THE EVOLUTION OF STRONG OTHELLO
PROGRAMS

Michael Buro
NEC Research Institute
4 Independence Way, Princeton NJ 08540, U.S.A.

mic@research.nj.nec.com

Abstract This paper surveys the evaluation and search techniques utilized by
the strongest Othello programs of their time during the past twenty
years. In this time span computer Othello has experienced consider-
able progress which culminated in the convincing 6-0 victory of LOGIS-
TELLO against the then World-champion Takeshi Murakami in 1997.
The focus of this article is the evolution of Othello evaluation functions
and heuristic search techniques which quite nicely reflect the general
A1 trend of replacing slow and error-prone manual tuning by auto-
mated machine learning approaches.

Keywords: Computer Othello, Evaluation Function Learning, Selective Search

1. Introduction

Today, machines play the Japanese board game Othello (Fig. 1) very
well. In fact, the 6-0 defeat of the then human World-champion Takeshi
Murakami by Logistello in 1997 (Buro, 1997) strongly indicates that
machines have surpassed human playing strength. The first computer
Othello tournaments took place in 1979, about eight years after Goro
Hasegawa “invented” Othello by slightly changing the rules of Reversi —
a much older game from England. In 1980 the first man-machine Othello
tournament was organized by Peter Frey at Northwestern University. It
was won by World-champion Hiroshi Inouie, who — however — lost a
game against “The Moor” by Mike Reeve and David Levy. This marks
the first time a World-champion lost a game of skill against a computer.
In the 1980s Othello programming became very popular in France, the
U.K., The Netherlands, and the U.S. Programs were getting stronger
and began to dominate man-machine events as early as 1989 when five
programs defeated five human players — including three of the four best
players of the time — by 12:8 in London. The two man-machine events

abcdef gh

1 abcdef gh abc|defgh
1 . 1 o]

; . [11800 2 | /@00 -

e 000018 [[-[0000 e

5 00 - 41 .QPQQQ 14 11000006

6 - 51 1119000006 5 OOOGJ'QQ’Q

i s 0000 ee imnee o)

’ 1000 -8 [[000 e
Starting position ® QOO i 1000
(Black to move) White to move Position after move b5

Figure 1. Othello is a popular Japanese board game played by two players on an
8x8-board using 64 two-colored discs. Moves consist of placing one disc on an empty
square (e.g. white on b5 on the second board) and flipping all — and at least one —
bracketed opponent’s discs over (c5..f5,c4,d2). When neither player has a legal move
the game ends and the player with the disc majority wins.

that followed 1992 and 1994 in Paris indicated that machine Othello had
grown out of its infancy: the machines clearly won by 29.5:19.5 and 32:4,
respectively. Then, in 1997, it became clear that machine Othello had
surpassed human abilities: LOGISTELLO defeated the reigning World-
champion Takeshi Murakami 6:0 in a match of six long timed games.

Representative for the many good Othello programs with unique fea-
tures that have been written in the past 25 years we have selected three
that dominated computer Othello for a while to survey the advances
in evaluation function construction, heuristic search, and opening book
learning — TAGO (Rosenbloom, 1982), BILL (Lee and Mahajan, 1990),
and LOGISTELLO.

2. Evaluation Function Evolution

In mini-max search evaluation functions are used to estimate the winning
chance for the player to move. One way of constructing such functions is
to select distinct numerical properties of the game state — so called fea-
tures — which are correlated with winning, and combine them to obtain
a single numerical value. Selecting features is one of the most important
and difficult sub-tasks in the construction of game playing programs. It
requires both domain-specific knowledge and programming skills because
of the well-known tradeoff between speed and knowledge in look-ahead
search.

The most important positional features in Othello are disc stability,
mobility, and parity: stable discs can not be flipped by the opponent
and contribute directly to the final score. The most prominent stable
discs are occupied corners, which can be used as anchors for creating
more stable discs. Having fewer move options than the opponent is
dangerous because one may run out of good moves sooner. Finally, mak-
ing the last move in an Othello game is advantageous since it increases
one’s own disc count while decreasing the number of opponent’s discs.
Parity generalizes this observation by considering last move opportuni-
ties for every empty board region.

The Evolution of Strong Othello Programs 3

IAGO(1982): a classic, hand-crafted evaluation function

TAGO’s evaluation function has the following form:

e(p) = Ci(p) - EdgeStability(p) + 36 - InternalStability(p)+
Cs(p) - CurrentMobility(p) + 99 - PotentialMobility(p),

where the application coefficients C}(p) and Cs(p) are piece-wise linear
and non-decreasing in MoveNumber(p). EdgeStability is a table based
evaluation pre-computed by an iterative algorithm. It assigns heuristic
values to filled edges and fills the remaining table entries by applying a
formula which takes values of successors and square access probabilities
into account. InternalStability is computed by an iterative algorithm
which proves disc stability beginning with corners. CurrentMobility
measures the relative mobility by counting legal moves for both sides
(a, b) and combining the values by a rational function: truncate(1000 -
(a —b)/(a+b+2)) (1). The PotentialMobility term combines three
future mobility measures: the number of frontier discs, the number of
empty squares adjacent to opponent’s discs, and the sum of the number
of empty squares adjacent to each of the opponent’s discs. Each measure
computes two values which are combined similar to equation (1). The
three values are then summed to yield a single value.

TAGO’s features have been chosen based on a careful analysis of Oth-
ello, while most evaluation parameters have been guessed.

BILL(1990): partly pattern based, feature weights are learned

BILL’s evaluation is based on the following four features: EdgeStability,
CurrentMobility, PotentialMobility, and SequencePenalty. Similar to
TAGO a probabilistic mini-max algorithm is used to pre-compute edge
stability values which are stored in a table. CurrentMobility is cal-
culated by summing up move-square weights and adjusting the sum by
penalty terms depending on whether the moves capture/surrender a cor-
ner, how many discs and in how many directions they are flipped, and
whether flipped discs are internal or on the frontier. PotentialMobility
measures the likelihood of future move options by examining the adja-
cency between empty squares and discs. The SequencePenalty feature
recognizes long disc sequences of equal color along lines and assigns a
negative value to them depending on the board location. The evaluation
speed of all four features is considerably increased by an extensive use
of pre-computed tables which are indexed by horizontal, vertical, and
diagonal lines of the board.

To form a single value evaluation the four features are combined using
a quadratic discriminant function. Assuming a multivariate normal dis-
tribution of the features, the intra-class feature density can be expressed
as follows:

pe | C) = (2m) (S| exp{ — }(x —)5 (@ — po)'}

4

with n-dimensional feature vector &, mean feature vector puo and feature
covariance matrix 3¢ for the position class C € {W,L} (win/loss).
From Bayes’ rule it follows P(W|z) = 1/(1 4+ exp(—e(x)), where e(z) is
the following quadratic discriminant function which is used to evaluate
Othello positions in BILL:

e(z) = (—pw) Sy (@—py) —(@—pp) S (x—pg) +log |[Sw|—log | Sy |

Covariance matrices and mean vectors for 60 game stages are estimated
from sample positions to finally end up with an evaluation function vastly
superior to TAGO’s: BILL wins 100% of its games versus TAGO with only
20% as much thinking time.

LOGISTELLO-1 (1994): pattern values learned independently

BILL’s evaluation showed a strong performance but still relies on many
manually-tuned (or guessed) parameters. Moreover, the evaluation of
quadratic forms is time-consuming if the features themselves can be eval-
uated very quickly (e.g. by table look-up). Finally, features are not nec-
essarily multivariate normally distributed — for instance in the presence
of binary features. The main ideas behind LOGISTELLO?’s first evalua-
tion are to actually learn pattern values from sample data — rather than
guessing them — and to drop the normal distribution requirement by us-
ing logistic regression to combine the following features (Buro, 1995b):
CurrentMobility & PotentialMobility (both approximated by line pat-
terns) and estimated pattern values for all horizontal, vertical, diagonals
of length 5..8, and the 2x4-corner region (Fig. 2). Pattern values are es-
timated independently by looking at all sample positions that match the
particular pattern and averaging all position scores — which are assigned
by propagating the final disc differential backward to all intermediate
game positions. Pattern tables are estimated for 13 game stages depen-
dent on the number of discs on the board. Finally, game stage dependent
weights are assigned to all features by logistic regression. The evaluation
function form is quite similar to that obtained by discriminant analysis:
P(W |) = 1/(1 4+ exp(—zB)). However, logistic regression does not

diagd diagb diag6 diag7 diag8
o o < o o
> > > > >
> > > > >
> > > > >
> > > >
> > >
o S
©
hor./vert.2 hor./vert.3 hor./vert.4 edge+2X 2x5-corner 3x3-corner
IR [K]
SIS, S S IR I
IO I
ISR

Figure 2. LOGISTELLO’s current pattern set.

The Evolution of Strong Othello Programs 5

require the features to be multivariate normal — even the use of discrete
features with a small range is possible — and the resulting evaluation
function is linear. A small drawback is the necessity to solve a sys-
tem of nonlinear equations for finding the maximum-likelihood weight
estimates. But this is a one-time task which can be performed off-line.

The resulting evaluation function is entirely table based and therefore
an order of magnitude faster than those similar to BILL’s and IAGQO’s.
Furthermore, all evaluation parameters are learned from sample posi-
tions which frees program authors from guessing parameters or laborious
manual tuning. Using this kind of evaluation function, LOGISTELLO
dominated the computer Othello scene until 1996 when HANNIBAL
entered the scene.

LOGISTELLO-2 (1997): joint learning of pattern values

With hindsight the next evolutionary step is obvious: the 1994 approach
of assigning pattern values by independent estimations neglects pattern
correlations which are crucial. For instance, the value of a corner disc is
overestimated because corner squares are covered by multiple patterns.
The solution is to let a large sparse linear regression assign values to
pattern configurations by fitting the position labels and treating pattern
configurations as binary variables. Linear regression takes care of feature
correlations and at the same time can assign arbitrary values to patterns
whose meaning is not bound by limited human understanding of the
problem (e.g. “Mobility” and “PotentialMobility”).

LOGISTELLQ'’s current evaluation function still distinguishes 13 game
stages, depending on the number of discs on the board. It has the fol-
lowing form:

e(p) = ([eqa,s.1 + .. €dasa] + [€ds,s.1 + .- €ds,s.4] + [€d6,5.1 + - €d6,s.4]
+leq7,s.1 + - €dr,s.4] + [€ds,s.1 + €ds s.2] + [€nv2,s.1 F -or €hv2,s.4]
+[envs,s.1 + -v €nv3s.a] + [€hva,s1 T o Ehva,sa] F [€er2X 51 F or €et2X,5.4]
+[eaxs,5.1 + - €2x5,5.8) + [€3x3,5.1 + --- €3x3,5.4] + Eparity,s) (D),

where s = game_stage(p) and e, ; evaluates the i-th occurrence of pat-
tern z on boards at game stage s (e.g. e3x3 5.1+ .. +€3x3 5.4 determines the
evaluation for the whole corner structure by adding up table values for
each of the four corners). In addition to the patterns shown in Figure 2
a simple parity (pattern) feature is used which deals with the last move
advantage globally by considering the number of empty squares modulo
2. Several million training positions labeled with either the true mini-
max value or an approximation were generated from self-played games
to fit approximately 1.2 million weights. This figure takes weight shar-
ing among symmetric configurations into account. Experiments in form
of tournaments have shown that the strength increase compared to the
1994 evaluation function is equivalent to a speed-up factor of about ten,
which is otherwise only achievable by parallelization.

We have skipped many details and possible generalizations of the pre-
sented pattern learning approach. The interested reader is referred to
(Buro, 1999a) which introduces a generalized linear evaluation model
(GLEM) and discusses theoretical and implementation issues of pattern
learning. GLEM combines automatic feature space exploration with fast
numerical parameter tuning by building patterns from atomic features
and assigning pattern weights by linear regression.

3. Heuristic Search

TAGO and BILL use classic techniques for improving the performance
of the plain a-f algorithm: both increase the search depth iteratively to
make use of move ordering information gathered in previous iterations.
TAGO keeps the first three plies in memory to have access to the pre-
viously determined best moves and uses response Kkiller lists for move
ordering in deeper nodes. BILL utilizes hash and Kkiller tables for this
purpose. In addition, it performs zero-window searches which slightly
decrease the number of searched nodes compared with the usual a-f
algorithm. Neither program performs quiescence searches or any other
form of search extensions. The 1994 version of LOGISTELLO employs
the same techniques as BILL but also uses shallow searches for move
sorting and makes extensive use of a selective search heuristic called
PrOBCUT (Buro, 1995a). PROBCUT permits pruning of subtrees that
are unlikely to affect the mini-max value and uses the time saved for
analysis of probably more relevant variations. This approach capital-
izes on the fact that values returned by mini-max searches of different
depths on the same subtree are highly correlated, provided that a rea-
sonably good evaluation function and, if necessary, a quiescence search
is used. In this case, a shallow search result v, is a good predictor for the
deep mini-max value v4. Based on this estimation, it can be determined
whether the deep mini-max value lies outside the current a-8 window
with a prescribed probability. If so, the position need not be searched
more deeply because the deep search result will unlikely change the root’s
mini-max value. Otherwise, the deep search is performed yielding the
true value. Here, a shallow search has been invested, but relative to the
deep search the effort involved is negligible, due to the exponential tree
growth. Using s=4 and d=8 the PROBCUT version scores 74% of the
points in a 70-game tournament against full-width search.

Although PROBCUT already marks a large improvement over full-
width -8 search, it can easily be refined in several ways: MULTI-
ProBCuT (MPC, Buro, 2000) allows for pruning at different search
depths, uses game-stage dependent cut thresholds, and performs shal-
low check searches using iterative deepening. he latter improvement
detects extreme positions much earlier. Incorporated in the 1997 ver-
sion of LOGISTELLO, MPC featuring up to (s =5, d=17) cuts and
two cut thresholds (for the opening and middle game) beats regular

The Evolution of Strong Othello Programs 7

(s=4, d=8) PrROBCUT about 72% in a 140 game tournament and ties
with the full-width search version when its time gets reduced by a factor
of 25. All of today’s strong Othello programs employ MPC variants.

4. Other Important Improvements

In this section we sketch two other areas of progress: opening book
learning and selective endgame search. Opening books are collections of
move sequences that guide game programs through the opening phase.
They serve three purposes: 1) time can be saved by instantly play-
ing moves stored in the opening book, 2) following sound opening lines
avoids falling into known strategic traps, and 3) opening book learn-
ing guards against losing a game twice in the same way. Opening book
learning was pioneered in LOGISTELLO (Buro, 1999b) and is now used
by all good Othello programs.

Endgame search is very important in Othello because it enables ma-
chines to play optimally when a small number of moves remains to be
played in the game and look-ahead search therefore can reach termi-
nal positions. Depending on the current position and the remaining
time programs first switch from middle-game search to outcome search
trying to determine the winner of the game. Afterwards, the score is
maximized by an exact search. The purpose of selective endgame search
is to find winning or drawing moves as quickly as possible even before
determining the winner. LOGISTELLOQ'’s selective endgame search is
based on the PROBCUT idea.

5. Summary and Outlook

This article has shown how Othello programs evolved from classic hand-
tuned to sophisticated learning systems which have surpassed human
playing strength. Automatic tuning millions of evaluation and selec-
tive search parameters and autonomously expanding opening books con-
siderably increases the expressiveness of evaluation functions and frees
programmers from laborious manual tuning. Looking at the success of
modern Othello programs it seems that programs for other games could
also benefit from the applied techniques. For instance, it is known that
chess and go players make use of extensive pattern knowledge and per-
form sophisticated selective searches. A straight-forward application of
the presented pattern learning technique is possible for games for which
pattern evaluations can be constructed quite naturally from the raw
board representation — such as 8x8 Othello, 8x8 Lines-Of-Action, and
backgammon. For games like chess and go an additional feature layer
is necessary for covering local and dynamic position properties: posi-
tions are mapped into an intermediate feature set which is then used to
form patterns. In the work on Othello evaluation functions the prob-
lem of finding these so-called atomic features has been largely ignored
because patterns formed by small sets of squares already capture impor-

8

tant Othello features quite well. Constructing atomic features from the
game definition is a challenging research problem. However, it appears to
be simpler than generating general features because the GLEM system
can automatically construct short feature combinations and tune a large
number of parameters automatically. One promising approach to find-
ing atomic features is genetic programming. Future research will show
if this idea in conjunction with GLEM can lead to improved evaluation
functions not only for games.

Othello has been a fruitful test-bed for A.I. research. Although nowa-
days the game is dominated by strong programs, there is no sign of
diminishing interest by human players. On the contrary — the number
of players participating in the annual (human) World-championships is
growing and the level of play is rising. This is certainly a consequence
of freely available Othello software and internet Othello servers, which
help players to refine openings, middle-game strategy, and even endgame
tactics. After a long period of inactivity, recently the computer Othello
community has began to show life signs again. Several programmers
with new ideas — ranging from vastly improved endgame speed to alter-
native ways of estimating pattern values — have connected new programs
to GGS to compete with the old-timers like LOGISTELLO and KITTY
(written by Igor Durdanovic) which have not been worked on for years
(but still do quite well). There is also a growing interest in new game
formats — such as the synchro-rand mode in which two games are played
simultaneously starting with the same random starting position and re-
versed colors — and larger board sizes like 10x10. Larger boards create
new challenges — not only for humans — as the described pattern learning
technique requires refinement due to the need for larger patterns.

References

Buro, M. (1995a). ProbCut: An effective selective extension of the alpha-beta algo-
rithm. ICCA Journal, 18(2):71-76.

Buro, M. (1995b). Statistical feature combination for the evaluation of game positions.
JAIR, 3:373-382.

Buro, M. (1997). The Othello match of the year: Takeshi Murakami vs. Logistello.
ICCA Journal, 20(3):189-193.

Buro, M. (1999a). From simple features to sophisticated evaluation functions. In
van den Herik, H. and Iida, H., editors, Computers and Games, Proceedings of
CG98, LNCS 1558, pages 126-145. Springer Verlag.

Buro, M. (1999b). Toward opening book learning. ICCA Journal, 22(2):98-102.

Buro, M. (2000). Experiments with Multi-ProbCut and a new high-quality evaluation
function for Othello. In van den Herik, H. and Iida, H., editors, Games in Al
Research, Proceedings of a workshop on game-tree search held in 1997 at NECI in
Princeton, NJ, pages 77-96. Universiteit Maastricht, The Netherlands.

Lee, K. and Mahajan, S. (1990). The development of a World-class Othello program.
Artificial Intelligence, 43:21-36.

Rosenbloom, P. (1982). A World—championship-level Othello program. Artificial In-
telligence, 19:279-320.

