
Monte-Carlo Sampling in Games with Incomplete Information:

empirical investigation and analysis

Ian Frank

Complex Games Lab

Electrotechnical Laboratory

Umezono 1-1-4, Tsukuba

Ibaraki, JAPAN 305

David Basin

Institut f�ur Informatik

Universit�at Freiburg

Am Flughafen 17

Freiburg, Germany

Hitoshi Matsubara

Complex Games Lab

Electrotechnical Laboratory

Umezono 1-1-4, Tsukuba

Ibaraki, JAPAN 305

Abstract

We investigate Monte-carlo sampling in games

with incomplete information. We show that

for very simple game trees the chance of �nd-

ing the optimal strategy with Monte-carlo sam-

pling rapidly approaches zero as the number

of moves in the game increases. We explain

this sub-optimality by identifying the di�erent

kinds of errors that can arise and by analysing

their interplay. We also relate our test results

to real games, suggesting why the error rates

observed in practice may not be so high.

1 Introduction

We examine the use of Monte-carlo sampling

[

Corlett

and Todd, 1985

]

in games with incomplete information.

In such games, the actual state of the game may be un-

known; for example, some playing pieces may be hid-

den, some of the playing area may not be visible, or

the outcome of some moves may not be known. Monte-

carlo sampling of such games involves guessing a `likely'

state of the game (e.g., what the hidden pieces might

be, where the hidden pieces might be, or what the oppo-

nent's previous moves might have been) and then �nd-

ing a solution to this complete information sub-problem.

The hope is that by examining a representative sample

of the set of possible game states (called possible worlds

below) an action that works well in a large percentage

of them can be identi�ed. A Monte-carlo sampling ap-

proach has been used in the QUETZAL Scrabble pro-

gram (written by Tony Guilfoyle and Richard Hooker,

as described in

[

Frank, 1989

]

) and also in the game of

Bridge, where it was proposed by

[

Levy, 1989

]

and re-

cently implemented by

[

Ginsberg, 1996b

]

.

This paper describes some empirical tests carried out

on simple games which take the form of complete binary

trees with payo�s of either `1' or `0' at the leaf nodes. In

complete information games, the game-theoretic value of

such trees can be simply found using the minimax algo-

rithm or its more e�cient extensions. To model incom-

plete information, we introduce not one but N payo�s

at each leaf node, to correspond to the value of the leaf

node in each of N possible worlds. Monte-carlo sam-

pling on such trees is then conducted by carrying out

minimax searches on individual worlds. We examine the

performance of this technique under di�erent assump-

tions about the amount of knowledge held by the oppo-

nent on the actual state of the world. In particular, we

answer the question `How often will such algorithms play

a game perfectly ', by examining how often the optimal

strategy is overlooked.

This research was motivated by our own work on a

Bridge-playing program

[

Frank et al., 1992; Frank, 1996

]

,

and in particular in trying to understand why our algo-

rithms gave results that di�ered from the analyses pre-

sented in expert Bridge texts. Our empirical work here

is an examination of the kinds of problems that can arise

in games like Bridge, reduced to a simpli�ed setting that

is more amenable to analysis and requires no Bridge ex-

perience to appreciate. However, to make the link back

to more complex `real' games, we show that our simple

test trees can be parameterised in a way that enables

the observed rate of error to be manipulated to the lev-

els found in other games.

2 Game Trees used for Testing

We begin by describing in detail the games we use for our

tests. Our approach is to represent two-player games as

complete binary trees whose leaf nodes record informa-

tion on the outcomes of the game under di�erent possible

worlds. In this setting, the level of information held by

each player can be given a well-de�ned meaning. The

leaf node payo�s are chosen to o�er each player an even

chance of winning.

2.1 Extensive Form

A test game tree is produced by �rst generating a com-

plete binary tree. It is assumed that this tree represents

a 2-player game in which the players always alternate.

The player whose play we try to optimise (MAX) goes

�rst, and the opponent (MIN) goes second.

Our modelling of incomplete information is very sim-

ple, and is best explained with the help of an exam-

ple. Consider the tree of Figure 1, which is in exten-

sive form (our terminology in this section is standard in

game theory: see, for example,

[

Luce and Rai�a, 1957;

Fudenberg and Tirole, 1995

]

). This tree represents a

433 21421

1 0 0 1 0 0 1 0 1 10 0 0 01 0

Figure 1: Game in extensive form

game between MAX (square nodes) and MIN (circular

nodes) in which a chance node is also present (diamond

node). At the leaf nodes of the tree are payo�s. A payo�

of 1 corresponds to MAX achieving some goal, such as

winning the game or receiving a certain return, whereas

a payo� of 0 corresponds to MAX failing in that goal.

Also portrayed in this �gure are the information sets

of each player. The purpose of these sets is to indicate

what, within the rules of the game, each player can know

when they make a choice at a node. As we mentioned in

the Introduction, it may be that the rules of the game

hide information on the pieces in the game or on the

previous moves of the opponent. The information sets

capture this feature of the game by grouping together

nodes which will be indistinguishable for each player. For

example, consider the kind of game that the information

sets of Figure 1 describe. The �rst level of MAX nodes in

the tree are contained in the same information set. Since

MAX cannot distinguish between these nodes, he must

be unaware of the actual branch followed at the chance

node at the root of the tree. Each of the MIN nodes,

however, are in separate information sets, so the game

rules must give MIN knowledge of the actual path taken

to reach these nodes (i.e., both the outcome of the initial

chance move and the move selected by MAX). Finally,

the moves at the next MAX layer are grouped into four

information sets, (numbered 1, 2, 3 and 4). The only

element of the path to the nodes in each of these sets

that di�ers is the choice of the branch at the root of

the tree. Again, it is therefore the outcome of the �rst

chance move of which MAX is unaware.

2.2 Possible Worlds

We will use game trees that �t the pattern of Figure 1,

where the outcome of each player's moves is known to

the other and there is one chance move, that occurs at

the beginning of the game. Let us say that there are N

possible outcomes of this chance move. We will say that

each of these outcomes determines a possible world state

or world in which the play takes place. We will then

represent the possible worlds in the vertical dimension

as di�ering payo�s at the leaf nodes rather than in the

horizontal dimension as di�erent subtrees for each world.

For example, the tree of Figure 1 can be represented

instead as in Figure 2.

0

w
w2 00

1

0 110 0
1 1 0 0 1 0 0 1

Figure 2: A simpli�ed game tree with 2 worlds

For a more general game with N possible worlds, each

leaf node of the game tree will have N payo�s (either 1

or 0) which correspond to the utility for MAX of reach-

ing that node in each of the N worlds. We assume that

MAX has no information about the state of the world so

that for each MAX move the best that can be done is to

consider the best expected outcome over all worlds. For

MIN's moves, however, our tests will look at di�erent as-

sumptions about the level of knowledge of the opponent.

Speci�cally, we will examine the consequences of gradu-

ally increasing MIN's knowledge from the same level as

MAX up to complete information

1

. We will do this by

assuming that for n (0 � n < N), MIN's information

sets contain N � n nodes. The value of n determines

the number of outcomes of the chance move for which

the rules of the game allow MIN to see the actual result.

In each of these (randomly selected) n worlds, MIN can

1

An opponent with complete information may seem un-

realistic, but this assumption is in fact common in expert

analysis of Bridge, where it forms part of the model of `best

defence' (see, e.g.,

[

Frank, 1996

]

).

therefore make branch selections based on the best pay-

o�s in that particular world, and will only require an

expected value computation for the remaining N � n

worlds. We de�ne the level of knowledge of such a MIN

player as being n=(N � 1).

2.3 Assignment of Payo�s

The 1s and 0s at the leaf nodes of our test trees are

assigned so that the complete information game tree in

any individual world can be won by MAX with a proba-

bility of 1=2. This is done by an application of the Last

Player Theorem

[

Nau, 1982

]

. This theorem introduces a

probability, p, which determines the chance of selecting

a 1 at the leaf nodes of a tree as follows: if the tree is

of odd depth, choose a 1 with probability p, but if the

tree is of even depth, choose a 1 with probability 1� p.

For binary trees with a MAX node at the root,

[

Nau,

1982

]

gives us that MAX has a 50% chance of a win if

p = (3�

p

5)=2 � 0:38197.

3 Monte-carlo Sampling

How can Monte-carlo sampling be used to select MAX's

next move in the incomplete information games de-

scribed in x2? Let us consider an arbitrary MAX node in

a tree with N possible worlds, and assume that it is pos-

sible to choose an n � N such that when we randomly

generate n worlds, w

1

; � � � ;w

n

, we have su�cient com-

puting resources to �nd the minimax value of the com-

plete information game tree rooted on the MAX node un-

der each of these worlds. If there are m possible moves,

M

1

; � � � ;M

m

, to choose between and we use e

ij

to de-

note the minimax value of the ith possible move under

world w

j

, the situation in this world will be as depicted

in Figure 3.

Each move, M

i

, can then be given a score based on its

expected payo�. For example, in the context of Figure 3,

the scoring function, f , could be de�ned:

f(M

i

) =

n

X

j=1

e

ij

prob(w

j

) : (1)

Selecting a move is achieved by actually using the min-

imax algorithm to generate the values of the e

ij

s, and

wj

M

e

m

mj

M M1

e e

i

1j ij

trees of legal moves in world

Figure 3: Producing the minimax values, e

ij

, of each

move M

i

under world w

j

determining theM

i

for which the value of f(M

i

) is great-

est. Other scoring functions f can be imagined, but we

will assume this simple form, which corresponds to se-

lecting the move that has the largest expected return.

Note that a Monte-carlo sampling approach with this

scoring function was the technique suggested by

[

Levy,

1989

]

for the game of Bridge.

3.1 A Single-pass Monte-carlo Algorithm

Rather than simply selecting individual moves, we are in-

terested in how the Monte-carlo sampling approach per-

forms on an entire game. This could be investigated by

playing a game from start to �nish using Monte-carlo

sampling to select MAX moves, and random selection

to generate MIN moves. However, measuring the per-

formance against the optimal MIN play would then re-

quire a large number of trials. Instead, we make use of

the following simple observation: when Monte-carlo sam-

pling is employed to �nd a move at the root of a game

tree, all the information necessary to select moves at the

other nodes in the tree is also (indirectly) computed. To

utilise this information, we construct an algorithm that

can analyse a game tree in a single pass.

To illustrate this algorithm, let us refer back to the

game tree of Figure 2. Rather than labelling the leaf

nodes with payo�s in each world separately as we did

before, let us use a single vector,

~

K, consisting of one

element for the payo� in each of the two possible worlds.

In Figure 4 these vectors are represented by ovals which

contain the possible payo�s in worlds w

1

and w

2

.

By analysing this tree with a minimax-like algorithm

that manipulates vectors of numbers (rather than indi-

vidual numbers) we can carry out Monte-carlo sampling

in a single pass. To do this, the de�nition of the func-

tions min and max is �rst extended to cover sets of m

payo� vectors

~

K

1

; � � � ;

~

K

m

:

min

i

~

K

i

= (min

i

~

K

i

[1];min

i

~

K

i

[2]; � � � ;min

i

~

K

i

[m]) ; (2)

max

i

~

K

i

= (max

i

~

K

i

[1];max

i

~

K

i

[2]; � � � ;max

i

~

K

i

[m]) ; (3)

1 0 0 0 0 0 1 1 0 1 10 0 0

w w1 w2 w1 w2 w1 w2 w1 w2 w1 w2 w1 w2w1 w21 w2
01

Figure 4: Payo�s represented as `vectors' of outcomes

where

~

K

i

[j] is the jth element of the vector

~

K

i

. That is,

the min function returns a vector in which the payo� for

each world is the lowest possible, and the max function

returns a vector in which the payo� for each world is the

highest possible.

If the min function is used at MIN nodes, and the

max function is used at MAX nodes, the minimax value

of each world is backed up the tree simultaneously. For

example, the tree of Figure 4 would be analysed as shown

in Figure 5.

w1 w2 w2 1 2 w1 w2w w1 w

0 0 1 1 1 1

1 w1 2w
0 0

2
0 0 1 1 0 0 0 0 1 1

w

1

w 2w1

10

w2w1

0

w

b c

a

d e

011 0

1 0

Figure 5: Monte-carlo sampling using vectors

In this �gure, we have shown the vectors that are pro-

duced at each node. At the root, we have also indicated

(in bold) the branch that would be selected by Monte-

carlo sampling. In general, the branch selection at MAX

nodes can be determined by an updated version of (1)

that evaluates the payo� vector,

~

K, associated with each

possible move, M

i

. For example:

f(M

i

) =

N

X

j=1

Pr(w

j

)

~

K[j] ; (4)

where Pr(w

j

) represents MAX's assessment of the prob-

ability of the actual world state being w

j

. (Note that in

all our experiments, we will assume that when a player

is unaware of the actual outcome of the chance move, he

assigns an equal probability to each possible world.)

3.2 Identifying a Strategy

The real gain of the single-pass approach is that it can

be used to identify the MAX selections made by Monte-

carlo sampling at every MAX node in the game tree. We

have illustrated this in Figure 5 by marking the branches

that would be selected using (4) at nodes b, c, d, and e (at

nodes b and c, (4) gives the same score to each branch,

so the choice between them is made at random.)

For a binary tree with a MAX node at the root and l

levels of MAX nodes in total, there is a total of 2

0

+2

2

+

2

4

+ � � � + 2

2(l�1)

= (4

l

� 1)=3 MAX nodes in the tree.

However, the number of di�erent combinations of branch

selections in the tree is actually lower than 2 raised to

this power. This is because specifying a given branch

selection at some node, �, means that nodes beneath any

remaining branches from � will never be reached when

the game is played. For example, in the tree of Figure 5

it is not necessary to specify what actions must be taken

at nodes b and c once the right-hand branch has been

chosen at node a.

A speci�cation of just the branch selections at nodes

that can be reached during the play of a game is equiv-

alent to the formal notion of a strategy (see, for example

[

Luce and Rai�a, 1957

]

). The formula for the number

of strategies in a binary tree with a MAX node at the

root and l levels of MAX nodes in total is 2

2

l

�1

. This is

smaller than the set of possible branch selections, but it

still very quickly becomes large. We have therefore writ-

ten an algorithm (brie
y described in the Appendix) that

identi�es the optimal strategy from among these possi-

bilities without enumerating them exhaustively. Below,

we examine, for di�erent levels of the opponent's knowl-

edge, how often the optimal strategy for a randomly gen-

erated game tree is superior to the strategy selection

made by Monte-carlo sampling.

4 Results and Interpretation

The best possible performance of Monte-carlo sampling

(i.e., when all the possible worlds are examined) on our

binary game trees is illustrated in Figure 6. To create

this �gure, we carried out the following loop 1000 times

for each data point of tree depth and opponent knowl-

edge:

1. Generate a random test tree of the required depth,

as described in x2.

2. Use Monte-carlo sampling to identify a strategy (ex-

amining all possible worlds).

3. Check the payo� of this strategy, for opponents with

the level of knowledge speci�ed.

4. Use the correct but computationally expensive algo-

rithm (described in the Appendix) to �nd an opti-

mal strategy, for opponents with the level of knowl-

edge speci�ed.

5. Check whether Monte-carlo sampling is in error

(i.e., if the value of the strategy found in Step 3

is inferior to the value of the strategy found in step

4, under the assumption of equally likely worlds).

The basic conclusion to be drawn from this graph is

inescapable: whatever the level of knowledge of the op-

ponent, as the depth of the game tree rises, the error in

Monte-carlo sampling rapidly approaches 100%. In our

tests, the di�erence between the expected return of the

optimal strategy and the expected return of the strategy

selected by Monte-carlo sampling approaches 0:1 as the

trees get larger. Thus, if Monte-carlo sampling were to

be used to repeatedly play random games, it would have

a success rate of about 90%.

To help identify the reasons for this sub-optimality,

we present a simpli�ed version of Figure 6 in which the

actual structure of the plots is easier to appreciate. In

the new graph, shown in Figure 7, we have plotted on a

single 2D plane just the curves for trees of depths 2 to

Performance of Monte-carlo Sampling

0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1 1
2

3
4

5
6

7
8

9
10

11

0

50

100

Opponent Knowledge

Depth

% Error

Figure 6: The percentage of binary trees with 10 possi-

ble worlds for which Monte-carlo sampling selects a sub-

optimal strategy, plotted for trees of depth between 2

and 11 (y-axis), and for varying levels of knowledge held

by the opponent (x-axis, ranges from zero to complete

knowledge). One thousand tests per data point.

8, omitting the higher values for the sake of clarity. We

have also annotated four distinct features of the graph

that require explanation:

A For trees of depth 2, why does Monte-Carlo

sampling select incorrect strategies when the

opponent has zero knowledge of the world state

(and then improve as the opponent becomes

more informed)?

B Why does the error gradually increase as the

game tree gets larger (at least for an opponent

with zero knowledge of the world state)?

C For trees of every size other than 2, why does

an increase in the opponent's knowledge result

in an increase in error?

D Why does it appear that for odd d, the error

rates for trees of depth d and depth d+ 1 con-

verge towards the same answer as the oppo-

nent's knowledge increases?

We examine each of these questions in the four sub-

sections that follow.

4.1 A | MIN's Knowledge

Here we explain the �rst annotated region on the graph

of Figure 7. To do this, we will appeal to the simple

example game tree shown in Figure 8.

Consider what happens when Monte-carlo sampling

examines each world in this game tree. In w

1

, minimising

the leaf node payo�s gives node b an evaluation of 1 and

node c an evaluation of 0. For w

2

, however, minimising

the payo�s gives both nodes a payo� of 0. Similarly,

0

10

20

30

40

50

60

70

80

90

100

0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1

%
 E

rr
or

Opponent Knowledge

Performance of Monte-carlo sampling

B

A

C

D

D

D

Depth = 8

Depth = 7

Depth = 6

Depth = 5

Depth = 4

Depth = 3

Depth = 2

Figure 7: A simpli�ed 2D graph showing the error in

Monte-carlo sampling just for trees of depth 2 to 8. Spe-

ci�c features of this graph explained in the text are la-

belled A, B, C and D.

for w

3

and w

4

, both nodes have a payo� of zero. Full

Monte-carlo sampling will therefore lead to the selection

of the left-hand branch at node a. We have indicated this

selection in the �gure by drawing the branch in bold, and

have also depicted the vectors (representing the minimax

values in each world) produced at each MIN node.

Now let us go back the feature marked A in Figure 7.

At the point where the `opponent knowledge' is zero,

MIN's knowledge about the actual state of the world is

the same as that of MAX, i.e., he only knows that there

are four equally likely possibilities and his information

sets contain four nodes. MIN must therefore make the

same move selection in every world. What moves will

2

w1

b c

a

0
1 1
0 0 1

0 1

0
0 0
0 1

0 1
0

w3

w4

w

0 0 00 001 0

Figure 8: Simple tree of depth 2

such a MIN player choose in the tree of Figure 8? At

node b his choice is immaterial since MAX's payo� is

the same for each branch in every world. At node c,

however, MIN can choose between giving MAX a payo�

of 1 in just w

2

and w

4

, or a payo� of 1 in just w

1

and

w

3

. In either case, the expected payo� for MAX at node

c is 0:5 whereas the expected payo� at node b is just

0:25. MAX should therefore take advantage of the lack

of information held by such a MIN player and select the

right-hand branch at the root of the tree, instead of the

branch selected by Monte-carlo sampling.

This example shows clearly that the form of the plot

for trees of depth 2 in Figure 7 is due to the model of the

opponent's knowledge implicit in Monte-carlo sampling.

Speci�cally, when Monte-carlo sampling uses minimisa-

tion to �nd the value of a MIN node in some world w

i

,

an actual MIN player will only be able to guarantee pro-

ducing the same result if he knows that w

i

is the actual

state of the world. With less than complete information,

MIN will actually base his move on the expected payo�.

In terms of the information sets described in x2.1, a

MIN player with no knowledge of the world state must

view each of the nodes b and c as an information set of

four nodes (one for each world) at which the same move

must be made. E�ectively, allowing a di�erent move in

each world is equivalent to allowing MIN to choose a

di�erent strategy in each world. We therefore call this

problem strategy fusion (for a precise formalisation, see

[

Frank, 1996; Frank and Basin, 1997b

]

). When strategy

fusion a�ects the analysis of MIN moves they will ap-

pear stronger for MIN than they actually are. Thus, as

in the example of Figure 8, MAX may be misled into

choosing sub-optimal moves. Of course, as MIN's actual

knowledge about the world state increases, the model

represented by the Monte-carlo method becomes more

and more accurate and strategy fusion gradually disap-

pears. This explains why the error rate for trees of depth

2 gradually decreases in Figure 7.

4.2 B | MAX's Knowledge

Next, consider the tree of Figure 9, where we have shown

the vectors produced by full Monte-carlo sampling, and

marked the branches that would be selected in bold. Al-

though the left-hand branch has been selected at the

root, it should be clear that the right-hand branch is

the superior move: the payo� produced by the selected

moves in the left-hand subtree is only 1 in the worlds w

1

,

w

2

, and w

3

, whereas the payo� produced by the moves

in the other subtree is also 1 in world w

4

.

Again, the source of di�culty here is strategy fusion,

but this time it is MAX's moves that are a�ected instead

of MIN's. When Monte-carlo sampling backs up the best

payo� in each world at a MAX node, it e�ectively as-

sumes that di�erent moves can be chosen in di�erent

worlds. Collecting the minimax values of these moves

and assuming that they represent the actual payo�s that

can be expected ignores the fact that a MAX with in-

complete information must make the same move in every

world. Allowing MAX to choose a di�erent strategy in

each world is again strategy fusion.

1
1

0

1
0

0

0

1
1

0
1

1
0

0

1
1
1

0
0

0
0

0

010
10 0

1
1
1

0
0

1

2

3

4

5

1 11 1

10

1 11 1 1 1 11 1

0

1 01 1 1

1 01 1 1

1 01 1 1

1

0 1
0 1

1

a

f gdc

b e

w
w
w
w
w

Figure 9: Simple game tree of depth 3

How does this relate to our graph of Figure 7? We have

already seen in the previous section how strategy fusion

leads Monte-carlo sampling to make errors at MIN nodes

because it assumes that MIN has more knowledge than

he sometimes does. Now, we have seen how strategy fu-

sion also a�ects MAX nodes, because of the assumption

that MAX has more knowledge than he actually does.

Thus, the e�ect of strategy fusion grows with both the

number of MIN levels (at least at the left-hand side of the

graph), and also with the number of MAX levels. This

explains the form of the region marked as B in Figure 7.

Note that another way to visualise the problem of

strategy fusion is to think of Monte-carlo sampling as

actually modelling the task of selecting between some

number of games , each starting with the same chance

move, in which both players have perfect information.

For example, imagine that the subtrees rooted on nodes

b and e in Figure 9 represent the MIN and MAX moves

in two separate games, each starting with a chance move

that selects one of the possible worlds w

1

; � � � ;w

5

. Which

of these games would we rather play if the outcome of

the chance move (and all other moves) is known to both

players? It should be clear that the answer to this ques-

tion is that we can always win a game based on node b,

but that we will expect to lose the game based on node

e one in �ve times (whenever the chance move selects

w

5

). However, it should also be clear that the situation

modelled by this question is di�erent from the original

game, in which MAX (who actually has no knowledge of

the chance move) and MIN (who is uncertain about the

outcome of the chance move whenever his knowledge is

less than 1) must try to �nd moves that work well across

a number of worlds, rather than working well in just one.

4.3 C | Non-locality

Here, we tackle the question of why an increase in the

opponent's knowledge increases the error in Monte-carlo

sampling (for trees of depth greater than 2). To do this,

we will consider the example tree of Figure 10. This

�gure is a slightly modi�ed version of Figure 9 from the

previous section, with the payo�s under node d altered.

01

0

1
1 0 0

1
1

0

1

1

0

0
01

4

3

2

1
1

1 1

0

1

5

11 1 1

1 11 1 11 1

0 1

1

Immaterial

a

d

b

c

e

w
w
w
w
w

Figure 10: Simple game tree illustrating `non-locality'

As before, strategy fusion will cause Monte-carlo sam-

pling to have a strong preference for selecting the left-

hand branch at the root of the tree. However, as well

as the chance that the optimal move might actually

be to direct the play to node e, there is now the new

problem that even when node b is chosen Monte-carlo

sampling doesn't guarantee making the correct branch

choices when playing at the subsequent nodes c and d.

To see this, consider how a MIN player with perfect in-

formation will play at node b. In world w

1

, he will select

the right-hand branch, since MAX's choice of branch at

node d will then lead to a payo� of zero. Similarly in w

2

,

if MIN selects the right-hand branch at node b, MAX will

get a payo� of 0. In world w

3

, MAX will get a payo� of 1

no matter which branch MIN chooses, but in worlds w

4

and w

5

MIN can again restrict MAX's payo� to 0, this

time by picking the left-hand branch at node b. Thus,

against a MIN player with complete knowledge, MAX's

branch selections produce a payo� of 1 in just one world:

world w

3

. It is easy to check that there are better alter-

natives. Choosing the left-hand branch at node c and

the right-hand branch at node d produces a payo� of 1

in both w

1

and w

2

. Also, choosing the right-hand branch

at node c and the left-hand branch at node d produces

a payo� of 1 in both w

4

and w

5

.

The problem here is distinct from that of strategy fu-

sion, and can be traced to a di�erent cause: the way in

which a branch selection is made at a node on the basis

of an evaluation only of its direct subtree. The inherent

assumption in making a branch selection in this way is

that the correct move is a function only of the possible

continuations of the game. In perfect information situa-

tions (i.e., where the position in the game tree is known),

this assumption is justi�ed and the minimax algorithm,

with its compositional evaluation function, �nds optimal

strategies for such games. With more than one possible

world, however, this assumption is no longer valid. For

instance, at node c in our example, the left-hand branch

appears to be the best choice because it produces a pay-

o� of 1 in three out of the �ve possible worlds. However,

as we described above, making this selection at node c

allows a MIN with knowledge of the actual world state to

restrict MAX to a payo� of 0 in w

4

and w

5

. This a�ects

the analysis of node d, since at any node below node b

the maximum attainable payo� in world w

4

and w

5

is

then zero. Under this circumstance, it is the right-hand

branch that is the best choice at node d, since it o�ers

a payo� of 1 in two worlds (w

1

and w

2

), compared to

the single payo� of 1 (in world w

3

) o�ered by the left-

hand branch. If we consider making a branch selection

at node c after choosing a branch at node d, we �nd sim-

ilarly that the best selection is no longer the one which

leads to a payo� of 1 in most worlds.

In general, the choice of a branch at a given MAX

node � is not simply a function of the payo�s of the paths

that contain �, but of the payo�s along any path in the

tree. If MIN can choose a move at an ancestor of � that

reduces the payo� (in any world) from what MAX would

expect from examining �'s direct subtree then the best

branch at � may change. We call this problem of having

to consider all other nodes in the tree non-locality (again,

for a precise formalisation, see

[

Frank, 1996; Frank and

Basin, 1997b

]

). Non-locality clearly depends both on

the number of MAX levels in the game tree and also on

the level of knowledge of the opponent. This explains

why the trend for trees of depth greater than two is for

the error to increase with the knowledge of the opponent

(trees of depth two do not su�er from non-locality in our

tests, because the problem only arises at MAX nodes

which have MIN ancestors).

4.4 D | The Probability of Winning

Finally, we look at the convergence in Figure 7 of the

error rates for trees of odd depth d and depth d+1. For

trees of odd depth, the �nal layer of non-terminal nodes

are MAX nodes. As we explained in x2.3, we use the Last

Player Theorem

[

Nau, 1982

]

, to set the probability of a 1

at the terminal nodes this game tree at p = (3�

p

5)=2 �

0:38197. Consider now the e�ect of adding an extra MIN

layer to such a tree (see Figure 11). Again, by the Last

Player theorem, the chance of assigning a 1 at the new

terminal nodes is 1� p.

For this new tree, and considering just this world, we

can calculate the probability that the evaluation of either

of the MIN nodes will be 1. Since MIN can be expected

Add MIN level

(1-p) (1-p) (1-p) (1-p)

Leaf node

p p

Depth d

Figure 11: The probability of assigning a `1' at leaf nodes

to back up the smallest value from the leaf nodes of the

tree, a 1 will only be produced if both payo�s at the leaf

nodes are 1. This has a probability of (1� p)

2

. It is not

hard to verify that for the value of p given by the Last

Player Theorem, this is equal to p.

2

Thus, in terms of an individual world, adding an extra

MIN level does not change much about the character of

the game. However, with multiple worlds, there is a

critical di�erence. The probabilities in the game tree

are only preserved if MIN can actually choose the best

branch in each world. As we saw in x4.1, if MIN has

incomplete information on the actual world state, then

choosing a branch based on the expected overall return

may well turn out to be sub-optimal in individual worlds.

The above observations allow us to tie up our descrip-

tion of the graph of Figure 7 very neatly. So far, we

have identi�ed the following problems with Monte-carlo

sampling:

A There is an implicit assumption that MIN has

complete knowledge. The strategy fusion errors

caused by this assumption increase with the

number of MIN levels in the tree, but decrease

as the knowledge of the opponent increases.

B There is an implicit assumption that MAX has

complete knowledge. The strategy fusion er-

rors caused by this assumption increase with

the number of MAX levels in the tree, but are

una�ected by the knowledge of the opponent.

C The problem of non-locality arises when play-

ing against an opponent with knowledge of the

world state. The error caused by non-locality

increases with the number of MAX levels in the

tree and also with the knowledge of the oppo-

nent.

It is now easy to see why the plots for a tree of odd

depth d and the tree of depth d+1 converge. At the far

left of the graph, the extra layer of MIN nodes in the tree

of depth d + 1 leads to an increased incidence of strat-

egy fusion errors at MIN nodes caused by the assump-

tion of complete MIN knowledge (A). Both the problems

of strategy fusion at MAX nodes (B) and non-locality

(C), however, depend on the number of MAX levels in

the tree, so from this perspective the trees are identical.

Thus, as we move right along the x-axis and the assump-

tion about the MIN knowledge becomes more accurate,

the stability of the probabilities discussed above leads

the plots for depth d and depth d+ 1 to converge.

2

This is the essence of the Last Player Theorem; as val-

ues are backed up the tree, the chance that any branch at

a MAX node has an evaluation of 1 remains at p. Simi-

larly, at any MIN node the chance that a branch has an

evaluation of 1 remains at 1 � p. To see this, consider

what happens when backing up values at a MAX node.

The evaluation of the MAX node is 1 with probability

1�Pr(both branches have an evaluation of 0) = 1�(1�p)

2

.

For the value of p given to us by the Last Player Theorem,

this is equivalent to 1� p. For lower values of p, the chance

of a 1 decreases quickly to zero as the tree depth increases.

For higher values, the chance of a 1 increases to unity.

5 Comparison with Real Games

The �gures in the previous section are slightly at odds

with experimental results in real games. Notably, in the

incomplete information game of Bridge,

[

Frank, 1996;

Frank and Basin, 1997b

]

have found that for the sub-

problem of single suits non-locality leads to just 33:5%

sub-optimality. More recently, Ginsberg has reported

that a fast Monte-carlo approach

[

Ginsberg, 1996c

]

is

sub-optimal on 35:6% of complete Bridge deals

[

Gins-

berg, 1996a

]

. Thus, there is evidence that the 100% sub-

optimality we have witnessed on our binary trees does

not occur in practice.

The experience with Bridge suggests that a measure is

needed for incomplete information games that describes

game properties that have a bearing on the di�culty of

solving the game with a Monte-carlo approach. Design-

ing such a measure will be a topic of our future research,

but here we describe brie
y a �rst step in this direction,

which suggests the plausibility of the task.

Parameterising Similarity

Consider a measurement based on `similarities' between

worlds. For our binary trees, we modify the way that

the payo�s of 1 and 0 are assigned at the leaf nodes

so that winning strategies in one world are also more

likely to win in another. We achieve this by the simple

expedient of parameterising our trees with a probability,

q, that determines how similar the possible worlds are.

To generate a tree with N worlds and a given value of q:

� �rst generate the payo�s for N worlds normally, as

described in x2.1, then

� generate a set of payo�s for a dummy world w

N+1

,

then

� for each of the original N worlds, overwrite the com-

plete set of payo�s with the payo�s from the dummy

world, with probability q.

For parameterised trees with 10 worlds, we repeated

the original test of x4 for values of q ranging from

q = 0:00 to q = 0:95, in steps of 0:05. The results of

this experiment are shown in the graph of Figure 12. It

should be clear from this graph that as q increases, the

performance of Monte-carlo sampling also improves. To

illustrate more clearly the e�ects of changing the param-

eter q, we have also plotted in Figure 13 the error rate

of Monte-carlo sampling just for trees of depth 11.

The graphs of Figure 12 and Figure 13 illustrate a re-

markably uniform decrease in error as q increases. From

Figure 13 we can read o� a value of q for which the error

rate is approximately 35% as q � 0:70. A natural next

step for this testing would involve constructing a gen-

eral metric for incomplete information games that can

be measured in practice and used to predict how hard

such games will be to solve with a Monte-carlo approach.

As a test for accuracy, this metric should produce the

same value for Bridge as for our binary game trees with

a value of q = 0:7.

Performance of Monte-carlo Sampling

q=0.95

q=0.85

q=0.65

q=0.45

q=0.30

q=0.00

Opponent
Knowledge

0

1 1 2 3 4 5 6 7 8 9 10 11

0

50

100

Depth

% Error

Figure 12: The error surface of Monte-carlo sampling on

binary trees with 10 possible worlds for di�erent values

of q. The plot is for trees of depth between 2 and 11

(y-axis), for varying levels of knowledge held by the op-

ponent (x-axis, ranges from zero to complete knowledge).

One thousand tests per data point.

6 Conclusions

We have examined the performance of Monte-carlo sam-

pling on simple binary game trees, demonstrating that

as the depth of the game tree increases, the observed er-

ror rapidly approaches 100%. We explained the sources

of these errors in terms of strategy fusion (caused by the

implicit assumptions of complete MIN and MAX knowl-

edge made by Monte-carlo sampling), and non-locality.

We also related our results to real games such as Bridge,

showing that it is possible to adjust our test game trees

to produce error rates comparable to that seen in prac-

tice.

One natural continuation for this research would be to

continue the program sketched in x5 and design a metric

that predicts the di�culty of producing the correct anal-

ysis of an incomplete information game using a Monte-

carlo approach. Another continuation that we have al-

ready pursued is the design of a tractable algorithm that

out-performs Monte-carlo sampling. Using the insights

gained from the analysis of x4, we have formulated a

new algorithm, payo�-reduction minimaxing, which does

not su�er from strategy fusion at MAX nodes and also

signi�cantly reduces the incidence of non-locality. This

research is reported in

[

Frank and Basin, 1997a

]

.

Appendix: Finding the Best Strategy

Here we describe the algorithm we use to �nd the optimal

strategy on our test game trees. The essence of this algo-

rithm is that instead of selecting a single branch at any

MAX node, the result of each possible selection is calcu-

lated and backed up the tree. Since all combinations of

0

20

40

60

80

100

0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1

%
 E

rr
or

Opponent Knowledge

Performance of Monte-carlo sampling

Figure 13: A cross-section through the plane of the graph

of Figure 12 where depth=11. Each line represents a

di�erent value of q, ranging from 0.95 at the bottom to

0.0 at the top, in steps of 0.05.

branch selections (that form strategies) are considered,

the best expected payo� at the root identi�es an optimal

strategy.

We will illustrate this algorithm by considering again

the example game tree of Figure 10, originally used to

illustrate the e�ects of non-locality. Let us consider just

the subtree rooted on node b, and label the payo� vec-

tor at each leaf node with a template to represent a par-

tial strategy which will become instantiated as the tree

is processed (see Figure 14). The entries in these tem-

plates represent the MAX choices at the nodes c and d

respectively, as either `1' (left branch), `2' (right branch)

or ` ' (immaterial).

3

At node c, MAX has two choices (either the left or the

right-hand branch). We therefore raise the two vectors

which are at the leaf nodes and store them at node c.

Also, the two partial strategy templates are �lled in to

indicate which vector is produced by selecting the left-

hand branch, and which is produced by selecting the

right. Similarly, there are two possible vectors for MAX

to select between at node d .

At MIN nodes, we have to analyse MIN's possible ac-

tions in response to each of the possible combinations of

choices that MAX may make beneath that node. In our

example, this can be done by looking at each of the possi-

ble combinations of the vector/partial strategy pairs that

label the MAX nodes c and d . For example, let us con-

sider how to combine together the choices represented by

the partial strategies (1;) and (; 1) (corresponding to

choosing the left-hand branch at nodes c and d). MIN's

3

Note that strategies for general trees can be constructed

by, for example, forming larger n-tuples which correspond

to the possible strategies in the game by virtue of the ith

element representing the choice to be made at the ith MAX

encountered during a pre-order traversal of the tree.

0 01 1 1 0 00 1 1

0 0 00 1 0 0 01 1 0 00 1 1 0 0 0 00

w 1 w w w w2 3 4 5 w 1 w w w w2 3 4 5 w 1 w w w w2 3 4 5 w 1 w w w w2 3 4 5

(1,1) (1,2) (2,1) (2,2)

(1,_) (2,_) (_,1) (_,2)

0 01 1 1 0 00 1 1 00 1 1 1 0 0 01 1

(_,_) (_,_) (_,_)(_,_)

b

c d 0 0 01 100 1 1 1

Figure 14: Annotating each node with a `vector' describ-

ing the outcomes of the possible strategies

desire to minimise MAX's payo� is modelled by selecting

the smallest payo� in each possible world for which MIN

is aware of the outcome of the chance move. In the cur-

rent example, we will assume that MIN's knowledge is

complete, so that the equation (2) we introduced in x3.1

can be used to �nd the smallest value in every world (in

general, MIN may have to use an expected value compu-

tation for worlds where he does not know the outcome

of the chance move). This results in a new vector with

a single 1 in world w

3

. The identi�cation of the strat-

egy represented by this vector is found by combining

together the partial strategies to produce (1; 1).

Thus, we can label node b with an oval representing

the payo� for the strategy (1; 1). The combination pro-

cedure is then repeated for the other possible choices of

vectors at nodes c and d , producing annotations at node

b for the strategies (1; 2), (2; 1) and (2; 2), as shown in

Figure 14. Strategy (1; 1) (the strategy chosen by Monte-

carlo sampling) is found to give a payo� of 1 in just world

w

3

, strategy (1; 2) is found to give a payo� of 1 in just

worlds w

1

and w

2

, etc.

This example illustrates the basic nature of our algo-

rithm. At MAX nodes, each vector/partial strategy pair

is backed up. At MIN nodes, each possible combina-

tion of vector/partial strategy pairs is backed up. The

exact formalisation will depend on the method used to

represent and build the strategies, which we omit here.

For a general tree, the number of the vectors present

at any MAX or MIN node is the same as the number

of strategies in the subtree rooted on that node. As

we noted in x3.2, this number can get very large very

quickly (it is doubly exponential in the number of MAX

levels in the tree). However, note that if the collection

of vectors at a node contains members which are point-

wise less than or equal to any other member at that

node, these vectors may be ignored as inevitably giving

rise to inferior strategies. For example, the vector con-

taining entirely zeros at node b may be omitted from

further consideration, as there are other vectors at the

same node that o�er at least as good a payo� in every

world. Prunings of this sort lead to an improvement in

performance that is su�cient to allow us to carry out

our experiments.

References

[

Corlett and Todd, 1985

]

R.A. Corlett and S.J. Todd.

A Monte-carlo approach to uncertain inference. In

P. Ross, editor, Proceedings of the Conference on Arti-

�cial Intelligence and Simulation of Behaviour, pages

28{34, 1985.

[

Frank and Basin, 1997a

]

I. Frank and D. Basin. Payo�-

reduction minimaxing. In Proceedings of the Fourth

Game Programming Workshop in Japan (GPW-97),

Hakone, Japan, 1997. To appear.

[

Frank and Basin, 1997b

]

I. Frank and D. Basin. Search

in games with incomplete information: A case study

using bridge card play. Technical Report ETL-97-7,

Electrotechnical Laboratory, 1997.

[

Frank et al., 1992

]

I. Frank, D. Basin, and A. Bundy.

An adaptation of proof-planning to declarer play in

bridge. In Proceedings of ECAI-92, pages 72{76, Vi-

enna, Austria, 1992.

[

Frank, 1989

]

A. Frank. Brute force search in games

of imperfect information. In D.N.L. Levy and D.F.

Beal, editors, Heuristic Programming in Arti�cial In-

telligence 2 { The Second Computer Olympiad, pages

204{209. Ellis Horwood, 1989.

[

Frank, 1996

]

I. Frank. Search and Planning under In-

complete Information: A Study using Bridge Card

Play. PhD thesis, Department of Arti�cial Intelli-

gence, Edinburgh, 1996.

[

Fudenberg and Tirole, 1995

]

D. Fudenberg and J. Ti-

role. Game Theory. MIT Press, 1995.

[

Ginsberg, 1996a

]

M. Ginsberg. GIB vs Bridge

Baron: results. Usenet newsgroup rec.games.bridge,

31 October 1996. Message-Id: <56cqmi$914@-

pith.uoregon.edu>.

[

Ginsberg, 1996b

]

M. Ginsberg. How computers will

play bridge. The Bridge World, 1996. Also available

for anonymous ftp from dt.cirl.uoregon.edu as the �le

/papers/bridge.ps.

[

Ginsberg, 1996c

]

M. Ginsberg. Partition search. In

AAAI-96, pages 228{233, 1996.

[

Levy, 1989

]

D.N.L. Levy. The million pound bridge pro-

gram. In D.N.L. Levy and D.F. Beal, editors, Heuris-

tic Programming in Arti�cial Intelligence { The First

Computer Olympiad, pages 95{103. Ellis Horwood,

1989.

[

Luce and Rai�a, 1957

]

R. Duncan Luce and Howard

Rai�a. Games and Decisions|Introduction and Crit-

ical Survey. Wiley, New York, 1957.

[

Nau, 1982

]

Dana S. Nau. The last player theorem. Ar-

ti�cial Intelligence, 18:53{65, 1982.

