On Resolution with Short Clauses

Michael Buro and Hans Kleine Bning
Universitt Paderborn
FB 17 Mathematik—Informatik
Warburger Strae 100
33098 Paderborn

Germany

Abstract

We investigate properties of k—resolution, a restricted version of resolution in which
one parent clause must have length at most k. Starting from a unit—preference
strategy, we compare minimal proof lengths of unit-resolution and unrestricted res-
olution. In particular, we show that the speed-up by using resolution is bound by
V't if the shortest unit-resolution refutation needs ¢ steps. Next we present an al-
gorithm which decides whether the empty clause can be deduced by 2-resolution
from a formula ® and has time complexity O(length(®)?%). Finally we describe ef-
fects on k-resolution if a formula is transformed into t—~CNF and show that extended
3-resolution is complete and sound.

1 Introduction

We are interested in the efficiency of one of the resolution strategies, namely the unit-
preference strategy [7]. In this strategy it is demanded that whenever a new unit-clause
has been generated the unit-clause has to be resolved first. A more sophisticated version of
this strategy is based on the idea not only to resolve the unit-clauses as soon as possible,
but to resolve short clauses first. This establishes a priority which says that one of the
parent clauses has to be one of the shortest clauses. In other terms we can describe the
strategy by a resolution restriction called k—resolution. In a k-resolution step one of the
parent clauses must be a clause of at most k literals. Then the modified unit-preference
strategy can be considered as a sequence of applications of unit-resolution, 2-resolution,
3-resolution and so on.

We will consider the pros and cons of this strategy for propositional formulas in con-
junctive normal form (CNF). For this reason we investigate what happens with the length
of shortest refutations comparing unit-resolution and unrestricted resolution. Another
problem arises when applying the well known transformation algorithm to transform a
formula in CNF into a formula in ¢-CNF where each clause consists of at most ¢ literals.
We discuss under what circumstances such transformations should be applied to a formula.
Furthermore we state that extended 3-resolution is complete and sound.

So far the power of unit-resolution is well understood. Roughly speaking, only the
satisfiability of Horn formulas up to renaming can be solved efficiently. An algorithm
running in linear time in the length of the formula exists which decides whether for a
formula ® in CNF a unit-resolution refutation exists. For 2-resolution we present an
algorithm which decides the question above in time O(length(®)?*).

2 Preliminaries

A literal L is either an atom A or its negation —=A. A clause is a disjunction of literals
and a {-clause consists of at most ¢ literals. A unit clause 1s a l-clause. A formula is
in conjunctive normal form (CNF) if it is a conjunction of clauses and is in t-CNF if it
consists of ¢-clauses. Clauses and formulas can be written as sets of literals resp. sets of
clauses, e.g. U and () denote the empty clause. For a formula ® atomset(®) consists of all
atoms in ® and literalset(®) is the set of all literals over the atoms of ®. The length of ¢
is the sum of the cardinalities of its clauses. The necessary terms regarding k-resolution
are introduced in the following

Definition: (Resolution, k-Resolution)

Let ® be a formula in CNF and ¢ a clause. We say ¢ can be deduced from ® in one
resolution step (® }ﬁ ¢) if and only if there are clauses ¢ and ¢” in @ and a literal L
with L € ¢/, =L € ¢"and ¢ = (¢ \ {L}) U (¢"\{—L}). A k-resolution step is a resolution
step where one parent clause consists of at most k literals. A clause ¢ is deducible from &
in r 4+ 1 steps if and only if there are two parent clauses of ¢ which are deducible from ®
exactly in r steps resp. in at most r steps.

We call ¢ deducible from @ iff there is an > 0 with @ |— ¢ and denote this property
by @ |—c (® % ¢ stands for ¢ € ®). k-Res"(®) is the set of clauses which can be
deduced in at most r steps from ® by means of k-resolution and k-Res(®) is defined as
the set of all deducible clauses from @ via k-resolution. Finally, the length of a refutation
is defined as the number of resolution steps performed.

That k-resolution is not complete for formulas in CNF can be seen by choosing an
unsatisfiable formula which consists only of clauses of length greater than k. But k-
resolution suffices to decide the satisfiability of formulas in the class Hj; which have been
introduced in [3],[8]. Furthermore the H} build a hierarchy of formulas in CNF.

A simple version of a modified unit-preference strategy can be described as follows:

Input: ® in CNF Output: ’yes’ if ® is satisfiable and 'no’ otherwise

k:=0
while U ¢ ® or k < |atomsel(®)| do
ki=k+1
® := k-Res(®) {k-th level }
endwhile

if U € ® then write(’'no’) else write(’yes’) endif

Obviously, the algorithm can be refined, i.e. write 'no’ if the empty clause Ll occurs in
the computation of k-Res(®) and organize the computation of k-Res(®) again as an unit-
preference algorithm.

Thus whether a refutation within the k-th level can be reached can be considered as
the question whether there is a refutation when in each step one of the parent clauses has
length less or equal then k.

3 Short Proofs

In this section we will compare the length of shortest unit—resolution refutations and the
shortest resolution refutations. We show that the length of a shortest unit—resolution proof
for minimal unsatisfiable formulas can be ©(n?) whereas ©(n) is the length of the shortest
resolution refutation. Additionally we prove that this is the best speed-up we can achieve.

Theorem 3.1 For each n > 1 there is a formula ®, with the following properties:
(1) ®, is minimal unsatisfiable
(2) length(®,) = n?4+4n + 1
(3) the shortest unit-resolution refutation needs n* + 2n steps

(4) the shortest resolution refutation needs 2n + 1 steps

Proof: For each n we define the formula

o, == {(Biv...vB,), (D) }u{(-BvAV..vA)[1<i<n}
U {(~Aav-D)|1<i<n}

®,, is unsatisfiable and removing one clause yields a satisfiable formula, i.e. ®,, is minimal.
Its length is n? 4+ 4n + 1 and the shortest unit-resolution refutation needs n? 4 2n steps.
Applying (=B; VA1 V...V A,) for 1 <i<nto (B V...V B,) we obtain in n steps the
clause (A; V...V A,) and then in n 41 steps the empty clause. Hence there is a resolution

refutation of @, in 2n + 1 steps.
|

A formula @ is called minimal for unit-resolution if ® |=—— U and for each proper
subformula ®* C ® there exists no unit-resolution refutation. For a formula ® a unit—
resolution refutation exists if and only if there is a subformula ®* C @, such that * |——— LI
and ®* is a Horn formula up to a renaming, which replaces some atoms by their comple-
ments and vice versa. Therefore minimal for unit-resolution means ® |=—x— LI and each
proper subformula ®* C ® is satisfiable. This can be seen as follows: If ® |——— LI then
we choose some minimal subformula ®* C ®, for which we achieve ®* |=—— LI. By an
induction on the cardinality of atomset(®*) one can prove that a renaming into a Horn

formula exists.

Theorem 3.2 Let & be an unsatisfiable formula which is minimal for unil—resolution,
® |=—g— U and the shortest unil-resolution refutation needs t steps. Then the shortest

resolution refutation requires at least \/t resolution steps.

Proof: (By induction on the length of ®)

For ® = {(A), (—=A)} the shortest unit-resolution and resolution refutation needs one step.
Now we suppose length(®) = t+1. Since ® is minimal for unit-resolution, the formula ® is
a Horn formula up to renaming and @ contains at least one unit clause (L). We apply (L)
to each clause (=L V...) in ® and remove the clause (L). The resulting formula is denoted
by ®[L = 1]. The formula ®[L = 1] is minimal for unit-resolution and ®[L = 1] |7—5— U
follows. By induction hypothesis we know if the shortest unit—resolution refutation has
length r then the shortest resolution refutation needs at least /r steps for ®[L = 1]. Let
¢1 be the length of the shortest resolution refutation for ®[L = 1].

Assume that the literal =L occurs in s clauses of ®. Then the shortest unit-resolution
refutation needs exactly r 4+ s steps. Furthermore the shortest resolution refutation needs
at least g, + 1 steps, because of the minimality of ®. Note that ® is a Horn formula up to
renaming. Let q be the length of the shortest resolution refutation for @, then we obtain

@+ > +2a+1>r+20+1>7r+s.

The last inequality holds, because the number of resolution steps ¢; must be greater or
equal to s. This follows directly, because ®[L = 1] is a minimal Horn-formula up to
renaming.

Hence we have proved our desired result, that the speed-up we might obtain by applying
resolution instead of unit-resolution to the formulas is bound by the square root of the
length of the shortest unit-resolution refutation.

For k& > 2 the same speed-up can be shown for k-resolution using the formulas ®,, of
theorem 3.1, but no non-trivial upper bound is known.

4 A 2-Resolution Algorithm

In this section we present an algorithm which decides whether the empty clause is deducible
from a given formula in CNF by 2-resolution. We show the correctness of the algorithm
and then we analyze an efficient implementation of it which needs O(length(®)*) running
time for a formula ® in CNF.

The key idea of the algorithm is to avoid the generation of any clauses with length
greater than two. In a simple approach one could produce all deducible clauses and could
check whether the empty clause has been deduced. Unfortunately there are simple formulas
from which one can not deduce the empty clause by 2-resolution but a set of clauses with
a cardinality superpolynomial in the length of the formula. Therefore we want to generate
only 2-clauses and look whether we can deduce a pair of complementary units. Two cases
of a 2-tesolution step can be distinguished: If we use an unit {L} then we can cancel
the literal =L in another clause. In the other case we can replace one literal by another
one. The algorithm generates 2-clauses in this way one by one and looks if there are new
2-resolvents in applying the new 2-clauses to the previously generated 2-clauses and to the
clauses in @ with length greater than two.

Algorithm 2-Res(I)

Input: @ in CNF
Output: ’yes’if & b—— 0 and 'mo’ otherwise

2—Res

(1) S:={c|ce® and 1 <|¢| <2} U { {A,-A} | A € atomset(®) }

(2) T:=5; o:=0\S5; R:=0 { T is the set of derived 2-clauses }

{ R collects clauses from T one by one }

(3) while S # () do

(4) St=1(

(5) forall ¢ € S do new(c) endfor { update R, put new 2-clauses into S’ }
(6) S=5

(7) endwhile { until there are no more new 2-clauses }

(8) if dA € atomset(®) : {A},{—~A} € R then write(’yes’) else write('no’) endif

procedure new(c)

(9) R:=RU{c}; D:=0 { D collects 2-clauses which arise from applying c}

(10) if ¢ = {L} then D := { {L,L'} | L' € literalset(®) \ {L} } endif

(11) D::DU{C'|]§|C’|§2 and 3d={ly,...,L,} € ®": (c':CJcZ- and
\v’i:(ci:{[/i}or[ci:@and{—'Li}ER}or[ciz{L;}and{L;,—'lzj}]ER}))}
(12) U{e1<]¢l<2 and 3de R: {e,d} b ¢ }

(13) S":=S"U(D\T); T:=TUJS" { generate only clauses which are not in 7' }

Theorem 4.1 The algorithm 2-Res(I) terminates for all inputs ® in CNF and writes
yes”if @ 55— 0 and 'no’ otherwise.

To prove the correctness of the algorithms we need a

Lemma 4.2

(i) ® by 0 if and only if & U {{A,=A}| A € atomsel(®)} |5 0
(i) If ® 5 {L} then

(O b 0 = © U {{L, L'} | L' € literalset(®) \ {L}} 5= 0 |

Proof:

(i) =7 This follows immediately because the formula on the right side contains all
clauses of the left side.

7«<” If there is a resolution step like {c, {A, —|A}} =5 d in the refutation of
the formula on the right then ¢=d follows from the definition of |;—==— . Thus

all such steps can be canceled to get the desired refutation of ®.

(ii) ”=" Again the formula on the right side contains all clauses of the left side.
7«” (Sketch) The statement follows from a more general one:

If @ }m {L} then

[Vk>0Vee2Res" (& U {{L, 1} | I/ € literalset(®) \ {L}})
d € 2Res(P) : d C ¢ |

which can be proved by induction on k.

Proof of theorem: T is a set of 2-clauses. Hence we have |T'| < |literalset(®)|* < oo.
If S” is not empty after execution of line (5) then T has been enlarged by this step. Thus
the algorithm terminates.

In what follows, R; denotes the set R after the i-th call of new and R, the set R after
termination with input ®. We have to show the following equivalence:

(ElA € atomset(®) : {A},{-A} € Rn) = OG-0

“=7 We prove Vi < n: (® U R, }m 0 = & }m 0) using induction on s
and conclude the stated implication from this. Since if there is an A with {A}, {-A} € R,

then ® U R, |;—5— 0 holds and hereby & |o—— 0.
According to the setting of S in line (1) we see that for ¢ € Ry (¢ € ® or ¢ = {A,~A})

holds. Hence the induction base can be proved by lemma 4.2 (i). For the induction step
(PUR;41 }m = @ }m () have to be shown. Let new(e) be the (¢ + 1)-st call of

procedure new. e could have been generated in different ways. In the case (e € ® or ¢ =
{A,—A}) again lemma 4.2 (i) can be used. Otherwise e has been generated by a previous
call of new. If we look at the lines (10)-(12) we see that only clauses can be produced
which are valid according to lemma 4.2 (ii) resp. which are 2-resolution deductions. Thus
the use of the induction hypothesis completes this part of the proof.

“<” Now we want to show that the following statement holds:

Vk >0 Ve € 2-Res®(®) \ {0} 3 :

[(1§|c|§2andc€Ri> or (|c|>2andEld:{ﬁl,...,ﬁn}eq)':c:CJCJ- and
j=1

6

Vi:(ej={L}or [¢j=Dand {-L;} € Ri]or [¢j={L}} and {L},~Lj} € Ri|))]

This formula says that we can find any resolvent ¢ #) of ® either in a set R; or we
can deduce it by means of 2-resolution from a clause d in ®', where there is at most one
resolution step for each literal in d.

The proof is by induction on k. If the statement is true then we may conclude

Ol 0 = 3A: [0 g {AYand ® |y {4} | =
JATi: {A},{~A}Ye R, = JA:{A},{~A} € R,

and the necessity is shown.
For the proof let k be 0 and ¢ € 2-Res®(®)\ {#}. Then ¢ € ® follows and according to line
(1) there is an ¢ with ¢ € R; in the case |¢| < 2. If |¢| > 2 weset d = ¢ € @' and ¢; = {L;}
for all 3.
We now assume that the statement is true for all values less or equal to k. Let ¢ be an
element of 2—Resk+1(q)). There exist clauses ¢; € Q—Resk(q)), cy € Q—Ressk(q)) with the
property {ci, ¢y} }2_1T c¢. Hence the induction hypothesis can be applied. In the case
le1], |ea] < 2 there are minimal numbers 4; and i, with ¢; € R;,, ¢; € R;, and without
loss of generality i, < 19. It follows that ¢ will be generated during the i5-th call of new
according to line (12). Therefore we have an ¢ with ¢ € R;.
In the remaining cases analogous arguments can be used. We have to distinguish whether
a literal L; € d is not touched by 2-resolution (¢; = {L;}), or has been canceled by using
the unit {=L;} (¢; = (), or has been replaced by another literal L (c; = {L’}).

[|

Next we present an efficient implementation of algorithm 2-Res(I). Technical difficulties
have arised from the addition of tautologies (line (1)) and clauses {L, L'} for deduced
units {L} (line (10)). Even without them the algorithm is correct but the following imple-
mentation profits from these extensions.

Algorithm 2-Res(II)

Input: @ in CNF
Output: ’yes’if @ |5—— 0 and 'no’ otherwise

(1) S:i={c|ced and 1 <|¢| <2} U {{A,—'A} | A€ atomset(q))}
(2) T:=58; ¢ :=0)\5;
(3) forall L € literalset(®) do V(L) :=) endfor {R:=0}

(4) while S # 0 do
(5) Shi=10
(6) forall ¢ € S do

(7) if c = {L} then new(L, L)

(8) elseif ¢ = {L,, Ly} then new(Ly, Ly)
(9) endif

(10) endfor

(11) S =9

(12) endwhile

(13) if 3A . [AeV(=A) and =A € V(A) } then write(yes’) else write('no’) endif

procedure add(c)

(14) if ¢ ¢ T then S":= S"U {c}; T :=T U {c} endif

procedure new(Lq, Ly)

(16) if L, = L, then

(17) forall L € literalset(®) do add({L} U {L}) endfor

(18) endif

(19) forall L € literalset(®) do

(20) forall d € ' do

(21) if d C V(L) UV(L) then add({L,} U{L})

(22) elseif d C V(L) U V(L) then add({L,} U{L})
(23) endif

(24) endfor

(25) endfor

(26) forall L € literalset(®) do

(27) if ; € V(L) then

(28) if . =~ then add({l.}) else add({L} U {L,}) endif
(29) endif

(30) if L, € V(L) then

(31) if L ==L, then add({L,}) else add({L} U {L}) endif
(32) endif

(33) endfor

To get a fast implementation of line (11) of the first algorithm the set R is represented by
sets V(L) according to =L € V(L") : < {L}U{L'} € R. By this, the new clauses
can be determined using unions of V sets because the clause {L} U{L’} will be generated
from d in @ if and only if d C V(L) U V(L'). In this situation we take advantage of the
extensions. These guarantee L € V(L) for all literals L and L' € V(—L) for all deduced
units {L} and all L’. Therefore, all resolvents can be determined easily. Suppose now
that new is called with Ly and Ly as parameters. Of course, not all clauses {L} U {L'}

8

have to be examined to check whether there is a new covering of a clause in ®’ since only
the sets V(L) and V(L) have been altered. It suffices to test the clauses {L;} U {L}
and {Ly} U {L} for all L in literalset(®) which is done at lines (19)-(25). Finally, all
possible resolvents of {L;} U {Ly} with previously generated 2-clauses are determined at
lines (26)-(33).

Procedure new will be called at most |literalset(®)
O(|literalset(®)|-length(®)) provided the sets are implemented as bit arrays. Note that
the time complexity of the for loop at lines (20)...(24) is only linear in the length of ¢’
because for every literal of clauses in ®’ we have to check whether it appears in the unions
and this can be done in constant time. Thus the time requirement for the whole algorithm

is O(|literalset(®)|? - length(®)) which is O(length(®)|*). These observations lead to

|* times and has time complexity

Theorem 4.3 Algorithm 2-Res(I1) decides in time O(length(®)*) whether the empty clause
is deducible from a given formula ® in CNF by 2-resolution.

For unit-resolution an upper bound linear in the length of the formula is known. This
can be seen applying unit-resolution step by step adepting the algorithm introduced in
[1]. The gap between the time complexities gives room for future research.

5 Transformation

It is well-known that for each ¢ > 3 a formula in CNF can be transferred to a formula
in t~CNF in polynomial time, such that both formulas are equivalent with respect to
satisfiability. In this section we shall discuss the effects of these transformations to the
existence of k-resolution refutations.

For ¢t > 3 the transformation algorithm Trans-t applied to a formula ® in CNF replaces

each clause 7 = (L1 V...V Ly,) for m >t by the clauses mq, ..., 7,41, where
m = (t—=1)+r(t—2)+s,
S < 1,
To = (V...V Lt 1 V Pl)
w5 = (_‘P V Lt l-I-(Z 1)(t—2)+1 V...V Lt—l-}-i(t—Z) V Pi-}-l) for 1 § 2 S r and
Tr41 = (_‘ r41 V L 14r(t—2)+1 V. \/ Lm)
(Pr,..., P41 are new atoms)

The resulting formula is written ®* and equivalent to ® with respect to satisfiabilty.
Theorem 5.1

(i) For each t >3 and ® in CNF: & |=——— U if and only if ®' |—%— U.
(ii) For each k > 2 there is some ® such that }m L but not &+ }W L.

Proof: Ad (i): Since in each unit-resolution step a parent clause with more than one
literal can be replaced by the resolvent and the unit—clauses of both ® and ®' are the
same, we immediately obtain (i).

Ad (i1): The construction of the formulas ® is motivated by the following observation. Let
be given the formula

Y = {(.’Eo V X1 V Yo V yl), (_'330 V A()), (-ucl V A1>, (_‘yo V A()), (_'yl V Al)}

Then there is a 2-resolution deduction

(CUO Vg ViyV y1>7 (_‘CUO \% Ao) }m (Ao Vg ViyV y1>a (_‘551 \% Al) m

(AoV A Vo Vi), (=yo V Ao) =g (Ao V A1 Vi)

(Note that there is only one Ay in the resolvent)
and finally

(Ao VAL V), (- VA e (Ao V Ay,

The transformation Trans-3 generates the clauses (zg V21V P) and (=P V yo V y1) from
(zo Va1 VyoVyr). Then there is no 2-resolution deduction > }m (AgV Ay), because a

2-resolution of the 2-clauses with the 3-clauses leads to (AgV A1V Py) and (=P V AgV Ay).
For k£ > 2 we define the formula ® as follows:

atomset(®) = {z;;,|0<5 <k, 0§i<2k}U{A0,...,Ak_1}U
{yij 10 <j <k, 0<i<2%)

b .= { (.7:2"0\/...\/.732"16_1\/yz',o\/...\/yi,k_ﬂ | 0§7:<2k }U U G; U U ﬂ:
0<i<2k 0<i<2k

where

) k-1
Bio={ (maiy VAT [i=)Y a2, e e{01},0<j<k—1}
=0

. E—1
Blo={ (~wi;VAY) |i=3 a2, e e{0,1}, 0<j<k—1}
=0

We define p = {(APV...VA) | €o,...,ex-1 € {0,1}}, where A% := = A and A! := A.
Next we show ® }m . Fori = Z;:(]) €; 27 we apply (z;0V.. VT k—1VYyioV...VUik1)
to (—mvm-\/A;J) and (ﬂyiij\/A;J) for 0 < j < k. Then we obtain the clause (A" V...VAZ7).
Hence the formula ¢ containing all possible clauses of length & with atoms Ag, ..., Ap_q
can be deduced by means of 2-resolution. Therefore, the empty clause is deducible using
k—resolution since all clauses of length k have been deduced.

Now it remains to show that there is no k-resolution refutation for ®**!. The transform-
ation into (k + 1)-CNF transfers each clause (zioV ...V Zi5-1 Vyio V...V yik_1) to the
(k + 1)-clauses (z;0V ...V x5-1 V P;) and (=P V yio V...V y;x—1) with new atoms P;.

Applying the 2-clauses directly to the generated (k+1)-clauses leads to (AP V...VAZS S VE;)
and (=P V AP V ...V AYT) and no further 2-resolution step can be performed with
these clauses. But we could resolve a pair of 2-clauses (—z;; V A?), (mzin; V A;J_l) or

10

(mxi; V A;J), (myij V A;J_l). Note that ¢ and " must be different numbers. The resulting
clauses are (—z;; V =z) and (-, ; V —ye ;). Resolving these clauses with the generated
(k + 1)-clauses does not help to deduce a k-clause, because no double occurrence of a
literal can be obtained.

Resolving the 2-clauses yields (-, ; V A;j), (mxi; V A;J_l) for 1 = fz_ol g2t and (mxij V
A;]), (_'yil’j \% A;]_l) for = Z;ﬂz_ol 5121 and ' =1 — €j2j + (1 - €j)2j.

If we want to deduce the empty clause we must resolve the 2-clauses with clauses of length

k 4+ 1. Then the deducible clauses are

(_'Zio,O V...V _'Zik—uk—l V Pz) 5 (_‘Pz V —|w3070 V...V _'wsk—uk—l)?

5 1—¢
for wij, zi; € {wij, yiy b ov wig, zi; € {A7 A7)
Note that z;,0,...,2i,_, k=1 and wg o,...,ws,_, x—1 are pairwise different. Hence the
clauses of length &£+ 1 can not be reduced and therefore the empty clause is not deducible
by k-resolution.

Theorem 5.2
(i) For each 3 <t <k and ® in CNF: If ® }m U then & }71:—12@3 u.

(i) For each 3 < t < k there is some ® in CNF, such that O }m U but not
o k—Res U

Proof: Proof (i) is obvious.

Ad (ii): Let ®44q be the formula consisting of all possible clauses with atoms Ay, ..., Agy1.
Then there is no k-resolution refutation ®;; Im LI because 1 does not contain
a k-clause. For each 3 < ¢t < k the transformation algorithm Trans-t generates from
T = (Ll\/. . -\/Lk+1) the clauses (k—l—] =1—1 —I—r(t—Q)—l—s, s<t, n:=1t—1 —I—r(t—Q)) :

To = (Ll\/---\/l/t—lvpl)
Ur = (_'Pi \ Lt—1+(i—1)(t—2)+1 V...V Lt—1+i(t—2) \% Pi+1) for1 <:¢<r
g1 = (2Prj1 V Lygr V...V Lyyq) for new atoms Py, ..., Py

Next we show that there is a k-resolution deduction ®§c+1 }m &, where &, is the
formula consisting of all clauses of length & with atoms Ay, ..., A;. Suppose we have a
clause (A7' V...V AZT;) in &,y with oy,...,0541 € {0,1}. Applying Trans—3 to this
clause yields the clauses

(AT'V o VAT PV TRy (ST)

1.y 1 yeeny@ n o O1yeens0
(.. VPN (2P ATV LV AR for new atoms PO

Since ¢t < k there is a k—resolution deduction of (A7' V...V A" vV P71=+7k+1) Hence we
can continue with clauses (Ail V...V AfL" V Pr‘fl"“"s"’sl"“’as) and (ﬂpgl""’g"’sl"“’ss VALV
VAL for by, 6n,e1, ..., e € {0,1}. Note that the second clause has at most ¢
literals. Now we resolve (= Pit-dmetmsay A% vV AL) and (PITdnetsmnl =2y

11

AL, VLV A,lc_l__is) obtaining the clause 3 := (—|P7f1"“’5"’£1"“’55 \% —|P7f1""’5"’51""’Ev—l’l_ss \%
AjL V..oV ASTY). Next we apply 3 to (Af1 V..V Al Poissbnsiensiond for o = ()
and o = 1. Then we have deduced the clause (A V ...V A%V ALV VAT,
Since d1,...,0,,61,...65_1 are arbitrarily chosen we have shown that each clause in &,

can be deduced from @}, by k-resolution. Altogether we obtain a k-resolution refutation

i | |
q)k‘H 'k—Res q)k l'k—Res L.

The last theorem says that the transformation Trans-3 can be emphasized because for the
resulting formula a k-resolution refutation exists if there is a k—resolution refutation of
the original formula. More important is the fact that additional formulas are decidable by
k—resolution

Next we ask how long the clauses in a k-resolution deduction can be if the initial

formula is in (k + 1)-CNF.

Theorem 5.3 For each natural numbers k > 3 and t there exists a formula ® in (k+ 1)—
CNF and a clause (A; V...V Ay), such that

(Z) P W(A]V...\/Ak)

(ii) each k-resolution deduction from ® to (A1 V ...V Ay) contains at least a clause of
length greater than t.

Proof: Let & > 3 and ¢ be given and let (A; V ...V Ay) be a clause with atoms
Ay, ..., Ap. At first we construct a formula @ in (k 4+ 1)-CNF, for which a k-resolution
deduction ¢ }m (A1 V...V Ap) exists.

p = {(BiV..VBu) b U{(=BiVCi(i) V..V O (i) |1 < i <k 41}
U {(=C5() vV O i) VoV Cama(5,0) |1 < i <R+ 1,1 < <k
U U {6 i) VCiGain, i) VeV Coma (o, 0)) |
2<r<t
1< jyin,oiva <k, 1< 4, <k +1}
U ACi,. i) VALY VA [T < i < By 1< <k 41}

{(
U (=G5 i) VALV .V Ay |
L <in,oi <k, 2<j <k 1<i, <k+1}

where C(i1,...,1,) are atoms.

Then there exists a k-resolution deduction ® }A—i (A1 V...V Ag) as follows

Res

12

(By V...V Bip1)
: (=B; VCi(i) V...V Cr(2))

N
(Ch(H)VCi(2) ...V Croi(k+ 1)V Croi (k4 1))

(=C;() vV Ci(,0) V...V Croa(4,1))

e
(Ci(1, 1) vV Ci(1,2) V...V Croi(k = 1,E) V Croa(k — 1,k + 1))
NS

Y
(Ci(1,...,)V (1, 1,2) V.V Croa(k =1,k — 1,k + 1))

e

D (=Cu(in i) VALV LAY
e
S (=Cj(t1, .y t)) VALV . Apy)

e
(A1 V...V Ay)
Obviously, the length of the clause

(G,)V 12V G (b =1, k= Lk + 1))

is greater than .

Now we have to show that there is no k-resolution deduction from ® to (A; V...V Ay) for
which each clause has length less than ¢. Assume there is a k—resolution deduction with
clauses of length less then {. Resolving clauses without atoms A; increases the length of
the deduced clauses step by step. Hence a reduction of the length of generated clauses
seems to be possible only with clauses which contain an atom A;. So we could resolve

(<Cilir, i) V Ci(Gyin, i) VoV Caa (G, o))

with (=C;(i, ..., 1)) VA V...V Ag_y) or (=Cy(iq,...,0) VA2 V...V Ag). The resolvent
is the (k + 1)-clause (=Ci(i1,...,1¢) V A1 V...V Ag). When this clause is resolved with a
clause

(_‘Cil(’ig, e ,Z.t) V Ol<'i1, . .,’it) V...V C]C_1<’l.1, e ,’it>)

in order to match —Cj (i1,...,1), we obtain the clause
(_'Ch (7:2, e ,’I:t> V 01(7:1, e ,’I:t> V Cj—l(ila . -37:7,‘> V Al V...V Ak V C]'+1(7:1, . ,Zt))

Then only a clause with occurrence of the atom Cj (iq,...,4;) can be resolved. If we
proceed we see that the length of the resolvents increases.

13

The next theorem states that the length of clauses in a (k + 1)-resolution refutation
can be bound by k + max(k,t), if ® is in {~CNF and there is a This shows that if ® is in
(k + 1)—CNF and ® }m LI the length of the clauses can be restricted to 2k + 1. Thus
it can happen that in a k-resolution refutation long clauses must be used whereas in a
(k + l)fresolution refutation the length of the clauses can be bound by 2k + 1.

Theorem 5.4 For cach k > 3 and ® in t-CNF there is a (k 4 1)-resolution refutation,
where each clause in the refutation contains al most k + max(k,t) literals, if and only if

® e U
Proof: Let ® be a formula in t-CNF and & }m L. At first we consider subtrees in

the refutation of the form
Qg (07 I Op—q

Lol
¢ = b = B0 = b

where ¢ is a t-clause in ®, ag,...a,; are k-clauses and 8, = (L1 V ...V L;) is a
k-clause. The subtree can be considered as an input-resolution for the formula ¢ =
{6, a0, ..., an1} with ¢ b Ba.

Next we form the formula ¢[L;/0,..., L;/0], that means we remove each clause with
literals = 1; and delete each occurrence of the literals L; in the clauses in ¢.

Then there is an input-resolution refutation ¢[L1/0, ..., Ly /0] }m LI and therefore
a unit-resolution refutation ¢[L;/0,..., L/0] —=—po L. To each clause occurring in
the unit-refutation we add the removed literals ;. Hence we obtain ¢ }m (3, and

each clause in the deduction has at most length & + max(k,t), because within the unit-
refutation the length of the clause is reduced in each resolution step.

Since a k-resolution refutation tree of ® }m U can be divided into subtrees as con-
sidered above, we have shown that there is a (k‘ + 1)7resolution refutation with clauses of

length less or equal to k& + max(k,).
[|

By theorems 5.2 and 5.4 we see that for example if a 3-resolution refutation ® j|z—5— U

exists we can transform @ into ®* in 3-CNF and then find a 4-resolution refutation
®? | U with at most O(length(®)®) different clauses of length less or equal k. This
gives an upper bound for the 4-resolution steps we have to perform.

The procedure can not be used to decide whether a 3-resolution refutation ® |z—%— U
exists because the transformation Trans-3may lead to formulas refutable with 3-resolution,

whereas for the original formula no 3-resolution refutation exists.

6 Extended k-Resolution

A simple form of an extension of resolution is to substitute a disjunction (L; V...V L,,)
by a new atom y and to add the equivalence y ¢+ (Ly V...V L,,) to the formula. Since we
are dealing with formulas in CNF, we have to add (-yV Ly V...V L,,) and (y vV —L;) for
1 <1 < m. Then the resulting formula is equivalent with respect to satisfiability to the
original formula. Such extensions are investigated for example in [2],[6] and seem to be very

14

powerful because up to now no formulas are known, for which resolution combined with
such an extension has minimal proofs of exponential length, whereas for resolution Haken
[4] proved an exponential lower bound for the prooflength of the pigeon hole formulas.

Definition: (Extension Rule)
Let @ be a formula in CNF, L; ... L,, literals in literalset(®) and = a new atom, then we

define
Bp=®U{(~a VIV V L), (VL) (VL)

The extension rule is denoted by ® |=— ®,. The formula ® is satisfiable if and only if
®, is satisfiable.

Combining the extension rule and the resolution rule we define the extended resolution.

on: 1 e - 1 . 1
Definition: |z—5— is either the resolution rule |z — or the extension rule |z=— .
ls—5—— denotes the transitive and reflexive closure. |=—%— is either a k-resolution

or an extension step.

It is well-known that extended resolution is complete and sound. We shall show that
in combination with the extension rule 3-resolution is complete too. The idea of the prove
is quite simple because each resolution step can be simulated by a sequence of extensions
and applications of 3-resolution.

Lemma 6.1 (Simulation)
Let (LyV ...V L,V L)and (K V...V K,V —L) be clauses with n,m > 2 then
(Ll\/\/Ln\/L), ([x"l\/...V[&’mV—'L) }m (Ll\/\/[/m\/[\rl\/\/[\rm)

Proof: We first apply the extension rule to (L1 V...V L,V L). Without loss of generality

we assume n is even. Let yi,... 79711/2 be new variables then we introduce the clauses
(my VIV L) (myaVIaVLe) oo (7Y V Laot V L)
(1 V —L1) (yaV=Ls) oo (YpjpV Lnet)
(y, V —Ly) (yy V —Ly) e (Ynja V 2 Ln).
Then we obtain the clause (y; V...V y}l/2 V L) in applying resolution to the 2-clauses and
(L1 V...V L,V L). We again assume n/2 is even and introduce new variables y7, ... ,y§/4
and extend the formula
YtV V) oo (TYna VYo V Yngo)
(i V —y1) s (92/4 Vv _‘%11/2—1)
(yiV-y) . (Ynja V "Yps2)-

Then we obtain by 2-resolution the clause (y; V ...V y2/4 V L). For sake of simplicity we

suppose n = 2!, Then after { — 1 steps we obtain (y;™' Vy3 'V L). We proceed analogously
with the clause (K7 V...V K,, V—=L) and m = 2* and obtain the clause (zf='V 25=" v = L).
Now it remains to apply the 3-resolution to the constructed clauses in order to deduce the
clause (L1 V...V L, VK V...VK,). We first resolve (y;™'Vys~' VL) and (zf_l Vv zht V-L)
to get (yi~' VsV Y, 25_1) and continue with the introduced clauses. Finally we
obtain our desired clause.

15

As an immediate consequence we achieve

Theorem 6.2 A formula ® in CNF is unsatisfiable if and only if ® |m——5— U.

FE—-3—Res

If we restrict ourselves to extended 2-resolution then we see that this resolution is
essential more powerful than 2-resolution because for each formula ®, which consists
of all possible clauses of length k& with the variables A;,..., Ag, there is a refutation
® |———=— L. The idea is to abbreviate (A7' V...V A7) by y. That means

(AT'V ... VAP lemgm (Cy VAT V. VAT (yV —AT) for 1 <i <k,

(AT VL VATV SAR) S (Y VAT e (9 VAR
Analogously (y V —|A}c—5k) can be deduced. We first resolve (yV =A%) and (yV —|A}C_E’“)
obtaining the clause (y). Then we apply (y) to (myV AT V...V A7) and get (A7 V
... VAP, Hence we can deduce ®;_; by E-2-resolution. By repeating this procedure
we finally obtain ®, for which a 2-resolution refutation exists.

7 Conclusion

We have presented results regarding k-resolution. A possible resolution strategy for decid-
ing whether a formula in CNF is satisfiable is to prefer a unit-resolution step or generally
short clauses. Tt has been proved that the speed-up by using resolution is bound by /# if
the shortest unit—resolution refutation needs ¢ steps. A first approach for the 2-resolution
subproblem has been shown and more questions have arisen than we have answered: For
example, is there an algorithm for 3-resolution which has polynomial time complexity or
can we find a better upper bound than O(length(®)*) in the 2-resolution case?

References

[1] Dowling, W. F., Gallier, I.H.: Linear-time Algorithms for Testing the Satisfiability of
Propositional Horn Formulas, 1. Logic Programming 3 (1984), pp. 267-284

(2] Eder, E.: Relative Complezities of First Order Calculi, Vieweg 1992

[3] Gallo, G., Scutella, M.G.: Polynomially Satisfiability Problems, Information Pro-
cessing Letters 29 (1988), pp. 267284

[4] Haken A.: The Intractability of Resolution, TCS 39 (1985), pp. 297-308

[5] Kleine Bning, H.: On Generalized Horn Formulas and k-Resolution, TCS 116 (1993),
pp- 405-413

[6] Tseitin, G.S.: On the Complezity of Derivations in the Propositional Calculus, in A.QO.
Slisenko (ed.): Structures in Constructive Mathematics and Mathematical Logic, Part.

IT (1968), pp. 115-125

16

[7] Wos, L., Carson, D., Robinson, G.A.: The Unit Preference Strategy in Theorem Prov-
ing, AFIPS Conf. Proc. 26, Spantau Books, Washington D.C.

[8] Yamasaki, S., Doshita, S.: The Satisfiability Problem for a Class Consisting of Horn
Sentences and Some None-Horn Sentences in Propositional Logic, Information and

Control 59 (1983), pp. 1-12

17

