Toward Opening Book Learning

Michael Buro

NEC Research Institute
4 Independence Way
Princeton NJ 08540, USA

email: mic@Qresearch.nj.nec.com

Abstract

In this article an opening book framework for
game-playing programs is presented. Moti-
vated by basic requirements for successfully
playing a sequence of games — such as avoid-
ing losing games twice in the same way — it
is shown how reasonable move alternatives can
be found in order to deviate from previous lines
of play. Variants of the algorithm are used by
several of today’s best Othello programs and
allow them to extend their opening books au-
tomatically.

Keywords: opening book, game—tree search

1 Introduction

Over the years, programs playing perfect information
games like Chess, Checkers, and Othello have become
stronger mainly by increasing the search depth using
faster hardware and improved game—tree search tech-
niques. Moreover, better evaluation functions have been
developed which estimate the winning chances more ac-
curately while using less time than before. Unfortu-
nately, in spite of these improvements, programs still
show weaknesses in the opening phase stemming from
a lack of strategic planning. In order to circumvent
this problem, opening books are used in which move
sequences or positions together with moves are stored.
Their automatic generation was of little interest up to
now, since move sequences can be taken from the liter-
ature, suited to one’s own requirements — such as the
striving for tactical complications — and manually up-
dated if necessary. Today, many computer game—playing
programs are attached to servers, playing against hu-
man players and other programs twenty—four hours a
day. Thus, it has become necessary for the programs to
update their opening books automatically without hu-
man intervention.

In this article, an opening book approach is presented
which meets the minimal requirements of a skilled multi—
game strategy that avoids losing games twice in the same

way and looks for reasonable deviations. Furthermore,
it enables a program with a reasonably good evaluation
function to explore new promising opening lines by itself
without the help of human experts, and to make use of
games played by other players.

Since the new technique finds promising move alter-
natives globally with respect to all variations stored in
the opening book, it goes beyond the usual procedures
that simply choose random moves from the book, or
use stored deep evaluations of previously encountered
positions in subsequent game-tree searches [SAMUEL
(1959), SCHERZER ET AL. (1990)].

The basic idea of evaluating move alternatives and
using minimax search to guide the opening book play
was presented independently in [DELTEIL (1993)] and
[BUrO (1994)]. Today, several good Othello programs,
including HANNIBAL! by Martin Piotte and Louis Geof-
froy, ECLIPSE by Colin Springer and Michael Giles, and
Mark Brockington’s KEYANO?, use variants of this tech-
nique. In what follows, the procedure currently used by
LOGISTELLO? is described, which is among today’s best
Othello programs.

2 Basic Requirements

If a player wants to be successful not only in a single
game against an unknown opponent but in a sequence
of games, he might be faced with simple but effective
playing strategies of the opponent which cannot be met
only by the well-known game-tree search techniques.
Perhaps the most obvious and simple one is the follow-
ing: “If you have won a game, try it the same way next
time.” A program with no learning mechanism and no
random component follows this strategy, but is also a
victim of it, since it does not deviate and therefore can
lose games twice in the same way. In order to avoid this,

1h‘l‘.'l:p: //wwu.cam.org/ piotte/Hannibal.html

2http://www.cs.ualberta.ca/ brock/

%It placed first 17 times and second five times in
the 23 tournaments it has played since October 1993.
(http://www.neci.nj.nec.com/homepages/mic/log.html)

it is necessary to find reasonable move alternatives. This
can be accomplished passively, as the following strategy
shows: “Copy the opponent’s winning moves next time
when colors are reversed.” The idea behind this elegant
method is to let the opponent show you your own faults
in order to play the opponent’s winning moves next time
by yourself. In this way, even an otherwise stronger op-
ponent can be compromised, since — roughly speaking
— eventually he is playing against himself. Thus, copy-
ing moves makes it necessary to come up with good move
alternatives actively. In order to do so, a player must
have an understanding of his winning chances after de-
viations from known lines.

3 Choosing Book—Moves

The mentioned basic requirements of a skilled match
strategy lead directly to an algorithm for guiding open-
ing book play based on negamax search. Suppose a
game-tree is built from variations — starting with the
initial game position — and its leaves are labelled as fol-
lows: The first component of the label indicates whether
the corresponding position is a sure win, draw, or loss
for the side to move (W,L,D). In cases where this classi-
fication is not yet known, a question—mark is used in the
first component and the second component is the heuris-
tic evaluation of the position computed, for instance by
a deep negamax search (larger values indicate a higher
winning chance for the side to move). Furthermore, in
each interior node of the tree the heuristically best* de-
viation is added to the tree together with the reached
position and its deep evaluation. Figure 1 shows exam-
ples. Here, solid lines mark variation moves, whereas
long dashed lines represent the best move alternatives in
each interior node. Short dashed lines indicate the ex-
istence of other deviations with lower evaluation which
don’t have to be considered for the moment because the
best deviation would be preferred.

Given such a tree, it is easy to guide the opening book
play in best—first manner: Find the node corresponding
to the current position, propagate the heuristic evalua-
tions from the leaves to that node by means of the nega-
max algorithm, and choose the move that leads to the
successor position with lowest evaluation.? Before the
move to be played can be determined using this algo-
rithm, heuristic evaluations have to be assigned to the
leaves for which the outcome is known. A natural choice
is +o00 for won positions, 0 for draws, and —oo in lost
positions. Provided that heuristic evaluations are always
greater than —oo, and there are still unexplored varia-

4In what follows, best means heuristically best.

5Since in this process heuristic evaluations of positions
from different game phases are compared, it is recommended
to use an evaluation function with a game—phase independent
meaning, such as winning probability or expected result.

(Wi —|—00) (?a _4) (VV, —|—OO)

(?i _4) (?a +3)
T1 T2

(?,+5)

Figure 1: Example opening book trees. The principal
leaf v3 of T is chosen for expansion. In the resulting
tree T leaf vy would be expanded next.

tions, this setting ensures that games will not be lost
twice in the same way.

The algorithm applied to the root of the example—tree
T; in Figure 1 yields the optimal path (v1,v2,vs) which
maximizes the winning chances of the root player against
best counter-play (local to the tree).

4 Book Extension

Knowing how to select moves from an opening book im-
mediately enables the automatic extension of the book
by iterated expansion of the leaf at the end of the cur-
rent principal variation. In each step, the best move and
the best deviation are determined in the leaf position
and added to the tree together with their evaluations.
Furthermore, if the leaf position was reached by a devia-
tion, the next best deviation in the predecessor position
also has to be found and added. Thus, after each expan-
sion, the tree is complete again consisting of a variation
skeleton augmented by the best deviation in each interior
node.

Figure 1 illustrates this process. In opening book tree
T, the principal leaf v3 will be expanded next. Since a
deviation led to this position, the next best deviation at
v9 as well as the best and second best move at v3 have
to be determined by a search to complete 7T5.

While extending the tree in the described fashion,
it might happen that both sides are happy with the
same drawing line, and therefore the principal variation
doesn’t change anymore. In order to prevent this sce-
nario, draws can be alternately counted as a win resp. a
loss for a fixed player by setting their heuristic evaluation

to +oo resp. —oo depending on the side to move.5

The described iterative node expansion is an inher-
ently sequential process, because the evaluations of the
positions added in the previous step directly influence
the choice of the node to expand next. However, by al-
lowing additional node expansions, it is possible to par-
allelize the book extension if several CPUs are available.
One simple solution is to assign the subtrees beneath the
most commonly played opening variations to the avail-
able processors, which then perform the sequential node
expansion locally. This procedure has two disadvan-
tages: First, it can lead to multiple expansions of nodes if
the game allows transpositions, i.e. the variation ‘tree’ is
in fact a directed acyclic graph (DAG) and the ‘subtrees’
given to the processors are sub—DAGs, which might not
be disjoint. Second and more importantly, the algorithm
generates a tree very different from the tree built by the
sequential extension procedure if it turns out that only
a few of the chosen opening lines are indeed worth ex-
ploring.

Another approach for a distributed book extension in
a first pass collects a subset of leaves that are likely to
be chosen by the sequential algorithm, and thereafter
expands them efficiently in parallel. A simple method for
collecting leaves is to iterate the selection and deletion
of the current principal leaf from the tree.

Besides the just described iterative book extension, it
is crucial to add games played in public together with the
evaluated deviations, regardless of the game outcome. In
case of a loss or draw, adding the game is necessary to
avoid the repetition of the same line, whereas in case of
a win, it helps to prevent following lines which looked
good at the deviation point, but turned out to be bad
later in the games in which the opponent only lost due
to a mistake.

Finally, by including games of other competing play-
ers, it is possible to anticipate opponents’ moves and
to explore new opening lines, which otherwise would be
considered by the described move-selection algorithm
only after many iterations. Since this algorithm is driven
by heuristic evaluations of deviations rather than solely
by game outcome, it is not even necessary to correct the
games before including them. It is sufficient to determine
the best deviations along the new paths.

5 Implementation Aspects

Once the algorithms for opening book handling have
been described the question arises how these can be
implemented efficiently. Since potentially many varia-
tions and deviations are going to be stored, not only the

8This draw evaluation scheme also has a useful application
in actual tournament play where it allows avoiding book—
draws when a win is necessary or broadening the deviation
opportunities when a draw suffices.

access— and update—time has to be taken into account
but also the space the book occupies on disk or in main
memory. The crucial operation regarding the book is
move retrieval since it must be fast to avoid delays dur-
ing the game. Thus, either the implementation ensures a
fast value propagation, so that negamax searches in the
opening book tree can be performed during the game,
or the values of interior nodes have to be determined in
advance before the game begins. One advantage of a fast
propagation is that the opening book behavior can easily
be altered by command line options, for instance, telling
the program to count draws as wins for one side or to
randomize the move decision as described in the next
section. On the other hand, performing fast negamax
searches is only feasible with the entire opening book
stored in main memory. While this might have been a
problem in the past, today’s main memory size of typical
PCs allows the handling of megabyte data—structures.

For high—speed value propagation in memory a node
can be represented as a record including moves and
pointers to its successors in the tree. The node cor-
responding to the position for which a book move has
to be determined can be found by using the sequence
of moves played so far. Thereafter, the subtree below
this node is searched by simply following pointer chains
and backing—up evaluations. There is no need for mak-
ing/undoing moves on a board while searching.

Opening book ‘trees’ for games that allow transpo-
sitions are actually directed acyclic graphs (DAGs) in
which nodes may have more than one predecessor. In
these games positions are not uniquely represented by
move sequences which makes finding specific positions
in the book harder. To solve this problem, the nodes
can be stored in a hash table indexed by keys that are
assigned to positions. Hash collisions are resolved by
a probing algorithm that searches the entire hash table
starting with the position key index until either the node
with the given board id has been found or an unoccu-
pied hash entry has been reached which indicates that
the position is not stored in the table. After a successful
search the described tree search routine can be used to
quickly evaluate the sub-DAG beneath the node.

6 Discussion and Enhancements

Variations of the presented opening book algorithm are
used by several of today’s best Othello programs and
have proved effective:

e Since each leaf position is evaluated by the program,
surprises in tournament games caused by blindly fol-
lowing un—evaluated opening lines are no longer to
be feared.

e Many programs connected to the Internet Othello
Server” are now playing against human players and
programs and improving their books autonomously
all day long without the need of human interference.

e Extensive automatic book preparation is now pos-
sible which makes the difference at the top of the
rating list. The best programs spend a lot of time
in extending their books using the described method
with time controls considerably longer than under
normal tournament conditions. This allows play-
ing a good game even against programs running on
much faster machines.

e New sound opening lines and refutations of some
openings frequently played by humans have been
discovered by programs. Knowing these innova-
tions gives humans an advantage in tournaments as
PARSONs (1995,1997) shows. By studying LOGIS-
TELLO’s openings played on the Internet Othello
Server he recognised several improvements on hu-
man openings. These worked out in his last game
against Hideshi Tamenori, who is one of the top
Japanese players, and in several of his games at the
1996 Othello World—Championships.

However, there is still room for improvement. Recently,
the move selection procedure has been extended in two
ways: First, it now allows a basic form of move randomi-
sation which makes the program’s opening choice less
predictable. The principle is simple: Moves are now se-
lected after two passes through the subtree rooted at the
current position. In the first step, the negamax—value v
of the current position is determined with respect to the
entire opening book — as before. Thereafter, in a second
pass, all principal variations are counted which lead to
values within [v — €, v], where € is a small tolerated eval-
uation difference. Finally, a move is selected randomly
among the moves that lead to acceptable positions taking
into account the just computed path counts. This proce-
dure ensures that each path has the same probability to
be chosen. Of course, it must not be iterated carelessly,
since otherwise the evaluation could drop by € after each
move. Instead, the algorithm has to keep track of the
maximal negamax—value — vy — it could ever reach
in the game so far, and to make sure that only paths are
chosen with negamax—values in [Umax — €, Umax]- This
goal can be accomplished by updating vmax if necessary
before paths are counted. If v is greater than v,y (that
is, the opponent has just made a mistake in view of the
opening book), the current maximum value vyax has to
be set to v. Then, paths having values in [vpmax — €, Vmax]
are counted and a move is selected as described above.
Second, the book algorithm is now able to distinguish
two draw types: public and private, which broadens the

"telnet://external.nj.nec.com:5000

deviation opportunities. As the notation suggests, po-
sitions in the opening book which occurred in drawn
games played in public are marked as such. All other
draws in the book were generated by private book ex-
tension (hopefully) unknown to the public. This dis-
tinction allows the program to avoid public draws while
striving for wins and private draws (which can easily be-
come wins if the opponent makes a small mistake) by
using 400 resp. —oo as heuristic evaluations for drawn
leaf—positions with respect to the color to move and the
public/private flag.

7 Outlook

So far, it seems that move selection by means of nega-
max search would be ideal for guiding opening book play.
However, the algorithm in the present form has a ma-
jor weakness which clearly shows up when the book ex-
tension is pushed to the limit. Suppose that the game
in question is a theoretical loss for the first player and
book extension has reached a point where only a few
deviations are left to explore. Here, the first player
would desperately select one of these remaining devia-
tions, even if its heuristic evaluation indicates that this
plan is hopeless and — more importantly — even in
case the player would know that the opponent is less
informed. While this problem might not occur in com-
mon games like Chess or Othello because of their large
search spaces, a similar behaviour can be observed much
earlier: The described approach doesn’t guarantee that
a program equipped with a large opening book wins a
tournament against a version with a smaller book. The
reason behind this surprising insight is that the negamax
algorithm implicitly assumes the opponent to have the
same information. This prevents the program with the
large book from playing lines which could be successful
if the opponent doesn’t know them.

Therefore, further investigations could focus on mod-
eling the opponent’s book in order to make full use of
private analysis.

Acknowledgments

My thanks go to Igor Purdanovi¢ and my wife Karen for
many fruitful discussions. Furthermore, I am grateful to
Mark Brockington, Warren Smith, and Judy Sonnenberg
for their helpful comments on an earlier version of this
article.

References

[BURO (1994)] M. Buro. Techniken fir die Bewer-
tung von Spielsituationen anhand von Beispielen,
Ph.D. thesis (in German), University of Paderborn,
Germany.

[DELTEIL (1993)] J. Delteil. A propos des bibliotheques
d’ouvertures, Magazine de la Federation Francaise
d’Othello, FFORUM 29, pp. 18-19.

[PARSONS (1995)] D. Parsons. My Game with World
Champion Hideshi Tamenori, Othello Quarterly,
Vol. 17, No. 4, pp. 16-17.

[PARSONS (1997)] D. Parsons. 1996 World Champi-
onship: Parsons vs. Shaman, Othello Quarterly,
Vol. 19, No. 1, pp. 10-11.

[SAMUEL (1959)] A.L. Samuel. Some Studies in Ma-
chine Learning Using the Game of Checkers, IBM
Journal of Research and Development 3, pp. 210-
229.

[SCHERZER ET AL. (1990)] T. Scherzer, L. Scherzer,
D. Tjaden. Learning in Bebe, In: T.A. Marsland,
J. Schaeffer (Eds.), Computers, Chess, and Cogni-
tion, Springer—Verlag New York, pp. 197-216.

