Efficient Approximation
of Backgammon Race Equities

Michael Buro

NEC Research Institute
4 Independence Way
Princeton NJ 08540, USA

Abstract

This article presents efficient equity approxi-
mations for backgammon races based on sta-
tistical analyses. In conjunction with a 1-ply
search the constructed evaluation functions al-
low a program to play short races almost per-
fectly with regard to checker—play as well as
doubling cube handling. Moreover, the evalu-
ation can naturally be extended to long races
without losing much accuracy.

1 Introduction

Several popular games can end up in race positions in
which both players reach their goals separated from each
other. Since the search and evaluation complexity in
these positions is much lower than for positions in which
the playing parties can influence each other, finding op-
timal moves may be feasible even under tournament tim-
ing constraints. We call (end-)game positions separable
if future optimal moves of a player do not depend upon
the opponent’s moves. Below we list some examples of
games in which separable positions occur:

e Domineering and Amazons. In these games, which
are described in [4], both players try to create ter-
ritory to which they have sole access. Once a posi-
tion has been reached without disputed territory the
players make as many moves as possible in their own
territory in order to avoid running out of moves be-
fore the opponent. Determining the winner in these
situations is simple as it only requires a static board
analysis.

e Halma and Chinese Checkers. Playing on a star—
shaped grid, up to six players try to move all their
marbles to the opposite side of the board as fast as
possible. Once a marble group is disengaged from
the other groups finding optimal moves turns into a
simpler single-agent search problem.

e Simplified backgammon. Before this game begins,
so called pip—counts' are assigned to both players
'A backgammon term which denotes the total number

of points (or pips) that a player must move to bear—off all
checkers.

who then alternately roll two dice and decrease their
pip—counts by the total number of points rolled. As
in backgammon doubles count twice. The winner is
the first player who reaches a pip—count less than
one. Obviously, in this game all positions are sep-
arable because in each position only one move is
possible which solely depends on the player’s rolls
so far.

The alert reader may ask why backgammon? is not on

this list. This game also turns into a race when the
checker groups are separated. Each player then tries to
bear—off all his checkers as quickly as possible — seem-
ingly independent of the opponent’s checker configura-
tion. In general, however, it turns out that backgammon
positions are not separable even if the checker groups
are separated. There are several reasons for this phe-

?Backgammon rules and glossaries can be found on the
WWW. A good introduction of basic game strategies is given
in [3].

24 23 22 21 20 19 24 23 22 21 20 19

|
A
1 2 3 4 5 6 1 2 3 4 5 6
Black to play (1,2)
move P(win) move P(win)
a) 64 1off 7.48% b) 3-off 33.37%
3-off 2.58% 6-4 1-off 29.82%

Figure 1: a) A race position with presumably the greatest
min—-ENR move error (AP(win) = 4.90%). The min-ENR
move 3-off is a blunder which reduces Black’s winning chance
by a factor of almost three. ~ b) A similar position where
3-off is better (AP(win) = 3.55%).

nomenon:

1. The player who first bears—off all checkers wins
at backgammon. Intuitively, one would therefore
expect that minimizing the expected number of
rolls (ENR) maximizes the expected payoff (equity).
There are, however, positions where this intuition
fails (Fig. 1la). Black’s only (desperate) winning
plan is to hope for rolling high doubles next and
to prepare for it by playing 6-4 1l-off. Although
this move does not minimize the ENR, it almost
triples Black’s winning chance. By contrast, in a
similar position presented in Fig. 1b) the min-ENR
move 3-off is best. Apparently, the chance compo-
nent in backgammon causes playing interactions in
race positions even though the checker groups are
separated.

2. If a player has gained a considerable race advantage
he may be able to bear—off all of his checkers before
the opponent has got out his first one. This ending
is called a gammon and counts two points. Depend-
ing on the opponent’s position one therefore has to
decide whether to go for a win or to minimize the
chance of being gammoned. Thus, in these situa-
tions optimal play is not independent of the oppo-
nent’s checker configuration either.

3. In backgammon the stake of the current game can
be doubled several times using a (doubling) cube
with numbers 2, 4, 8, 16, 32, and 64 on its faces.
A game starts with the cube placed in the mid-
dle of the board indicating that both players have
the right to double and the game value currently
is one. If at one point in the game a player hav-
ing the right to double thinks he has a considerable
advantage, he may double before his roll. The oppo-
nent can choose to decline the double, in which case
the game ends with the current cube score. If he
chooses to take the double, the cube is turned over
to him showing the next power of two. The sole
right to double next is now with the opponent and
the game resumes with the player to move throwing
the dice. Because proper cube handling depends on
accurate winning chance estimation, again the op-
ponent’s checkers cannot be ignored.

Despite the fact that backgammon race positions in gen-
eral are not separable, it is worthwhile to find out if there
are both accurate and efficient approximation algorithms
that perform sufficiently well in practice. The following
two main sections deal with the fast approximation of
short race equities without and in presence of the dou-
bling cube. A discussion of applications and ideas on
extensions with regard to long races and gammons con-
cludes the paper.

2 Cubeless Equity

In simplified backgammon the winning chance for the
side to move can be computed exactly provided that the
distribution of the roll number needed for reaching a pip—
count less than one is known. Let X (c) be the random
variable which measures the number of rolls to reach a
pip—count < 1 when starting with pip—count ¢. Then,
in a position defined by two pip—counts (c1,cs), player
1 to move wins with probability P(win) = P(X(c1) <
X (c2)). This is equivalent to

P(win) = Zwi(cz) -ij(cl),

where z;(¢) := P(X(c) = 7). Starting with pip—count
0, z;(c) can be computed using the following recursive
relation:

zo(c) = (c=0)
Tit1 (C) = Zpr " T (maX(O, c— cr))
r=1

There are 21 distinct rolls in backgammon. p, denotes
the probability and ¢, the number of points of roll r.

Extending this roll distribution computation to real
backgammon races, where one can choose among sev-
eral move alternatives, is not hard. Let d be the checker
configuration for the player to move and z(d) the density
function of X (d) which now measures the number of rolls
needed to bear—off all checkers when starting with con-
figuration d and following the min-ENR strategy. Stated
in a compact form it follows:

z(d) = S(Zpr : x(dr)):

where d,. is a successor configuration of d that leads
to the lowest ENR for roll r, and operator S shifts
a density function one place to the right. Beginning
with the empty configuration e, for which we define
z(€)(@) := (i = 0), all z(d) may be computed efficiently
again by dynamic—programming.

In actual game play we utilize this precomputed infor-
mation in two ways. First, a min—-ENR move vector can
be assigned to each checker configuration. This allows us
to play plausible moves instantly without considering the
opponent’s checker configuration. Although min—-ENR
moves are not always perfect and checker play may de-
pend on the opponent’s configuration, this strategy may
still work well on average. Second, in a position given
by two checker configurations (di,ds) the roll distribu-
tion information enables us to approximate the winning
chance of player 1 to move, namely

N

P(win) = P(X(d)) < X(d2)- (1)

Table 1: Number of configurations of up to n checkers of one
color distributed on up to m points.

F#checkers n < #points m < Fconfigurations

6 6 924
7 6 1,716
8 6 3,003
9 6 5,005
10 6 8,008
11 6 12,376
15 6 54,264
15 11 7,726,160
15 12 17,383,860
15 23 1,708,582,624
7 23 2,035,300
8 23 7,888,725

This approximation may be used in a look—ahead search
to determine good moves.

In order to gauge the performance of both ap-
proaches — which seem to be common knowledge among
backgammon programmers, but never found their way
into scientific literature in the past — we gathered statis-
tics and played a series of tournaments against optimal
players. Looking at the configuration counts given in Ta-
ble 1 the construction of optimal players by computing a
two—dimensional array of winning probabilities is infeasi-
ble even for moderate configuration sizes. For instance,
covering all race positions with up to 15 checkers dis-
tributed on up to 6 points for either side requires the cal-
culation of 542642 =~ 3-10° probabilities. Therefore, we
decided to restrict experiments to relatively small con-
figuration sizes (up to 10 checkers on up to 6 points) and
to use a series of (tournament) statistics demonstrating
how the performance changes when the pip—counts are
increased.

The optimal players for various configuration sizes
were constructed by encoding the players’ checker con-
figurations into a pair of integers and using these indices
to access a square array of winning probabilities. The
array was then filled by a recursive procedure similar to
the one used for computing roll distributions. Given a
position and a roll the optimal player just picks the move
which minimizes the opponent’s winning probability.

The statistics presented in Fig. 2 indicate that P(win)
is a very good approximation to P(win). Large errors of
up to 1.39% are rare. On average, P(win) only slightly
underestimates the winning chance in bad positions and
slightly overestimates it in good positions. A plausi-
ble explanation for this behavior is that sometimes the
(probably) losing player has desperate but effective move
options similar to that presented in Fig. 1a). Since the
standard deviation of the error is also small, a good per-
formance of a 1-ply search player, which uses P(win) as
evaluation function, can be expected. An interesting ob-

0.0025 ‘ ‘ ‘ ‘
error mean (6,6)
error mean (8,6) -
0.002 f error mean (9,6) -

0.0015

0.001

0.0005 |/

-0.0005
-0.001
-0.0015
(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.0025 . .
error std (6,6)
error std (8,6) -
error std (9,6) -
0.002
0.0015 /IV\
0.001
0.0005
[0}
0.4 0.5 0.6 0.7 0.8 0.9 1
0.014 . i
error max (6,6)
error max (8,6) -—------—--
0.012 error max (9,6) - |
0.01

0.008

0.006 / \/\\ i,
0.004 '// W
0.002 /

(] 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(0] ‘ ‘ |
l} error min (6,6)
error min (8,6) -
error min (9,6) -
-0.002
5
Aj\
-0.004 \)
BN \/
N
-0.006 S
W
!
\
-0.008
-0.01
-0.012
s} 01 02 03 04 05 06 07 08 09 1

P(win)

Figure 2: Statistics of the evaluation error e = P(win) —

P(win) for several position sets (up to 6, 8, or 9 checkers on
up to 6 points for either side). The data has been grouped
using 200 intervals. The graphs show the mean, standard
deviation, maximum, and minimum of e.

servation is that both the maximum error mean and the
maximum standard deviation decrease when considering
positions with higher pip—counts. Moreover, the maxi-
mum errors do not change much anymore when moving
from (8,6) to (9,6) positions. This is a strong indica-
tion that P(win) becomes more accurate for increasing
pip—counts.

To check the actual game playing performance, we
conducted experiments in form of tournaments. Starting
with close random positions we let the min—ENR player
and the 1-ply player play a large number of games
against (nearly) optimal opposition. Table 2 presents
the results. Two heuristic players (0-ply, 1-ply) played
a series of tournaments against two nearly optimal play-
ers (opt-9, opt-16). O-ply followed the min—-ENR strat-
egy, whereas 1-ply performed 1-ply searches utilizing
the winning chance approximation (1). opt-k played
moves leading to the highest winning probability. These
probabilities were encoded using k bits while computing
the “perfect-play” data. Each tournament consisted of
100,000 game pairs. The starting positions were cho-
sen randomly according to the configuration parameters
(#checkers < n, #points < m). Close starting posi-
tions and sufficient game lengths were enforced by only
accepting positions with 47% < P(win) < 53% and pip—
count > 2 . maximum pip-count for either side (n - m).
To further reduce the result’s variance both games of
a pair were played using identical roll sequences. The
average game length is measured in half-moves, game
payoffs were +1 and —1, and the average payoff stan-
dard deviations were estimated by a re—sampling proce-
dure. As predicted by the excellent error statistics the
players which are guided by heuristics perform very well.
In particular, the min—ENR player (“0-ply”) only loses

Table 2: Tournament results.

Config. size Player Player avg. game A’s avg. std.
(chks.,pts.) A B length payoff/game dev.

(6,6) Oply opt9 6.28 —0.00105 0.00026
(86) O-ply opt-9 8.19 —0.00155 0.00030
(9,6) O-ply opt-9 9.21 —0.00151 0.00031
(10,6) O-ply opt-9 10.21 —0.00227 0.00031
(6,6) O-ply opt-16 6.28 —0.00100 0.00025
(86) 0-ply opt-16 8.19 —0.00164 0.00029
(9,6) 0-ply opt-16 9.21 —0.00162 0.00030
(6,6) 1-ply opt-9 6.29 —0.00014 0.00013
(86) 1ply opt9 8.20 +0.00017 0.00017
(9,6) 1-ply opt-9 9.22 +0.00006 0.00017
(10,6) 1-ply opt-9 10.22 —0.00015 0.00018
(6,6) 1-ply opt-16 6.29 —0.00008 0.00008
(86) 1-ply opt-16 8.20 +0.00011 0.00010
(9,6) 1-ply opt-16 9.21 —0.00003 0.00010

around 0.002 points per game when starting with (10,6)
configurations and playing against an optimal opponent.
“1-ply” is even better: neither a statistically significant
performance difference compared to the optimal player
can be detected even when playing as much as 200,000
games, nor does “l-ply” seem to get weaker when the
pip—count is increased. Hence, for practical purposes
looking 1-ply ahead and applying winning chance ap-
proximation (1) at the leaves is sufficient for nearly opti-
mal checker play in short backgammon races. Moreover,
the error statistics and tournament results indicate that
the 1-ply approach can be extended to longer races with-
out losing performance. Table 2 also shows that encod-
ing of the exact winning probabilities using nine bits is
sufficient in practice. As we shall see in the next section,
limiting the resolution is essential for a space efficient
construction of cube equity arrays.

3 Cube Equities

The doubling cube was introduced in backgammon in
the 1920s. It adds a new skill to the game and its proper
handling in k-point matches and money games is crucial.
In presence of the doubling cube the expected game pay-
off depends not only on the checker configuration, but
also on the current cube value and the right to dou-
ble next. Moreover, cube actions are also influenced by
the gammon potential and the current match standings.
This section deals with cube equities in short race posi-
tions and their efficient approximation. As in the previ-
ous section, we will first develop a theoretical basis for
the equity computation and then gauge the performance
of simple approximation algorithms by means of error
statistics and tournaments.

Keeler & Spencer [2] started their investigation of the

P(win [MY-CUBE)

09 L P(win | OUR-CUBE) -

" P(win | YOUR-CUBE) -
P(win | NO-CUBE)

0.8

0.6

0.5

0.4

0.3

0.2

0.1

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cubeless P(win)

Figure 3: Cubeful winning probabilities depending on dou-
bling rights and the cubeless winning probability in continu-
ous games. MY-CUBE, OUR-CUBE, and YOUR-CUBE de-
note the cases in which the player to move has the sole right
to double, both players have doubling right, or the opponent
has the cube.

optimal doubling strategy in money games by consid-
ering continuous games, in which the winning probabil-
ity is a continuous function of the (continuous) playing
time. In those games, the doubling, redoubling, and
take/drop decisions solely depend on the current win-
ning probability of the player to move: he should dou-
ble iff P(win) > 0.8 and the opponent should accept
the double iff P(win) < 0.8. Fig. 3 visualizes the gen-
eral relationship between the cubeless winning chance
P(win) and winning probabilities when using a dou-
bling cube in continuous games. Keeler & Spencer then
went on transferring the optimal doubling strategy of
simplified backgammon, which solely depends on pip—
counts and can be computed by dynamic—programming,
to backgammon. However, this simple doubling strat-
egy performs poorly in short races, because in this stage
backgammon games are far from being continuous and
pip—counts alone are no reliable winning chance predic-
tors.

One way to improve this approach is to predict the
winning chance more accurately and to refine the cube
equity model. In order to study the relationship be-
tween winning chances in continuous and discrete games
we constructed optimal players for moderate configura-
tion sizes and computed statistics which are presented
in Fig. 4. Although there is a qualitative resemblance to
the winning chance graph for continuous games, the top
graph in Fig. 4 reveals remarkable nonlinear deforma-
tions. These are caused by possibly large winning chance
variations in low pip—count positions. Even though the
winning probability might be low before rolling the dice,
a high roll can easily turn the table in short races. Hence,
reaching a winning chance lower than 20% does not nec-
essarily imply that the opponent wins the game in his
next turn by doubling — as it is the case for continu-
ous games. This explains the increased cube equities in
the left part of the graph. Another interesting observa-
tion is that on average the doubling point is much less
than 80%. Again, large winning chance variations are
responsible. Prominent examples are last roll situations
in which the player to move should double if his winning
chance is better than 50%.

For increasing pip—counts backgammon races get more
continuous in the sense that winning chance fluctua-
tions get smaller. Consequently, the cube equity func-
tions converge to those shown in Fig. 3. This observa-
tion allows us to approximate cube equities and proper
cube handling efficiently. The most simple approach is
to determine cube actions by utilizing estimated dou-
ble/take functions in conjunction with the cubeless win-
ning chance approximation (1). We call this kind of al-
gorithm “C-0-ply.” The C-0-ply player we implemented
moves checkers according to the min—-ENR strategy. For
cube handling it utilizes winning chance approximation

(1) in conjunction with estimated double/take functions

fumy-cuse; four-cusg, fraxe (shown in the bottom graph
of Fig. 4) as follows:

my Cube: double = S fMy_CUBE(P(Win))
take & 1 < fraxe(P(win))

our cube: double & 7 < four.cuss(P(win))
take & 1 < fraxe(P(win))

r € [0,1] is a realization of a uniformly distributed ran-
dom variable. This randomized algorithm slightly gener-
alizes Keeler & Spencer’s approach which uses pip—count
thresholds for determining cube actions. For the exper-

1 T T T T
P(win | MY-CUBE) mean ——
0.9 + P(win | OUR-CUBE) mean --—-----—
: P(win | YOUR-CUBE) mean -
0.8 P(win | NO-CUBE)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

(0] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P(win | MY-CUBE) std.dev. ——
P(win | OUR-CUBE) std.dev. -
P(win | YOUR-CUBE) std.dev. -

0.02

0.015

0.01

0.005

1
0.9 - P(double | MY -CUBE) /
P(double | OUR-CUBE) -
08 P(take)

01 /

0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

cubeless P(win)

Figure 4: Cubeful winning probability and cube action
statistics averaged over all (6,6) backgammon race positions.
Again, the cubeless winning percentage was used to group
the data into 200 intervals.

Table 3: Cube tournament results. Again, 200,000-game
tournaments were played to compare the playing strength
of several algorithms. Starting positions and roll sequences
were picked as before. The initial cube value was one and
both players had the right to double first.

Config. size Player Player avg. game A’s avg. std.

(chks.,pts.) A B length payoff/game dev.
(6,6) C-0-ply C-opt-16 5.19 —0.0901 0.0008
(10,6) C-0-ply C-opt-9 8.09 —0.0729 0.0010
(6,6) C-1-ply C-opt-16 5.11 —0.0056 0.0006
(10,6) C-1-ply C-opt-9 7.92 —0.0070 0.0008
(10,6) C-1-ply* C-opt-9 7.93 —0.0006 0.0006

(6,6) C-opt-9 C-opt-16 5.14 —0.00006 0.00011

iments reported in Table 3 we equipped C-0-ply with
the estimated double/take functions for (6,6) and (10,6)
positions and let it play tournaments against optimal
opposition. The playing performance is not convincing;:
C-0-ply in average loses around 9 points in 100 (6,6)
games and around 7.3 points in 100 (10,6) games.

Looking ahead may be crucial because of the non-
linear relation between cubeless and cubeful winning
chances. “C-k-ply” algorithms deal with this problem
by assigning three equities (emy, eour, eyour € [—1,1])
to leaf nodes at depth k£ > 0 and propagating these val-
ues up the search tree using the following negamax cube
recursion:

emy = max{min{l, 2-ejour}, emny}
€our = max { min{1, 2- elyour}a €6ur}
€your = elyour

€my; €our> and eyqy; denote the average negated cube
equities of the best successor positions depending on the
right to double. The max/min operations correspond to
the double/take choices of the two players. In interior
doubling nodes the heuristically best cube actions are
given by the following relations:

my cube: double < emy > ep,

take < —double V eygyr < 0.5
our cube: double < egur > efyr

take < —double V eygyr < 0.5

In order to improve upon the C-0-ply algorithm we con-
structed a C-1-ply player as follows. Checkers are played
by looking one ply ahead and picking the move which
minimizes the opponent’s cubeless winning chance ap-
proximation (1). For determining cube actions, C-1-ply
assigns three equities emy, eour, and eyoyur to chance
nodes at depth one by mapping P(win) to equities ac-
cording to the estimated cube functions (Fig. 4 (top)).?

3In this case the relationship between equity e and win-

"P(win |' Y OUR-CUBE) mean (6,6) ——
09 P(win | YOUR-CUBE) mean (10,6) -~ <
: P(win | YOUR-CUBE) mean simple100 - il
os L P(win | YOUR-CUBE) mean simple200 @
- P(win | YOUR-CUBE) continous ------ e
07 -
0.6
05
0.4 yiy”
0.3 / .
0.2
0.1
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

cubeless P(win)

Figure 5: Average winning chance functions for (6,6)
and (10,6) backgammon positions compared to simplified
backgammon (pip—counts < 100, 200 for either side) and con-
tinuous games. The opponent has the cube.

C-1-ply then propagates the values up to the root and
picks the heuristically best action as described above.
The tournament results summarized in Table 3 indicate
that the average loss of C-1-ply is about 16 times smaller
compared to C-0-ply in (6,6) tournaments and about 10
times smaller in (10,6) tournaments. This clear advan-
tage shows the importance of looking ahead for proper
cube handling. Moreover, only losing about 5.6 respec-
tively 7 points on average in 1000 games comes close to
optimal play and seems to be acceptable for practical
purposes.

The optimal player that can handle (6,6) positions
has access to a 924 x 924 array in which three cube
equities and double/take flags are stored for each po-
sition. Assuming a 16-bit resolution the array thus oc-
cupies around 5.5 MB. While this array easily fits into
the memory of today’s PCs, increasing the configura-
tion size quickly exhausts main memory or even hard
discs. For instance, since there are 8,008 (10,6) config-
urations for either player, the according array occupies
around 417 MB. By reducing the resolution to 9 bits
when computing equities and applying simple compres-
sion techniques* the given space figures can be reduced
by a factor of nearly 3. While this technique enables us
to construct a nearly perfect (10,6) player and to hold
the relevant data in memory for fast access, it is infeasi-
ble for larger configurations and we need to find accurate
equity approximations.

As mentioned earlier simplified backgammon becomes
a better backgammon model for increasing pip—counts.
Moreover, we expect backgammon races to get “more

ning probability P is e = 2+ P — 1 since the only game out-
comes are —1 and +1.
*Huffman encoding of equity differentials.

continuous” as well. Empirical evidence for this intu-
ition is presented in Fig. 5. We constructed a simplified
backgammon player, which handles the doubling cube
perfectly, and compared the estimated winning chance
functions to those for short backgammon races and con-
tinuous games. Apparently, simplified backgammon is
also an excellent model for backgammon with regard
to the doubling cube. This observation allows us to
construct strong backgammon race players for longer
races without relying on huge pre-computed arrays. The
idea is to extend C-k-ply players by two components:
a core that plays short races perfectly and a module
that can handle longer races by adjusting leaf evalu-
ations depending on pip—counts. One way to adjust
the leaf evaluations emy, €our, and eyour is to interpo-
late values between two extreme cube functions: one for
low pip—counts estimated from perfect play equities and
one for high pip—counts obtained by averaging simplified
backgammon equities.

Our experimental player C-1-ply* is equipped with a
perfect (6,6) core. It evaluates non-(6,6) leaf positions p
according to the following convex combination:

emy = - elgy) (P(win)) + (1 — @) - S1200(P (win)),

where eg’;) and eflN-200 are the average cube equity

functions for (6,6) backgammon and 200—pips simplified
backgammon races in case the player to move owns the
cube. The remaining cube equities equr and eyour are
computed analogously. a € [0,1] is a weight which mod-
els the transition from low to high pip—count positions.
It is piecewise linear in the total pip—count ¢ of p :

1, if ¢ <30
a=1< (100-¢)/(100—30), if30<c¢< 100
0, if ¢ > 100

The pip—count limits were picked by maximizing the
tournament result against a fixed player. In order to
gauge the playing strength of C-1-ply* we pitted it
against the nearly optimal (10,6) player C-opt-9. The
convincing tournament result is reported in Table 3: C-
1-ply* is much better than C-1-ply. It almost reaches the
performance of C-opt-9 although it has access to far less
pre—computed data (4 MB rather than 146 MB (com-
pressed)) and only uses a negligible amount of time for
computing moves and cube actions (less than 0.1 seconds
on a PII/333 PC).

These promising results for short races encourage to
extend the approach to arbitrary race positions. Al-
though the direct comparison with optimal players is no
longer feasible due to space and time limitations, pa-
rameters can be optimized relative to fixed players, as
mentioned above.

4 Discussion and Outlook

This article continues and extends earlier work on
backgammon races. Keeler & Spencer [2] and Zadeh &
Kobliska [6] studied optimal doubling strategies in the
context of continuous games and simplified backgam-
mon. They then developed cube action heuristics for
backgammon races solely based on current pip—counts.
With the advent of fast computers equipped with large
memory it is possible today to construct perfect play-
ers for moderate configuration sizes. Our experiments
in form of tournaments against optimal players indicate
that the classical approach, which just examines the cur-
rent position, is much weaker than 1-ply searches utiliz-
ing accurate winning chance predictions in conjunction
with estimated cube functions. The equity approxima-
tion is in fact so accurate that the heuristic player comes
close to perfection while using only a small fraction of
the space needed for storing optimal cube equities.

A few years ago, Gerry Tesauro [5] developed an alter-
native doubling algorithm based on the position’s volatil-
ity v, which is defined as the equities’ standard deviation.
Basically, his algorithms offers a double if the equity ex-
ceeds a specific doubling threshold ¢(v). In a forthcoming
publication he will describe his findings in detail which
then enables us to compare both approaches.

Berliner’s BKG-9.8 [1] was the first backgammon pro-
gram which used pre—computed tables for guiding both
checker—play and cube actions. Although the author was
under the impression that min—-ENR moves are optimal,
his heuristic was not bad either as our tournament re-
sults show. Looking only one ply ahead in conjunction
with a straight forward equity approximation, however,
improves checker—play considerably. Our tournament re-
sults show that this simple well known heuristic indeed
leads to nearly optimal play.

The main theme of this article has been the construc-
tion of equity approximations by utilizing statistics that
become more accurate for increasing pip—counts. This
has enabled us to create a nearly perfect hybrid player
which makes use of pre—computed perfect information re-
garding “chaotic” low pip—count positions and is guided
by accurate approximations in the high pip—count case.
Extending this technique to cover all race positions in
both k-point matches and money games is ongoing work.
The main obstacle is the presence of gammons which
complicates checker—play and cube handling. A possible
solution to this problem may be the adjustment of the
cube functions depending upon gammon potential and
the current match standings.

References

[1] H.J. Berliner. BKG - a program that plays backgam-
mon. In D.N.L. Levy, editor, Computer Games I,
pages 3-28. Springer—Verlag, 1988.

[2] E.B. Keeler and J. Spencer. Optimal doubling
in backgammon. Operations Research, 23(4):1063—
1071, 1975.

[3] P. Magriel. Backgammon. 1976.

[4] R. Nowakowski, editor. Games of No Chance. Cam-
bridge U Press, 1996.

[5] G. Tesauro. Personal communication. July 1999.

[6] N. Zadeh and G. Kobliska. On optimal doubling in
backgammon. Management Science, 23(8):853-858,
April 1977.

