
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 25

Exceptions Continued

RAII

Smart Pointers

C/C++ Tips

Lecture 25 : Overview 1 / 29

How to Catch?

All exception objects are copied in the stack unwinding
process, possibly many times Because local temporal
objects are destroyed

Exceptions should be caught by reference. E.g.

Catch-by-pointer: delete or not delete?

Catch-by-value: one additional copy, possible slicing!

Be aware that catching exceptions is expensive -
exceptions should be rare events!

Lecture 25 : Exceptions 2 / 29

Example

void foo() {
...
if (error) throw MyException();
// creates local object
// while stack is unwound, this object gets copied
// everytime, because temporal objects are deleted
// when function is exited

}

int main() {
try { foo(); }

catch (MyException &e) { // no additional copy!
}
catch (MyException e) { // bad: additional copy!
}
catch (MyException *e) { // bad: delete or not?
}

}
Lecture 25 : Exceptions 3 / 29

Operator new and Exceptions

new throws std::bad_alloc in case memory is
unavailable

Thus, checking the result of new (!=0) is a waste of
time - it’s always != 0

C++ standard demands that memory is available if new
doesn’t throw

In practice, however, this is O/S dependent

I.e.: In some O/S’s memory allocation always
succeeds, and you’ll learn that you don’t have
enough memory later - segfault ...

Lecture 25 : Exceptions 4 / 29

Exception Safety Example

void bar()
{
throw MyException();

}

void foo()
{
int *p = new int[1000];

bar();

delete [] p; // not executed -> memory leak
}

Lecture 25 : Exceptions 5 / 29

Exception Safety Paradigm: RAII

Resource deallocation code may not be reached in case
of exceptions

Use the RAII scheme:
Resource Allocation Is Initialization

Exceptions within constructors must be handled right
away to free resources (and maybe re-thrown)

Destructor is not called on partly constructed objects!

Exceptions must not leave destructors

If an exception occurs in destructor while unwinding
the stack, program terminates

Partly completed destructor has not done its job!

Lecture 25 : Exceptions 6 / 29

RAII Examples

Say good-bye to using local pointers for memory
allocation

T *p = new T; delete p;

delete p may not be executed if exception is
thrown!

Solution: smart pointers (coming up)

Open fstreams with constructor call

ofstream os("output.txt");

When os goes out of scope, file is closed

Lecture 25 : Exceptions 7 / 29

Another RAII Application

Locking critical regions in concurrent programs

void foo()
{
XyzLib::Mutex mutex;
mutex.lock()

// critical region: only one thread allowed to enter

do_stuff();

// when exiting function body mutex.unlock() is
// automatically called in the destructor of mutex
// even if an exception is thrown
//
// otherwise: program could get dead-locked!

}

Lecture 25 : Exceptions 8 / 29

Smart Pointers

Objects that look, act, and feel like built-in pointers

Used for resource management. E.g.

Reference counting

Solving the pointers & exceptions problem

Gain control over:

Construction and destruction

Copying and assignment

Dereferencing

Lecture 25 : Exceptions 9 / 29

Auto Poiners

Sole owner of objects

When auto pointers leave scope, the object they point to
is destroyed

Auto pointer assignment p=q transfers ownership

lhs object (*p) is destroyed

p now points to rhs object (*q)

q points to 0

Dangerous:

storing auto pointers in containers - why?

passing them by value transfers ownership!

Usual meaning of *p and p->
Lecture 25 : Exceptions 10 / 29

auto ptr Example

#include <memory>
using namespace std;

class Foo { ... };

void foo()
{
auto_ptr<Foo> p = new Foo; // or p(new Foo);
bar(p);
...
// *p is destroyed here (releasing Foo obj.)
// even if exception is thrown in bar()

}

Lecture 25 : Exceptions 11 / 29

Auto Pointer Implementation

template <typename T> class auto_ptr
{
public:

auto_ptr(T *p_ = 0) : p(p_) { }

~auto_ptr() { delete p; } // here’s the magic!
...

T& operator*() const { return *p; }
T* operator->() const { return p; }
T get() const { return p; }

private:
T *p; // actual pointer

}

Lecture 25 : Exceptions 12 / 29

More Smart Pointers (Boost)

scoped_ptr<T>, scoped_array<T>

Simple sole ownership of single object or array, resp.

Cannot be copied (safeguard)

shared_ptr<T>, shared_array<T>

Shared, reference counted ownership of single object
or array, respectively

Can be stored in STL containers

Cannot handle cyclic data structures

These template classes will become part of the C++
standard library

Lecture 25 : Exceptions 13 / 29

Scoped Examples

#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
using namespace boost;

void foo()
{
scoped_ptr<Foo> p(new Foo);
scoped_ptr<Foo> q = p; // illegal, safeguard!

p->bar(); ... // use like regular pointer

scoped_array<Foo> pa(new Foo[100]);
scoped_array<Foo> qa = pa; // illegal

pa[10].bar(); // use like regular array

// p destroyed here => destroys Foo object
// pa destroyed here => destroys Foo array

}
Lecture 25 : Exceptions 14 / 29

Shared Example

#include <boost/shared_ptr.hpp>
using namespace boost;

void foo(shared_ptr<Foo> &q) {
shared_ptr<Foo> p(new Foo); // reference count 1
q = p; // copy => reference count 2

// p destroyed here => reference count 1
// Foo object not destroyed yet!

}

void main() {
shared_ptr<Foo> q;

foo(q); ...
// q destroyed here
// => reference count 0 => object destroyed

}

Lecture 25 : Exceptions 15 / 29

Final Exam

Wednesday April 26, 2-4pm, here

Bring OneCard – will be checked

Closed Book

Covered material: everything
lectures, labs, assignments

Lecture 25 : Exceptions 16 / 29

REVIEW – C/C++ Programming Tips

“Wisdom and beauty form a very rare combination.”
(Petronius Arbiter, Satyricon XCIV)

“With great power comes great responsibility.”
(Spiderman’s Uncle)

Lecture 25 : Exceptions 17 / 29

Why ...

C?

Code is FAST; compiler is FAST; often only little
slower than hand-written assembly language code

Lingua Franca of computer science

Portable. C compilers are available on all systems

Compilers/interpreters for new languages are often
written in C

C++?

C + classes + templates: FAST + CONVENIENT

You are still in total control, unlike Java or C#

Lecture 25 : Exceptions 18 / 29

From C to C++

Use const and inline instead of #define

Macros are not typesafe

Macros may have unwanted side effects. Use inline functions
instead! (e.g. #define max(a,b) ((a)>(b)?...))

Prefer C++ library I/O over C library I/O

C’s fprintf and friends are unsafe and not extensible. Like
the syntax? Use boost::format!

C++ iostream class safe and extensible

iostream speed is catching up, so speed is hardly a reason
anymore for choosing C-library I/O

Prefer C++ style casts

Distinguish between pointers and references
Lecture 25 : Exceptions 19 / 29

Memory Management

Use the same form in corresponding calls to new and
delete

int *p = new Foo; ... delete p;

int *p = new Foo[100]; ... delete [] p;

For each new there must be a delete

Delete pointer members in destructors
otherwise you are creating memory leaks

No need for checking the return value of new
It throws an exception if no memory available

delete p with p=0 is OK (ignored, no check req.)

Lecture 25 : Exceptions 20 / 29

The “Big-4”

Define copy constructor and assignment operator when
memory is dynamically allocated

default bit-wise copy is not sufficient in this case

Make destructors virtual in base classes
otherwise base class pointers can’t call the right destr.

Have operator= return reference to *this

for iterated assignments a = b = c ...

Assign to all data members in operator=

Check for self assignment in operator=
if (this == &rhs) return *this;

Lecture 25 : Exceptions 21 / 29

Operators

Never overload && || ,

Distinguish between prefix and postfix forms of ++/--

they (should) return different types

++i : returns reference to i

i++ : returns value of temporary object (can be
slower!)

Be consistent. E.g. ++ += prefix++ postfix++

should have related semantics

Lecture 25 : Exceptions 22 / 29

Class/Function Design (1)

Guard header files against multiple inclusion
#ifndef ClassName_H ...

Strive for complete and minimal interfaces

complete: users can do anything they need to do

minimal: as few functions as possible, no overlapping

Minimize compilation dependencies between files

Consider forward declaration in conjunction with
pointers/references to minimize file dependencies

class Address;

class Person { ... Adress *address; ... }

No need to #include "Address.h"

Lecture 25 : Exceptions 23 / 29

Class/Function Design (2)

Avoid data members in public/protected interfaces
use inlined get/set functions – more flexible

Use const whenever possible

Pass and return objects by reference
But don’t return references to non-existent objects
like local variables!

Avoid returning writable “handles” to internal data from
const member functions

otherwise constant objects can be altered

Lecture 25 : Exceptions 24 / 29

Inheritance

Make sure public inheritance models “is a”

Never redefine an inherited non-virtual function
different results for pBase->f() and pDeriv->f()

Never redefine an inherited default parameter value
Dirtual functions are dynamically bound
Default parameters are statically bound

Avoid casting down the inheritance hierarchy
Use virtual functions instead

Lecture 25 : Exceptions 25 / 29

Exceptions

Prefer exceptions over C-style error codes

Use destructors to prevent resource leaks
Say good-bye to pointers that manipulate local
resources – use smart pointers

Prevent resource leaks in constructors
Destructors are only called for fully constructed

objects

Prevent exceptions from leaving destructors
Exceptions within exceptions terminate program
Special case: exceptions call destructors ...

Catch exceptions by reference
All alternatives create problems

Lecture 25 : Exceptions 26 / 29

Efficiency

Choose suitable data structures and efficient algorithms

Consider the 80-20 rule
80% of the resources are used by 20% of the code
Focus your optimization efforts by using profilers

Avoid frequent heap memory allocation

Know how to save space
bits, bytes, unions, home-brewed memory allocators

Understand costs of virtual functions, multiple
inheritance, exception handling, and RTTI

Consider alternative libs. (e.g. iostream vs. stdio)
Lecture 25 : Exceptions 27 / 29

STL Tips (1)

Choose your containers wisely
sequence/associative/hash, speed,
memory consumption

Careful when storing pointers in containers
- if the container owns the objects they have to be

destroyed before the container
- possible dangling pointers to vanished objects
- specify comparison functors

If speed matters, use vectors or hashed associative
containers. If speed really matters, don’t use STL (for
now, but STL implementations are becoming faster)

Lecture 25 : Exceptions 28 / 29

STL Tips (2)

Make sure destination ranges are big enough

Note which algorithms expect sorted ranges

Have realistic expectations about thread safety of STL
containers: YOU need to lock containers

Call empty() instead of checking size() against 0

Make element copies cheap and correct
STL copies elements often

Make sure comparison functions implement strict weak
ordering

More tips in: S.Meyers: Effective STL
Lecture 25 : Exceptions 29 / 29

