
Keyano Unplugged - The Construction of an Othello Program

Mark G. Brockington

Department of Computing Science

University of Alberta

Edmonton, Alberta T6G 2H1

Canada

Abstract

This paper describes the inner workings of

Keyano, a competitive Othello program that

has achieved many top-three �nishes in tourna-

ment play over the last �ve years. The unique

features of Keyano's midgame search routine,

evaluation function and opening book are de-

scribed in this paper.

1 Introduction

Othello

1

programming is a very interesting �eld. It at-

tracts many programmers interested in game-tree search

because the game has very simple rules and evaluation

functions are relatively easy to construct. Furthermore,

it is easy to design a program that will defeat the pro-

grammer.

However, most �rst attempts at writing an Othello

program are signi�cantly 
awed. Commonly-held mis-

conceptions include that opening knowledge is unimpor-

tant, endgame solving is vital, and the midgame evalu-

ation can be taken care of by assigning weights to each

type of square on the board (for example, corners are

good, and squares beside the corner are bad).

Opening knowledge is vital for competing in the up-

per echelons of computer Othello. Most Othello pro-

grams have extensive opening books, allowing the pro-

gram to play a large number of their 30 moves without

using any time on the clock. However, simply having

a large database of games is insu�cient. The games in

the database must be good, and the games should be ex-

amined, analyzed for mistakes and corrected before they

are placed in the book for the program to use.

Using the midgame evaluation described above limits

the strength of the program. No matter how well tuned

the square evaluations are, the program will lose to a

reasonable evaluation function consisting of a mobility

measure and tables of pre-computed pattern values.

1

Othello is a registered trademark of Tsukuda Original,

licensed by Anjar Co.

Endgame solving is somewhat important, but only if

there is a vast disparity between when the two players

solve the endgame. In top-level play, most programs

solve within one or two moves of one another. At current

computer speeds, 24-ply to 26-ply win/loss/draw solves

are not uncommon. Getting to a position where the

computer can solve for a win is much more important

than having a fast endgame solver.

Finally, a database of Othello games played by strong

players is vital for training and testing all phases of the

program: the opening, the midgame and the endgame.

This paper will describe the key components of

Keyano

2

, the author's Othello program. It has rou-

tinely placed in the top six in 21 computer Othello tour-

naments over the last �ve years. This includes 2nd, 5th,

3rd and 4th place �nishes in the four Paderborn Com-

puter Othello tournaments, believed to be the toughest

�eld of Othello-playing computer programs ever assem-

bled.

Section 2 describes the routine used for searching

midgame positions, including Keyano's independent

implementation of multiple-level ProbCut. Section

3 describes the evaluation function in detail, includ-

ing detailed descriptions of Keyano's complex mobil-

ity function and parity approximation. Furthermore,

the method of training pattern databases using adap-

tive logic networks is described in detail, along with

Keyano's method of generating evaluation function co-

e�cients. Section 4 describes the opening book de-

sign used by Keyano. Finally, Section 5 gives some

games where Keyano plays well against Logistello

and Hannibal, the top Othello-playing programs in the

world at the time of writing.

2 Midgame Searching

Othello and chess belong in the same abstract class of

games: two-player zero-sum games with perfect infor-

mation. Thus, it is not surprising to discover that the

2

Keyano was the mascot of the 1978 Commonwealth

Games, held in Edmonton.



Trans. Avg. Tree Size Increase

Table Size Size over 2

20

Entry Result

2

20

974614 0.00%

2

18

978746 0.42%

2

16

1001342 2.74%

2

14

1058428 8.60%

2

10

1272702 30.59%

Table 1: Keyano, Transposition Table Size and E�ect

on 10-ply Fixed-Depth Searches

construction of an Othello search routine is very similar

to a chess search routine.

The basis of the search routine is an iteratively-

deepened �� search. Variants of the �� search routine

work better in practice, both in terms of time spent ex-

ecuting the search and the number of nodes explored.

NegaScout, as proposed by Reinefeld

[

1983

]

, is employed

in Keyano, since �� searches 7% more nodes than Ne-

gaScout in the current version of the program.

2.1 Move Ordering

The move ordering withinKeyano is led by three heuris-

tics: the transposition table, killer moves

[

Slate and

Atkin, 1977

]

, and the history heuristic

[

Schae�er, 1989

]

.

Each of these heuristics are commonly used in chess pro-

grams, and all of them work well in Keyano. We will

brie
y mention the key points where Keyano's heuris-

tics di�er from the common implementation found in

other game-playing programs.

Most programs generate a 64-bit number by combin-

ing pre-determined random numbers for the game pieces

and their locations on the board. A portion of this 64-

bit number is used as the hash key for the transposition

table. The rest of the number is used as a hash lock

to determine if the position in the transposition table is

the same as the current position in the game tree. Unlike

other programs, Keyano stores the entire position into

the hash table as the hash lock. The board representa-

tion within Keyano is only 128 bits. The author did

not feel that it was worthwhile to map the board rep-

resentation into 64 or 32 bits, since this mapping allows

for identi�cation of dissimilar positions as identical posi-

tions on rare occasions. The drawback of storing the full

board is that the size of each transposition entry grows

from 8 bytes to 20 bytes.

The transposition table in Keyano normally has 2

20

entries. For searches that take 60 seconds on an SGI

Challenge (the computer Keyano usually runs on), this

size of transposition table is su�cient to guarantee the

majority of the bene�ts. We see the results of varying

the transposition table size in Table 1, where we have

searched 20 typical mid-game positions to a �xed depth

of 10 ply.

The transposition table is not subdivided into a two-

level table as advocated by other researchers. The bene-

�ts of using a two-level transposition table are less than

1% for Keyano, in terms of nodes searched.

Although the killer moves are used in the standard

way, the history heuristic information is used to deter-

mine a static move ordering for a given tree search. Only

between iterations of iterative deepening are the move

lists sorted by the history heuristic information.

If we use Keyano to explore the aforementioned se-

ries of �xed-depth 10-ply game trees, we can get some

measures of how well the move ordering heuristics com-

bine with one another. At a Knuth type-2 (CUT) node,

Keyano searches an average of 1.10 nodes over a series

of �xed-depth 10-ply searches. Furthermore, the best

move is searched �rst at any node within the game tree

89%-93% of the time. Thus, we feel that the move or-

dering within the game tree is reasonable.

2.2 Search Extensions and Reductions

Most methods of search extensions and reductions that

work in other domains do not work in Othello. For ex-

ample, null moves do not work directly in Othello be-

cause it is often preferable to pass in a given position.

Fortunately, there are other methods which do work in

Othello.

ProbCut

[

Buro, 1995a

]

is the selective reduction al-

gorithm of choice for the game of Othello, and has dra-

matically improved the search depth reached along main

lines in Keyano. The general idea behind ProbCut is

that we wish to determine if a d-ply search will fail high

or low, by approximating it with a d

0

-ply search that has

a wider search window where d

0

< d. If the d

0

-ply search

fails low or fails high, then the d-ply search will behave

the same way with high probability, and the appropriate

window bound (� or �) is returned back up the tree.

The original implementation of ProbCut used d = 8 and

d

0

= 4. However, it is clear that this method can be

generalized, and used at many levels within the search

tree.

InKeyano, we attempt to approximate a d-ply search

with a d

0

-ply search where d

0

= bd=2c. Any non-ProbCut

search, from d = 4 up to d = 10 ply, can be considered

for approximation by ProbCut. Although it is possible

to change how the window of the d

0

-ply search is com-

puted at various stages throughout the game, the win-

dow sizing parameters in Keyano are independent of

the stage of the game. The window used for the d

0

-ply

search is translated �rst by the mean of the di�erence

between the d

0

and d-ply values (as done in single-level

ProbCut) and then widened by 1.2 times the standard

deviation of the di�erence. The factor of 1.2 was chosen

because it yielded the best result in self-play matches

against a non-ProbCut version of Keyano. We should

note that this factor yields tighter search windows than

Buro's original bound of 1.5 in Logistello.



Winner Loser Score For Winner

Of Match Of Match (Avg. Disc Di�erential)

multi-ProbCut no ProbCut 67.2% (34.7 - 29.3)

multi-ProbCut ProbCut 64.2% (33.8 - 30.2)

Table 2: Keyano, Results of ProbCut Self-PlayMatches

The mean and standard deviation are determined from

the search of 1000 distinct positions from various stages

within the game (moves 5 to 45 in 5 move increments).

The 1000 positions come from a random sampling of a

database of top-level computer Othello games. Each po-

sition is searched to 10 ply, allowing the determination

of all necessary statistics for any selection of d and d

0

up

to 10 ply.

The implementation of multiple-level ProbCut dra-

matically improves Keyano's search depth. Although

the maximum pruning possible from the current imple-

mentation is �ve ply, Keyano routinely searches four

ply further ahead when multiple-level ProbCut is used

during the search. However, this is somewhat mislead-

ing. For example, when Keyano reports it is searching

16-ply, it is really searching all variations to 11 ply, while

extending important lines up to 5 ply further.

We would also like to know whether ProbCut in-

creases the playing strength of Keyano. To measure this,

Keyano played 70-game self-play matches against other

versions of itself on a private version of the Internet Oth-

ello Server (IOS) that has been set up at the University

of Alberta. The openings in the match are taken from

the 35 starting positions presented in Buro's Ph.D. thesis

[

1994

]

. To ensure that the experiment is repeatable and

not based on varying processing loads, the time control

is based on the number of nodes searched. If the pro-

gram is not playing to a �xed depth, each program must

immediately terminate a search once 512000 nodes have

been evaluated, and announce their move choice.

Table 2 summarizes the results of two self-play

matches between versions of �xed-depth Keyano and

Keyano with single-level ProbCut versus Keyano with

multiple-level ProbCut. As we can see, there is a signi�-

cant advantage to be obtained from using multiple-level

ProbCut over both single-level ProbCut and �xed-depth

searches. We can compare these results to �xed-depth

self-play matches (Table 3). A comparison shows that

the bene�t from implementingmultiple-level ProbCut is

equivalent to approximately 1.5 ply of additional search.

Similar methods of implementing multiple-level Prob-

Cut have been developed independently by Michael

Buro, the author of Logistello, and Martin Piotte and

Louis Geo�roy, the authors of Hannibal.

2.3 Parallel Search

The author has been investigating methods of parallel

search in ��-based game-playing programs for his Ph.D.

Winner Loser Score For Winner

Of Match Of Match (Avg. Disc Di�erential)

11-ply 10-ply 62.1% (33.2 - 30.8)

12-ply 11-ply 62.8% (33.6 - 30.4)

11-ply 9-ply 70.4% (36.0 - 28.0)

12-ply 10-ply 72.1% (34.7 - 29.3)

Table 3: Keyano, Results of Fixed-Depth Self-Play

Matches

research. A natural test bed for these approaches is

Keyano.

Preliminary versions of APHID

[

Brockington and

Schae�er, 1996

]

, a portable parallel game-tree search li-

brary, have been used in Keyano's tournament appear-

ances over the last two years. APHID is an asynchronous

game-tree search algorithm. Unlike most other published

approaches to game-tree search, APHID does not impose

any global synchronization points over the course of a

search.

APHID de�nes a frontier a �xed number of moves

away from the root of the search tree. A \manager"

process sends all frontier nodes to \worker" processes to

be evaluated. Each worker process is assigned an equal

number of frontier nodes to search. The workers con-

tinually search their frontier nodes deeper and deeper,

reporting results to their manager. The manager pro-

cess repeatedly searches to the frontier nodes to retrieve

the latest search results. After each pass of the tree,

the manager reports any changes in the work lists to the

workers. For both manager processes and workers, there

is e�ectively no idle time; ine�ciencies are primarily due

to search overhead. APHID's performance does not rely

on the implementation of a global shared memory or

a fast interconnection network between the processes,

which makes the algorithm suitable for loosely-coupled

architectures (such as a network of workstations), as

well as tightly-coupled architectures. APHID uses PVM

[

Geist et al., 1994

]

as a message passing interface to allow

for the maximumportability among available hardware.

APHID is successful in Keyano, because the top of

the tree (explored by the manager) is stable between

iterations. In recent testing, the �xed-depth version of

Keyano has achieved speedups of 13.5 on a 16-processor

SGI Origin 2000 system. This compares favourably to

Young Brothers Wait

[

Feldmann, 1993

]

, which achieves

a speedup of 10.5 over the same set of tree searches.

The ProbCut-enhanced version of Keyano has achieved

speedups between 10 (when using local transposition ta-

bles) and 12 (when using a shared-memory transposition

table accessible by all processors).

3 Evaluation Functions

In a minimax-based search algorithm, one needs an eval-

uation function to map a position into a value that can



be manipulated to determine the minimax value of the

game tree.

What is the general structure of this evaluation func-

tion? In most programs, the evaluation function follows

a linear model. We take a series of k features from the

position, assign values to each of the features, and mul-

tiply them by pre-de�ned weights to achieve the evalu-

ation. If f

i

(p) is the numerical value of the ith feature

in position p, and w

i

is the weight associated with the

ith feature, the formula for evaluating a position p is

eval(p) =

P

(f

i

(p) �w

i

).

In general, an evaluation function should have a maxi-

mal value (such as +1) to represent a winning position,

while a minimal value (such as �1) represents a lost po-

sition. However, these maximal and minimal values are

not absolute. For example, Logistello's former eval-

uation function attempts to determine the probability

of winning from a position

[

Buro, 1995b

]

. This implies

that the evaluation of a position varies between 0 and

1

3

. Logistello's new evaluation function and the evalu-

ation function within Keyano attempt to approximate

the �nal outcome of the game, returning a value between

�64 and +64.

3.1 Features of the Evaluation Function

Before we discuss how to generate the feature weights,

we must �rst de�ne the features Keyano uses in the

evaluation function. There are many samples of features

for an Othello evaluation function in the literature. One

of the obvious features is the number and location of

discs on the board. For example, a beginner quickly as-

certains that corners are good, and an easy feature to

implement is the number of corners the player owns mi-

nus the number of corners the opponent owns. This can

be generalized to other types of squares on the board,

and has been called a weighted squares evaluation in the

literature. However, the game of Othello is a lot more

complicated than this simplistic model. Although the

weighted square model is a reasonable heuristic, there

are su�cient occasions in the typical Othello game where

this generalization will yield poor moves. Rosenbloom's

paper on Iago

[

1982

]

, Lee and Mahajan's work on Bill

[

1990

]

, and Kierulf's work on Peer Gynt

[

1990

]

illus-

trate many di�erent features that can be used.

Keyano has only two types of features. The �rst is a

measure of the mobility in a given position. The second

is a series of patterns from areas around the edge of the

board.

3

To avoid using 
oating-point numbers, the internal rep-

resentation of the evaluation function is an integer encoding

of the logarithm of the winning probability over the losing

probability: log(p=(1 � p)). This internal representation can

be translated to the probability of winning when presented

to the user.

Mobility

There are many di�erent ways of computing a mobility

feature in an Othello position. Each of the previously

mentioned programs proposed a di�erent method for

generating the feature. Iago

[

Rosenbloom, 1982

]

used

a non-linear combination of the number of moves each

player has at a leaf node to generate the mobility score in

a given situation. The original version of Bill

[

Lee and

Mahajan, 1986

]

optimized the computation of mobility

at a leaf node by pre-computing arrays that determined

the possibility of 
ipping discs along any of the 38 rows,

columns or diagonals. The indices to access the correct

elements in the 38 arrays are generated at the root of

the game tree, and are updated for each disc placed or


ipped on the board. Thus, when we arrive at a leaf

node, the mobility computation at a leaf is a sum of 38

values retrieved from arrays at the pre-computed indices.

This makes the mobility computation extremely fast, but

does not return the exact mobility score. Instead, this

only returns the number of directions that discs can be


ipped; playing to one square may 
ip discs in all four

main compass directions. The number of disc-
ipping

directions, hereafter described as approximate mobility,

is only slightly worse than using exact mobility, but is

signi�cantly faster to compute. In a later version of Bill

[

Lee and Mahajan, 1990

]

, the indices were used to com-

pute bit-�elds for each vector that yielded the location of

every legal move for each player when combined. Each

move is weighted based on its location, and then modi-

�ed by the sequence penalty (a value based on the num-

ber of directions a move 
ips discs, and the number of

discs 
ipped along each direction).

Peer Gynt

[

Kierulf, 1990

]

used a knowledge-based

approach to the game, as opposed to the brute-force

methods advocated by the authors of Iago and Bill.

Parity is introduced in Peer Gynt as part of the mo-

bility calculation. In brief, the concept of parity is to

know who will likely be the last player to move in the

game. White has parity at the start of the game, since

Black must move �rst and there are an even number of

squares to be �lled in the game. The advantage of hav-

ing parity is very important in Othello, and is widely

believed to a decisive advantage in White's favour. By

removing the ability to play to a region of the board, one

may be able to force parity to swap to the other player.

In human Othello matches, the typical scenario is that

a weak player loses access to a region of the board early

in the game, and the stronger player can wait patiently

until a pass is forced by avoiding to play into that region.

It is important to note that parity cannot be determined

by deep searches near the beginning of the game; eval-

uation function knowledge is required to determine the

parity.

How exactly is the mobility term computed in



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

E
va

lu
at

io
n 

of
 A

pp
ro

xi
m

at
e 

M
ob

ili
ty

Number of Disc-Flipping Directions (Approximate Mobility)

Approx. Mobility - Full Board
Approx. Mobility - Region

Figure 1: Evaluation of Approximate Mobility for Entire

Board and in 16-Square Regions

Keyano? We take the number of disc-
ipping direc-

tions for each player and transform them to a base fea-

ture value. This base feature value is augmented by the

result of evaluating the disc-
ipping directions by board

region. Finally, the computation of the number of parity-

losing regions is added to generate the complete mobility

feature.

We shall start by discussing how the number of disc-


ipping directions for each player are transformed into

evaluations that can be used to create a base mobility

feature value. We would like the di�erence of the eval-

uation of the number of disc-
ipping directions for the

player and opponent to be equal to a constant multiple

of the �nal disc di�erential. Using sample positions and

a linear regression, we can determine evaluations for a

player having k disc-
ipping directions, as k varies from 0

to 35. The regression yields evaluations in a logarithmic

curve when viewed with the number of 
ipping direc-

tions along the x-axis and the evaluation of that number

of 
ipping directions on the y-axis, as illustrated by the

full board line in Figure 1. The shape and logarithmic

curve of the full board line is intuitive, since it is more

important to increase the number of options available

when you have very little mobility than when you have

many moves to choose from.

Note that the evaluation of a single player's approxi-

mate mobility count (as illustrated on the y-axis in Fig-

ure 1) does not immediately yield the disc di�erential.

Only when the evaluation of the player's mobility is sub-

tracted from the evaluation of the opponent's mobility

does the value approximately equal a multiple of the

disc di�erential. For Keyano, the multiple is 4; a di�er-

ence of 20 between the two players' approximatemobility

evaluations is equivalent to a �ve-disc di�erential at the

end of the game.

The full board count of the number of disc-
ipping

directions does not do a reasonable job of determining

Mobility Correlation

Feature Value Mv 20 Mv 30 Mv 40 Mv 50

Exact 0.199 0.380 0.575 0.509

Approx. 0.181 0.353 0.563 0.516

Approx.+Parity 0.186 0.368 0.577 0.515

Table 4: Keyano, Correlation of Mobility Measures to

Final Disc Di�erential at Various Stages Within an Oth-

ello Game

the location and clustering of mobility. If the locations

where discs can be 
ipped are concentrated in one region

of the board, the moves are likely to interfere with one

another. Thus, we would like to capture whether the

moves are spread out over the entire board.

In Keyano, we divide the board into 16-square quar-

ters along the vertical and horizontal lines through the

middle of the board. We can determine an evaluation

for the number of disc-
ipping directions in each quarter

of the board in exactly the same way that we computed

an evaluation of the disc-
ipping directions over the full

board. The 16-square line in Figure 1 illustrates the val-

ues determined by a linear regression for the value of

regional mobility. Note that since there are four of these

regions on the board, the evaluations returned are ap-

proximately one-quarter of the values returned for the

full board.

The two parts of the evaluation are then added to-

gether to generate a new feature value. The full board

approximate mobility is assigned an equal weight as

the regional approximate mobility measure, since exper-

imental evidence showed that any other weighting led to

a lower correlation of the combined feature evaluation

with the �nal disc di�erential.

We can follow the same methodology to generate the

values for the exact mobility feature to see whether the

correlation to the �nal disc di�erential is su�cient to ig-

nore the speed bene�ts of the approximatemobilitymea-

sure. The �rst and second lines of Table 4 give us the

correlation of the exact mobility and approximate mobil-

ity measures (including the combination of the full board

and regional evaluations) over various stages within the

game. As we can see, exact mobility has a marginally

better correlation to the �nal disc di�erential. In prac-

tice, the di�erence is not su�cient to prevent Keyano

from using the faster approximate mobility measure.

Keyano also has an approximation of parity within

the evaluation. We �rst determine the regions on the

board by using a space-�lling algorithm; any empty

square that is attached in any of the eight compass di-

rections to an empty square belong in the same region as

one another. Until the empty squares are physically sep-

arated, this results in one region at the beginning of the

game. However, the board rapidly separates into many

smaller regions. After these regions are determined, we



use the exact mobility generation to determine where

each side is able to play. The algorithm determines

whether by playing two consecutive moves, we can play

to new squares that are not in the original mobility list.

If a region of the board can not be played to by one

side, nor can that side force access into the region, this

is considered as a potential parity-losing region.

The computation of potential parity-losing regions is

extremely expensive. Thus, the determination of parity-

losing regions is done 4 ply away from the leaves. Even

moving the computation this far away from the leaves

slows down Keyano's nodes evaluated per second by

15%. The computation of potential parity-losing re-

gions is really an approximation, since the situation may

change within the �nal 4 ply of the game tree.

The optimal weight for the addition of parity to the

approximate mobility measure was determined by the

value which led to the best correlation to the �nal disc

di�erential. In Keyano, 64 is taken away from the mo-

bility evaluation feature when the player to move has

lost access to a potential parity-losing region. The third

line of Table 4 give us the correlation of the approxi-

mate mobility feature when combined with the parity

computation. When approximate mobility is combined

with parity, we see that the correlation to the �nal disc

di�erential improves slightly.

The addition of the parity feature to the approximate

mobility (computed for both the entire board and for

regions) to generate a single mobility feature gives a sig-

ni�cant boost to the overall strength of Keyano. We

ran a 70-game match between Keyano without par-

ity and Keyano with parity in June 1996. Since the

program with parity takes about 15% longer to search

512000 nodes, the program without parity was allowed

to search 15% more nodes than the program with parity.

Even with the additional nodes given to Keyano with-

out parity, the match result was 40.5-29.5 in favour of

the version of Keyano with the parity adjustment en-

abled. Thus, the author feels that the signi�cant costs

associated with the computation of parity are justi�ed.

Patterns

Buro took the concept and implementation of the vectors

employed by Bill into a generalized framework of pat-

terns to generate features for Logistello

[

Buro, 1994

]

.

In Buro's scheme, the patterns do not necessarily rep-

resent simple vectors on the board; the region may be

a 3 by 3 square surrounding a corner, a 2 by 4 region

near a corner, a group of 8 squares near the centre of the

board, et cetera. The patterns selected for inclusion in

the evaluation function were the ones that did the best

job of discriminating between won and lost positions.

Keyano uses a series of vectors as patterns. The 8-

disc vector along the edge of the board, the 8-disc vector

one away from the edge of the board, and all of the 7 and

1

2

3

4

5

6

7

8

a b c d e f g h

X X X X X X

XXXX

N

N N

N

(a)

1

2

3

4

5

6

7

8

a b c d e f g h

X X X X X X

X

X X

X

(b)

Figure 2: Two Di�erent Edge Patterns Used

8-disc diagonals are relatively important at some stage

of the game. Thus, they are all used by the evaluation

function.

Keyano's set of patterns includes a 3 by 3 square

around a corner. Keyano also uses one of two 10-square

edge patterns. Figure 2a illustrates the squares exam-

ined if none of the squares marked N have discs on them,

while Figure 2b illustrates the squares examined if one

of the squares marked N from Figure 2a does have a disc

on it. This approach of discriminating between the two

types of edges was �rst implemented by Colin Springer

for Eclipse. The switch from the �rst to the second

pattern takes place during the midgame search when a

square marked N for that edge is occupied.

In the general case, switching features during the mid-

dle of a search can be dangerous. However, allowing

the 10-square pattern to change depending on whether

the squares marked N are occupied is relatively safe in

Keyano. In essence, the �rst 10-square pattern can be

considered as a 14-square pattern, because it can only

be used when the four squares marked N are blank. The

second 10-square pattern is the important subset of the

full 14-square pattern. By leaving out c7, d7, e7 and f7 in

Figure 2a, the value of the edge pattern will not change

dramatically for the majority of possible edge con�gura-

tions. Only in a few key situations will the value change

dramatically. Fortunately, the majority of these excep-

tions occur when none of the squares marked N are occu-

pied (which is evaluated by the �rst 10-square pattern)

or involve 1 or 2-square holes along an edge (which are

handled by the parity approximation in the mobility fea-

ture).

Many other patterns have been tried, including a 2

by 5 edge pattern extending from a corner, but only the

vectors, 3 by 3 corners and the 10 disc edge patterns

have been successful additions to Keyano's evaluation

function.

Once we have de�ned a pattern, one must determine

how good every possible con�guration of the pattern

is. One method of doing this is by examining a large



database of games to look for samples of these con�gu-

rations, and compute statistics on how often each of the

con�gurations appeared and correlate this to the proba-

bility of winning or the average disc di�erential.

What sort of database of games would one like to ex-

amine? If we use a database that contains games of

suspect quality, the statistics garnered from those games

may not be reliable. In games between poor opponents,

the winner is usually the person who makes the second-

to-last game-theoretic mistake. Thus, the ability to de-

termine that a speci�c con�guration in a pattern leads

to a winning position or a good disc di�erential is 
awed.

If we only use a database of tournament games, we only

see a small sample of the number of possible patterns.

For example, we may only see situations where playing

to an X-square (a square one away from the corner along

a main diagonal) yields reasonable results, because the

good players know how to sacri�ce corners correctly. We

may never see the converse situation where an X-square

is played incorrectly and the player is immediately and

swiftly punished. Thus, the ideal database of games con-

tains a wide variety of random openings and midgames

played by good Othello players. Since it is generally be-

lieved that computers are playing Othello better than

most humans, it is better to take a database of good

computer Othello games than human Othello games for

this purpose.

When we have more than 100 samples for a pattern

con�guration, Keyano uses the average disc di�erential

as the con�guration's value in the evaluation function.

However, even a large database of games may be insuf-

�cient to give 100 samples for a speci�c pattern con-

�guration. The problem is to determine a value for a

pattern con�guration that does not appear frequently in

the database.

Buro used the probability of winning for all pattern

con�gurations, and an evaluation of 0.5 for any con�gu-

ration that does not appear in the database. However,

using only a relatively small number of samples to de-

termine an evaluation of a pattern con�guration is haz-

ardous. Patterns that have not been seen in regular play

may not show up in the database, but it may be critical

to evaluate these patterns correctly in an important tour-

nament game. No programmer has the time to examine

thousands of pattern con�gurations and hand-code val-

ues for each one. Thus, we need an intelligent classi�er

to determine an evaluation of these unseen or rarely-seen

pattern con�gurations.

In Keyano, we use neural networks to assist in deter-

mining the value of pattern con�gurations that do not

appear 100 times within the database. A neural net

software package using adaptive logic networks (ALNs)

[

Armstrong and Gecsei, 1979

]

was used to facilitate the

process.

The pattern con�gurations that occurred over 100

times were used as the training data for the ALNs. This

yielded about 2000 distinct pattern con�gurations for

each of the 8, 9 and 10-square patterns during the ini-

tial development ofKeyano's evaluation function. Each

pattern con�guration appeared only once in the training

data, and was not replicated based on its frequency.

To use a neural network to determine the rest of the

pattern con�gurations, we �rst use the training data to

teach the neural network to determine the values of the

pattern con�gurations in the training data. We can then

feed the under-determined pattern con�gurations into

the neural network, and use the output to substitute for

the unavailable samples from the database.

For example, a given pattern con�guration has oc-

curred 20 times and yields an average disc di�erential

of �4:0. After training the neural network, we give

the pattern con�guration to the network and it deter-

mines that the value of the con�guration should be

�8:0. Thus, we take the weighted average of the two

(20� �4:0 + 80� �8:0) to determine an evaluation for

the pattern con�guration of �7:2. If the pattern con-

�guration did not appear in the database of games, it

would be assigned a value of �8:0.

One of the interesting curiosities of the ALN pack-

age used to determine the values is that each ALN only

returned a single binary output. It was decided that in-

stead of having only one ALN, there would be 100 ALNs

to be trained. Each randomly-generated ALN would at-

tempt to discriminate between the pieces of training data

that won with an average disc di�erential of x, as x in-

creased from �49 to 50. Once all of the ALNs were

trained, each pattern was run through the 100 ALNs,

and the sum of the binary outputs of all of the ALNs,

minus 50, became the value used to replace the miss-

ing samples for the under-determined pattern con�gura-

tions.

There are three main pattern features that are used

in the evaluation function: the 7-disc and 8-disc vectors,

the 9-disc corner pattern, and the 10-disc edges. The

value of all of the 7-disc and 8-disc vectors are added

together to make a single feature of the evaluation func-

tion. This is due to the method of coe�cient generation,

as we shall see in the next section.

3.2 Coe�cient Generation

Now that we have discussed each of the features that

Keyano examines in an Othello position, and how each

of these features can be turned into a numerical evalua-

tion, we must now generate an evaluation function from

these features by generating multiplicative constants or

weights.

Othello is a wonderful domain for studying how to

combine merits and generate an evaluation function,

since the tactics of games such as chess and checkers



often tend to hide the bene�ts and drawbacks of these

methods. Bill used a quadratic discriminant function

[

Lee and Mahajan, 1988

]

in an attempt to improve upon

the linear evaluation function. Buro later showed data

that Fisher's linear discriminant and the quadratic dis-

criminant function are both weaker than a linear eval-

uation function determined by logistic regression

[

Buro,

1995b

]

.

Despite the advantages of these approaches, Keyano

has always used a linear regression to determine the con-

stants to be used in the evaluation function. The reason

behind this is that the author believes that the expected

disc count at the end of the game is a natural metric for

success, rather than the probability of winning, which

is encoded by the logistic regression and the quadratic

discriminant function.

The training data for Keyano is generated by a sam-

ple from a large database of games. For generating co-

e�cients after k moves have been played, representative

positions where k�2 to k+2 moves have been played are

taken from each game

4

. The primary reason for taking

positions other than at k moves within the game is to

smooth out the curves and yield evaluations that do not

leap radically as one increases the depth of search.

One problem with completely automatic weight gener-

ation is that linear regressions can yield negative weights

for heuristics that are positively correlated with the ex-

pected outcome or probability of winning. This can oc-

cur when two features are correlated. If one has a much

stronger correlation to the expected value than the other

feature, the �rst feature may be overemphasized while

the second feature may be given a negative weight. Thus,

the �nal phase of the computation is a check by the au-

thor to see whether the generated weights are all positive.

Negative weights are hand-tuned by the author. In gen-

eral, the weights are positive, since each of the features

are relatively independent from the other features.

The ability of the program to determine negative

weights for features that are positively correlated with

the disc di�erential is disturbing. This problem has

driven the design of the four main features currently used

in Keyano. For example, the parity, the full-board mo-

bility and regional mobility features are each correlated

to one another and to the �nal disc di�erential. Thus,

they are all combined into one feature to prevent giving

one of the features a negative weight. A similar problem

forced the author to combine all 7 and 8-disc vectors into

one feature.

Figure 3 gives the relative strength of the coe�cients

4

The reader may wonder whether taking the representa-

tive positions in this asymmetric manner might be the cause

of the odd/even e�ect in Keyano's evaluation function. The

author has experimented with many di�erent ways of taking

the samples from the database, and every method yields an

odd/even e�ect when used within Keyano.

0

20

40

60

80

100

21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

%
 o

f M
ax

im
um

 H
eu

ris
tic

 W
ei

gh
t

Number of Occupied Squares in Node to be Evaluated

Mobility
Vectors

3 by 3 Corner
10-disc Edges

Figure 3: Keyano, Comparison of Coe�cient Weights

Over Various Stages in an Othello Game

for the mobility, vector patterns, 3x3 corner pattern, and

the 10-disc edge patterns used within Keyano. All of

the lines have been scaled so that the graph shows how

each feature is weighted over each stage of the game,

with respect to its maximal weight. As we can see,

mobility rapidly increases in importance as the game

progresses, while both the vector and 10-disc edge pat-

terns are much more important near the beginning of the

game. The 
at lines on the left side of Figure 3 repre-

sent values that were �xed by the author during the �nal

stage of generating weights for the coe�cients. Finally,

the graph ends at positions with 55 occupied squares

because any position with eight empty squares or less is

handled by a special-purpose endgame solver that does

not use Keyano's evaluation function.

4 Opening Book

Keyano's opening book is based on the method used in

Spock. The method described by Delteil

[

1993

]

is based

on a permanent transposition table structure which con-

tains positions, best moves and current minimax values.

Unlike a standard transposition table, the work begins

when a position is added onto one of the branches in the

database. Every time a new position is added into the

database, the parents of that position must be examined

to determine if any of the move choices or minimax val-

ues change. This propagation continues all the way up

the tree to the root if necessary. This would be very sim-

ple if there was only a single path up the tree. However,

one must follow every path from move transpositions up

the tree. In some positions of the Tiger, the preferred

opening in computer Othello play, there are over 30 sep-

arate paths to the root from often-played positions.

Delteil notes that the only time we need to do any

additional search is when the current best move from

a node drops in value. At that point, we must see if

there are any additional moves (that we have not yet



considered) in between the new best value (�) and the

old best value (�). All of the other changes are simple

changes to the best move and/or best score.

How doesKeyano use Delteil's method to generate an

opening database? A database of good Othello games is

required, and each of the games should have the endings

corrected to a suitable depth. Each game from the game

database can be added to the opening database. For any

position not currently in the database, best move alter-

natives are examined to ensure that the moves played

are reasonable. This prevents mistakes from entering

the database where a player reaches a crushing posi-

tion and then fails to play optimally. The search that

is completed when examining best move alternatives is

relatively short: Keyano takes the average of the values

returned by 11-ply and 12-ply searches as the evaluation

of a position. The level chosen is not larger because the

book was started before the implementation of multiple-

level ProbCut within Keyano. Keyano often takes a

long time to test numerous move alternatives to see if

they are worthwhile at 12-ply. If the computation of

the opening book was restarted today, Keyano would

use 15-ply and 16-ply multiple-level ProbCut searches to

determine the best move alternatives, since that is the

search depth usually obtained during a sequential search.

The database is stored as a large hash table on disk,

with each entry containing 40 bytes. To avoid long delays

when loading data,Keyano partitions the database into

a series of bu�ers, each of which can get no larger than

1000 positions. This allows Keyano to load only the

speci�c part of the opening database that is required.

The current opening database consists of 1024 bu�ers,

with over 800,000 positions in total. An index �le, which

is loaded whenever Keyano is started, lists the physical

location and the range of hash values that each bu�er

contains.

5 Selected Games

Logistello, by Michael Buro, has been the top-

performing Othello program for the last four years,

amassing a record of 15 �rst place and 5 second place

�nishes in 21 computer Othello tournaments. Although

Keyano has achieved many draws against Logistello,

a game from the 1996 Paderborn Computer Othello tour-

nament (shown in Figure 4) represents the �rst time that

Keyano has achieved a won endgame against Logis-

tello. Unfortunately, Keyano did not win the game

due to an unfortunate blunder on move 42, caused by a

typographical error in the interface between the APHID

library and the Othello program. This mistake allowed

Logistello to win the 1996 Paderborn tournament over

Hannibal by a half-point. If Keyano had not blun-

dered, Hannibal would have won the tournament.

Hannibal, by Martin Piotte and Louis Geo�roy, is

1

2

3

4

5

6

7

8

a b c d e f g h

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19 20

21

2223

2425 2627

28

29

30

31

32

33

34 35

36

37

38

39 40

41

42

43

44 45

46

47

48

49

50

51 54

55 5258

59 60 57 56 53

Figure 4: Logistello (Black) 33-31 Keyano (White),

October 1996 Paderborn Computer Othello Tournament

1

2

3

4

5

6

7

8

a b c d e f g h

12

1

2

3

4

5

76

11

8

9

14

10

13

15

16

17

18

19

20 21

22

23

24

25

26

48

27

39

40

34

33

28

29

30

31

52

32

36

35

38

4137

42

494445

4346

47

51 54

57 5653

59 60

50 55

58

Figure 5: Hannibal (Black) 32-32 Keyano (White),

April 1997 IOS Open

a new program by the authors of Brutus that is set

to challenge Logistello's supremacy as the top Oth-

ello program in the world. Hannibal has won or �n-

ished second in the last few tournaments it has entered,

and games between Logistello andHannibal are nor-

mally decided by parity; White normally wins. However,

Keyano has been moderately successful against Han-

nibal. Keyano knocked Hannibal out of �rst place

in the April 1997 IOS Open tournament with two draws

in the �nal round. Although one of the games has been

shown to be a won endgame for Hannibal, the game

in Figure 5 has, to the author's knowledge, not been

proven to be a win for either player. The two draws

allowed Logistello to overtake Hannibal in the �nal

round of the tournament.

6 Conclusions

In this paper, we have outlined some of the concepts and

design of Keyano. As alluded to in the introduction, it

is the author's hope that this paper inspires other pro-

grammers to build world-class Othello-playing programs,

and build upon the ideas and concepts presented here.



It is very interesting to note that the opening book, the

search routine and the midgame evaluation function each

used a database of games to train and/or tune parame-

ters. Training from top-quality Othello games, is vital to

the success of any Othello program. This is in contrast to

chess, where very little training based on grand-master

games is done. The author currently has a database of

36,000 games played on the Internet Othello Server or

extracted from the Thor database. The database cur-

rently includes games played by humans that have been

awarded the title of World Othello Champion, along with

games played by strong Othello programs. All of the

games have been back-solved or corrected to 22 empty

squares or more. Generating or acquiring a database of

this type will assist interested readers in developing a

world-class Othello program.

Although programs are still a long way from com-

pletely solving the game of Othello, the best programs

are believed to be signi�cantly stronger than World-

Champion calibre tournament Othello players. The

Logistello-Murakami match will show whether this

commonly-held belief is true.

7 Acknowledgements

Many people have contributed and assisted with

Keyano over the years. The other members of the Uni-

versity of Alberta GAMES group have been a valuable

resource for lively discussions and many improvements

to Keyano: Yngvi Bj�ornsson, Yaoqing Gao, Andreas

Junghanns, Tony Marsland, Denis Papp, Aske Plaat and

Jonathan Schae�er.

I would also like to thank other programmers and

members of the Othello community for their hospitality,

games and conversations: Bill Armstrong, Bruno de la

Boisserie, Michael Buro, Jean Delteil, Igor Durdanovic,

Louis Geo�roy, Paul Hsieh, David Parsons, Martin Pi-

otte, Brian Rose, Colin Springer, Vince Sempronio, Marc

Tastet, and Jean-Christophe Weill.

Last, but not least, I would like to thank Jonathan

Schae�er, Jennifer Walchuk and the anonymous referees

for suggesting improvements to the presentation of this

paper.

This work was supported by the Natural Sciences and

Engineering Research Council of Canada.

References

[

Armstrong and Gecsei, 1979

]

W. Armstrong

and J. Gecsei. Adaptation Algorithms for Binary Tree

Networks. IEEE Transactions on Systems, Man and

Cybernetics, 9:276{285, 1979.

[

Brockington and Schae�er, 1996

]

M. G. Brockington

and J. Schae�er. The APHID Parallel �� Search Al-

gorithm. Technical Report 96-07, University of Al-

berta, Department of Computing Science, Edmonton,

Canada, August 1996.

[

Buro, 1994

]

M. Buro. Techniken f�ur die Bewertung von

Spielsituationen anhand von Beispielen. PhD thesis,

University of Paderborn, Paderborn, Germany, Octo-

ber 1994. In German.

[

Buro, 1995a

]

M. Buro. ProbCut: An E�ective Selec-

tive Extension of the Alpha-Beta Algorithm. ICCA

Journal, 18(2):71{76, 1995.

[

Buro, 1995b

]

M. Buro. Statistical Feature Combination

for the Evaluation of Game Positions. Journal of Ar-

ti�cial Intelligence Research, 3:373{382, 1995.

[

Delteil, 1993

]

J. Delteil. A Propos des Bibliotheques

d'Ouvertures. FFORUM, 29:18{19, 1993. In French.

[

Feldmann, 1993

]

R. Feldmann. Spielbaumsuche auf

Massiv Parallelen Systemen. PhD thesis, University of

Paderborn, Paderborn, Germany, May 1993. English

translation available: Game Tree Search on Massively

Parallel Systems.

[

Geist et al., 1994

]

A. Geist, A. Beguelin, J. Dongarra,

W. Jiang, B. Manchek, and V. Sunderam. PVM: Par-

allel Virtual Machine { A User's Guide and Tutorial

for Networked Parallel Computing. MIT Press, 1994.

[

Kierulf, 1990

]

A. Kierulf. Smart Game Board: a Work-

bench for Game-Playing Programs, with Go and Oth-

ello as Case Studies. PhD thesis, Swiss Federal Insti-

tute of Technology, Zurich, Switzerland, 1990.

[

Lee and Mahajan, 1986

]

K.-F. Lee and S. Mahajan.

BILL: A Table-Based, Knowledge-Intensive Oth-

ello Program. Technical Report CMU-CS-86-141,

Carnegie Mellon University, Pittsburgh, PA, 1986.

[

Lee and Mahajan, 1988

]

K.-F. Lee and S. Mahajan. A

Pattern Classi�cation Approach to Evaluation Func-

tion Learning. Arti�cial Intelligence, 36:1{25, 1988.

[

Lee and Mahajan, 1990

]

K.-F. Lee and S. Mahajan.

The Development of a World Class Othello Program.

Arti�cial Intelligence, 43(1):21{36, 1990.

[

Reinefeld, 1983

]

A. Reinefeld. An Improvement to the

Scout Tree-Search Algorithm. ICCA Journal, 6(4):4{

14, 1983.

[

Rosenbloom, 1982

]

P. S. Rosenbloom. A World-

Championship-Level Othello Program. Arti�cial In-

telligence, 19:279{320, 1982.

[

Schae�er, 1989

]

J. Schae�er. The History Heuristic and

Alpha-Beta Search Enhancements in Practice. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence, PAMI-11(11):1203{1212, 1989.

[

Slate and Atkin, 1977

]

D. J. Slate and L. R. Atkin.

Chess 4.5 - The Northwestern University Chess Pro-

gram. In P.W. Frey, editor, Chess Skill in Man and

Machine, pages 82{118. Springer-Verlag, New York,

1977.


