with 250 ms RTT. For clarity, only the first 200 segments are included. Before around 2.5

seconds, TCP is in Slow Start and cwnd is less than rwnd. During this period, cwnd increases

exponentially from one. As the result, segment clusters become larger and larger. After 2.5 seconds,

cwnd becomes greater than rwnd. However, during this rest of the session, the number of segments

per RTT is fixed at wU because only wU segments are allowed to be sent out within one

transmission window. During this period, segments also tend to cluster. Clustering will decrease

rather than increase LTT.

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3 3.5

S
eg

m
en

t S
eq

ue
nc

e
N

o.

Segment Arriving Time (s)

Figure 4.5 Packet Arrival Pattern at Router PA (250 ms RTT)

 We also analyzed the bursty nature of TCP in this scenario quantitatively. Since in this case

the average RTT is 250 ms, suppose the rwnd segments are evenly spread within one RTT, LTT

Palo Alto

Local Router

OC-192

Princeton

Local Router

Sender PR

Receiver PA

NSFNET

OC-3c DS1 OC-192

90

should be (250 / 23) x 13 = 141.30 ms, where 23 is the value of cwnd and 13 corresponds to the

number of gaps resulting from nC,S (14 in our experiments) segments. The LTT from the

simulation is just 93.86 ms, which is much less than the ideal LTT. Thus there is much room to

improve SACK TCP resilience.

 Figure 4.6 shows the packet arrival pattern at router PA when the average RTT is 50 ms. In

this case, after around 0.75 second, cwnd becomes greater than rwnd. If the segments are spread

evenly across RTT after 0.75 second, the ideal LTT would be (50 /23) x 13 = 28.26 ms. However,

the LTT from the simulation is 91.83 ms, which is greater than the ideal LTT. The queuing of

segments at PA explains the observation.

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

S
eg

m
en

t S
eq

ue
nc

e
N

o.

Segment Arriving Time (s)

Figure 4.6 Packet Arrival Pattern at Router PA (50 ms RTT)

 Figure 4.7 illustrates the number of segments queued at PA in the 250 ms RTT case. Before

2.5 seconds, the number of segments queued fluctuates between 1 and 5. This corresponds to the

Slow Start state, during which cwnd increases exponentially and thus triggers more packets to be

transmitted back-to-back. After 2.5 seconds, the number of segments queued is always 1. The

value remains constant because during this period increasing cwnd does not introduce more

segments into the network and the sending rate is clocked by returning acknowledgements paced

by the bottleneck DS1 link. Figure 4.8 shows the number of segments queued in the 50 ms RTT

case. Before around 0.75 second, this value increases quickly, which corresponds to Slow Start

state. After 0.75 second, the number of segments queued remains at 16 or 17 due to the fixed wU.

91

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5

Q
ue

ue
 L

en
gt

h

Time (s)

Figure 4.7 The Number of Segments Queued at Router PA (250 ms RTT)

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Q
ue

ue
 L

en
gt

h

Time (s)

Figure 4.8 The Number of Segments Queued at Router PA (50 ms RTT)

 Queuing affects TCP resilience because it increases the possibility of queue overflow, which

is one of the major causes of segment loss. To improve TCP resilience, we should try to reduce the

number of segments queued. The 50 ms case in our research introduced a very lengthy queue at

PA, this harms TCP resilience significantly.

4.2.1.1 αααα-Paced SACK TCP

Pacing is not a new idea. Kulik [84] proposed a paced TCP that sends out segments in multiple,

small bursts during each RTT and claimed that the paced TCP performs better than standard TCP.

The Berkeley WebTP group has combined pacing and other specialized techniques into a transport

protocol optimized for web traffic [85]. Aggarwal [86] evaluated TCP pacing performance in

92

detail. Akyildiz [87] came up with a TCP variant, TCP-Peach, that is based on the novel concept of

using dummy segments to probe the availability of network resources without carrying any new

information to the sender. With TCP-Peach, the real segments and dummy segments are spread out

over each RTT. Razdan [88] proposed a paced version of TCP with which pacing is used during

“slow start” in order to improve TCP performance when receive buffer is small. Some previous

pacing mechanisms [84] [85] [86] [87] suggested segments should be paced at (wU /RTT); others

[88] recommended that the pacing rate should be the bottleneck bandwidth. However, to our

knowledge, no research has been focused on TCP resilience and suggested that the pacing rate

should be the minimum of the bottleneck bandwidth and (wU /RTT). In this section, we illustrates

a basic pacing mechanism, α-paced SACK TCP, that paces segments at around (wU /RTT). In

Section 4.1.2.2, we present an advanced version, α-min paced SACK TCP, that use the minimum

of the bottleneck bandwidth and (wU /RTT) as the pacing rate.

 As mentioned previously, standard TCP is a window-based protocol. It uses wU to determine

the number of segments that are allowed to be sent out and uses the receipt of acknowledgements

to trigger the sending of packets. This is in contrast to pure rate-based protocols which use rates to

determine how much and when to send. TCP pacing is rather a hybrid scheme between these two

approaches. It uses TCP congestion control to determine how much to send and uses rates to

determine when to send. The intention is to spread out data across each RTT. This coincides with

the idea of increase LTT.

 The problem of the rate TCP should follow is difficult. Traditionally, (wU / RTT) is used to

pace TCP. Namely, RTT is divided into intervals of duration RTT/ wU and during each interval at

most one segment is allowed to be transmitted. Figure 4.9 illustrates the resilience improvement

that this type of TCP pacing could achieve. Figure 4.9 corresponds to the case of 250 ms RTT.

Apparently, TCP pacing spreads data out successfully compared with standard SACK TCP.

Quantitatively, the LTT in the paced TCP case is 144.11 ms, which is close to the ideal LTT.

Furthermore, the number of segments queued at PA remains at 1 throughout the TCP session.

 However, Pacing TCP at the rate (wU / RTT) might introduce a serious problem. After cwnd

93

becomes greater than rwnd, wU is equal to rwnd, which is a fixed value. If for some reason, the

network becomes congested for a short period of time and leads to a temporary longer RTT, then

(wU / RTT) decreases. This reduced pacing rate will in turn affect the measurement of RTT

because TCP uses returning ACKs to calculate RTT. That is, if TCP paces the segments at (wU /

RTT), once wU becomes stable, it is very easy for TCP to reduce the pacing rate, but difficult

increase it. When the pacing rate decreases to the extent that the network bandwidth is not fully

used, the TCP session’s throughput is reduced by the pacing mechanism.

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3 3.5 4

S
eg

m
en

t S
eq

ue
nc

e
N

o.

Segment Arriving Time (s)

SACK TCP
Paced TCP

Figure 4.9 SACK TCP vs. α-Paced TCP (250 ms RTT)

 We propose α-paced SACK TCP to solve this problem. Our α-paced SACK TCP employs

pacing throughout the entire TCP session. The idea behind α-paced SACK TCP is that TCP should

pace the segments at the rate α x (wU / RTT), where α is a positive number that is greater than 1.

That is, by intentionally increasing the pacing rate by the factor α, TCP actively maintains the

pacing rate. We should note that this approach does not lead to an unlimited pacing rate. This is

because no matter how fast the sending rate is, the measured RTT is always greater than the sum

of propagation delay and transmission delay. If we use RTTmin to denote the sum of propagation

and transmission delay, the maximum pacing rate is limited by α x (wU / RTTmin). This is never

faster than SACK TCP because SACK TCP sends out segments immediately after receiving ACKs.

If we consider SACK TCP to be an extremely-high-rate paced TCP, then we conclude that the

performance of α-paced SACK TCP becomes more similar to SACK TCP as α increases. Hence,

α should be chosen carefully so that α-paced SACK TCP not only keeps the advantage of pacing

94

but also send out segments fast enough. Starting from the Petri net model of SACK TCP, α-paced

SACK TCP was also modeled with Design/CPN. Actually we simply added several places and

transitions to calculate (wU / RTT).

 We experimented with different values for α in the 250 ms RTT case and summarized the

resulting LTTs in Table 4.3. Note that when α is equal to 1.0, α-paced SACK TCP is just the

traditional paced SACK TCP. Table 4.3 illustrates that as α increases, LTT decreases and gets

closer to the LTT in SACK TCP. Figure 4.10 also illustrates the same trend. For clarity, only the

scenarios corresponding to α=1.0 and α=1.5 are included. Also, for all the α values in Table 1, the

number of segments queued at PA remains at 1 throughout the session.

Table 4.3 Achieved LTT for Different α (250 ms RTT)

0

50

100

150

200

0 0.5 1 1.5 2 2.5 3 3.5 4

S
eg

m
en

t S
eq

ue
nc

e
N

o.

Segment Arriving Time (s)

alpha=1.0
alpha=1.5

Figure 4.10 α-Paced TCP with Varying α (250 ms RTT)

 For the case of 50 ms RTT, α-paced SACK TCP does not have an obvious impact. With

different α values, the achieved LTT and the number of segments queued at PA remain almost the

same as in the SACK TCP scenario. However, the large number of segments queued at PA poses a

serious threat to TCP resilience.

4.2.1.2 αααα-min Paced SACK TCP

With SACK TCP, segments tend to cluster in the case with 250 ms RTT, but few segments are

α 1.0 1.1 1.2 1.3 1.4 1.5

LTT (ms) 141.11 138.83 129.14 126.67 120.03 111.96

95

queued at PA. In the case of 50 ms RTT, many segments are queued at PA, but they are already

clocked by ACKs. α-paced SACK TCP spread out the segments when it can, but does not reduce

the number of segments queued in the short-RTT case. This leads us to propose adaptive pacing.

 Let us first consider what proper pacing rate should be. Traditionally, bandwidth-delay

product is recommended to size cwnd in SACK TCP. By bandwidth-delay product, “bandwidth”

means the lowest transmission rate achieved along the round-trip between the sender and the

receiver, denoted as rB; “delay” just means RTT. When rwnd is taken into account, the sender’s

usable wU should be equal to (rB x RTT) to make full use of the network. From the usage of the

network, all scenarios can be categorized into three cases as follows.

Case 1: If wU = (rB x RTT), there should be no segments queued and data should be spread

out evenly.

Case 2: If wU > (rB x RTT), SACK TCP will insert more than enough segments into the

network. As a result, (wU - (rB x RTT)) segments will be queued at the bottleneck.

Case 3: If wU < (rB x RTT), not enough segments can be inserted into the network, thus

segments are not transmitted continuously. Those segments that are sent out continuously

will form a cluster. When the sender stops sending segments due to the limitation of wU,

the gap between clusters is introduced.

 The description of these three cases can be converted as follows:

U B

U B

U B

 If (w / RTT) = r Case 1
If (w / RTT) > r Case 2
If (w / RTT) < r Case 3

�
�
�
�
�

 (4.2)

Note that wU is the number of segments that are allowed to be sent out during one RTT. Hence,

(wU / RTT) is the expected rate from TCP’s viewpoint. If we define rE as (wU / RTT), then the

description of the three cases can be further changed as follows:

E B

E B

E B

 If r = r Case 1
If r > r Case 2
If r < r Case 3

�
�
�
�
�

 (4.3)

 In Case 1, everything is in perfect condition. In Case 2, rE should be limited to adapt to the

bottleneck bandwidth rB, preventing TCP from saturating the network. In Case 3, TCP should just

96

send out segments at rE to prevent them from clustering. Hence, paced TCP should send out

segments adaptively at min (rE , rB). As noted previously, the pacing rate should be scaled up by a

factor α. The final ideal pacing rate is [α x min (rE , rB)]. We call this version of pacing “α-min

Paced SACK TCP”.

 wU and RTT are available from TCP, so rE can be calculated once TCP calculates its first RTT.

rB is a property of the path between the sender and the receiver, and it is not available to TCP

sender. rB-related information can be gathered at the receiver or intermediate routers, with the

information transferred to the sender. But this type of approach requires to the receiver or

intermediate routers, which limits the usefulness. We proposed a method to measure rB at the

sender. This method can be adopted gradually.

 rB can be measured by monitoring the arrival rate of ACKs. The rB measurement is

synchronized with the RTT update in TCP. From the beginning of each RTT measurement, the

sender starts timing the gaps between consecutive ACKs and counting the data acknowledged by

each ACK. We use ∆ti to denote the gap between the ith ACK and the (i-1)th ACK, and use ∆di to

denote the amount of data acknowledged by the ith ACK. If n ACKs arrives within the current

RTT measurement, the sender will have two series ∆t1, ∆t2 …∆tn and ∆d1, ∆d2 …∆dn. The

straightforward way to estimate rB is illustrated as follows:

 rB =(∆d1+∆d2 +…+∆dn)/ (∆t1+∆t2 +…+∆tn) (4.4)

However, ∆t1, ∆t2 …and ∆tn are not constant intervals. Due to the bursty nature of SACK TCP and

network status, they might vary significantly. Some extreme large ∆t might introduce significant

errors into rB. The Chebyshev Inequality provides a simple but effective way to remove the

outliers in a set of observations.

Chebyshev Inequality [89]: The probability that a standardized random variable has

absolute magnitude greater than or equal to some positive number k is always less than or

equal to 1/k2. Namely,

 P((X-µ/ σ) >= k) <= 1/k2 (4.5)

 For example, if k=3, then 1/9 of all the observations of a random variable fall out of the range

97

(µ-3σ, µ+3σ) no matter what the distribution the random variable follows. In our experiment, after

getting ∆t1, ∆t2 …∆tn and ∆d1, ∆d2 …∆dn, we first apply Chebyshev Inequality to remove outliers.

We then use Eq. 4.4 to calculate rB with the remaining data. The resulting Petri net model is

illustrated in Figure 4.11.

FinalSum

INT

ElementNo

INT

DelayCal

[(length delayl2)>=SSize]

l2bak

LIST

CalIntialSum

[(length delayl2)>=SSize]

CalSquareSum

[(length delayl2)>=SSize]

InitialSum

INT

Initialmean

INT

SquareSum

INT

InitialMean2

INT

Deviation

INT

CalDevi

[(length delayl2)>=SSize]

FinalMean

OUTPUT

INT

P Out

INPUT

LIST [1]

P I/O

CalFinalSum

[(length delayl2)>=SSize]

delayl2

delayl2

[1]

CalSum(delayl2)initialsum

delayl2

delayl2

initialsum div (length delayl2)

initialmean delayl2

CalSquareSum(initialmean, delayl2)

initialmean

delayl2

squaresum

CalDeviation(squaresum, delayl2)

delayl2

if elementno>0 then (finalsum
div elementno) else finalmean

delayl2

delayl2deviationinitialmean

CalElementNo(initialmean,
deviation, delayl2)

CalFinalSum(initialmean,
deviation, delayl2)

finalsum elementno

finalmean

Figure 4.11 Petri Net Model of Chebyshev Inequality

 Table 4.4 illustrates how to apply Chebyshev Inequality to remove outliers. The initial series

of ∆t is from the case with 250ms RTT. Apparently the first ∆t represents a burst and it should be

removed as an outlier. After getting µ and σ, each ∆t is compared with the range (-48.86, 94.12),

all ∆t outside the range should be considered to be outliers and removed from the series. In this

98

example, only the first ∆t is removed. Note that when ∆ti is removed from the sample, the

corresponding ∆di should also be discarded.

 α-min Paced SACK TCP including Chebyshev Inequality rejection of outliers was modeled

with Design/CPN. The final Petri net is simply a combination of Figure 3.2 and Figure 4.11. Our

simulation results show that, as expected, the performance of the file transfer in the case with 250

ms RTT remains the same with α-min Paced SACK TCP as with α-paced SACK TCP. α-paced

SACK TCP has already improved the resilience of TCP in that case. However, the number of

segments queued at PA is significantly reduced with α-min Paced SACK TCP for he 50 ms RTT

case (see Figure 4.12). According to Table 4.3 and Figure 4.12, the smaller α is, the better the

performance of α-min Paced SACK TCP is.

Table 4.4 Chebyshev’s Inequality Example

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5

Q
ue

ue
 L

en
gt

h

Time (s)

alpha=1.0
alpha=1.1
alpha=1.2
alpha=1.3
alpha=1.4
alpha=1.5

Figure 4.12 Queue Length for Different α (50 ms RTT, α-min Paced TCP)

Items Data

Initial ∆t Series (ms) 94.48, 15.51, 15.58, 15.72, 15.57, 15.51, 15.54, 15.58, 15.51, 15.56, 15.52

µ 22.73

σ 23.79

(µ-3σ, µ+3σ) (-48.65, 94.12)

Outliers 94.48

Final ∆t Series (ms) 15.51, 15.58, 15.72, 15.57, 15.51, 15.54, 15.58, 15.51, 15.56, 15.52

99

Table 4.5 Occurrence Graph Data for SACK TCP, α-Paced TCP and α-min Paced TCP

4.2.2 Formal Analysis of αααα-min Paced SACK TCP

We used Design/CPN to calculate the occurrence graph and analyze the boundedness and

reachability of our models. We constructed different occurrence graphs for three typical cases:

SACK TCP, α-paced SACK TCP with 50 ms RTT and α-min Paced SACK TCP with 50 ms RTT.

The properties of these graphs are summarized in Table 4.5. The “Overview” section in Table 4.5

Occurrence Graph Statistics SACK TCP α-Paced TCP α-min Paced TCP

Nodes 11603 11209 18093
Overview

Arcs 15995 15201 25922

Typical Places Upper Lower Upper Lower Upper Lower

Sender.SND_SEG 2 0 2 0 2 0

Sender.RCV_ACK 1 1 1 1 1 1

Sender.CWND 1 1 1 1 1 1

Sender.SSTHRESH 1 1 1 1 1 1

Sender.Rate-E N/A N/A 1 1 1 1

Sender.Rate-B N/A N/A N/A N/A 1 1

Receiver.RCV_SEG 2 0 2 0 2 0

Receiver.SND_ACK 1 0 1 0 1 0

Integer

Bounds

Receiver.Q_LENGTH 1 1 1 1 1 1

Sender.SSTHRESH 1`45 1`45 1`45

Upper

Multi-set

Bounds
Receiver.Q_LENGTH

1`0+1`1+1`2+ 1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+ 1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

1`0+1`1+1`2+

1`3+1`4+1`5+

1`6+1`7+1`8+

1`9+1`10+1`11+

1`12+1`13+

1`14+ 1`15+ 1`16+

1`17+1`18

Sender.SSTHRESH 1`45 1`45 1`45 Lower

Multi-set

Bounds
Receiver.Q_LENGTH empty empty empty

Dead Markings [11603] [11209] [18093]

Liveness

Properties Dead Transitions

Sender.RTX_SEG1

Sender.RTX_SEG2

Sender.TIMEOUT

Sender.TO_CHPA

Sender.RTX_SEG1

Sender.RTX_SEG2

Sender.TIMEOUT

Sender.TO_CHPA

Sender.RTX_SEG1

Sender.RTX_SEG2

Sender.TIMEOUT

Sender.TO_CHPA

100

summarizes the number of nodes and arcs in each of the three occurrence graphs. For clarity, only

the boundedness property of some major places is included in Table 4.5. Based on the occurrence

graph data and applying the same analysis method as in Section 4.1.3, we also verified that the

α-paced SACK TCP and α-min Paced SACK TCP are bounded, and the final step of the

successful transfer is always reachable from the initial state. Thus, the correctness of α-min Paced

SACK TCP is also verified by formal analysis.

101

Chapter 5

A Hybrid Method for Protocol Development

As mentioned in Section 2.3, formal methods enable us to verify the protocol of interest. However,

formal verification of a single protocol can be quite difficult, while a new protocol really needs to

be tested in a relatively realistic environment in which it interworks (or at least co-exists) with

earlier or different versions of the same or similar protocols. Simulation excels in meeting such

challenges. However, the correctness of a protocol can never be proved by simulation alone. In

this chapter we present a hybrid protocol development methodology of embedding formal models

into simulation that combines the use of formal methods and simulation to obtain the advantages

of deep formal verification with the broad spectrum testing of simulation. In our research, Petri net

modeling and ns-2 are chosen to be the example formal method and simulation software,

respectively, to illustrate the hybrid methodology. In addition, α-min Paced SACK TCP, is used as

the example protocol under test. However, the proposed hybrid methodology applies to other

formal methods and simulation software. Also, the example of combining Petri nets with ns-2 is a

generic approach that can be that can be used to study the performance of any new network

protocol that is intended to run in an existing, complex network environment.

5.1 Embedding Petri Net Models into ns-2

Formal methods can be used to model and analyze a single communicating pair of protocol

entities in great detail, while simulation allows us to create and simulate complex network

scenarios containing many protocol entities, but at a lower level of detail and with no formal

analysis. If we can make use of the advantages of these two types of methods, the protocol of

interest will be studied more thoroughly and the research results will be more convincing. In our

102

research, we use Petri nets and ns-2 as the example formal method and simulation software to

illustrate the innovative hybrid methodology for protocol development, embedding formal models

into simulation. Thus, the hybrid approach becomes a specific methodology, embedding Petri net

models into ns-2. In Chapter 5, α-min Paced SACK TCP is used as the example protocol under

investigation. However, embedding Petri net models into ns-2 is a general method that can be used

to study the performance of various network protocols. This section presents an overview of this

methodology. A detailed example using this methodology will be illustrated in the following

sections.

 We first model the protocol of interest with Petri nets, then analyze the formal properties of

the model, and finally embed the Petri net model in an ns-2 simulation and carry out the

simulation study. Note that most Petri net tools support simulation mode, too. However, they

typically only work with a single pair of communicating entities. The results from such studies

may not be convincing when the new protocol must run in a complex network with hundreds to

thousands of concurrent sessions that use a variety of protocol revisions. For example, the active

TCP sessions in a real network would use some mix of Tahoe, Reno, New Reno and SACK

versions of the protocol. This degree of variety should be tested in any simulation scenario that is

attempting to be realistic. With the proposed methodology, we only need to model the protocol

that interests us with Petri nets. After the Petri net has been formally analyzed, the model is

embedded into an ns-2 simulation environment and extensive simulations are carried out. This

method aims to make use of the complementary advantages of Petri nets and simulation by

embedding a formally verified Petri net model into a complex, representative ns-2 simulation

environment.

Figure 5.1 Embedding a Petri Net Model into ns-2

 A high-level overview of the proposed methodology is illustrated in Figure 5.1. As

103

mentioned previously, to study the performance of a network protocol, we need to make a Petri net

model of the protocol first. Furthermore, to embed the Petri net model into ns-2, we need to

develop two agents: a Petri net agent and an ns-2 agent. They are attached to the Petri net model

and ns-2, respectively. These agents are used to facilitate the interaction between the Petri net

model and ns-2. The detailed implementation of the agents is as follows.

 To establish the interaction between a Petri net model and ns-2, there has to be a method for

them to communicate. Design/CPN [62] is one of the most widely used Petri net modeling tools.

Design/CPN has a special external communication library called “Comms/CPN” [90].

Comms/CPN is based on socket programming. It provides a way for Petri net models to

communicate with non-Petri-net models. That is, any external process that is capable of sending or

receiving messages via sockets can exchange information with Petri net models via Comms/CPN.

Of course, there are other methods to transfer messages between Petri net models and ns-2 if we

have access to the source codes of Design/CPN and ns-2. However, since socket programming is

widely implemented in different operating systems, using “Comms/CPN” to exchange information

between ns-2 and Petri net models guarantees the feasibility of the proposed methodology.

 Once there is a way to communicate, more advanced issues must be taken into consideration.

Synchronization is an important issue we have to address when we attempt to make two

discrete-event systems, such as Petri nets and ns-2, interact. Suppose, for example, that there are 4

possible events in a simulation: A1, A2, A3, and A4. Suppose also that we have a Petri net model

with 3 events: B1, B2, and B3, and that the events in both the simulation and the Petri net take

place sequentially. If the combined execution sequence is A1, B1, A2, B2, B3, A3, A4, then some

synchronization mechanism must be in place to guarantee the execution sequence in the combined

system. This is shown in Figure 5.2.

 Basically there are two types of mechanisms that can be used to guarantee synchronization:

tick-based and event-based. A tick is a time unit defined in a specific system, such as 1 second or

0.5 second. The length of a tick depends on specific systems. With a tick-based mechanism,

whenever a tick has passed, a tick-end notice is sent out to synchronize Petri nets and ns-2. This

104

mechanism is correct but involves many synchronization notices, making it less practical. With an

event-based mechanism, an event-end notice is sent only at the end of each event. For instance, in

the system shown in Figure 5.2, at the end of A1, ns-2 will notify Petri net that A1 has been

completed and B1 can be executed. After sending out the notice, ns-2 is suspended and waits for

the notice from the Petri net. When B1 is completed, the Petri net will send a notice to ns-2 so that

the execution of A2 can begin. This process guarantees the correct ordering of the combined

execution sequence.

Figure 5.2 Synchronization between Two Discrete-Event Simulation Systems

 Other than synchronization information, semantic information, such as packet sequence

number, packet length, etc. is also exchanged between ns-2 and the Petri net to carry out the

simulation. In practice, synchronization and semantic information are both encapsulated into a

single message which is sent out whenever an event takes place. After receiving the message, the

receiver, either ns-2 or the Petri net, will process the message accordingly. This leads to an

event-based message exchange mechanism. Figure 5.3 illustrates how messages are processed

with such a mechanism.

 Once the problems of communication, synchronization, and semantic information exchange

105

are solved, we can embed a formally analyzed Petri net model into an ns-2 simulation of any

complexity and study the protocol of interest thoroughly. Finally, it is worth mentioning that

although this section is focused on embedding Petri nets into ns-2, the hybrid methodology of

embedding formal models into simulation is very general and it actually applies to many other

modeling tools. For example, we might want to embed a PROMELA model into ns-2 or embed a

Petri net into OPNET.

Figure 5.3 A General Event-Driven Message Exchange Mechanism

5.2 Simulation

 As illustrated in Chapter 4, compared with SACK TCP, α-min Paced SACK TCP was proved

to be very resilient in the case of a single TCP session. In this section, the proposed hybrid

methodology was used to test the resilience performance of α-min Paced SACK TCP in a complex

network environment. We were able to study three types of scenarios: (1) all TCP sessions in the

network use α-min Paced SACK TCP, (2) all TCP sessions use ns-2’s standard SACK TCP and (3)

the scenario in which half of the sessions use α-min Paced SACK TCP and the other half use

standard SACK TCP. This gives us results that show how our proposed change to TCP would

behave if it were the only version of TCP in the network, and more importantly, helps us

106

understand how the new version interworks with an existing, widespread version of TCP.

 As stated previously, α-min Paced SACK TCP should pace packets at [α x min (rE , rB)].

However, it is not easy to determine rB when there are multiple TCP sessions. For simplicity, we

assume that the queuing policy employed by the routers in our simulation is “fair queuing” [2].

Thus, if there are n TCP flows passing a bottleneck link whose bandwidth is bB, then for each TCP

session, rB can be set to (bB / n). Note that (bB / n) is the lower limit since rB is always no less than

(bB / n). Furthermore, in our simulation, α is set to 1.

(a)

(B)

(C)

(D)

Figure 5.4 Basic Simulation Topologies

107

 In our research, two sets of simulations were carried out. The first set of simulations

correspond to the basic scenarios in which there are at most two TCP sessions at any time and the

concurrent TCP sessions have the same RTT, either 50 ms or 250ms. Four network topologies

were used and are shown in Figure 5.4. Two routers, Router 1 and Router 2, are connected by a

core network link. To simulate different delay conditions, the one-way delay of the core network

link is either 20 ms or 120 ms. The bandwidth of the core link is DS1, namely, 1.544 Mbps. One

or two TCP senders (or receivers) are connected to Router 1 (or Router 2) by 10 Mbps edge links.

The delay of the edge links is fixed at 2.5 ms. Thus, in the first set of simulations, the round-trip

time for any TCP session is either 50 ms or 250 ms. We selected these values to be similar to the

round-trip times in continental and transoceanic networks, respectively.

Figure 5.5 NSFNET-Like Network Topology [91]

 The second set of simulations were configured to study whether α-min Paced SACK TCP

works well in a more realistic situation, namely, when there are more than two concurrent TCP

sessions and these TCP sessions do not have the same RTT. In the second set of simulations, a

NSFNET-like topology [91] is used, as shown in Figure 5.5. Fourteen routers, each of which

108

corresponds to a node in Figure 5.5, form the core network. The bandwidth of the core link is set

to DS1 (1.544 Mbps) so that we can compare the results to those from the first set of simulations.

Due to varied geographical distances, the links between these routers have different delays.

Assuming that the NSFNET-like network is a fiber optic network in which light travels at 0.66c,

we can calculate the corresponding delays due to geographical distances. The details are

summarized in Table 5.1. For clarity, only the links that are used by different TCP sessions in the

second set of simulations are included. There are 8 TCP sessions altogether in the NSFNET-like

network. The senders are all attached to the router at Palo Alto via “10Mbps-2.5ms” edge links.

The same type of link is used to connect receivers with the routers at Boulder, Lincoln,

Champaign, Pittsburgh, Princeton, College Park, Ann Arbor, and Houston, respectively. Figure 5.6

illustrates the details. The dashed lines in Figure 5.6 indicate that these lines represent multiple

hops rather than a single link. The detailed routes for the TCP sessions in the second set of

simulations are summarized in Table 5.2.

Table 5.1 Link Delays in the NSFNET-Like Network

Link Start Link End Distance (km) Delay (ms)

Palo Alto Salt Lake 1230.885 6.154425

Salt Lake Boulder 843.116 4.21558

Boulder Lincoln 807.718 4.03859

Lincoln Champaign 891.386 4.45693

Champaign Pittsburgh 767.493 3.837465

Pittsburgh Princeton 540.624 2.70312

Princeton College Park 286.402 1.43201

Salt Lake Ann Arbor 2606.58 13.0329

Boulder Houston 1671.751 8.358755

 In our simulation, a sender (or receiver) can be either an ns-2 “SACK TCP” sender (or

receiver) or a Petri net “α-min Paced SACK TCP” sender (or receiver). Thus, for the same

network topology, there could be several different simulation scenarios. In this section, NS-S and

NS-R denote ns-2 “SACK TCP” sender and receiver, respectively, while PE-S and PE-R denote

109

Petri net “α-min Paced SACK TCP” sender and receiver, respectively. Also, a TCP sender and

receiver of the same type are paired. For example, if there is one NS-S in a simulation, then there

must be one and only one corresponding NS-R. Different combinations of NS-S, NS-R, PE-S, and

PE-R using the basic topologies shown in Figure 5.4 and the NSFNET-like topology shown in

Figure 5.5 were studied, and the experimental results are presented in Section 5.3.

Figure 5.6 TCP Sessions in the NSFNET-Like Network

Figure 5.7 Physical and Virtual Links

110

Table 5.2 Routes of the TCP Flows in the NSFNET-Like Network

Flow

ID

Sender Location

Receiver Location

Route

1
Palo Alto Boulder

PaloAlto>SaltLakeCity> Boulder

2
Palo Alto Lincoln

PaloAlto> SaltLakeCity> Boulder> Lincoln

3
Palo Alto Champaign

PaloAlto>SaltLakeCity>Boulder>Lincoln>Champaign

4
Palo Alto Pittsburgh

PaloAlto>SaltLakeCity>Boulder>Lincoln>Champaign

>Pittsburgh

5
Palo Alto Princeton

PaloAlto>SaltLakeCity>Boulder>Lincoln>Champaign

>Pittsburgh>Princeton

6
Palo Alto College Park

PaloAlto>SaltLakeCity>Boulder>Lincoln>Champaign

>Pittsburgh>Princeton>CollegePark

7
Palo Alto Ann Arbor

PaloAlto>SaltLakeCity>AnnArbor

8
Palo Alto Houston

PaloAlto>SaltLakeCity>Boulder>Houston

 The NS-S and NS-R protocol entities are implemented by ns-2 and to incorporate them in a

simulation we do not have to make any change to the corresponding ns-2 model. However,

including PE-S or PE-R entities means that a synchronization and semantic information exchange

mechanism has to be in place to trade necessary information between the Petri net model and ns-2.

The general method to solve the embedding problem was discussed in Section 5.1. We present the

detailed implementation of the method in this section. As mentioned previously, a Petri net agent

and an ns-2 agent are required. We implemented the mechanism illustrated in Figure 5.7 to

complete a TCP session between a PE-S and a PE-R. Each PE-S and PE-R consists of code

running in both Design/CPN and ns-2. There is an agent on each “side” that passes information

across the program boundaries. That is, each sender or receiver has both an ns-2 agent and a Petri

net agent. Comms/CPN is used to transfer messages between these two agents. The network that

transfers TCP packets from the PE-S to the PE-R is simulated in ns-2 between the ns-2 agents. The

need for a mechanism to synchronize the behaviors of the ns-2 and Petri net models was also

111

discussed in Section 5.1. The mechanism we used to synchronize the models is based on three

types of messages: Send, ACK and Timeout (see Figure 5.8).

Figure 5.8 A Specific Event-Driven Message Exchange Mechanism

 In the study that motivated the development of this method, we study the resilience of TCP

after it has been transmitting for awhile and reaches a stable state where cwnd becomes greater

than rwnd. We chose a 1 MB file transfer from the sender to the receiver for every experimental

TCP session. So there is always some application data for TCP during the file transfer. Namely,

whenever TCP is ready to send a segment, it can transmit the segment immediately. SMSS was set

to 1460 bytes. The values of cwnd, rwnd and ssthresh were initialized to 1460 bytes, 32 KB and 64

KB, respectively. By 32 KB or 64 KB, we mean a multiple of SMSS that is just above 32 KB or

64KB. For example, in our model, SMSS is 1460 bytes, so by 32 KB, we mean 1460 * 23= 33580

bytes. For clarity, we consider 1460-byte packets as the data units. Thus, cwnd, rwnd and ssthresh

were set to 1, 23 and 45, respectively.

5.3 Experimental Results

α-min Paced SACK TCP spreads outstanding packets along the path and thus reduces the number

of packets queued at the bottleneck router, decreasing the possibility of packet discard due to

112

limited buffer space. For the topologies shown in Figure 5.4, Router 1 turned out to be the

bottleneck router. For the NSFNET-like topology, Palo Alto is the bottleneck. If there is too much

traffic in the network, an excessive number of packets will be queued at Router 1 or Palo Alto. We

assume that all routers have sufficient memory to buffer all incoming packets so that no packets

are dropped due to the length of the queue. Thus, in our simulations, the length of the queue at

Router 1 or Palo Alto indicates the resilience of different versions of TCP. That is, a shorter queue

indicates better performance. The detailed experimental results from our simulations are

summarized as follows.

5.3.1 Continental Networks: Uniform 50 ms Round-trip Time

With the topologies shown in Figure 5.4 (a) and (b), the round-trip-time is 50 ms. For a network

corresponding to Figure 5.4 (a), there are two possible cases: (1 PE-S, 1 PE-R) and (1 NS-S, 1

NS-R). That is, there is only one α-min Paced SACK TCP session or one ns-2 SACK TCP session.

The experimental results from these scenarios are shown in Figure 5.9. Apparently, if there is only

one ns-2 SACK TCP session, a 15-packet queue is built up at Router 1 soon after the TCP session

starts; comparatively, if there is only one α-min Paced SACK TCP session, there is at most a

1-packet queue.

0

2

4

6

8

10

12

14

16

18

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Q
ue

ue
 L

en
gt

h

Time (s)

ns-2 SACK Only
a-min Paced SACK Only

Figure 5.9 Single TCP Session with 50 ms RTT

 For the network shown in Figure 5.4 (b), there are three possible cases: (1 PE-S + 1 NS-S, 1

PE-R + 1 NS-R) , (2 PE-S + 0 NS-S, 2 PE-R + 0 NS-R), and (0 PE-S + 2 NS-S, 0 PE-R + 2 NS-R),

113

which correspond to the scenario of one α-min Paced SACK TCP session and one ns-2 SACK

TCP session, two α-min Paced SACK TCP sessions, and two ns-2 SACK TCP sessions,

respectively. The resilience performance from these scenarios is shown in Figure 5.10. In the case

of two α-min Paced SACK TCP sessions, there is only a very short queue at Router 1. The case of

two ns-2 SACK TCP sessions leads to the worst resilience performance because a long queue of

around 36 packets appears shortly after the start of the simulation. In the case of one α-min Paced

SACK TCP session and one ns-2 SACK TCP session, the outstanding resilience of α-min Paced

SACK TCP is significantly held back by ns-2 SACK TCP. As a result, there is still a 20-packet

queue.

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Q
ue

ue
 L

en
gt

h

Time (s)

Two ns-2 SACK
Two a-min Paced SACK

a-min Paced + ns-2 SACK

Figure 5.10 Two TCP Sessions with 50 ms RTT

5.3.2 Transoceanic Networks: Uniform 250 ms Round-trip Time

Figure 5.4 (c) and (d) are meant to represent transoceanic communication networks, in which

longer round-trip times are often observed. In our simulations, the RTT is fixed at 250 ms. Similar

to Figure 5.4 (a), Figure 5.4 (c) leads to two possible cases: (1 PE-S, 1 PE-R) and (1 NS-S, 1

NS-R), which correspond to the scenario of one α-min Paced SACK TCP session only, and one

ns-2 SACK TCP session only, respectively. The experimental results from these scenarios are

shown in Figure 5.11. The queue resulting from ns-2 SACK TCP in this case is not as long as

before: after a few seconds, the length of the queue drops to 1 packet. This is because there is not

much traffic in the network in this scenario. Compared with ns-2 SACK TCP, α-min Paced SACK

114

TCP leads to a very short queue throughout the session.

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4

Q
ue

ue
 L

en
gt

h

Time (s)

ns-2 SACK Only
a-min Paced SACK Only

Figure 5.11 Single TCP Session with 250 ms RTT

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4

Q
ue

ue
 L

en
gt

h

Time (s)

Two ns-2 SACK TCP
Two a-min Paced SACK

a-min Paced + ns-2 SACK

Figure 5.12 Two TCP Sessions with 250 ms RTT

 Similar to Figure 5.4 (b), with the topology shown in Figure 5.4 (d), there are three possible

cases: (1 PE-S + 1 NS-S, 1 PE-R + 1 NS-R) , (2 PE-S + 0 NS-S, 2 PE-R + 0 NS-R), and (0 PE-S +

2 NS-S, 0 PE-R + 2 NS-R), which correspond to the scenario of one α-min Paced SACK TCP

session and one ns-2 SACK TCP session, two α-min Paced SACK TCP sessions, and two ns-2

SACK TCP sessions, respectively. The resilience performance from these scenarios is shown in

115

Figure 5.12. Similarly, we found that the case of two α-min Paced SACK TCP sessions leads to

the best resilience, the case of two ns-2 SACK TCP sessions results in the worst resilience, and the

length of the queue in the case of one α-min Paced SACK TCP session and one ns-2 SACK TCP

session is somewhere in between.

5.3.3 NSFNET-Like Networks: Varied Round-trip Time

In the second set of simulations, there are eight TCP sessions in the NSFNET-like network. Each

sender-receiver pair could be either α-min Paced SACK TCP or ns-2 SACK TCP, so there are 28

different cases in total. We chose three typical cases to study the performance of α-min Paced

SACK TCP. In the first case all eight TCP sessions are ns-2 SACK TCP sessions, and in the

second all TCP sessions are Petri net α-min Paced SACK TCP sessions. The third case is

composed of four Petri net α-min Paced SACK TCP sessions and four ns-2 SACK TCP sessions.

Specifically, the TCP sessions whose receivers are at Boulder, Lincoln, Champaign, and Pittsburgh

are Petri net α-min Paced SACK TCP sessions; the TCP sessions whose receivers are at Princeton,

College Park, Ann Arbor, and Houston are ns-2 SACK TCP sessions.

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2 2.5 3 3.5 4

Q
ue

ue
 L

en
gt

h

Time (s)

8 ns-2 SACK TCP
8 a-min Paced SACK

4 a-min Paced + 4 ns-2 SACK

Figure 5.13 Eight TCP Sessions with Varied RTTs in a NSFNET-Like Network

 As in the simpler networks, we find that if all TCP sessions use α-min Paced SACK TCP,

only a few packets are queued at the bottleneck router in Palo Alto. If all TCP sessions use ns-2

116

SACK TCP, the length of the queue at Palo Alto increases from the beginning of the run to about

170. If half of the sessions use α-min Paced SACK TCP and the other half use ns-2 SACK TCP,

an intermediate state is reached in which the length of the queue at the bottleneck router reaches

90. The detailed results are illustrated in Figure 5.13.

 Hence, we can conclude that α-min Paced SACK TCP performs better than SACK TCP in

terms of resilience, not only in single session scenarios, but also in multiple session cases, even if

these TCP sessions have varied RTTs. We were able to reach this conclusion by using the proposed

hybrid methodology to study the resilience of α-min Paced SACK TCP in a relatively complex

environment. We can have confidence in the results because our simulations use the formally

verified model of our proposed variation of TCP, rather than another representation of it

programmed independently. The methodology proposed here makes it possible to test the

performance of a verified module in a more complex environment than would ordinarily be

employed in a formal verification environment, whilst retaining the certainty of correctness.

117

Chapter 6

Conclusions and Future Work

In this chapter we present our conclusions and future work. Specifically, Section 6.1 gives the

conclusions and Section 6.2 talks about the future work.

6.1 Conclusions

We studied the resilience behavior of SACK, NewReno, and Reno TCP. Our experimental results

demonstrate that the traditional 50 ms recovery time is not suitable for TCP transport on the

Internet. With SACK TCP, we found two restoration objectives, τ1,S and τ2,S. τ1,S is given by Eq.

3.10, and τ2,S is closely related to RTO. With NewReno TCP, we also found two restoration

objectives, τ1,NR and τ2,NR. τ1,NR is given by Eq. 3.12, and τ2,NR is essentially the same as τ2,S. τ1,NR

is approximately twice as large as τ1,S when rwnd is large. With Reno TCP, we found a recovery

objective of 200ms for DS0 access; For DS1 and OC-3c access, there seem to be no critical points

from 15ms to 1s.

 We found that if more than nC,S segments in one transmission window are lost, even if SACK

TCP transitions into Fast Retransmit/Fast Recovery, a timeout will still occur and performance

will be degraded dramatically. To avoid unnecessary timeout with SACK TCP, we proposed Type I

and Type II Probing that insert probes into the network in the case of network malfunctions. Our

experimental results show that both Type I and Type II Probing decrease the impact of lost

segments significantly.

 SACK TCP tends to send out segments in clusters and congest bottleneck routers, which

could potentially degrade SACK TCP resilience significantly. α-min Paced SACK TCP, a paced

version of SACK TCP based on the estimation of bottleneck rate, was proposed to spread out

118

segments over the path between the sender and the receiver. Our experimental results demonstrate

that α-min Paced SACK TCP spreads out segments and reduces the number of segments queued at

the bottleneck routers, avoiding potential segment losses due to congestion. SACK TCP with Type

I and Type II Probing, as well as α-min Paced SACK TCP, were modeled with Petri nets. The Petri

net models were formally analyzed to increase out confidence about the correctness.

 Formal methods enable us to verify the protocol of interest. While simulation excels in

testing a new protocol in relatively realistic environment in which it interworks (or at least

co-exists) with earlier or different versions of the same or similar protocols. We proposed a hybrid

protocol development methodology, embedding formal models into simulation, that combines the

use of formal methods and simulation to obtain the advantages of deep formal verification with the

broad spectrum testing of simulation. Petri net modeling and ns-2 were chosen to be the example

formal method and simulation software, respectively, to illustrate the hybrid methodology. With

the assistance of the hybrid method, we tested α-min Paced SACK TCP in a NSF-like network.

The results show that α-min Paced SACK TCP performs better than SACK TCP in terms of

resilience, not only in single session scenarios, but also in multiple session cases, even if these

TCP sessions have varied RTTs.

6.2 Future Work

TCP is the de facto Transport Layer protocol in the Internet. As the Internet evolves, there are

numerous possibilities for future work:

� TCP was designed for low-speed networks. As the access rate keeps increasing, TCP needs to

evolve accordingly. For example, when a packet loss event is detected by receiving three

duplicate ACKs, the current version of TCP halves its cwnd after it recovers from the

malfunction. For high-speed networks, it takes a long time for cwnd to climb back to the

value that was in use before the malfunction. This could reduce bandwidth utilization

significantly. TCP resilience in high-speed networks could be a promising research area.

� In Type II Probing, max (300 ms, 2RTT) is chosen as the length of the “quiet period”. We

mentioned previously that the length of this period should be related to RTT and 300 ms was

119

selected because the TCP receiver only sends out an ACK for every second segment, or

within 200 ms of the arrival of the first unacknowledged segment. Further study and

optimization is required.

� Our experimental results show that SACK TCP with Type I and Type II Probing improves

SACK TCP resilience significantly in single session scenarios. Further study of the improved

versions of SACK TCP in more complex environments needs to be accomplished to verify

their effectiveness.

� Embedding Petri net models into ns2 is used to demonstrate the proposed hybrid method for

protocol development. The idea of the hybrid method is a generic approach that can be used

with other formal methods and simulation software. However, embedding a specific formal

model into a specific simulation environment involves designing the interface between them

manually. A more automatic approach needs to be developed to speed up the process and

reduce possible errors.

120

Bibliography

[1] W.R. Stevens, TCP/IP Illustrated, Volume 1, Addison Wesley, 2000.

[2] A.S. Tanenbaum, Computer Networks: 4th edition, Prentice-Hall, 2003.

[3] K. Fall and S. Floyd, Simulation-based Comparisons of Tahoe, Reno and SACK TCP,

Computer Communication Review, Vol. 26, No.3, pp. 5-21, July1996.

[4] S. Floyd and T. Henderson, RFC 2582: The NewReno Modification to TCP's Fast Recovery

Algorithm, April, 1999.

[5] M. Mathis et al., RFC 2018: TCP Selective Acknowledgement Options, October, 1996.

[6] S. Floyd et al., RFC 2883: An Extension to the Selective Acknowledgement (SACK) Option

for TCP, July, 2000.

[7] C. Jin et al., FAST TCP: From Theory to Experiments, IEEE Network, Vol. 19, No.1,

January/February, 2005.

[8] S. Floyd, RFC 3649:HighSpeed TCP for Large Congestion Windows, December 2003.

[9] M. Gerla et al., TCP Westwood: Congestion Window Control Using Bandwidth Estimation,

Proceedings of IEEE Globecom 2001, pp. 1698-1702, San Antonio, Texas, USA,

November 25-29, 2001.

[10] A. Zanella et al., TCP Westwood: Analytic Model and Performance Evaluation,

Proceedings of IEEE Globecom 2001, pp. 1703-1707, San Antonio, Texas, USA,

November 25-29, 2001.

[11] D. Katabi, M. Handley and C. Rohrs, Congestion Control for High Bandwidth-Delay

Product Networks, ACM SIGCOMM Computer Communication Review, Vol. 32, No.4,

pp. 89 - 102, August , 2002.

[12] K. Ramakrishnan, S. Floyd and D. Black, RFC 3168: The Addition of Explicit Congestion

Notification (ECN) to IP, September, 2001.

[13] J. Padhye and S. Floyd, On Inferring TCP Behavior, Proceedings of ACM SIGCOMM

2001, pp. 287-298, San Diego, CA, USA, August 27-31, 2001.

[14] T. Wu, Fiber Network Service Survivability, Artech House, 1992.

[15] T.H. Wu, Emerging Technologier for Fiber Network Survivability, IEEE Communications

Magazine, Vol. 33, No.2, pp. 58-74, February 1995.

[16] O. Gerstel, Opportunities for Optical Protection and Restoration, Proceedings of Optical

Fiber Communication Conference, pp. 269-270, San Jose, CA, USA, February 22-27,

1998.

[17] S. Ramamurthy and B. Mukherjee, Survivable WDM Mesh Networks: Part I Protection,

Proceedings of IEEE INFOCOM 1999, pp. 744-751, New York, NY, USA, March 21-25,

1999.

121

[18] A. Fumagalli et al., Survivable Networks Based on Optimal Routing and WDM

Self-Healing Rings, Proceedings of IEEE INFOCOM 1999, pp. 726--733, New York, NY,

USA, March 21-25, 1999.

[19] G. Sahin and M. Azizoglu, Optical Layer Survivability: Single Service-Class Case,

Proceedings of OptiComm 2000: Optical Networking and Communications, pp. 267-278,

Dallas, TX, USA, October 24, 2000.

[20] S. Arakawa, M. Murata and H. Miyahara, Design Methods of Multilayer Survivability in

IP over WDM Networks, Proceedings of OptiComm 2000: Optical Networking and

Communications, pp. 279-290, Dallas, TX, USA, October 24, 2000.

[21] O. Gerstel and R. Ramaswami, Optical Layer Survivability - An Implementation

Perspective, IEEE Journal on Selected Areas in Communications, Vol. 18, No.10, pp.

1885-1899, October, 2000.

[22] G. Ellinas, A.G. Hailemariam and T.E. Stern, Protection Cycles in Mesh WDM Networks,

IEEE Journal on Selected Areas in Communications, Vol. 18, No.10, pp. 1924-1937,

October, 2000.

[23] S. Ramamurthy and B. Mukherjee, Survivable WDM Mesh Metworks: Part II Restoration,

Proceedings of IEEE ICC 1999, pp. 2023-2030, Vancouver, BC, Canada, June 6-10,

1999.

[24] W.D. Grover, The Self-Healing Network: A Fast Distributed Restoration Technique for

Networks Using Digital Crossconnect Machines, Proceedings of IEEE Globecom 1987,

pp. 1090-1095, Tokyo, Japan, November, 1987.

[25] W.J. Goralski, SONET(Second Edition), Mcgraw-Hill, 2000.

[26] ANSI, T1.105.01-1998, Synchronous Optical Network(SONET)-Automatic Protection

Switching, 1998.

[27] T.E. Stern and K. Bala, Multiwavelength Optical Networks, Addison-Wesley, 1999.

[28] D. Clark, The Design Philosophy of the DARPA Internet Protocols, ACM SIGCOMM

Computer Communication Review, Vol. 18, No.4, pp. 106-114, August, 1988.

[29] J. Moy, RFC 2328: OSPF Version 2, April, 1998.

[30] P. Demeester et al., Resilience in Multilayer Networks, IEEE Communications Magazine,

Vol. 37, No.8, pp. 70 - 76, August, 1999.

[31] C. Sadler, L. Kant and W. Chen, Cross-Layer Self-Healing Mechanisms in Wireless

Networks, Proceedings of 6TH WORLD WIRELESS CONGRESS, Palo Alto, CA, USA,

May 24 - 27, 2005.

[32] C. Petri, Kommunikation mit Automaten (Communication with Automata), PhD Thesis,

University of Bonn, 1962.

[33] J. F.Kurose and K.W. Ross, Computer Networking: A Top-Down Approach Featuring the

Internet, Addison Wesley, 2005.

[34] J. Mogul and S. Deering, RFC 1191: Path MTU Discovery, November, 1990.

[35] V. Paxson and M. Allman, RFC 2988: Computing TCP's Retransmission Timer,

November, 2000.

[36] M. Allman, V. Paxson and W. Stevens, RFC 2581: TCP Congestion Control, April, 1999.

122

[37] S.Floyd, T. Henderson and A. Gurtov, RFC 3782: The NewReno Modification to TCP's

Fast Recovery Algorithm, April, 2004.

[38] E. Blanton et al., RFC 3517: A Conservative Selective Acknowledgment (SACK)-based

Loss Recovery Algorithm for TCP, April, 2003.

[39] T. Murata, Petri Nets: Properties, Analysis and Applications, The IEEE Proceedings, Vol.

77, No.4, pp. 541-580, April, 1989.

[40] K. Jensen, Colored Petri Nets: Basic Concepts (Volumn 1), Springer-Verlag, 1992.

[41] K. Jensen, Colored Petri Nets: Analysis Methods (Volumn 2), Springer-Verlag, 1992.

[42] N.G. Leveson and J.L. Stolzy, Safety Analysis Using Petri Nets, IEEE Trasaction on

Software Engineering, Vol. SE-13, No.3, pp. 386-397, 1987.

[43] S.C. Brofferio, A Petri Net Control Unit for Highspeed Modular Signal Processors, IEEE

Trasaction on Communications, Vol. C35, No.6, pp. 577-583, 1987.

[44] J. Desel, Basic Linear Algebraic Techniques for Place/Transition Nets, Lectures on Petri

Nets I: Basic Models (LNCS 1491), pp. 257-308, 1998.

[45] A. Valmari, The State Explosion Problem, Lectures on Petri Nets I: Basic Models (LNCS

1491), pp. 429-528, 1998.

[46] G. Rozenberg and J. Engelfriet, Elementary Net Systems, Lectures on Petri Nets I: Basic

Models (LNCS 1491), pp. 12-121, 1998.

[47] J. Desel and W. Reisig, Place/Transition Petri Nets, Lectures on Petri Nets I: Basic

Models (LNCS 1491), pp. 122-173, 1998.

[48] E. Smith, Principles of High-Level Net Theory, Lectures on Petri Nets I: Basic Models

(LNCS 1491), pp. 174-210, 1998.

[49] C. Capellmann, H. Dibold and U. Herzog, Using High-Level Petri nets in the Field of

Intelligent Networks, Application of Petri Nets to Communication Networks (LNCS

1605), pp. 1-36, 1999.

[50] G. Wheeler, The Modelling and Analysis of IEEE 802.6's Configuration Congtrol Protocol

with Colored Petri Nets, Application of Petri Nets to Communication Networks (LNCS

1605), pp. 69-92, 1999.

[51] K. Jensen, An Introduction to the Practical Use of Colored Petri Nets, Lectures on Petri

Nets I: Applications (LNCS 1492), pp. 237-292, 1998.

[52] T.S. A. B. Mnaouer, Y. Fujii, T. Ito, H. Tanaka, Colored Petri Nets Based Modeling and

Simulation of the Static and Dynamic Allocation Policies of the Asynchronous Bandwidth

in teh Fieldbus Protocol, Application of Petri Nets to Communication Networks (LNCS

1605), pp. 93-130, 1999.

[53] F. Babich and L. Deotto, Formal Methods for Specification and Analysis of

Communication Protocols, IEEE Communication Surveys and Tutorials, Vol. 4, No.1, pp.

2-20, Third Quarter, 2002.

[54] S. Bajaj et al., Improving Simulation for Network Research (Technical Report 99-702b,

University of Southern California), March, 1999.

[55] ITU-T, Recommendation Z.100: Specification and Description Language (SDL), 1999.

[56] European Telecommunications Standards Institute (ETSI), Available from:

123

http://www.etsi.org/.

[57] Third Generation Partnership Project (3GPP), Available from: http://www.3gpp.org/.

[58] SDL Proceedings Online, Available from:

http://www.sdl-forum.org/Publications/Proceedings/Proceedings.htm.

[59] T. Bolognesi and E. Brinskma, Introduction to the ISO Specification Language LOTOS,

Computer Networks and ISDN Systems, Vol. 14, No.1, pp. 92-100, April, 1987.

[60] K.J. Turner, Using Formal Description Techniques: An Introduction to Estelle, LOTOS

and SDL, John Wiley, 1993.

[61] G.J. Holzmann, Design and Walidation of Computer Protocols, Prentice Hall, 1991.

[62] Design/CPN, The CPN Group, Department of Computer Science, University of Aarhus,

Denmark, Available from: http://www.daimi.au.dk/designCPN/.

[63] L.M. Kristensen and K. Jensen, Specification and Validation of an Edge Router Discovery

Protocol for Mobile Ad Hoc Networks, ntegration of Software Specification Techniques

for Applications in Engineering: Priority Program SoftSpez of the German Research

Foundation (LNCS 3147), pp. 248-269.

[64] GloMoSim 2.0, Available from: http://pcl.cs.ucla.edu/projects/glomosim/.

[65] PARSEC, Available from: http://pcl.cs.ucla.edu/projects/parsec/.

[66] OPNET Modeler, Available from: http://www.opnet.com.

[67] ns-2, Available from: http://www.isi.edu/nsnam/ns/.

[68] VINT Project, Available from: http://www.isi.edu/nsnam/vint/index.html.

[69] SAMAN, Available from: http://www.isi.edu/saman/index.html.

[70] CONSER, Available from: http://www.isi.edu/conser/index.html.

[71] T.R. Henderson and R.H. Katz, On Improving the Fairness of TCP Congestion Avoidance,

Proceedings of IEEE GlobeCom 1998, pp. 539-544, Sydney,NSW, Australia, November

8-12, 1998.

[72] K. Claffy, G. Miller and K. Thompson, The Nature of the Beast: Recent Traffic

Measurements from an Internet Backbone, Proceedings of INET 1998, Geneva,

Switzerland, July 21-24, 1998.

[73] A. Antonopoulos, Metrication and Performance Analysis on Resilience of Ring-Based

Transport Network Solutions, Proceedings of GLOBECOM 1999, pp. 1551-1555, Rio de

Janeiro, Brazil, December 5-9, 1999.

[74] L. Brakmo and L. Peterson, TCP Vegas: End to End Congestion Avoidance on a Global

Internet, IEEE Journal on Selected Areas in Communications, Vol. 13, No.8, pp.

1465-1480, October, 1995.

[75] J. Hoe, Improving the Start-up Behavior of a Congestion Control Scheme for TCP,

Proceedings of ACM SIGCOMM 1996, pp. 270-280, Stanford, CA, USA, August 28-30,

1996.

[76] D.J. Chaly and V.A. Sokolov, An Extensible Coloured Petri Net Model of a Transport

Protocol for Packet Switched Networks, Proceedings of The Seventh International

Conference on Parallel Computing Technologies (LNCS 2763), pp. 66-75, Nizhni

Novgorod, Russia, September 15-19, 2003.

124

[77] Q. Ye and M.H. MacGregor, Petri Net Approach to Improving SACK TCP Resilience,

Proceedings of Second Annual Conference on Communication Networks and Services

Research (CNSR 2004), pp. 146-155, Fredericton, NB, Canada, May 19-21, 2004.

[78] J.C.A.D. Figueiredo and L.M. Kristensen, Using Colored Petri Nets to Investigate

Behavioral and Performance Issues of TCP Protocols, Proceedings of Second Workshop

on Practical Use of Colored Petri Nets and Design/CPN, pp. 21-40, Aarhus, Denmark,

October 11-15, 1999.

[79] S. Floyd and V. Jacobson, Random Early Detection gateways for Congestion Avoidance,

IEEE/ACM Transaction on Networking, Vol. 11, No.4, pp. 397-413, August, 1993.

[80] Bellcore, GR-499-CORE: Transport Systems Generic Requirements (TSGR): Common

Requirements, December, 1998.

[81] ITU, ITU-T G.841: Types and Characteristics of SDH Network Protection Architectures,

October, 1998.

[82] N. Brownlee and K. Claffy, Understanding Internet Traffic Streams: Dragonflies and

Tortoises, IEEE Communication Magazine, Vol. 40, No.10, pp. 110-117, October, 2002.

[83] Q. Ye, M.H. MacGregor and W. Shi, SACK TCP Resilience Improvement with OPNET,

Proceedings of OPNETWORK 2004, Washington D.C., USA, August 30-September 3,

2004.

[84] J. Kulik et al., A Simulation Study of Paced TCP, BBN Technical Memorandum No. 1218,

August, 1999.

[85] R. Gupta et al., WebTP: A Receiver-Driven Web Transport Protocol, Proceedings of

INFORMS 2000 Telecommunications Conference, Boca Raton, Florida, USA, March 5-8,

2000.

[86] A. Aggarwal, S. Savage and T. Anderson, Understanding the Performance of TCP Pacing,

Proceedings of IEEE INFOCOM 2000: The Conference on Computer Communications,

pp. 1157 - 1165, Tel-Aviv, Israel, March 26 - 30, 2000.

[87] I.F. Akyildiz, G. Morabito and S. Palazzo, TCP-Peach: A New Congestion Control Scheme

for Satellite IP Networks, IEEE/ACM Transaction on Networking, Vol. 9, No.3, pp. 307 -

321, June 2001.

[88] A. Razdan et al., Enhancing TCP Performance in Networks with Small Buffers,

Proceedings of IEEE ICCCN 2002, pp. 39 - 44, Miami, Florida, USA, October 14-16,

2002.

[89] R.L. Winkler and W.L. Hays, Statistics, Probability, Inference, and Decision, Rinehart and

Winston Inc., 1971.

[90] Comms/CPN. The CPN Group, Department of Computer Science, University of Aarhus,

Denmark, Available from: http://www.daimi.au.dk/designCPN/libs/commscpn/.

[91] An Atlas of Cyber Spaces: Historical Maps, Available from:

http://www.cybergeography.org/atlas/historical.html.

