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Abstract

Virtual machines are gaining a growing importance in modernbusiness IT infrastructure. They fa-

cilitate multiple operating system instances on one physical host, which provides more efficient use

of the computing power of the physical host but increases theamount of network traffic as well. To

avoid potential network congestion and prioritize link resource usage in a virtual machine system,

we propose a bandwidth regulation scheme. Extensive evaluation demonstrates that this bandwidth

regulation scheme is accurate and effective. In addition, we resolved a drastic performance degrada-

tion of the Open-iSCSI initiator. We thoroughly tested the performance of the Open-iSCSI initiator

and three modified versions under two methods of setting the TCP send buffer size - statically and

dynamically. Based on these results, we propose a performance tuning scheme, which can enable

users of Open-iSCSI, especially those using Open-iSCSI over a long fat network, to achieve signifi-

cant throughput gains.
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Chapter 1

Introduction

Live migration of virtual machines plays an increasingly crucial role in modern business IT infras-

tructure. Virtual machines, when not running, live as one ormore static files on the physical host’s

storage subsystem. When started, virtual machines are loaded by the physical host from these files

and presented to the user as if they were independent physical hosts. As more than one virtual ma-

chine can be loaded at the same time on the host, more than one operating system instance can run

concurrently on one physical host, which allows for more efficient use of computing resources.

Also, as virtual machines are represented as data in files, when correctly replicated, virtual ma-

chines can be migrated to a different physical host and run inexactly the same manner as they do

on the original physical host. The migration can even occur during the time when a virtual machine

is running; this is called live migration. One crucial performance indicator of virtual machine live

migration is the service down time, which is largely dependent on the migration time of the virtual

storage subsystem. Pang presents a technique that facilitates more efficient disk migration [22].

This technique is able to reduce the service down time duringvirtual machine live migration and

therefore improve business continuity.

As well as the benefits virtual machines bring to the IT infrastructure, they extend new chal-

lenges, of which an obvious one is the ever higher pressure they put on network resources: when

multiple virtual machines are running on one physical host,the amount of network traffic of the

physical host is multiplied accordingly; moreover, the migration of virtual machines just adds an-

other significant amount on top of the multiplied traffic. In adistributed IT system, the overwhelm-

ing traffic from virtual machines can cause severe competition for link resources and even disastrous

network congestion.

To avoid potential network congestion and prioritize link resource usage in a distributed virtual

machine system, Sheng proposes an effective dynamic network resource allocation algorithm to

calculate the optimal maximum allowed bandwidth for the physical hosts in the network[23].

Based on this calculated maximum throughput of the physicalhosts, we realize the actual traf-

fic throttling. We discuss the use of the native Linux traffic control tools, such astc and HTB

(Hierarchical Token Bucket) to regulate the network trafficrate and examine their practicality and
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Figure 1.1: Server-Centric Architecture. [26]

effectiveness. In addition, we focus more specifically on the regulation of the iSCSI traffic in order

to provide differentiated storage service for virtual machines. Chapter 3 documents this work. The

positive results demonstrate that with careful configuration, native Linux traffic control tools com-

bined with the Open-iSCSI initiator can effectively regulate the traffic rate of a physical host and

provide differentiated quality of service for the disk traffic of virtual machines within the physical

host.

1.1 iSCSI Overview

In this new era of information, a tough challenge has been extended for our conventional storage

systems: According to Troppens et al. [26], the amount of data a normal company owns grows

exponentially each year; a company with 1 TB of data will haveto deal with 32 TB in five years.

In addition to the constant generation of new data, the backup windows continue to shrink. These

trends undoubtedly bring a strong challenge for the expansion of conventional server storage systems

based on the SCSI bus, due to their limitation on cable lengthand the number of devices allowed on

a daisy chain.

Moreover, data storage tends to be increasingly distributed geographically, yet the need for shar-

ing data is ever growing. The decentralization of data storage and the converse demand of data

sharing surely challenge the architecture of conventionalserver-centric IT systems, as depicted in

Figure 1.1, in two ways [26]: Firstly, a multi-server daisy chain does not work effectively; therefore,

it is difficult to share data efficiently between multiple servers through the SCSI bus; secondly, one

server cannot use the free space on the storage attached to another server if they are not on the same

2



Figure 1.2: Storage-Centric Architecture. [26]

SCSI daisy chain, which causes inefficient use of storage resources.

To efficiently tame the drastic data growth and effectively meet the need to share data, modern

IT architecture has gradually moved from the server-centric structure to a storage-centric structure,

as shown in Figure 1.2. In a storage-centric IT system, the storage devices and servers are connected

via network links, which are generally dedicated for storage access.

This network of storage devices is calledStorage Area Network(SAN). SAN inherits the SCSI

command set and replaces the SCSI bus by a network. As a result, the storage devices do not

have to be directly attached to the servers, which facilitates flexible expansion of existing storage

volumes. Also, multiple servers can now connect to the same storage devices, which enables storage

consolidation and seamless data sharing. With the network properly built, storage sharing between

geographically dispersed servers is made available as well.

Unfortunately, everything comes with a cost and it is no exception for SAN. SANs were first built

upon the expensive Fibre Channel technology, which still dominates the majority of the SAN market

at the time of writing. The protocol stack of a Fibre Channel SAN is shown in 1.3. Fibre Channel

technology is fundamentally different than the widely usedIP technology; therefore, to deploy Fibre

Channel SAN, an entirely new Fibre Channel network infrastructure is required. While establishing

the Fibre Channel network, the cost of necessary training and maintenance needs to be budgeted

as well. The collective cost of the network infrastructure,personnel training as well as network

maintenance inevitably sets a financial barrier for the deployment of Fibre Channel SAN in average

companies and lower-end users as well.

To tackle the financial barrier of Fibre Channel SAN, Internet SCSI (iSCSI) was brought into

3
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Figure 1.3: Fibre Channel Protocol and TCP/IP.

the picture. As shown in Figure 1.4, iSCSI replaces the expensive Fibre Channel network with an

IP network, which is the existing network infrastructure for almost every company. This infras-

tructure is usually based on conventional Ethernet controllers (cards) and cables, which are much

more affordable than their Fibre Channel equivalents and yet still meet the average and even higher

end performance requirements. In addition, the staff training and network maintenance cost of IP

networks is minimal compared to Fibre Channel networks. As aresult, the total cost of ownership

for iSCSI is much lower than for a Fibre Channel SAN. Furthermore, iSCSI is inherently TCP/IP

based; hence it has no distance limits and can fit well in WAN based distributed systems, for which

Fibre Channel SAN requires extra special hardware enhancements to function properly, adding even

more cost to the entire IT system.

Clearly, iSCSI is in a more favorable position financially. The old saying, however, makes no

exception for iSCSI either: The financial advantage comes with a cost, which, in this case, is in the

form of potential performance concerns. iSCSI is based on TCP/IP and hence inherits the two most

noticeable concerns in TCP/IP networks - packet loss and long delay over the network links.

To closely investigate how these two issues affect the performance of iSCSI, we started our work

on the performance measurement of a software implementation of the Open-iSCSI initiator over

lossy links and long delay links. Our results show that iSCSIis able to reach the same maximum

performance as a general TCP application does on a lossy link. On a long delay link, however,

the performance of Open-iSCSI initiator degrades drastically as the delay on the link increases,

while the general TCP application is able to maintain its throughput. We then performed a thorough

4
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examination of this problem and discovered two resolutionsthat gain substantial improvement for

Open-iSCSI throughput. Chapter 4 documents this work and presents our resolutions to the iSCSI

performance degradation problem. By the time of writing, wehave not been able to find any other

published solutions to this problem.
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Chapter 2

Background and Previous Work

2.1 A Few Terms

For the purpose of clarification, we introduce here some terms used in the following sections.

Round-Trip Time (RTT) : The length of time it takes for a TCP segment to be sent plus the length

of time it takes for an acknowledgment of that segment to be received. It is twice the end-to-

end delay of the link.

Bandwidth Delay Product (BDP) : A link’s BDP is calculated as the product of its bandwidth and

RTT1. This product is the amount of data required to be on the wire to fill the pipe in order to

fully utilize the capacity of the link; therefore, the BDP ofa network link implies the proper

size of the send and receive buffer of the applications communicating over the link.

Long Fat Pipe and Long Fat Network (LFN) : If the BDP of a link path significantly exceeds105

bits, we call it along fat pipe. And we call a network with a long fat pipe aLong Fat Network

(LFN)[15].

2.2 Background on iSCSI

The iSCSI related protocol stack is illustrated in Figure 2.1. iSCSI works between the SCSI layer

and the TCP layer. The I/O requests from applications first gothrough the SCSI layer, where the

SCSI driver builds SCSI Command Description Blocks (CDBs) based on the I/O requests. The SCSI

CDBs then move to the iSCSI layer and the iSCSI driver assembles Protocol Data Units (PDUs) and

then hands them over to the TCP/IP layer. Thereafter, the PDUs travel across the network just like

any other TCP payload. At the other end of the network, the iSCSI driver disassembles the received

PDUs and passes the encapsulated CDBs to the SCSI layer. The SCSI driver then disassembles the

CDBs and the I/O requests are eventually performed on the SCSI Logical Unit(s).

1Sometimes it is also calculated as the product of the link’s bandwidth and end-to-end time. In this thesis, when referring
to BDP, we always use round-trip time instead of end-to-end time.
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Figure 2.1: The iSCSI Protocol Stack. [14]

With TCP/IP, iSCSI delivers a ubiquitous interconnection to storage that the market has been

long waiting for [14]. This interconnection undoubtedly provides new opportunities for data backup

and storage consolidation. At the same time, iSCSI manages to keep the Total Cost of Ownership

(TCO) low because the entire existing network infrastructure can be directly utilized by iSCSI.

As mentioned in Section 1.1, iSCSI suffers from an imperfectnetwork environment, such as

WAN. To achieve a better understanding of these issues and improve the iSCSI performance over

imperfect networks, we chose a well maintained open source software iSCSI initiator-target pair,

the Open-iSCSI initiator and the iSCSI Enterprise Target (IET), and extensively examined the iSCSI

initiator throughput over links with emulated WAN-like RTTand packet loss. The results (Chapter 4)

show that the Open-iSCSI implementation reacts well to packloss but suffers severely from long

delay over the links. Based on our analysis, we propose a possible explanation for this performance

degradation.
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2.3 Previous Work on iSCSI Performance

Lu et al.[18] have done a thorough simulation study of a iSCSI-based storage system with the net-

work simulator ns-22. Their study covers the performance variance of iSCSI in a simulation setting

while varying PDU size, TCP Maximum Segment Size (MSS)3, and TCP window size. The simula-

tion model they built facilitates the exploration of the iSCSI performance with adjustable parameters

and even different scheduling algorithms. Our results on iSCSI performance degradation over long

delay links (presented in Chapter 4) conform to the results of their simulation with varying TCP

window sizes.

Gauger et al. [12] also performed a simulation study on iSCSIperformance. Their study analyzes

the iSCSI throughput and total request write times over varying link RTTs, link loss probabilities,

process delays in the iSCSI layer, as well as I/O request characteristics. One major contribution of

their paper is that their simulations are based on statistically realistic network and I/O request mod-

els. Although the maximum RTT studied in their model is only 10 ms, it is sufficiently descriptive

as they set the link bandwidth to 1 Gbps. As for the results, our observation of iSCSI performance

degradation over long delay links (presented in Chapter 4) also conforms to their results in the sce-

nario with a single iSCSI session over long RTT links.

As the work of both Lu et al. and Gauger et al. is performed withsimulation, they did not

consider practical factors that may affect actual performance, such as the buffering effect of file

systems. Also, their study is observation oriented; they did not provide any practical approach to

address the observed iSCSI performance degradation.

Aiken et al. [3] performed real measurements of iSCSI performance. They first measured the

performance of two commercial iSCSI initiators, a softwareone and a hardware one, against a hard-

ware iSCSI target. Then they compared these performance results against a storage subsystem based

on Fibre Channel, yielding the conclusion that the commercial software iSCSI initiator outperforms

the hardware initiator and the software initiator comparesquite “favorably” to Fibre Channel. Next,

they measured the performance of Intel open source iSCSI initiator4 and target pair over a Storage

Area Network (SAN) setting and a Wide Area Network (WAN) setting (emulated by an external

router) as well. Our results in Chapter 4 conform to their WANresults and we both noticed the

importance of network tuning for iSCSI to achieve best performance over WAN. However, Aiken et

al. did not attempt to explore any of the actual network tuning options in their paper.

Bianco et al [7] used the same iSCSI implementation as we do inChapter 4. They performed

tests including RAID5 0 with iSCSI over SAN and iSCSI without RAID over WAN. Their results

demonstrate that iSCSI can utilize the data striping feature of RAID 0 to multiply its performance

2Please refer tohttp://www.isi.edu/nsnam/ns/ for more details about the network simulator ns-2.
3Please refer tohttp://en.wikipedia.org/wiki/Maximum_segment_size for more details on TCP maxi-

mum segment size.
4Please note that this isnot the Open-iSCSI initiator we used in Chapter 4.
5Redundant Array of Independent Disks. Please refer tohttp://en.wikipedia.org/wiki/RAID for more de-

tails.
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in the SAN setting. The results in the WAN setting, not surprisingly, show the identical limitation

as we observed in our study - the 256 KB send buffer size (Please refer to Section 4.2.2 for more

details.). In their paper, however, they did not further investigate the cause of this performance issue.

2.4 Previous Work on TCP Tuning

Lawrence Berkeley National Laboratory [17], Mathis et al. from PSU [20] and Tierney [25] all

clearly point out that it is necessary to tune the TCP settingif the network link is considered as an

LFN (Long Fat Network, please refer to Section 2.1 for more details.), as the current (2010, up to

Linux kernel 2.6.32) Linux operating system does not set thedefault values for relevant parameters

to best perform on LFN and the default values may result in poor throughput over LFN. All three

works provide similar recipes of tuning due to the same reason behind the poor throughput over

LFN - insufficient TCP buffer size. This was the starting point for our examination of the differences

between static and dynamic tuning (Please refer to Chapter 4for more details). We believe of the

three sources, Lawrence Berkeley National Laboratory provides the most up-to-date information,

which is still continuously updated. In our research, we found that both the static and dynamic

methods, if applied properly, can help tune TCP to better carry iSCSI traffic. An Open-iSCSI session

with the buffer size statically set outperforms one with TCPautotuning when the RTT is less than or

equal to 40 ms. TCP autotuning starts to show its advantage asthe RTT further increases. However,

on links with very long RTTs, we found that TCP autotuning needs extra tuning itself to achieve the

desired performance.

2.5 Traffic Scheduling with Round-Robin Algorithms

Shreedhar et al. [24] propose an efficient fair queueing algorithm named Deficit Round Robin

(DRR), which is used in the HTB implementation [10]. The DRR algorithm first assigns newly-

arrived packets of different flows to corresponding queues and then services these queues in a round

robin manner to dequeue packets from each queue up to the sizeof the quantum the queue has for

the current round.

Although DRR achieves fair queueing, it cannot satisfy the delay requirement of latency-critical

flows. Shreedhar et al. also propose a revised version of DRR,named DRR+, to deal with this kind

of flows. DRR+ maintains a different set of queues for latencycritical flows to guarantee their delay

bound. At the same time, DRR+ signs a contract with the latency-critical flows about the amount

of data they can send in one service round. Whenever a flow fails to respect its contract, it will no

longer be treated as latency-critical.

However, DRR+ still does not service latency-critical flowsadequately due to the bursty feature

of real-life network traffic, as pointed out by MacGregor et al. [19]. As an improvement to DRR+,

they propose another scheduling algorithm, named DRR++.
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DRR++ improves DRR+ by not removing a latency-critical flow from its service class when

the flow violates its contract. Instead, DRR++ only stops dequeuing from that flow for the current

service round and resumes the flow’s latency-critical service in the next service round. According

to the test results of Zhang et al. [28], DRR++ significantly improves DRR+ in terms of the delay of

latency-critical traffic while still preserving the fairness provided by DRR+.

In this thesis, we documented the implementation of HTB in Chapter 3, which is based on DRR.

In the future work, we would like to explore the possibility of implementing HTB using DRR++.
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Chapter 3

Linux Traffic Control and HTB

In this chapter, we give the details of the mechanism and implementation of the hierarchical token

bucket (HTB) method of traffic control. This is the method we used in our work, and while we found

it very effective, we also found that documentation of the implementation was somewhat incomplete

and opaque. This chapter is an attempt to provide solid documentation for others working in the area,

as well as to explain how we used HTB in our work.

3.1 Linux Traffic Control

Linux traffic control has been provided as part of Quality of Service (QoS) support since Linux 2.2

kernel. It fits into the big picture of network data processing as illustrated in Figure 3.1 .

When a packet is enqueued to a Network Interface Controller (NIC) or the kernel decides to

dequeue a packet from a NIC (dev queue xmit in net/core/dev.c ), the traffic control com-

ponent, if applied to that device, is invoked and carries outthe specified network traffic regulation

task. The traffic control subsystem is comprised of the following four main conceptual components:

• queuing disciplines

• classes (within a queuing discipline)

• filters

• policing

Figure 3.1: The Processing of Network Data in Linux. [5]
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Figure 3.2: A Queuing Discipline with Multiple Classes. [5]

A queuing disciplinecan be considered as just a queue, where packets come and go. It is the

heart of the traffic control system, as it implements how packets enter the queue and in which order

the packets leave. It can facilitate packet buffering, reordering, throttling, dropping and classifying,

plus all of the above to each individual class of the classified network traffic. Queuing disciplines

provide great controllability as well as immense flexibility. Without any queuing discipline, the

NIC is just like a space-limited FIFO for packets - packets come and leave in the same order, if not

dropped due to the overflow of the FIFO buffer.

Not all queuing disciplines support traffic classification.The ones that do allow classes are called

classfulqueuing disciplines. Figure 3.2 illustrates a classful queuing discipline with threefiltersand

two classes. The major role of these filters is to assign incoming packets to one of the classes or

attachedpolicing actions(not shown), such as dropping a packet. An interesting and useful fact

about classful queuing disciplines is that more queuing disciplines can be further attached to the

classes inside, one new queuing discipline for one class, and the new inner queuing disciplines

do not even have to be the same as the outer one. Moreover, a newqueuing discipline may contain

more classes, which means “newer” disciplines can be even further concatenated; therefore, a highly

sophisticated traffic control scheme can be implemented through a traffic control chain. [5] [8]

HTB, or Hierarchical Token Bucket, is an example of a classful queuing discipline. In Sec-

tion 3.2, we will explain the concepts of queuing disciplineand class within the context of HTB. As

we are only concerned about the traffic regulation part of HTB, filters and policing are out of the

scope of this thesis. Please refer to Brown et al. [8] for moredetails.

3.2 Hierarchical Token Bucket

Hierarchical Token Bucket, or HTB, is one of the classful queuing disciplines within the Linux

traffic control subsystem. As the name implies, HTB is based on the token bucket theory; it builds a

tree structure of token buckets to exert sophisticated control on outbound traffic flows. Each of these

token buckets is considered as a class in traffic control terms.

Figure 3.3 illustrates the structure of a simple HTB policy.Each circle in the graph represents

one class, which can contain either multiple child classes or a single child queuing discipline. The
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Figure 3.3: An Example of a HTB Queuing Discipline Structure.

classes on the second level (counting from the HTB root and thus including the “To Other” class on

the leaf level) break down the network traffic to three categories based on its destination; the classes

on the leaf level associate the traffic with the same destination into different categories according

to the nature of the traffic (recognized by their destinationTCP port). For leaf classes, a queuing

discipline must be attached. If not,tc will have a default queuing discipline attached. All the

packets entering HTB are assigned to one of the leaf classes and eventually dequeued from the

attached queuing discipline.

This hierarchy of classes allows HTB to perform control overnetwork traffic on various levels,

which presents immense flexibility for the traffic control incomplicated scenarios.

3.2.1 The Class in HTB and Bandwidth Regulation

As mentioned before, HTB is a hierarchical structure of classes. Each class represents one certain

type of network traffic. We can regulate the speed1 of a traffic class by using the set of parameters

HTB has to offer.

The two most important parameters arerate and ceil (standing for ceiling). Therate

parameter indicates the assigned traffic speed of the class,i.e., the class is definitely allowed to send

packets at that speed.rate , however, doesnotserve as the upper limit of the traffic speed. If a class

has more thanrate to send, it can borrow “rate ” from its parent, provided that the parent class

has somerate available to lend. On the other hand,ceil specifies the maximum traffic speed, and

it is a hard limit that cannot be exceeded, which means that when a class reaches theceil limit, it

1Here we choose “traffic speed” over “traffic rate” because “rate” may cause confusion, as it is also the name of a
parameter within HTB. When we refer to this parameter, we usea monospace font like this:rate .
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cannot borrowrate from its parent even if the parent hasrate available for lending. Thus,ceil

should be at least as high as therate value of the class and at least as high as the highestceil

value of all the child classes.

rate andceil provide explicit indications for bandwidth regulation. Toenforce these indica-

tions, the classictoken bucket theoryis utilized to actually limit the traffic speed. In this theory, the

bucket is an imaginary container holding tokens, each of which represents a certain amount of data

that can be transmitted. The bucket also has a depth, which indicates how many tokens, if not used

immediately after generated, can be buffered in the bucket.

According to Kuznetsov et al. [16], if we denote the assignedtraffic rate and the bucket depth by

R (in bits/second) andD (in bits) respectively, for any time interval betweenti, . . . , tk (k > i) (in

seconds), the amount of transmitted bits cannot exceed

D +R× (tk − ti).

Considering that the transmitted bits are actually sent outin a series of packets, if we denote the

sizes of these packets bySm, . . . ,Sn (n > m) (in bits), we get a formalized version of the token

bucket theory, with the last item denoting the number of tokens generated (also the amount of data

allowed to be sent in bits) [16]:

Sm + Sm+1 + · · ·+ Sn−1 + Sn ≤ D +R× (tk − ti) (3.1)

According to Eq. 3.1, if we can generate tokens at the rateR, when a packet arrives for trans-

mitting, either we deduct the corresponding amount of tokens from the bucket if there are enough

tokens, or we put the packet on hold until enough tokens are generated. In practice, however, this

algorithm is implemented slightly differently [16]: The comparison between the packet size and the

amount of available tokens is converted to the comparison between two times. For the time related

to tokens, we denoteD
R

byN(ti), andN(t) grows linearly over time before the bucket is completely

filled, that is:

N(t+∆t) = min

{

D

R
,N(ti) + ∆t

}

. (3.2)

N(t) here gives the time allowed by available tokens for transmitting at full rateR. When a packet

of sizeS arrives for transmission, it can be emitted to the network only at the timete when all the

previous arrived packets are sent and
S

R
≤ N(te). (3.3)

Eq. 3.3 basically means that the amount of time to transmit the incoming packet should not exceed

the available amount time for transmitting. If it is not satisfied, the packet has to wait untilN(te)

grows large enough. Eq. 3.3 describes the core algorithm of the implementation of the token bucket

theory. After a packet is emitted to the network,N(te) jumps [16]2 andN(te + 0) is used for

2Note that thisN(t) jump happens too when the previous arrived packets are emitted to the network.
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subsequent packets:

N(te + 0) = N(te − 0)−
S

R
. (3.4)

When a class reaches itsrate limit but still has more to send, it may borrow tokens from its

parent, provided the class has not exceeded itsceil limit and the parent class has tokens available.

One may wonder what will happen if more than one child class attempts to borrow from its parent

class. The solution provided by HTB is fairly elegant: The available tokens from the parent are

distributed between the child classes according to the ratio of their rate values but no more than

limited by theirceil values. This borrowing and ceiling mechanism allows the classes in HTB to

make a friendly share and a full utilization of all the available bandwidth [10].

3.3 The Implementation of HTB

To explain the implementation details of HTB, we add the relevant concepts about the HTB policy

(Figure 3.3) we talked about before, as shown in Figure 3.4. In this section, we gradually cover all

the newly added elements.

3.3.1 Essential Concepts in HTB Algorithm - Level, Priority, and Mode

This HTB policy shown in Figure 3.4 has classes on threelevels, as delimited by the dashed lines.

The classes on the leaf level have the level number (struct htb class::level 3) 0, and they

each contain a single queuing discipline as their children,from which packets are ultimately de-

queued. Then from bottom to top, the level numbers of the inner classes increase by one as their

level rises, with an exception that the top level, i.e. the HTB root class, has as its level number the

maximum number of levels HTB can hold (TC HTB MAXDEPTH, which is 8 in HTB 3.0) minus

one.

HTB allows classes to have different priorities (struct htb class::prio ). That is, classes

with a higher priority (lowerprio value) are dequeued before the ones with a lower priority (higher

prio value).

As a class is dequeued, themodeof the class may change over time. The mode (struct

htb class::cmode ) of a class is represented by three colours in the implementation: red, yellow

and green. Before introducing how this colour system works,we need to recall two variables afore-

mentioned to help understanding:rate (struct htb class::rate ) and ceil (struct

htb class::ceil ) (Please refer to Section 3.2.1 for more details). They are used to indicate the

assigned and the absolute rate limit of a class respectively. If we consider the actual traffic rate of

classc, denoted byR(c) of a class as a real continuum, thenrate andceil divide the continuum

into three parts, and thus the three colours:

3Implementation specific function and variable names are putin between parenthesis to relate the concepts to the source
code. This idea is originally from [9].
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mode(c) =











Red if R(c) > ceil

Y ellow if rate < R(c) ≤ ceil

Green otherwise

(3.5)

3.3.2 Self-feed List, Inner-feed List, Wait List and DirectQueue

As stated in Section 3.2.1, all the packets are ultimately dequeued from the queue disciplines at-

tached to the leaf classes; when a leaf class reaches itsrate limit, it is allowed to borrow “rate ”

from its parent class. That is, when borrowing occurs, the packet is dequeued using the tokens

belonging to its parent; therefore, in this case, it is equivalent to think that the packets are being

dequeued from the leaf class and all the parent classes lending the tokens. Consequently, packets

can be “conceptually” dequeued from any level despite beingheld on the leaf level.

To facilitate the dequeue and borrow process, HTB maintainsthree data structures:self-feed

list (struct htb sched::row ), inner-feed list(struct htb class::feed ) andwait list

(struct htb sched::wait pq). They respectively store theheadsof three types of class

lists. Self-feed list is a global (as in one HTB policy) two dimensional array across all the levels and

priorities. It stores the heads of the lists that holdactiveclasses belonging to a particular priority on

a particular level. Self-feed list is so called because all the classes linked to this list are dequeuing

packets without borrowing tokens from their parents, i.e. these classes are self-sufficient in terms

of token supply. When a class has to borrow from its parent, itis removed from the self-feed list

and inserted to a class queue linked to the inner-feed list ofthat parent class; therefore, inner-feed

list stores the heads of the list of classes that are borrowing tokens. Since each class queue contains

borrowing child classes with a particular priority, the inner-feed list organizes these list heads in a

one dimensional array across all the possible priorities supported by the HTB policy. The classes in

the inner-feed list queue are also in a queue linked to the wait list on its own level. This wait list is

also a global data structure within one HTB policy. It is a onedimensional array across all the levels

within the HTB policy.

Figure 3.4 illustrates the concepts of self-feed list and inner-feed list. The use of these three data

structures in the HTB implementation will be covered in moredetail in subsequent sections.

In addition to these three lists, HTB maintains two other data structures to store the current class

to dequeue in each individual class queue. We call these two data structurescurrent-class lists. One

of them is for the self-feed list (struct htb sched::ptr ) and the other one is for inner-feed

list (struct htb class::un.inner.ptr ).

Although self-feed list and inner-feed lists give us a hold on all the classes within one HTB

queuing discipline, they do not cover all the possible places an incoming packet can go: There is a

queue within HTB but not related to any of the classes - thedirect queue. The direct queue is actually

just an ordinary FIFO queue directly attached to the queuingdiscipline, which keeps the packets that

are either fast matched to this direct queue (this will be covered in more details in Section 3.3.3.) or
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not able to fit in any existing class (this should not happen ina well designed HTB policy).

3.3.3 The Enqueue Process of HTB

The challenge of the enqueue process lies in finding the correct leaf class for the incoming packet,

which is handled byhtb classify() . htb classify() first does a fast match for the in-

coming packet - by trying to match theskb->priority to an existing (leaf) class id or the

HTB queuing discipline handle. On success, the matched class or the direct queue of the HTB

queuing discipline will be chosen accordingly. If the fast match does not yield any valid result,

htb classify() will try to apply thetc filters to find the right spot for the packet. If a leaf class

is found, it is chosen. Otherwise,htb classify() will try the default classof the HTB queuing

discipline, which should be a leaf class specified when the HTB policy is created. If the default class

is not properly set up,htb classify() will use the direct queue as a last resort.

Please note that so far we have only chosen a class or the direct queue for the incoming packet,

i.e. the packet has not been put in there yet. To proceed, if the direct queue is selected,htb enqueue()

will check if there is still space in the queue for the incoming packet. If so, the packet will

be enqueued there; otherwise, the packet will be dropped. Ifa leaf class is selected instead of

the direct queue, the corresponding enqueue function of thequeuing discipline will be called to

try to include the packet in that queuing discipline. On success,htb enqueue() will activate

(htb activate() ) this leaf class, by adding it to the corresponding active class queue, if it is not

in there yet; otherwise, the packet will be dropped.

The enqueue process ends here.

3.3.4 The Dequeue Process of HTB

To achieve a fair dequeue process, HTB implements a WeightedRound -Robin (WRR) algorithm [24]

for each priority on each level - the weight of each class is proportional to itsrate value; Classes

with a lower priority are only dequeued after the ones with higher priorities are served.

The implementation of the dequeue process of HTB is actuallymore complicated than the en-

queue process because it contains the algorithm to do WRR within each priority and implements

the lending-borrowing mechanism. Pseudo-code for the HTB dequeue implementation is given in

Algorithm 3.1. Please note that this pseudo code does not cover the error handling part in the HTB

dequeue source code.

Whenhtb dequeue() is called, it tries to dequeue the direct queue first. If no packets are

pending there, it will try to loop through the self-feed list(Section 3.3.2) starting from the highest

priority on the leaf level to find a class to dequeue from. As explained in Section 3.3.2, each element

in the self-feed list is the head of a queue of classes with a certain priority on a certain level and the

corresponding element in the current-class list is keepingwhich class in this queue to dequeue next.

These two data structures provide sufficient information for the class look-up process.
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When a class is chosen to dequeue from, HTB will next look for aleaf class associated with

the chosen class. If the chosen class is already a leaf class,the associated leaf class will of course

be itself. Otherwise, HTB will consult the inner-feed classhierarchy to look for a leaf class that is

borrowing from this chosen class. If no valid leaf class can be traced down through the class queue

with the current priority, the loop will move on to the next iteration (lower priority). The same rule

applies to the outer loop through levels: the loop will move up a level if no valid leaf class can be

found on the current level.

After a valid leaf class is found, a packet will be dequeued from that leaf class. Each class can

dequeue up to quantum bytes before HTB moves to the next classin the same queue, provided the

class does have one or more packets to send. The size of the quantum value of each class is by default

one tenth of the amount the bytes the class is allowed to send as indicated by therate parameter.

It can be assigned independently (and manually) when creating the HTB queuing discipline.

19



Algorithm 3.1 HTB Dequeue Process - Conceptual Illustration.

if NotEmpty(directqueue)then
return DequeueOnePacket(direct queue)

end if

ProcessTheWaitList {This will be covered in more detail later.}

Packet← NULL

Level← 0 {Dequeue from the leaf level.}
repeat
Priority ← 0 {Dequeue from the highest priority.}

repeat
CurrentDequeueClass← current class list[Level][Priority]
AssociatedLeafClass← FindLeaf(CurrentDequeueClass)
OldAssociatedLeafClass← AssociatedLeafClass

repeat
if IsValid(AssociatedLeafClass)then
Packet← DequeueOnePacket(AssociatedLeafClass)
gotoDone

else
current class list[Level][Priority]← . . .

. . . NextClass(self feed list[Level][Priority], current class list[Level][Priority])

CurrentDequeueClass← current class list[Level][Priority]
AssociatedLeafClass← FindLeaf(CurrentDequeueClass)

end if
until AssociatedLeafClass == OldAssociatedLeafClass

Priority ← Priority + 1
until Priority ≥ HTBMAXPRIO or a packet to dequeue is found

Level← Level+ 1
until Level≥ HTBMAXDEPTH or a packet to dequeue is found

Done :
if Packet6= NULL then

{Weighed round-robin}
AssociatedLeafClass.Deficit[Level] ← AssociatedLeafClass.Deficit[Level] −
sizeof(Packet)

if AssociatedLeafClass.Deficit[Level]< 0 then
AssociatedLeafClass.Deficit[Level] ← AssociatedLeafClass.Deficit[Level] +
AssociatedLeafClass.Quantum

current class list[Level][Priority]← . . .

. . . NextClass(self feed list[Level][Priority], current class list[Level][Priority])
end if

UpdateClassStats(AssociatedLeafClass, Level, Packet)
ChangeClassModeIfNecessary(AssociatedLeafClass, Level, Packet)

end if

return Packet
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3.4 The Results of iSCSI Traffic Regulation with HTB

3.4.1 The Test Scheme

We explored the option of using tcng [6] as atc script generator in this set of experiments, as

tcng provides a more human-friendly syntax. A tcng script toconfigure the HTB policy shown in

Figure 3.5 is provided in Listing 3.1. For all the test results, an average value of 5 runs is used unless

otherwise notified.

1 # i n c l u d e ” f i e l d s . t c ”
2 # i n c l u d e ” p o r t s . t c ”
3

4 # d e f i n e ISCSI IF e th0
5

6 dev ISCSI IF {
7 e g r e s s {
8 c l a s s (< $ i s c s i 1 >) i f t c p s p o r t == 53291;
9 c l a s s (< $ i s c s i 2 >) i f t c p s p o r t == 53292;

10 c l a s s (< $ i s c s i 3 >) i f t c p s p o r t == 53293;
11

12 h tb ( ) {
13 c l a s s ( r a t e 10 Mbps , c e i l 10 Mbps ){
14 $ i s c s i 1 = c l a s s ( r a t e 1 Mbps , c e i l 10 Mbps ){} ;
15 $ i s c s i 2 = c l a s s ( r a t e 3 Mbps , c e i l 10 Mbps ){} ;
16 $ i s c s i 3 = c l a s s ( r a t e 6 Mbps , c e i l 10 Mbps ){} ;
17 }
18 }
19 }
20 }

Listing 3.1: A Simple tcng Script Example.

3.4.2 The Effectiveness of HTB for iSCSI Traffic

Figure 3.6 illustrates the effectiveness of HTB regulatinga single iSCSI flow. The bar on the left

indicates the iSCSI throughput when no HTB policy is applied. The bar on the right represents the

iSCSI throughput when the traffic speed is limited to 40 Mbps.As shown by the data label, the mean

error of the actual throughput is less than 2 percent.

HTB root class

(rate 10 Mbps,

ceil 10 Mbps)

iSCSI Flow 2

(rate 3 Mbps,

ceil 10 Mbps)

iSCSI Flow 3

(rate 6 Mbps,

ceil 10 Mbps)

iSCSI Flow 1

(rate 1 Mbps,

ceil 10 Mbps)

Figure 3.5: The HTB Queuing Discipline Structure Example for the tcng Script.
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Figure 3.6: The Regulation Effectiveness of HTB on a Single iSCSI Traffic Flow.

Figure 3.7 and Figure 3.8 are the I/O graphs of 3 traffic flows sharing the same physical link.

(Please note that the results in these two figures were collected from one single run.) Therate

andceil values of the root HTB class are set to 10 Mbps, as shown by the global throughput

(the blue curve). Therate parameters of Flow 1, 2, and 3 are set to 1 Mbps, 3 Mbps, and 6 Mbps

respectively. Theirceil values are all set to 10 Mbps, which is equal to therate andceil values

of the root class.

As shown in Figure 3.7, every flow gets its fair share when theyare all saturated with traffic.

HTB’s rate borrowing mechanism starts to kick in when one or more of the traffic flows cannot

fully utilize the assignedrate , as illustrated in Figure 3.8. The three flows are paused and resumed

in turn manually. The unused bandwidth is redistributed instantly according to the ratio of therate

values of the flows that require more bandwidth than assigned. For example, at 60 s, Flow 3 is

paused Flow 2 is resumed, and Flow 1 stays at the same transmitspeed. The inactivity of Flow 3

spares 6 Mbps bandwidth for Flow 1 and Flow 2, which share the 6Mbps by theirrate ratio 1:3;

therefore, the throughput of Flow 1 should increase to 2.5 Mbps and that of Flow 2 should increase

to 7.5 Mbps, which conform to the curves between 60 s and 80 s. At and after 80 s, Flow 3 is

resumed and all the 3 flows start to fairly share the bandwidthagain.

This bandwidth allocation and redistribution feature of HTB can be utilized to prioritize differ-

ent flows as well as to provide differentiated services, without sacrificing any available bandwidth

resources.
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Figure 3.7: The Effectiveness of HTB on Bandwidth Sharing of3 iSCSI Traffic Flows.
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3.4.3 The Dynamic Features of HTB

Section 3.4.2 has demonstrated the effectiveness of a static HTB policy. In this section we examine

the performance of HTB when the policy has to change over time.

We first apply a HTB policy at 20 s to limit the traffic to 20 Mbps,then change the policy to 40

Mbps at 40 s, and eventually remove the HTB policy at 60 s. As shown in Figure 3.9, the traffic

speed dips briefly at 20 s. (Please note that the results in this figure were collected from one single

run.) Otherwise no visible throughput drop can be observed at the instants when the HTB policy

is changed. Between the policy change points, the throughput is as stable as it is in the single flow

scenario.

If we zoom in by a factor of 10 on Figure 3.9 and look at a time granularity of 0.1 s, transient

traffic pauses do appear on the I/O graph, as shown by the example in Figure 3.10. (Please note that

the results in this figure were collected from one single run.) The example illustrates an example at

40 s, when the HTB policy is changed from 20 Mbps to 40 Mbps. Please note that the unit of the

vertical axis is Mbits/0.1s instead of Mbps. Because the pause is sufficiently short, it does not have

noticeable negative effect on the link throughput, as long as the frequency of the policy change is

not excessively high.

This dynamic feature of HTB allows it to fit in the situations where the traffic control policy

needs to be altered frequently.

3.4.4 The Impact of Uncontrolled Traffic

Typically, each HTB policy has one root class, which represents the physical link. Although this

mapping between the root class of HTB and the physical link isnot mandatory, not following this

rule, that is, allowing network traffic to go around the control of HTB, may result in unexpected

bandwidth sharing: The uncontrolled traffic “bullies” the controlled traffic, as discussed below.

We examined the behavior of two traffic flows when there is another flow that is not regulated by

HTB. The test was done on a simulated link of 10 Mbps bandwidth. In the test, the two controlled

flows, Flow 1 and Flow 2, were limited to 1 Mbps and 2 Mbps by HTB respectively. The uncon-

trolled flow, however, was not controlled by HTB and could consume up to all 10 Mbps. As shown

in Figure 3.11, the uncontrolled flow steals bandwidth from Flow 1 and Flow 2; neither Flow 1 nor

Flow 2 reach their allocated bandwidth. This is an adverse effect caused by the HTB direct queue

(Section 3.3.2).

This test demonstrates that HTB is not capable of guaranteeing the bandwidth allocated to the

traffic flows it is regulating when other flows from outside HTBattempt to aggressively seize band-

width.

24



40

50

60

70

80

90

100

R
a
te

 (
M
b
p
s)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

R
a
te

 (
M
b
p
s)

Time (s)

Figure 3.9: The Performance of HTB - Dynamic.

0

1

2

3

4

5

6

7

8

9

10

35 36 37 38 39 40 41 42 43 44 45

R
a
te

 (
M
b
it
s/
0
.1
s)

Time (s)

Figure 3.10: The Performance of HTB - Dynamic with the Time Granularity of 0.1 s.

25



7.886

6

8

10

R
a
te

 (
M
b
p
s)

0.904

1.581

2.472

7.886

0

2

4

6

8

10

Flow 1 Flow 2 Flow 1 & 2 Uncontrolled Flow

R
a
te

 (
M
b
p
s)

Figure 3.11: The Bully Impact of Uncontrolled Traffic.

26



Chapter 4

Open-iSCSI Performance
Enhancements

The motivation of this chapter is the drastic performance degradation observed in a throughput mea-

surement of Open-iSCSI over a LFN, as shown in Figure 4.1. Theblue curve represents the through-

put of one iperf session; it indicates the throughput capacity of a general TCP session. Throughput

stays at a stable level around 90 Mbps regardless of the link RTT. On the contrary, the achieved

bandwidth of Open-iSCSI, represented by the red curve, starts to drop dramatically right after the

RTT grows to 12 ms and eventually dives to only around 14 Mbps when the RTT reaches 100 ms.

Obviously, the iSCSI initiator traffic suffers severely from long RTTs and it is unable to fully utilize

the TCP bandwidth when there is a noticeable delay on the link, which means that, in most WAN

settings, users of the Open-iSCSI initiator will suffer from the iSCSI throughput cut-off.

We also ran a similar group of tests of Open-iSCSI over lossy network links. The results are

shown in Figure 4.2. As the overlap of the two curves demonstrate, iSCSI does not suffer any more

than a general TCP session does over a lossy link. Therefore,we focus our study on the iSCSI

performance degradation over long RTT links.

We investigated closely this iSCSI initiator performance degradation issue and present in this

thesis a combination of tuning methods, which result in a throughput gain of 70 Mbps on a 100

Mbps link with an RTT of 100 ms.

4.1 Experimental Setup

Experimental environment:

Operating System (iSCSI initiator side): Ubuntu 9.10 Desktop (32 bit) with Linux kernel 2.6.32-

22-generic-pae (used out-of-box unless otherwise indicated).

Operating System (iSCSI target side):Ubuntu 9.04 Desktop (32 bit) with Linux kernel 2.6.28-

18-generic (TCP receive buffer size tuned for over 100 ms RTTunless otherwise indicated).
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Figure 4.1: Open-iSCSI Performance Degradation over Long RTT Links.
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Figure 4.2: Open-iSCSI Performance over Lossy Links.

Network: A direct connection between two PCs using a straight-through cable. This connection

works on 100 Mbps with the average RTT of 0.280 ms and the average packet loss of 0%.

iSCSI Implementation: Open-iSCSI Initiator 2.0.871 [4] and iSCSI Enterprise Target 0.4.16 [2].

Traffic Generator: iperf for general TCP traffic and dd for iSCSI traffic

Measurement of Achieved Bandwidth on the Link Layer: Wireshark 1.2.5

We need various link RTTs to investigate the iSCSI throughput over long delay links. On our test

network, however, the original link RTT is negligible (0.280 ms) and non-adjustable (the link is a

straight-through cable); therefore, we adopted the trafficcontrol command line utilitytc to emulate

delays on the link.tc manipulates the output queues of the network interfaces. Itattaches a queue

discipline (qdisc) to the output interface in order to reschedule, delay, duplicate and/or drop the
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Table 4.1: The Accuracy ofnetem in RTT Emulation.

Emulated RTT (ms) 0 4 8 12 16 20 40 60 80 100

Actual RTT (ms) 0.192 4.290 8.293 12.289 16.295 20.292 40.293 60.296 80.293 100.292
Precision N/A 92.8% 96.3% 97.6% 98.2% 98.5% 99.3% 99.5% 99.6% 99.7%

Table 4.2: The Accuracy ofnetem in Packet Loss Emulation.

Emulated Loss (%) 0.25 0.5 0.75 1 1.25 1.5 1.75 2 3 4 5

Actual Loss (%) 0.243 0.503 0.751 0.990 1.266 1.510 1.754 1.990 3.015 4.001 4.977
Precision 97.0% 99.4% 99.9% 99.0% 98.7% 99.4% 99.8% 99.5% 99.5% 100.0% 99.5%

qualified packets.tc belongs to theiproute2 package, which comes with the Linux kernel 2.4 or

later. [13] [8]. The qdisc we used to emulate the link RTT isnetem . It is capable of emulating Wide

Area Network (WAN) properties, such as RTT and packet loss, with a sufficiently high accuracy, as

demonstrated by the results ofping shown in Table 4.1 and Table 4.2.netem is widely used for

protocol testing. An example of usingnetem andtc to emulate a link with a 4 ms RTT is given in

Listing 4.1.

1 $ t c q d i s c add dev e th0 r o o t netem de lay 4ms l o s s 0%

Listing 4.1: Usingtc andnetem to Emulate a Link with 4 ms RTT.

4.2 TCP Flow Control and iSCSI Performance

TCP uses a sliding window protocol to control the rates of individual flows, so that the receiver

buffer does not get overrun. The size of the sliding window indicates the amount of outstanding data

allowed, which is to be sent in one batch unacknowledged. After sending this amount of data, TCP

stops and waits for the ACKs of the sent segments.

The minimum amount of time for the ACKs to get back to the transmitter is the link RTT. If the

RTT is sufficiently short and the link bandwidth is sufficiently low, the resulting link BDP can be

smaller than the sliding window size. In this case, TCP has enough outstanding data to “fill” the

network link. As a result, the transmitter keeps sending newsegments while waiting for the ACKs

of the previously sent segments. Since new data is constantly put on the link, the link is fully utilized

during this period of time.

If, however, the link RTT is large and the bandwidth is high, the resulting link BDP can exceed

the sliding window size. In this case, after TCP sends out a batch of segments of the sliding window

size, the ACK for the first segment still has not reached the transmitter yet, if indeed it has already

left the receiver at all. As a result, TCP has to idle to wait for the ACKs of the sent segment before

sending any more segments. This idling is caused by TCP not having enough outstanding data to
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“fill” the link. During the idling period, the link is not usedbecause no new data is sent to the link;

therefore, the link is not fully utilized in general.

Let tsend andtidle denote the time TCP spends in sending and idling respectively. LetBavailable

denote the capacity of the link. The actually achieved bandwidth is

Bachieved =
tsend

tsend + tidle
×Bavailable. (4.1)

As the sending time and the idling time depend on the BDP of thelink and the send window

size, i.e. the sliding window size, (denoted asSsend window), Eq. 4.1 can be rewritten as

Bachieved =
Ssend window

BDP
×Bavailable

=
Ssend window

Bavailable ∗RTT
×Bavailable

=
Ssend window

RTT
. (4.2)

Eq. 4.2 shows clearly how the send window size and RTT affect the actually achieved bandwidth.

For example, a link between Beijing in China and Edmonton in Canada can have an RTT of 200

ms [27]. Suppose the bandwidth is 50 Mbps. Hence, the link BDPis 1280 KB. If the send window

size is 640 KB, it takes TCP only 100 ms to put the data within the window on the wire. The ACKs of

this batch of data, however, do not come back until after another 100 ms, as the link RTT is 200 ms.

During the second half of the RTT, TCP can do nothing but idle.Therefore, the 50 Mbps bandwidth

is wasted during this 100 ms period. The overall achieved bandwidth is640 KB ÷ 200 ms, which is

25 Mbps. This number is only half of the link capacity but it isnot a surprise. After all, we are only

sending data for half of the time. Also, not surprisingly, the bandwidth waste is expected to be even

worse if the link capacity is larger - the faster the link is, the more bandwidth is wasted.

Such a bandwidth waste is unacceptable, especially for today’s long-distance / high-bandwidth

links. Recent Layer 1 technology has boosted the link capacity on a large scale. Gigabit Ethernet

NICs are standard configuration on modern PCs and 2.488 Gbps OC48 fiber optic cables are typical

on Internet backbones. Verizon, one of the major network providers in the U.S, just deployed a

commercial ultra-long-haul optical system that which enables 100 Gbps link capacity1. On such a

link, idling of 1 ms means the loss of more than 100 MB throughput.

Therefore, keeping TCP running without idling is crucial for achieving the highest possible

throughput. In order to prevent TCP from idling, the send window size needs to be properly adjusted.

4.2.1 TCP Send Buffer Size and Open-iSCSI Performance

In Section 4.2, we discussed the effect of the TCP send windowsize on the TCP throughput. In

implementation, the TCP send window size is realized as the send buffer size of the TCP socket. We

1http://www.dailytech.com/Verizon+Deploys+First+100+ Gbps+Backbone+in+Europe/
article17125.htm

30

http://www.dailytech.com/Verizon+Deploys+First+100+Gbps+Backbone+in+Europe/article17125.htm
http://www.dailytech.com/Verizon+Deploys+First+100+Gbps+Backbone+in+Europe/article17125.htm


investigated the effect of varying send buffer sizes have over Open-iSCSI throughput on links with

RTTs of 4 ms, 8 ms, 12 ms, 16 ms, 20 ms, 40 ms, 60 ms, 80 ms, and 100 ms. The initial 4 ms step

between 4 ms and 20 ms was chosen because of the kernel timer resolution, which is configured to

be 250 HZ at compile time. As shown by the results ofping in Table 4.1, the average accuracy of

the actual RTTs is ~98%, which is sufficiently accurate for our experiments.

There are generally two ways of adjusting the TCP send buffersize: statically or dynamically.

In the static method, the buffer size is set by calling the functionsetsockopt() (in C on Linux).

Once the buffer size is set, the socket works with this size unless explicitly told otherwise (usually

through another call tosetsockopt() . The results of iSCSI throughput with statically set buffer

size are shown and discussed in Section 4.2.1.1. On the contrary, in the dynamic method, one does

not set the send buffer size of the TCP socket. Instead, the send buffer size is determined by TCP

autotuning and it changes in accordance with the change of network link parameters. The results of

iSCSI throughput with dynamically set buffer size are shownand discussed in Section 4.2.1.2. The

details of how to set the send buffer size in both ways are discussed in Section 4.2.2.

4.2.1.1 Statically Set TCP Send Buffer Size and iSCSI Performance

The first batch of iSCSI throughput results gathered by setting the TCP send buffer size statically are

plotted in Figure 4.3, Figure 4.4, and Figure 4.5. Please note that the vertical axis in Figure 4.5 starts

from 50 Mbps instead of 0 Mbps. In each of these figures, the iSCSI throughput is compared to the

throughput of a baseline TCP application, namely iperf, whose send buffer size is autotuned by the

kernel. An obvious trend in all of the figures is that the iSCSIthroughput is significantly improved

as the send buffer size increases from 128 KB to 1280 KB2.

The throughput values, however, are still lower than expected. For example, according to Eq.

4.2, at 100 ms RTT, to achieve the maximum TCP throughput, we only need the send buffer size to

be 1280 KB, which means that in Figure 4.5d the iSCSI throughput should have at least matched the

TCP baseline application output. On the contrary, we observe a disparity between the TCP baseline

throughput and iSCSI throughput. To investigate if this disparity is caused by insufficient send buffer

size, we further increased the send buffer size up to 2560 KB and tested the iSCSI performance. The

results show that no significant throughput benefit is achieved with further increases in the send

buffer size above 1280 KB, as shown in Figure 4.6.

To have a closer look of the iSCSI throughput change versus various send buffer sizes, we

plotted the throughput against the send buffer sizes at 40 msand 100ms, as shown in Figure 4.7

and Figure 4.8 respectively. The curves in both figures show that the iSCSI throughput continues to

benefit from the increase of the send buffer size until the send buffer size hits a certain value. The

points where iSCSI last benefits from an increase in send buffer size are 512 KB at 40 ms RTT and

2From send buffer size of 1152 KB to 1280 KB, the iSCSI throughput at 100 ms seemingly decreased. Considering the
standard deviation of the results (as shown by the error bar in Figure 4.5d), however, this value can be considered as without
significant change.
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1152 KB at 100 ms RTT. 512 KB is the theoretical send buffer size to achieve 100 Mbps bandwidth

at 40 ms RTT and 1152 KB is close to the theoretical send buffersize to achieve 100 Mbps at 100 ms

RTT. Similar results are also observed at RTTs of 20 ms, 60 ms and 80 ms: The iSCSI throughput

continually benefits significantly from the increase of the send buffer size up to the point where the

send buffer size is the theoretical value to achieve the maximum bandwidth. We call this buffer size

iSCSI Maximum Benefit Buffer Size, which is denoted asSmax benefit.

As soon as the send buffer size exceedsSmax benefit, the iSCSI throughput is limited by the

capacity of the network link and Network Interface Controller (NIC) as well as other implementation

factors instead of the TCP send buffer size.

Moreover, exceedingly large send buffer size can have adverse effects on the iSCSI throughput,

as demonstrated by the gap between 90 Mbps and the iSCSI throughput starting from send buffer

size 1024 KB in Figure 4.7. Excessively large send buffer size has additional devastating effects on

lossy links as well, but the discussion of this matter is out of the scope of this thesis.

Therefore, with the socket buffer size statically set to a proper value, Open-iSCSI can achieve

the desired performance. Section 4.2.2.1 explains how to statically set the TCP send buffer size.
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(a) Default Send Buffer Size (128 KB)
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(b) Send Buffer Size 256 KB
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(c) Send Buffer Size 384 KB

Figure 4.3: Open-iSCSI Performance with Various Send Buffer Sizes and RTTs - 1.
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(a) Send Buffer Size 512 KB
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(b) Send Buffer Size 640 KB
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Figure 4.4: Open-iSCSI Performance with Various Send Buffer Sizes and RTTs - 2.
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(b) Send Buffer Size 1024 KB
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(c) Send Buffer Size 1152 KB
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(d) Send Buffer Size 1280 KB

Figure 4.5: Open-iSCSI Performance with Various Send Buffer Sizes and RTTs - 3.
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(b) Send Buffer Size 1536 KB
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(c) Send Buffer Size 2048 KB
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(d) Send Buffer Size 2560 KB

Figure 4.6: Open-iSCSI Performance with Various Send Buffer Sizes and RTTs - 4.
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Figure 4.7: Open-iSCSI Performance with Various Send Buffer Sizes @ 40 ms RTT
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Figure 4.8: Open-iSCSI Performance with Various Send Buffer Sizes @ 100 ms RTT
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4.2.1.2 Dynamically Set TCP Send Buffer Size and iSCSI Performance

The TCP send buffer size can be set dynamically through TCP autotuning. The iSCSI throughput

results with dynamically set TCP send buffer size were collected using the default TCP autotuning

settings, which are explained in detail in Section 4.2.2.2.Figure 4.9 illustrates the results, from

which we can see that TCP autotuning does a generally good jobin buffer size adjustment to adapt

to different network link RTTs.

At this point, one may be wondering whether to use static or dynamic tuning of TCP send buffer

size. Figure 4.10 can provide some insight on this matter. The blue curve represents the iSCSI

throughput when the TCP send buffer size is set toSmax benefit (iSCSI Maximum Benefit Buffer

Size, please refer to Section 4.2.1.1.). If theSmax benefit for a certain RTT is not included in our

experimental buffer sizes, we use the least possible buffersize that is larger than theSmax benefit

instead. For example, theSmax benefit is 153.6 KB for 12 ms RTT on a 100 Mbps link, but 153.6

KB is not included in the buffer size list; therefore, it willbe replaced by 256 KB, as 256 KB is the

least possible buffer size in the list that is larger than 153.6 KB.

As shown in Figure 4.10, when the RTT is less than or equal to 40ms, the iSCSI session with the

buffer size set statically outperforms the iSCSI session with TCP autotuning. As the RTT increases

above 40 ms, however, TCP autotuning starts to show its advantage.

4.2.2 The TCP Send Buffer Size in Implementation

In implementation, the TCP send window size is determined bythree factors: the send buffer size

of the transmitter, the receive buffer size of the receiver,and the transmitter’s congestion window

size. In this thesis, however, we work with an error-free link; thus, no packet loss would occur and

the congestion window size does not constrain the TCP send window size. Also, the receive end is

always properly tuned in our experiments for RTTs of ~100 ms;hence, the only factor determining

the TCP send window size is the send buffer size of the socket.We consider the send buffer size and

the send window size interchangeable in this section.

The send buffer size can be set in two ways - statically and dynamically, which are addressed in
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Figure 4.9: Open-iSCSI Performance with Various RTTs with Dynamically Set Send Buffer Size.
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Figure 4.10: Open-iSCSI Performance - Send Buffer Size Adjustment Dynamic vs. Static.

the following two sections.

4.2.2.1 setsockopt() - A Static Approach

To set the TCP send buffer statically, we call functionsetsockopt() . Listing 4.2 shows how to

statically set the send buffer size to 1 MB.

1 # i n c l u d e <sys / s o c k e t . h>
2

3 / / suppose we have a s o c k e t w i th t h e f i l e d e s c r i p t o r s o cf d
4 / / s e t t h e send b u f f e r s i z e to 1 MB (1048576 B)
5 / / no e r r o r check ing i s i n c l u d e d
6

7 s e t s o c k o p t ( socfd , SOL SOCKET , SOSNDBUF, &1048576 , s i z e o f(1048576) )

Listing 4.2: Set the Send Buffer Size to 1 MB.

According to Dunigan [11], Linux 2.4 kerneldoublesthe requested buffer size insetsockopt()

and so do we observe with Linux 2.6 kernel.setsockopt() , however, does not always get what

is required: The actual buffer size returned by the OS is subject to the maximum value specified by

the system environment variablenet.core.wmem max. Interestingly, the kernel also doubles this

maximum value as the upper limit of send buffer size [20]. Forexample, ifnet.core.wmem max

is set to 131071 (128 K - 1) B and we use the code in Listing 4.2 toset the send buffer size, the

kernel will try to acquire a buffer size of 2097152 (1048576× 2) B, but the actual buffer size will

be only 262142 (256 K,131071 × 2) B, due to the limit of the doublednet.core.wmem max.

Another interesting fact about the buffer size setting is that the returned buffer size (the 262142 in

our example) is not completely available for the network application: The kernel reserves a certain

portion3 of it for metadata storage, i.e. the housekeeping data for the actual payloads.

We examined the Open-iSCSI initiator source code and noticed that Open-iSCSI sets the buffer

size to a fixed value of 512 KB by default. Supposedly, this default setting should give us a 1 MB

send buffer. The actual buffer size that iSCSI gets by default, however, as revealed by the Open-

iSCSI log file, is merely 256 KB. The cause of this “shrunken” buffer size is the small out-of-box

3According to the man page of socket(7), the Linux kernel reserves 50 percent of the returned buffer size. Other sources
on the Internet, however, claim that it is not 50 percent but 25 percent.
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value of net.core.wmem max, which is only 131071 on our test system and for most Linux

distributions as well. According to Eq. 4.2, the theoretical maximum throughput achieved with this

buffer size over a link with 100 ms RTT is 40 Mbps4, which is less than half of the link bandwidth

100 Mbps.

To change this fixed buffer size, one may be tempted to change the 512 KB constant in the

Open-iSCSI code, as shown in the following code:

#define TCP WINDOWSIZE 512 * 1024

Unfortunately, however, this method doesnot work. Open-iSCSI maintains a database for each

of the targets it has already discovered. The records of those targets are created the first time the

target discovery occurs5 and these records stay in the database unless deleted explicitly (recom-

piling the Open-iSCSI source code does not delete previously saved records). The value “512 *

1024” in the code above is used as thedefaultvalue for the send buffer size in the recordcreation;

therefore, even if the Open-iSCSI source code is recompiledwith an updated value for the macro

TCP WINDOWSIZE , the change to this value is only going to affect the connections to the targets

discovered after this change; the records of previously discovered targets do not get rebuilt when

they are re-connected, so the change in this macroTCP WINDOWSIZE does not update the send

buffer size of the sockets related to these targets. To actually change the buffer size, we need to

change thetcp window size (not the macro in the source code) value saved in the target record

entry using the Open-iSCSIiscsiadm command line utility as shown in Listing 4.3.

1 $ i s c s i a d m−m node −T <iSCSI t a r g e t name> −p <iSCSI t a r g e t p o r t a l> −−op −n node .
conn[< c o n n e c t i o n number> ] . t cp w indow s ize −v <t h e new send b u f f e r s i z e in
by tes>

Listing 4.3: Set the Send Buffer Size in Open-iSCSI.

Theoretically, the most desirable actual send buffer size is the BDP of the link.

4.2.2.2 TCP Autotuning - A Dynamic Approach

Section 4.2.2.1 explained how we can manually adjust the send buffer size to achieve the highest

possible throughput. The problem with this static approachis, however, that if either or both of the

link bandwidth or the RTT changes dynamically, the old BDP may no longer be the optimal buffer

size after each change. Thus, we have to constantly monitor the link parameters to keep up with the

change, otherwise we may only achieve a suboptimal throughput.

Fortunately, however, Linux has officially introduced a TCPautotuning mechanism since kernel

2.6.7 (and back-ported to 2.4.27) [17]. With this autotuning mechanism, on the transmitter side,

4This value is larger than the actually achieved bandwidth asshown in Figure 4.1. We believe this gap is caused by certain
implementation issue of Open-iSCSI.

5Please refer tohttp://www.open-iscsi.org/docs/README for more details about the iSCSI target discovery
process.
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TCP automatically adjusts the send buffer size to maximize throughput. The send buffer size can

be up to the limit set by the system variablenet.ipv4.tcp wmem = "min default max" .

The meanings of the values are explained below [1]:

min: The minimum amount of memory every TCP socket allowed to use for the send buffer. The

default value ofmin is 4 KB.

default: The initial size of the send buffer used by a TCP socket. The default value ofdefault

is 16 KB.

max: The maximum amount of memory allowed for automatically tuned TCP send buffers. The

default value ofmax is between 64 KB and 4 MB, depending on the system RAM size.

On our test system, this variable is set tonet.ipv4.tcp wmem = "4096 16384 2674688"

out-of-box.

Please note that the Linux kernel stops autotuning the TCP send buffer size if the application

explicitly sets the socket buffer size usingSOSNDBUFthroughsetsockopt() . To use TCP

autotuning in Open-iSCSI initiator, the send buffer size should be set to zero using the command

shown in Listing 4.3.

4.3 Nagle’s Algorithm and iSCSI Performance

To attempt to further increase the iSCSI throughput, we reviewed the Open-iSCSI implementation.

In the source code, we noticed that the socket optionTCP NODELAYis set, as shown in Listing 4.4.

This TCP NODELAYoption is the switch for a TCP transmission policy: Nagle’s algorithm. When

TCP NODELAYis set, Nagle’s algorithm isdisabled.

1 i n t rc , onearg ;
2 . . .
3 onearg = 1 ;
4 r c = s e t s o c k o p t ( conn−>s o c k e t f d , IPPROTOTCP , TCPNODELAY, &onearg ,
5 s i z e o f ( onearg ) ) ;

Listing 4.4: Set the Socket OptionTCP NODELAY.

Proposed in RFC 896 [21], Nagle’s algorithm aims to reduce the TCP/IP header overhead when

the data comes to TCP in small chunks. When there is unacknowledged data on the link, Nagle’s

algorithm puts data that arrives in small chunks on hold and does not transmit the data until all the

previous sent data is acknowledged or the accumulated data exceeds the maximum segment size6 of

TCP.

In our tests, iSCSI is sending big chunks of data; therefore,we do not expect significant change

in the iSCSI throughput if we enable Nagle’s algorithm bydisablingTCP NODELAY.

6Please refer tohttp://en.wikipedia.org/wiki/Maximum_segment_size for more details on TCP maxi-
mum segment size.
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Figure 4.11:TCP NODELAYand Open-iSCSI Performance (Dynamically Set Send Buffer Size).

Figure 4.11 shows the iSCSI throughput results, with and withoutTCP NODELAYenabled, with

dynamically adjusted send buffer size. No significant difference is observed between the two curves.

Figure 4.12 to Figure 4.15 present the throughput result with statically set send buffer sizes, with

and withoutTCP NODELAYenabled. Again, no significant difference can be observed between the

two implementations, except for the small performance gainthrough disablingTCP NODELAYat

384 KB send buffer size and the slight performance degradation due to disablingTCP NODELAYat

100 ms RTT with 1536 KB send buffer size.

Therefore, Nagle’s algorithm, or theTCP NODELAYoption, alone does not have any noticeable

effect on the iSCSI performance. It is therefore unclear whythe default implementation touches this

option at all from the perspective of the iSCSI throughput.
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(a) Default Send Buffer Size (128 KB)
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Figure 4.12:TCP NODELAYand Open-iSCSI Performance (Statically Set Send Buffer Size) - 1.
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(c) Send Buffer Size 768 KB

Figure 4.13:TCP NODELAYand Open-iSCSI Performance (Statically Set Send Buffer Size) - 2.
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Figure 4.14:TCP NODELAYand Open-iSCSI Performance (Statically Set Send Buffer Size) - 3.
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Figure 4.15:TCP NODELAYand Open-iSCSI Performance (Statically Set Send Buffer Size) - 4.
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4.4 use clustering and iSCSI Performance

Further examination of the Open-iSCSI initiator source code reveals that Open-iSCSI disables the

SCSI device optionuse clustering by default.use clustering is the option to control if

more than one (memory) page is allowed in one scatter-gatherlist entry, which is used for DMA in

iSCSI and SCSI. With this option disabled, each scatter-gather list entry can only hold one page7.

We modified the Open-iSCSI source code to enable thisuse clustering option and support

the transmission of scatter-gather list entries containing more than one page. Listing 4.5 and Listing

4.6 show the source code before and after the modification.

1 s t a t i c i n t i s c s i s w t c p x m i t s e g m e n t (s t r u c t i s c s i t c p c o n n * tcp conn ,
2 s t r u c t i s c s i s e g m e n t * segment )
3 {
4 s t r u c t i s c s i s w t c p c o n n * tcp sw conn = tcp conn−>d d d a t a ;
5 s t r u c t s o c k e t * sk = tcp sw conn−>sock ;
6 uns igned i n t cop ied = 0 ;
7 i n t r = 0 ;
8

9 wh i le ( ! i s c s i t c p s e g m e n t d o n e ( tcp conn , segment , 0 , r ) ){
10 s t r u c t s c a t t e r l i s t * sg ;
11 uns igned i n t o f f s e t , copy ;
12 i n t f l a g s = 0 ;
13

14 r = 0 ;
15 o f f s e t = segment−>cop ied ;
16 copy = segment−>s i z e − o f f s e t ;
17

18 i f ( segment−>t o t a l c o p i e d + segment−>s i z e < segment−> t o t a l s i z e )
19 f l a g s |= MSGMORE;
20

21 i f ( ! segment−>d a t a ) {
22 sg = segment−>sg ;
23 o f f s e t += segment−>s g o f f s e t + sg−>o f f s e t ;
24 / *
25 * P l e a s e no te here , t h e d e f a u l t im p lem en ta t i o n assumes t h a t
26 * t h e r e i s on ly one page in t h e sg ( s c a t t e r−g a t t e r ) l i s t e n t r y .
27 *
28 * /
29 r = tcp sw conn−>sendpage ( sk , sgpage ( sg ) , o f f s e t ,
30 copy , f l a g s ) ;
31 } e l s e {
32 . . .
33 }
34

35 i f ( r < 0) {
36 i s c s i t c p s e g m e n t u n m a p ( segment ) ;
37 r e t u r n r ;
38 }
39 cop ied += r ;
40 }
41 r e t u r n cop ied ;
42 }

Listing 4.5: Default Open-iSCSI I/O Segmentation Transmission with use clustering
Disabled.

1 s t a t i c i n t i s c s i s w t c p x m i t s e g m e n t (s t r u c t i s c s i t c p c o n n * tcp conn ,
2 s t r u c t i s c s i s e g m e n t * segment )
3 {

7For more implementation details, please refer to the function blk rq map sg() in the Linux kernel source code, the
2.6.34 version of which can be found athttp://lxr.linux.no/linux+v2.6.34/block/blk-merge.c
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Figure 4.16: use clustering and Open-iSCSI Performance (Dynamically Set Send Buffer
Size).

4 s t r u c t i s c s i s w t c p c o n n * tcp sw conn = tcp conn−>d d d a t a ;
5 s t r u c t s o c k e t * sk = tcp sw conn−>sock ;
6 uns igned i n t cop ied = 0 ;
7 i n t r = 0 ;
8

9 wh i le ( ! i s c s i t c p s e g m e n t d o n e ( tcp conn , segment , 0 , r ) ){
10 s t r u c t s c a t t e r l i s t * sg ;
11 uns igned i n t o f f s e t , copy ;
12 i n t f l a g s = 0 ;
13

14 r = 0 ;
15 o f f s e t = segment−>cop ied ;
16 copy = segment−>s i z e − o f f s e t ;
17

18 i f ( segment−>t o t a l c o p i e d + segment−>s i z e < segment−> t o t a l s i z e )
19 f l a g s |= MSGMORE;
20

21 i f ( ! segment−>d a t a ) {
22 uns igned i n t c u r r s g c o p i e d = 0 ;
23 uns igned i n t p a g e o f f s e t i n s g e n t r y = 0 ;
24 uns igned i n t n u m p a g e i n s g e n t r y = 0 ;
25 i n t once = 0 ;
26

27 sg = segment−>sg ;
28 o f f s e t += segment−>s g o f f s e t + sg−>o f f s e t ;
29

30

31 i f ( u n l i k e l y (NULL == sg page ( sg ) ) ) {
32 p r i n t k (KERN ERR ” sg page ( sg ) r e t u r n s NULL.\ n” ) ;
33 break;
34 }
35

36 c u r r s g c o p i e d = 0 ;
37 p a g e o f f s e t i n s g e n t r y = o f f s e t / PAGESIZE ;
38

39 / *
40 * P l e a s e no te t h a t pagecoun t ( sg page ( sg ) ) d id no t g i ve us
41 * t h e c o r r e c t page number in one sg e n t r y in our t e s t s .
42 * /
43

44 n u m p a g e i n s g e n t r y = ( sg−>o f f s e t + sg−>l e n g t h + PAGESIZE − 1) >>

PAGE SHIFT ;
45

46

47 wh i le ( ( c u r r s g c o p i e d < copy ) && ( p a g e o f f s e t i n s g e n t r y <

n u m p a g e i n s g e n t r y ) ) {
48 s t r u c t page * p a g e t o b e = NULL;
49 s i z e t o f f s e t t o b e = 0 ;
50 s i z e t c o p y t o b e = 0 ;

48



51

52 once ++;
53

54 / / f i g u r e ou t t h e send params
55 / / which page to send
56

57 p a g e t o b e = sg page ( sg ) + p a g eo f f s e t i n s g e n t r y ;
58 o f f s e t t o b e = o f f s e t % PAGESIZE ;
59 c o p y t o b e = m in t ( s i z e t , copy − c u r r s g c o p i e d , PAGESIZE −

o f f s e t t o b e ) ;
60

61 r = tcp sw conn−>sendpage ( sk , pageto be , o f f s e t t o b e ,
62 copy to be , f l a g s ) ;
63 i f ( r < 0) {
64 i s c s i t c p s e g m e n t u n m a p ( segment ) ;
65 r e t u r n r ;
66 }
67

68 c u r r s g c o p i e d += r ;
69 o f f s e t += r ;
70 p a g e o f f s e t i n s g e n t r y = o f f s e t >> PAGE SHIFT ;
71

72 }
73

74 / / no t necessary , j u s t to be com pat ib l e w i th t h e d e f a u l t i s c si
im p lem en ta t i o n

75 r = c u r r s g c o p i e d ;
76

77 } e l s e {
78 . . .
79 }
80

81 i f ( r < 0) {
82 i s c s i t c p s e g m e n t u n m a p ( segment ) ;
83 r e t u r n r ;
84

85 }
86

87 cop ied += r ;
88 }
89

90 r e t u r n cop ied ;
91 }

Listing 4.6: Modified Open-iSCSI I/O Segmentation Transmission with use clustering
Enabled.

We measured the iSCSI throughput with and without this modification. Figure 4.16 shows the

results with dynamically set send buffer size. The overlap of the two curves demonstrates that with

TCP autotuning the differenceuse clustering makes in iSCSI throughput is insignificant.

On the other hand, in Figure 4.17 and Figure 4.18 we notice that the default Open-iSCSI imple-

mentation (withuse clustering disabled) outperforms the modified version (withuse clustering

enabled) before the send buffer size is increased to the correspondingSmax benefit (Please refer to

Section 4.2.1.1 for more details) at RTTs shorter than or equal to 40 ms. Other than that, even if

the RTT is shorter than or equal to 40 ms, as long as the send buffer size is less than or equal to the

correspondingSmax benefit, the modified version withuse clustering enabled slightly outper-

forms the default version. This performance gain also extends to the situations with the RTT longer

than 40 ms. Moreover, with the RTTs over 60 ms, the throughputof the modified implementation of
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iSCSI is at least as high as the throughput of the default implementation.

The same pattern continues all the way through all the buffersizes we used in the test, as shown

in Figure 4.19 and Figure 4.20,with an exception of 1152 KB send buffer size, which exposes a

case without any significant difference as observed in Figure 4.16. Figure 4.20 also shows that

use clustering does not make a significant difference in iSCSI throughput with the size of the

send buffer greater than theSmax benefit.

We summarize these results in the following formula:

Throughputuse clustering ≥ Throughputdefault

is











true if RTT > 40ms

true if RTT ≤ 40ms andSsend buffer < Smaxbenefit

false if RTT ≤ 40ms andSsend buffer ≥ Smaxbenefit

(4.3)
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Figure 4.17:use clustering and Open-iSCSI Performance (Statically Set Send Buffer Size) -
1.
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Figure 4.18:use clustering and Open-iSCSI Performance (Statically Set Send Buffer Size) -
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Figure 4.19:use clustering and Open-iSCSI Performance (Statically Set Send Buffer Size) -
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Figure 4.20:use clustering and Open-iSCSI Performance (Statically Set Send Buffer Size) -
4.

54



4.5 iSCSI Performance Boost Observed with Nagle’s Algorithm
and use clustering

After seeing the slight difference theuse clustering option introduces to the iSCSI perfor-

mance, we were curious about using Nagle’s algorithm (TCP NODELAYdisabled) and theuse clustering

option together.

First, we tested the iSCSI throughput with the modificationsunder autotuned send buffer size. It

turns out that the these two options again do not make a noticeable difference in this case, as shown

in Figure 4.21.

Under statically set send buffer size, however, Nagle’s algorithm (TCP NODELAYdisabled) and

use clustering combined together becomes a throughput booster for iSCSI connections over

long RTTs and/or with insufficient send buffer size, as shownin Figure 4.22 and Figure 4.23. Fig-

ure 4.24 and Figure 4.25 show that the throughput of iSCSI with Nagle’s algorithm (TCP NODELAY

disabled) anduse clustering falls back to the throughput of the default implementation as the

send buffer size grows close toSmax benefit (Section 4.2.1.1).

One disadvantage we also noticed about the modification withTCP NODELAYdisabled and

use clustering enabled is that with short RTTs, typically shorter than or equal to 40 ms, this

modification brings the performance down by about 2 Mbps whenthe send buffer size is greater

than or equal to the correspondingSmax benefit.

The observations found with this modification follow Eq. 4.3, but with the performance gain

very much larger.

4.6 Open-iSCSI Initiator Performance Tuning Suggestions

In the previous sections, we discussed the performance of the Open-iSCSI initiator and its three mod-

ified versions - with Nagle’s algorithm (TCP NODELAYdisabled), with the SCSIuse clustering

option enabled, and with both of the previous two.

The results with statically set send buffer size show that Nagle’s algorithm alone does not make

a significant difference in the iSCSI throughput.

Theuse clustering modification brings mild changes to the iSCSI throughput: itachieves

slight performance gain if the send buffer size is smaller than theSmax benefit (Section 4.2.1.1)

corresponding to the RTT; Also, it causes slight performance degradation if the RTT is less than

or equal to 40 ms and the send buffer size is larger than the correspondingSmax benefit. Eq. 4.3

summarizes this pattern of performance change.

When Nagle’s algorithm (TCP NODELAYdisabled) and theuse clustering option are both

applied, we see a similar performance change pattern but with the performance gain very much

larger.

To have a closer look at how these four Open-iSCSI implementations (default, with Nagle’s
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Figure 4.21: Open-iSCSI Performance withuse clustering Enabled andTCP NODELAYDis-
abled (Dynamically Set Send Buffer Size).

algorithm (TCP NODELAYdisabled), with the SCSIuse clustering option enabled, and with

both of the previous two) perform, we plotted the throughputof the four implementations against

the send buffer sizes at 40 ms and 100ms, as shown in Figure 4.26 and Figure 4.27.

As for the choice between dynamically set send buffer size, i.e. with TCP autotuning, and

statically set send buffer size, the iSCSI session with the buffer size statically set outperforms the

one with TCP autotuning when the RTT is less than or equal to 40ms. As the RTT increases above

40 ms, however, TCP autotuning starts to show its advantage.For more details, please refer to

Section 4.2.1.2.

All the results so far have concerned RTTs of 100 ms or less. Cross-continental Internet links,

however, can have an average RTT as long as 200 ms[27]; therefore, we also tested the iSCSI

throughput over a link with an emulated RTT of 200 ms. The results are shown in Figure 4.28. TCP

autotuning did not get an equally high throughput as statically set buffer size can provide. This is

because TCP autotuning needs extra tuning to work properly on very long delay links. That is the

reason we do not recommend TCP autotuning as the answer to allsituations.

Based on the discussion above, we recommend the an Open-iSCSI initiator tuning scheme to

achieve the best performance, as demonstrated in Table 4.3.The “Free Memory Usage” in the

table means that the socket send buffer size can be set an arbitrarily large value and the “Restricted

Memory Usage” means that there is a socket (send) buffer sizecap and the maximum allowed value

is not smaller thanSmax benefit. The latter case can represent the situations of servers running as

virtual machines: if a large number of virtual machines are running on a physical host, the memory

share of each individual virtual machine is relatively small; therefore, the virtual server is running

under memory size restrictions and thus cannot afford all the open sockets with large buffer sizes.

Please note that one can also choose TCP autotuning with the default Open-iSCSI implementa-

tion as an alternative, which provides the convenience of spending the least effort on configuration

at the expense of a certain amount of performance sacrifice.
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Table 4.3: Recommended Tuning Scheme of Open-iSCSI

RTT (ms) Free Memory Usage Restricted Memory Usage

6 40,
stable

Statically set the send buffer size to
Smax benefit.

Statically set the send buffer
size to the maximum value
allowed.

Choose the default Open-iSCSI implementa-
tion.

> 40,
stable

Statically set the send buffer size to
Smax benefit.
Choose the Open-iSCSI implementation with
Nagle’s algorithm (TCP NODELAYdisabled)
and the SCSIuse clustering option en-
abled.

6 40,
variable

Statically set the send buffer size to
Smax benefit according to the estimated
mean RTT.

Choose the Open-iSCSI
implementation with
Nagle’s algorithm
(TCP NODELAYdisabled)
and the SCSI
use clustering option
enabled.

Choose the Open-iSCSI implementation with
Nagle’s algorithm (TCP NODELAYdisabled)
and the SCSIuse clustering option en-
abled.

> 40,
variable

Use TCP autotuningwith caution.
Choose the Open-iSCSI implementation with
Nagle’s algorithm (TCP NODELAYdisabled)
and the SCSIuse clustering option en-
abled.
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Figure 4.22: Open-iSCSI Performance withuse clustering Enabled andTCP NODELAYDis-
abled (Statically Set Send Buffer Size) - 1.
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Figure 4.23: Open-iSCSI Performance withuse clustering Enabled andTCP NODELAYDis-
abled (Statically Set Send Buffer Size) - 2.
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Figure 4.24: Open-iSCSI Performance withuse clustering Enabled andTCP NODELAYDis-
abled (Statically Set Send Buffer Size) - 3.
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Figure 4.25: Open-iSCSI Performance withuse clustering Enabled andTCP NODELAYDis-
abled (Statically Set Send Buffer Size) - 4.
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Figure 4.26: Open-iSCSI Performance Comparison @ 40 ms RTT
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Figure 4.27: Open-iSCSI Performance Comparison @ 100 ms RTT
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Figure 4.28: Open-iSCSI Performance Comparison @ 200 ms RTT
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Chapter 5

Conclusions and Future Work

In this thesis, we first discussed and examined the feasibility and effectiveness of using the native

Linux traffic control components, such astc and HTB (Hierarchical Token Bucket) to regulate

the network traffic rate in order to provide differentiated quality of service for the disk traffic of

virtual machines and throttle the traffic rate of the physical host as well. Our results in Chapter 3

demonstrate that HTB is capable of achieving the network traffic throttling goal with high accuracy.

In addition, HTB can redistribute the available bandwidth dynamically between concurrent traffic

flows when one or more flows are not fully utilizing the assigned bandwidth; therefore, HTB not

only accurately maintains the global bandwidth regulationgoal, but also makes the most efficient

use of the available bandwidth. Moreover, when the traffic control policy is required to change

dynamically, the switch between different HTB policies leaves minimal footprint in the traffic pro-

file. Therefore, HTB can be used as an effective bandwidth regulation tool to meet the demand in

providing differentiated quality of service.

In the course of this investigation, however, we noticed that the HTB implementation is not

very well documented. Thus, also in Chapter 3, we provided details about what we consider the

most critical implementation details of HTB. We believe this information can provide more solid

reference for others working in similar areas.

In addition, we examined a drastic performance degradationof the Open-iSCSI initiator. We

thoroughly tested the performance of the Open-iSCSI initiator and its three modified versions - with

Nagle’s algorithm (TCP NODELAYdisabled), with the SCSIuse clustering option enabled,

and with both of the previous two - under two methods of setting the TCP send buffer size - stati-

cally and dynamically. The results with statically set sendbuffer size show that Nagle’s algorithm

alone does not make a significant difference in the iSCSI throughput. Theuse clustering

modification brings mild changes to the iSCSI throughput: Itachieves slight performance gain but

causes minor performance degradation under certain circumstances as well. When Nagle’s algo-

rithm (TCP NODELAYdisabled) and theuse clustering option are both applied, we see a

performance change pattern similar to the pattern theuse clustering modification exhibits, but

with the performance gain very much larger.

64



As for the choice between dynamically set send buffer size, i.e. with TCP autotuning, and

statically set send buffer size, the iSCSI session with the buffer size statically set outperforms the

one with TCP autotuning when the RTT is less than or equal to 40ms. As the RTT further increases,

however, TCP autotuning starts to show its advantage.

Based on these results, we proposed a performance tuning scheme for the Open-iSCSI initiator,

which covers network links with varying combinations of RTTs and link bandwidth. We believe that

by following this tuning scheme, users of Open-iSCSI, especially those using Open-iSCSI over an

LFN, can gain significant throughput benefits.

5.1 Future Work

The core theory behind the implementation of HTB is DRR, which stands for deficit round-robin.

Without the priority parameter, HTB, as mentioned in Section 2.4, does not give sufficient consid-

eration to latency-critical flows; therefore, HTB, withoutdifferentiating the priority of classes, may

not be able to schedule latency-critical flows effectively when they are mixed with best-effort flows.

Even with the priority parameter, HTB may not be able to achieve the desired results either because it

handles this parameter in a relatively naive manner: Classes with a higher priority are always served

first, which can result in starving the classes with lower priorities. Thus, mapping latency-critical

and best-effort flows to different priorities may not alwaysgive desirable scheduling results. Further

investigation into this matter is of importance as it will provide valuable insight into the scheduling

effectiveness of HTB. If the outcome of this investigation suggests non-optimal scheduling of HTB,

it would be of interest to explore the option of re-implementing HTB using DRR++.

As for the performance of the Open-iSCSI initiator, future work should explore the possibility of

implementing an autotuning component for the Open-iSCSI initiator so that end users, who may not

possess the required privileges / knowledge / skills for performance tuning, would no longer have

to be concerned with the potential performance loss. Also, there is still a 10 percent throughput gap

between the highest iSCSI throughput we have achieved so farand the throughput of a general TCP

session at the RTT of 100 ms. The cause of this throughput gap is certainly worthwhile investigating,

which may enlighten us on the possibility of endowing Open-iSCSI with this last bit of performance

gain.
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