
1

Tuning evaluation functions by
maximizing concordance

D. Gomboc, M. Buro, T. A. Marsland

Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada

{ dave, mburo, tony}@cs.ualberta.ca, http://www.cs.ualberta.ca/~games/

Abstract
Heuristic search effectiveness depends directly upon the quality of heuristic evaluations of states
in a search space. Given the large amount of research effort devoted to computer chess
throughout the past half-century, insufficient attention has been paid to the issue of determining
if a proposed change to an evaluation function is beneficial.

We argue that the mapping of an evaluation function from chess positions to heuristic values is
of ordinal, but not interval, scale. We identify a robust metric suitable for assessing the quality
of an evaluation function, and present a novel method for computing this metric efficientl y.
Finally, we apply an empirical gradient-ascent procedure, also of our design, over this metric to
optimize feature weights for the evaluation function of a computer-chess program. Our
experiments demonstrate that evaluation function weights tuned in this manner give equivalent
performance to hand-tuned weights.

Key words: ordinal correlation, Kendall’s � (tau), heuristic evaluation function, gradient ascent,
partial-sum transform, heuristic search, computer chess

1 Introduction

A half-century of research in computer chess and similar two-person, zero-sum, perfect-
information games has yielded an array of heuristic search techniques, primarily dealing
with how to search game trees efficiently. It is now clear to the AI community that
search is an extremely effective way of harnessing computational power. The thrust of
research in this area has been guided by the simple observation that as a program
searches more deeply, the decisions it makes continue to improve [49].

It is nonetheless surprising how often the role of the static evaluation function is
overlooked or ignored. Heuristic search effectiveness depends directly upon the quality
of heuristic evaluations of states in the search space. Ultimately, this task falls to the
evaluation function to fulfil. It is only in recent years that the scientific community has
begun to attack this problem with vigour. Nonetheless, it cannot be said that our
understanding of evaluation functions is even nearly as thoroughly developed as that of
tree searching. This work is a step towards redressing that deficit.

Inspiration for this research came while reflecting on how evaluation functions for
today’s computer-chess programs are usually developed. Typically, they are refined over
many years, based upon careful observation of their performance. During this time,
engine authors will tweak feature weights repeatedly by hand in search of a proper

2

balance between terms. This ad hoc process is used because the principal way to
measure the utility of changes to a program is to play many games against other
programs and interpret the results. The process of evaluation-function development
would be considerably assisted by the presence of a metric that could reliably indicate a
tuning improvement.

Consideration was also given to harnessing the great deal of recorded experience of
human chess for developing an evaluation function for computer chess. Researchers
have tried to make their machines play designated moves from test positions, but we
focus on judgements about the relative worth of positions, reasoning that if these are
correct then strong moves will be selected by the search as a consequence.

The primary objective of this research is to identify a metric by which the quality of an
evaluation function may be directly measured. For this to be convincingly achieved, we
must validate this metric by showing that higher values correspond to superior weight
vectors. To this end, we introduce an estimated gradient-ascent procedure, and apply it
to tune eleven important features of a third-party chess evaluation function.

In Section 2, we begin with a summary of prior work in machine learning in chess-like
games as it pertains to evaluation-function analysis and optimization. This is followed
in Section 3 by a brief, but formal, introduction to measurement theory, accompanied by
an argument for the application of ordinal methods to the analysis of evaluation
functions. A novel, efficient implementation of the ordinal metric known as Kendall’s �
is described in Section 4; also indicated is how to apply it to measure the quality of an
evaluation function. In Section 5, we present an estimated gradient-ascent algorithm by
which feature weights may be optimized, and the infrastructure created to distribute its
computation. Issues touching upon our specific experiments are discussed in Section 6;
experimental results demonstrating the util ity of ordinal correlation with respect to
evaluation-function tuning are provided in Section 7. After drawing some conclusions in
Section 8, we remark upon further plausible investigations.

2 Pr ior work on machine learning in chess-like games

Here we touch upon specific issues regarding training methods for static evaluation
functions. For a fuller review of machine learning in games, the reader is referred to
Fürnkranz’s survey [14].

2.1 Feature definition and selection

The problem of determining which features ought to be available for use within an
evaluation function is perhaps the most difficult problem in machine learning in games.
Identification and selection of features for use within an evaluation function has
primarily been performed by humans. Utgoff is actively involved in researching
automated feature construction [13, 52, 53, 54, 56], typically using Tic-Tac-Toe as a test
bed. Utgoff [55] discusses in depth the automated construction of features for game
playing. He argues for incremental learning of layers of features, the ability to train
particular features in isolation, and tools for the specification and refactoring of features.

3

Hartmann [17, 18, 19] developed the “Dap Tap” to determine the relative influence of
various evaluation feature categories, or notions, on the outcome of chess games. Using
62,965 positions from grandmaster tournament and match games, he found that “ the
most important notions yield a clear difference between winners and losers of the
games” . Unsurprisingly, the notion of material was predominant; the combination of
other notions contributes roughly the same proportion to the win as material did alone.
He further concluded that the threshold for one side to possess a decisive advantage is
1.5 pawns.

Kaneko, Yamaguchi, and Kawai [22] automatically generated and sieved through
patterns, given only the logical specifications of Othello and a set of training positions.
The resulting evaluation function was comparable in accuracy (though not in speed of
execution) to that developed by Buro [8].

A common property of Tic-Tac-Toe and Othello that makes them particularly amenable
to feature discovery is that conjunctions of adjacent atomic board features frequently
yield useful information. This area of research requires further attention.

2.2 Feature weighting

Given a decision as to what features to include, one must then decide upon their relative
priority. We begin with unsupervised learning, following the historical precedent in
games, and follow with a discussion of supervised learning methods. It is worth noting
that Utgoff and Clouse [51] distinguish between state-preference learning and temporal-
difference learning, and show how to integrate the two into a single learning procedure.
They demonstrate using the Towers of Hanoi problem that the combination is more
effective than one alone.

2.2.1 Unsupervised learning

Procedures within the rubric of reinforcement learning rely on the difference between
the heuristic value of states and the corresponding (possibly non-heuristic) values of
actual or predicted future states to indicate progress. Assuming that any game-terminal
positions encountered are properly assessed (trivial in practice), lower differences imply
that the evaluation function is more self-consistent, and that the assessments made are
more accurate.

The chief issue to be tackled with this approach is the credit assignment problem: what,
specifically, is responsible for differences detected? While some blame may lie with the
initial heuristic evaluation, blame may also lie with the later, presumably more accurate
evaluation. Where more than one ply exists between the two (a common occurrence, as
frequently either the result of the game or the heuristic evaluation at the leaf of the
principal variation searched is used) the opportunities for error multiply. The TD()
technique [45] attempts to solve this problem by distributing the credit assignment
amongst states in an exponentially decaying manner. By training iteratively,
responsibility ends up distributed where it is thought to belong.

4

The precursor of modern machine learning in games is the work done by Samuel [37,
38]. By fixing the value for a checker advantage, while letting other weights float, he
iteratively tuned the weights of evaluation function features so that the assessments of
predecessor positions became more similar to the assessments of successor positions.
Samuel’s work was pioneering not just in the realm of games but for machine learning
as a whole. Two decades passed before other game programmers took up the challenge.

Tesauro [47] trained his backgammon evaluator via temporal-difference learning. After
300,000 self-play games, the program reached strong amateur level. Subsequent
versions also contained hidden units representing specialized backgammon knowledge
and used expectimax, a variant of minimax search that includes chance nodes. TD-
GAMMON is now a world-class backgammon player.

Beal and Smith [4] applied temporal-difference learning to determine piece values for a
chess program that included material, but not positional, terms. Program versions, using
weights resulting from five randomized self-play learning trials, each won a match
versus a sixth program version that used the conventional weights given in most
introductory chess texts. They have since extended their reach to include piece-square
tables for chess [5] and piece values for Shogi [6].

Baxter, Tridgell, and Weaver (1998) named Beal and Smith’s application of temporal-
difference learning to the leaves of the principal variations as TDLeaf(), and used it to
learn feature weights for their program KNIGHTCAP. Through online play against
humans, KNIGHTCAP’s skill level improved from beginner to strong master. The authors
credit this to: the guidance given to the learner by the varying strength of its pool of
opponents, which improved as it did; the exploration of the state space forced by
stronger opponents who took advantage of KNIGHTCAP’s mistakes; the initialization of
material values to reasonable settings, locating KNIGHTCAP’s weight vector “close in
parameter space to many far superior parameter settings”.

Schaeffer, Hlynka, and Jussila [40] applied temporal-difference learning to CHINOOK,
the World Man-Machine Checkers Champion, showing that this algorithm was able to
learn feature weights that performed as well as CHINOOK’s hand-tuned weights. They
also showed that, to achieve best results, the program should be trained using search
effort equal to what the program will typically use during play.

2.2.2 Supervised learning

Any method of improving an evaluation function must include a way to determine
whether progress is being made. In cases where particular moves are sought, a simple
enumeration of the number of ‘ correct’ moves selected is the criteria employed. This
metric can be problematic because frequently no single move is clearly best in a
position. Nonetheless, variations on this method have been attempted.

Marsland [26] investigated a variety of cost functions suitable for optimizing values and
rankings assigned to moves for the purposes of move selection and move ordering. He
found tuning to force recommended moves into relatively high positions to be effective,

5

but attempting to force desired moves to be preferred over all alternatives was
counterproductive.

Tesauro [46] devised a neural network structure appropriate for learning an evaluation
function for backgammon, and compared states resulting from moves actually played
against alternative states resulting from moves not chosen. “Comparison training” was
shown to outperform an earlier system that compared states before and states after a
move was played.

Tesauro [48] applied comparison training to a database of expert positions to
demonstrate that king safety terms had been underweighted in DEEP BLUE’s evaluation
function in 1996. The weights were raised for the 1997 rematch between Garry
Kasparov and DEEP BLUE. Subsequent analysis demonstrated the importance of this
change.

A popular approach is to solve for a regression line across the data that minimizes the
squared error of the data. While this may be done by solving a set of linear equations,
typically an iterative process known as gradient descent (a.k.a. hill climbing or gradient
ascent) is applied. The partial derivatives with respect to the weights are set to zero, and
the parameters are solved for via an iterative procedure. The error function is quadratic,
so there will be a single, global minimum to which all gradients will lead. Solving
regression curves (non-linear regressions) by gradient descent is also possible, but in
these cases, converging to a global minimum may be considerably more difficult.

The DEEP THOUGHT (later DEEP BLUE) team applied least squares fitting to the moves of
the winners of 868 grandmaster games to tune their evaluation-function parameters as
early as 1987 [1, 2, 20, 32]. They found that tuning to maximize agreement between
their program’s preferred choice of move and the grandmaster’s was “not really the
same thing” as playing more strongly. Amongst other interesting observations, they
discovered that conducting deeper searches while tuning led to superior weight vectors
being reached.

Buro [7] estimated feature weights by performing logistic regression on win/loss/draw-
classified Othello positions. The underlying log-linear model is well suited for
constructing evaluation functions for approximating winning probabilities. In that
application, it was also shown that the evaluation function based on logistic regression
could perform better than those based on linear and quadratic discriminant functions.

Buro [8] used linear regression and positions labelled with the final disc differential of
Othello positions to optimize the weights of thousands of binary pattern features. This
approach yields significantly better performance than his 1995 work [7].

Buro’s work is an example of a supervised learning approach where heuristic
assessments are directly compared with more informed assessments. We expand the
applicability of this approach to include situations where least squares fitting would be
inappropriate.

6

2.3 Miscellaneous

Levinson and Snyder [24] created MORPH, a chess program designed in a manner
consistent with cognitive models, except that look-ahead search was strictly prohibited.
It generalizes attack and defence relationships between chess pieces and squares
adjacent to the kings, applying various machine-learning techniques for pattern
generation, deletion, and weight tuning. MORPH learned to value material appropriately
and play reasonable moves from the opening position of chess.

Van der Meulen [27] provides algorithms for selecting a weight vector that will yield the
desired move, for partitioning a set of positions into groups that share such weight
vectors, and for labelling new positions as a member of one of the available groups.

Evolutionary methods have also been applied to the problem. Chellapilla and Fogel [9,
10] evolved intermediate-strength checkers players by evolving weights for two neural
network designs. Kendall and Whitwell [23] did likewise in chess, though they used
predefined features instead. Mysliwietz [28] also optimized chess evaluation weights
using a genetic algorithm.

Genetic algorithms maintain a constant-sized pool of candidate evaluation functions,
determine their fitness, and use the fittest elements to generate offspring by crossover
and mutation operators. Usually, a gradient-descent approach will converge significantly
more quickly than a genetic algorithm when the objective function is smooth. Specifics
of our application suggest that genetic algorithms may nonetheless be appropriate for
our problem. We discuss this issue in Subsection 8.1.

3 Measurement theory

Sarle [39] states: “Mathematical statistics is concerned with the connection between
inference and data. Measurement theory is concerned with the connection between data
and reality. Both statistical theory and measurement theory are necessary to make
inferences about reality.” We are endeavouring to identify a direct way to measure the
quality of an evaluation function, so a familiarity with measurement theory is important.

3.1 Statistical scale classifications

The four standard statistical scale classifications in common use today to classify
unidimensional metrics originated with Stevens [42, 43]. He defined the following,
increasingly restrictive categories of relations.

A relation R(x, y) is nominal when R is a one-to-one function. Let function f be such a
relation that is defined over the real numbers: y = f(x). Then, f is nominal if and only if

)()(: jfifjiji =⇔=∀∀ (3.1)

One common example of a nominal relation is the relationship between individuals of a
sports team and their jersey numbers.

7

Additionally, f is ordinal when f is strictly monotonic: as the value of x increases, either
y always increases or y always decreases. We will assume (without loss of generality, as
we can negate f if necessary) that y always increases. Formally:

)()(: jfifjiji <⇔<∀∀ (3.2)

The relationship of the standard five responses “strongly disagree” , “disagree”,
“neutral” , “agree”, and “strongly agree” to many survey questions is ordinal. The
mapping of chess positions to the possible assessments given in Table 1 in Subsection
3.3 is also ordinal.

Additionally, f is of interval scale when f is affine:

)]()([: 0 jfifcjijic −=−∀∀>∃ (3.3)

The difference between two elements is now meaningful. Hence, subtraction and
addition are now well-defined operations. Time is of interval scale.

Additionally, f is of ratio scale when the zero point is fixed:

)(

)(
:0)(,0

jf

if

j

i
jfji =≠≠∀∀ (3.4)

The ratio between two elements is now meaningful. Hence, division and multiplication
are now well-defined operations. Temperature is an example of a ratio scale: the zero
point is absolute zero, which is 0 kelvins.

These categories are by no means the only plausible ones. Stevens himself recognized a
log-interval scale classification [44], to which the Richter and decibel scales belong. It
has a fixed zero, and a log-linear relationship. Every log-interval scale is ordinal, and
every ratio scale is log-interval, but interval and log-interval are incompatible. The
absolute scale is a specialization of the ratio scale, where not only the zero point but
also the one point is fixed. This scale is used for representing probabilities and for
counting.

������� �	
���� �������

��������	���

�����

����	���

Figure 1. Partial Ordering of Statistical Scale Classifications

Figure 1 demonstrates the inheritance relationships between the various classifications.
It is to be understood that this classification system is open to extension, and that it does
not encapsulate all interesting properties of functions.

8

3.2 Admissible transformations

Transformations are deemed admissible (Stevens used “permissible”) when they
conserve all relevant information. For example, converting from kelvins to degrees
Celsius (°C) by applying f(x) = x + 273.16 would not be considered admissible, because
the zero point would not be preserved. Such a transformation is not prohibited per se,
but it does mean that usages involving ratios would no longer be justified. Three
hundred kelvins is actually twice as hot as one hundred fifty kelvins. Clearly, then,
26.84°C cannot be twice as hot as 13.42°C.

The transformations deemed admissible for any category are those that retain the
invariants specified by (3.1) through (3.4). A transformation is admissible with respect
to the nominal scale if and only if it is injective. For the ordinal scale, the preservation
of order is also required. For the interval scale, equivalent differences must remain
equivalent, so only affine transformations are permitted (g(x) = af(x)+b, a>0).
Admissibility with respect to the ratio scale also requires the zero point to remain fixed
(b = 0 in the prior equation).

Stevens argued that it is not justified to draw inferences about reality based upon non-
admissible transformations of data, because otherwise the conclusions that could be
drawn would vary depending upon the particulars of the transformation applied. “ In
general, the more unrestricted the permissible transformations, the more restricted the
statistics. Thus, nearly all statistics are applicable to measurements made on ratio scales,
but only a very limited group of statistics may be applied to measurements made on
nominal scales” [41].

Much discussion of this highly controversial position has taken place. Tukey opined that
in science, the “ultimate standard of validity is an agreed-upon sort of logical
consistency and provability” [50], and that this is incompatible with an axiomatic theory
of measurement, which is purely mathematical. Velleman and Wilkinson argue that the
classifications themselves are misleading [57]. It is important to note that the notion of
admissibility is relative to the analysis being performed rather than purely data-centric:
it is perfectly valid to convert from kelvins to degrees Celsius, so long as one does not
then draw conclusions based upon the ratios of temperatures denoted in degrees Celsius.
Stevens’ classifications remain in widespread use, though in particular his stricture
against drawing conclusions based upon statistical procedures that require interval-scale
data applied to data with only ordinal-scale justification is frequently ignored.

3.3 Relevance to heuristic evaluation functions for minimax search

Utgoff and Clouse [51] comment: “Whenever one infers, or is informed correctly, that
state A is preferable to state B, one has obtained information regarding the slope for part
of a correct evaluation function. Any surface that has the correct sign for the slope
between every pair of points is a perfect evaluation function. An infinite number of such
evaluation functions exist, under the ordinary assumption that state preference is
transitive.”

9

Throughout the search process of the minimax algorithm for game-tree search [41], and
all its derivatives [25, 34], a single question is repeatedly asked: “ Is position A better
than position B?” Not “How much better?” , but simply “ Is it better?” . In minimax,
instead of propagating values one could propagate the positions instead, and, as humans
do, choose between them directly without using values as an intermediary. This shows
that we only need pairwise comparisons that tell us whether position A is better than
position B.

The essence of a heuristic evaluation function is to make educated guesses regarding the
likelihood of successful outcomes from arbitrary states. This is somewhat obscured in
chess by the tendency to use a pawn as the unit by which advantage is measured, a habit
encouraged by the high correlation between material advantage and likelihood of
success inherent in the game.

The implicit mapping between a typical evaluation scoring system (range: [-32767,
32767], where the worth of a pawn is represented by 100) and the probability of success
(range: [0, 1]), maintains the ordinal invariant of linear ordering, though not the interval
invariant of equality of differences. This is interesting insofar as typically terms will be
added and subtracted during the assessment of a position by a computer program,
operations that according to Stevens require interval-scale justification. Furthermore,
the difference between scores is frequently used as criteria to apply numerous search
techniques (e.g., aspiration windows, lazy evaluation, futility pruning). How can we
reconcile his theory with practice?

Firstly, a heuristic search is exactly that: heuristic. Many of these techniques encompass
a trade-off of accuracy for speed, with the difference threshold set empirically. Thus, to
some extent, compensation for the underlying ordinal nature of scores returned by the
evaluation function is already present.

Secondly, it can be argued that the region between -200 and 200, where the majority of
assessments that will influence the outcome of the game lie, is in practice nearly one of
interval scale. This means that decisions made based on a difference threshold while the
game is roughly balanced are relatively less likely to be faulty in important situations.

Finally, one may choose to agree with Stevens’ detractors, and indeed, many social
scientists compute means on ordinal data frequently without much ado.

Does this mean that we should ignore the underlying ordinality of the problem? No.
Everything of interval scale is of ordinal scale, while the converse is false. A metric
capable of handling ordinal data is readily applicable to data that meets a more stringent
qualification. In contrast, the application of a metric suited for interval scale data to data
of ordinal scale is, at least to researchers who agree with Stevens, suspect, and requires
justification. Such justification might take the form of the ability to predict and validate
predictions that depend on the proposed interval nature of the variable.

10

Table 1 depicts seven of the symbols used by contemporary chess literature to represent
judgements regarding the degree to which a position is favourable to one player or the
other in a language-agnostic manner.1 Also provided are their corresponding English
definitions as provided by Chess Informant [36]. 2 We have ordered them by White’s
increasing preference, so the categories are monotonically increasing, however, it would
be nonsense to say that the difference between �� and � is three times that of the
difference between � and �. Therefore, they are of ordinal scale. It would be possible to
label these with the numbers 1 through 7, and proceed from there as if they were of
interval scale, but at least according to Stevens, doing so would require justification.
Fortunately, it is unnecessary, as we will show in the next section.

Table 1. Symbols for Chess Position Assessment

Symbol Meaning

��� Black has a decisive advantage
�� Black has the upper hand
�� Black stands slightly better
�� even
�� White stands slightly better
�� White has the upper hand
��� White has a decisive advantage

4 Kendall’s �

Concordance, or agreement, occurs where items are ranked in the same order. Kendall’s
� measures the degree of similarity of two orderings. After defining this metric, we will
elaborate on a novel, efficient implementation of � , provide a worked example and
complexity analysis, introduce a generalization of � , and contrast � with alternative
correlation methods.

4.1 Definition

Given a set of m items I = (i1, i2, …, im), let X = (x1, x2, …, xm) represent relative
preferences for I by analyst ae, and Y = (y1, y2, …, ym) represent relative preferences for
I by analyst ao. Take any two pairs, (xi, yi) and (xk, yk), and compare both the x values
and the y values. Table 2 defines the relationship between those pairs.

1 Two other assessment symbols, 	 (the position is unclear) and
 (a player has positional compensation
for a material deficit) are also frequently encountered. Unfortunately, the usage of these two symbols is
not consistent throughout chess literature. Accordingly, we ignore positions labelled with these
assessments, but see Subsection 8.2.
2 Readers who have difficulty obtaining a volume of Chess Informant may find sample pages from Vol.
59, including these definitions, in Gomboc’s M.Sc. thesis [14].

11

Table 2. Relationships between Ordered Pairs

relationship
between xi and xk

relationship
between yi and yk

relationship between
(xi, xk) and (yi, yk)

xi < xk yi < yk concordant
xi < xk yi > yk discordant
xi > xk yi < yk discordant
xi > xk yi > yk concordant
xi = xk yi

�
 yk extra y-pair

xi
�
 xk yi = yk extra x-pair

xi = xk yi = yk duplicate pair

n, the total number of distinct pairs of positions, and therefore also the total number of
comparisons made, is straightforward to compute:

)1(1 2
1

1

1 1

−==��
−

= +=

mmn
m

i

m

ik

 (4.1)

Let S+ (“S-positive”) be the number of concordant pairs:

 ��
−

= +=

+

�
�

�
�

�

>>
<<

=
1

1 1
otherwise ,0

 and ,1

 and ,1

m

i

m

ik
kiki

kiki

yyxx

yyxx

S (4.2)

Let S– (“S-negative”) be the number of discordant pairs:

 ��
−

= +=

−

�
�

�
�

�

<>
><

=
1

1 1
otherwise ,0

 and ,1

 and ,1

m

i

m

ik
kiki

kiki

yyxx

yyxx

S (4.3)

Then � , which we will also refer to as the concordance, is given by:

n

SS −+ −=τ (4.4)

Possible concordance values range from +1, representing complete agreement in
ordering, to -1, representing complete disagreement in ordering. Whenever extra or
duplicate pairs exist, the values of +1 and -1 are not achievable.

Cliff [11] provides a more detailed exposition of Kendall’s � , discussing variations
thereof that optionally disregard extra and duplicate pairs. Cliff labels what we call � as
� a, and uses it most often, noting that it has the simplest interpretation of the lot.

4.2 Matrix representation of preference data

In typical data sets, pairs of preferences will occur multiple times. We can compact all
such pairs together, which allows us to process them in a single step, thereby
substantially reducing the work required to compute S+ and S–.

Let Sx be the set of preferences { x1, x2, …, xm} , and Sy be the set of preferences
{y1, y2, …, ym} . Let U = |Sx| and V=|Sy|. Let),...,,(21 UeeeE = such that xi Sei ∈∀ : and

12

ei < ei+1. Similarly, let),...,,(21 VoooO = such that yi Soi ∈∀ : and oi < oi+1. We define

matrix A of dimensions U by V such that

 �
= �
�
� ==

=
m

i

icir
cr

yexe
A

1 otherwise 0,

 and ,1
 (4.5)

A’s definition ensures that there is at least one non-zero entry in every row and column.
Let),(

),(
wz
yxA denote the sum of the cells of matrix A within rows x through z and columns

y through w:

 ��
= =

=
z

xi

w

yk
ik

wz
yx AA),(
),((4.6)

Then, the contribution towards S+ of the single cell Axy is

 xy
VU

yxxy AAS),(
)1,1(++

+ =∆ (4.7)

and S+ may be reformulated as

 ��
= =

++ ∆=
U

x

V

y
xySS

1 1

 (4.8)

Similarly,

 xy
Vx

yxy AAS),1(
)1,1(

−
−

− =∆ (4.9)

 ��
= =

−− ∆=
U

x

V

y
xySS

1 1

 (4.10)

Numerical Recipes in C [35] is a standard reference to this algorithm. However, we
have reservations about the manner in which their sample implementation handles
duplicate pairs.

4.3 Partial-sum transform

The naïve algorithm to compute Kendall’s � computes the number of concordant and
discordant pairs for each cell by looping over the preferences data directly; the
straightforward algorithm loops over the cells in the matrix. However, due to the
monotone ordering of both axes, the computation is replete with overlapping
subproblems of optimal substructure. It is this fact that we exploit.

We introduce auxiliary matrix BR, which has the same dimensions as A.3 Each cell in
BR is assigned the value corresponding to the sum of the cells in A that are either on,
below, or to the right of the corresponding cell in A.

3 For convenience, we define BR(x+1)y to equal 0 when x = U, and BRx(y+1) to equal 0 when y = V.
Nonetheless, space need not be allocated for such cells. Similarly, BL(x-1)y = 0 when x = 1, and BLx(y+1) = 0
when y = V.

13

)1)(1()1()1(

),(
),(++++ −++== yxyxyxxyxy

VU
yx BRBRBRABRA (4.11)

Similarly, auxiliary matrix BL holds in each cell the sum of the cells in A that are either
on, below, or to the left of the corresponding cell in A.

)1)(1()1()1(
),(

),1(+−−+ −++== yxyxyxxyxy
Vx
y BLBLBLABLA (4.12)

BR and BL are both instances of partial-sum transforms of A. The sum of an arbitrary
rectangular block of cells of the original matrix is conveniently retrieved from such a
transformed version.4 For instance:

 yxyxy BRBRBL)1(1 +−= (4.13)

)1)(1()1()1(++++ +−−= yxyxyxxyxy BRBRBRBRA (4.14)

(4.13) lets us compute BL from BR in constant time as necessary, so we need not
construct both BR and BL. Additionally, we can construct BR in-place by overwriting A,
even without recourse to (4.14), reducing the storage overhead of computing Kendall’s �
in this manner rather than from the original matrix representation to zero.

The single dimension case of the partial-sum transform is well known, e.g.,
unidimensional versions of (4.11) and (4.14) are provided by the partial_sum and
adjacent_difference algorithms in the C++ Standard Library. The partial-sum transform
is readily applied to matrices of higher dimension also. However, each additional
dimension involved doubles the number of terms required on the right-side expression
of (4.14) to maintain the equality.

4.4 Worked example with complexity aqnalysis

Here we provide sample data and work through the mathematics of the previous three
subsections.

4.4.1 Definition

We will use 14 states for our example, therefore m = 14. X and Y represent the
preference data for the 14 states, for which see Table 3. We could pre-order the positions
so that they are ordered by Y, but in the interest of clarity, we will leave this for a later
step.

Table 3. Sample preference data

X = (x1, x2, …, xm) -0.1 -0.4 0.9 -1.2 0.0 -0.1 0.6 0.0 -0.1 -0.4 2.4 0.0 0.6 0.6
Y = (y1, y2, …, ym) � � �� �� � � � � �� � � � �� �

From (4.1), we know that n, the total number of distinct pairs of positions, is 91. We can
now loop through the data, accumulating S+ and S–. This process is depicted in Table 4.

4 This fact was brought to our attention in a personal communication by Juraj Pivovarov.

14

For this data set, S+ and S– are 51 and 25 respectively, and � = 0.2857. The running time
of this algorithm is � (m2).

4.4.2 Matrix representation of preference data

Based on the definitions of X and Y, Sy = {�, �, ��, ��, �, �, �} , Sx = { -0.4, -0.1, 2.4, -
1.2, 0.0, 0.6, -0.2 } , and V = U = 7. Then O = (��, �, �, �, �, �, ��) and E = (-1.2, -
0.4, -0.1, 0.0, 0.6, 0.9, 2.4). The purpose of this exercise is to sort the preferences in
ascending order, with duplicates removed, so that matrix A, as shown in Table 5, has its
rows and columns in order of White’s increasing preference, and has no empty rows or
columns. If the axes were not sorted, then dynamic programming would not be
applicable.

In Table 5 and subsequent data preference tables, cells that would contain zero have
been left blank.

The sorting takes time � (m log m), while the duplicate entry removal takes time � (m).
Zeroing the memory for the matrix takes time � (UV), then populating it takes time
� (m). Therefore, the time complexity of constructing A is � (m log m + UV).
Computing (4.6) takes time � (UV), because each cell in),(

),(
wz
yxA is addressed to perform

the summations, so computing S+ and S– from A via (4.8) and (4.10) takes time
� (U2V2). Therefore, computing S+ and S– from the preference data takes time � (m log
m + U2V2).

15

Table 4. Sample Preference Data: Relationships Between Ordered Pairs

Items Compared (yi, xi) (yk, xk) yi R yk xi R xk (xi, xk) R (yi, yk) � S+
� � S–

�

1 and 2 �, -0.4 < > discordant 0 1
1 and 3 ��, 0.9 < < concordant 1 0
1 and 4 ��, -1.2 > > concordant 1 0
1 and 5 �, 0.0 < < concordant 1 0
1 and 6 �, -0.1� > = extra y-pair 0 0
1 and 7 �, 0.6 < < concordant 1 0
1 and 8 �, 0.0� < < concordant 1 0
1 and 9 ��, -0.1 < = extra y-pair 0 0
1 and 10 �, -0.4� = > extra x-pair 0 0
1 and 11 �, 2.4 < < concordant 1 0
1 and 12 �, 0.0� > < discordant 0 1
1 and 13 ��, 0.6 > < discordant 0 1
1 and 14

�, -0.1

�, 0.6 < < concordant 1 0
2 and 3 ��, 0.9 < < concordant 1 0
2 and 4 ��, -1.2 > > concordant 1 0
2 and 5 �, 0.0 > < discordant 0 1
2 and 6 �, -0.1� > < discordant 0 1
2 and 7 �, 0.6 > < discordant 0 1
2 and 8 �, 0.0� > < discordant 0 1
2 and 9 ��, -0.1 < < concordant 1 0
2 and 10 �, -0.4� > = extra y-pair 0 0
2 and 11 �, 2.4 = < extra x-pair 0 0
2 and 12 �, 0.0� > < discordant 0 1
2 and 13 ��, 0.6 > < discordant 0 1
2 and 14

�, -0.4

�, 0.6 > < discordant 0 1
3 and 4 ��, 0.9 ��, -1.2 > > concordant 1 0

and so on…
12 and 13 ��, 0.6 > < discordant 0 1
12 and 14

�, -0.2�
�, 0.6 < < concordant 1 0

13 and 14 ��, 1.0 �, 0.6 < > discordant 0 1

Table 5. Sample Preference Data:
(machine, human) assessments

 -1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
��� 1 1
�� 1 1
�� 1 1
�� 2
�� 2
�� 1 1
��� 1 1

4.4.3 Partial-sum transform

To construct matrix BR, we start with the bottom-right hand corner, and proceed
leftwards, than upwards, applying (4.11) at each cell.5 In the tables that follow, the
shaded area represents the portion of the matrix that has already been converted.

5 One may fill forward in memory by reversing the element order of the table axes.

16

Table 6. Sample Preference Data:

BR being constructed overtop of A, at BR57

 -1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
��� 1 1
�� 1 1
�� 1 1
�� 2
�� 2
�� 1 1
��� 1 1 1

The first cell to change value is BR57 – column 5, row 7; see (4.11). We continue sliding
left until the entire row is transformed, after which we return to the right edge of the
matrix, and continue with the preceding row.

Table 7. Sample Preference Data:
BR being constructed overtop of A, at BR56

 -1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
��� 1 1
�� 1 1
�� 1 1
�� 2
�� 2
�� 1 2 2 1
��� 2 2 2 1 1 1

For this sample data, BR56 is the first cell for which the wrong value would have been
computed if the final term within (4.11) were not present. Both BR66 and BR57 include
BR67, but we want to count it only once, so we must subtract it out.

Table 8. Sample Preference Data:
BR fully constructed overtop of A

 -1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
��� 14 13 11 8 5 2 1
�� 12 12 10 7 4 2 1
�� 10 10 8 6 4 2 1
�� 8 8 7 6 4 2 1
�� 6 6 5 4 4 2 1
�� 4 4 3 2 2 2 1
��� 2 2 2 1 1 1

BR may be constructed from A in � (UV) operations via (4.11). Once this has been done,
(4.7) can be performed by table lookup, which in turn allows the computation of S+ via
(4.8) given A to be performed in � (UV) steps.

17

Table 9. Sample Preference Data:
BL, which is deducible from BR

 -1.2 -0.4 -0.1 0.0 0.6 0.9 2.4
��� 1 3 6 9 12 13 14
�� 2 5 8 10 11 12
�� 2 4 6 8 9 10
�� 1 2 4 6 7 8
�� 1 2 2 4 5 6
�� 1 2 2 2 3 4
��� 1 1 1 2 2

Values are retrieved from BL, which is implicitly available from BR via (4.13), in
constant time, so the computation of S– via (4.10) given A may also be performed in
� (UV) steps. Therefore, the time complexity of computing � via the partial-sum
transform is � (m log m + UV).

What have we achieved? The naïve algorithm runs in time � (m2), so when U and V
equal m, the partial-sum transform gives us no advantage in terms of asymptotic
complexity. The work is useful nonetheless because we can reduce U and V at will by
merging nearby preference values together. This enables approximate values for � to be
found quickly even when an exact value would be prohibitively expensive to compute.
The improvement from � (m log m + U2V2) to � (m log m + UV) substantially decreases
the amount of approximation required when m is large.

That said, most of the time U and V will be much smaller than m. When either U or V is
constant, applying dynamic programming is asymptotically more time-efficient than
prior methods. For the experiments in §7, U is about 0.4m, and V = 7.

Furthermore, � is computed many times on similar data. In our application, Y remains
constant, so, as mentioned in Subsection 4.4.1, this sort could be performed only once,
ahead of time. X does change, but the difference between successive X vectors are
small. It would be worthwhile to try sorting indirect references to the data, so that
successive sorts would be processing data that is already almost sorted: this may yield a
performance benefit.

4.5 Weighted Kendall’s �

As described, each position contributes uniformly to Kendall’s � . However, it can be
desirable to give differing priority to different examples, for instance, to increase the
importance of positions from underrepresented assessment categories, as described in
Subsection 6.2, or to implement perturbation as described in Subsection 8.2.

Weighted Kendall’s � involves, in addition to the preference lists X and Y, a third list
Z = (z1, z2, …, zm) that indicates the importance of each position. The degenerate case
where all zi = 1 gives Kendall’s � . Integer zi have the straightforward interpretation of
the position with preferences (xi, yi) being included in the data set zi times, though the
use of fractional zi is possible.

18

Computing weighted Kendall’s � is similar to computing the original measure. When
populating A, instead of adding 1 to the matrix cell corresponding to (xi, yi), we add zi.
Computation of S+ and S– remains unchanged. The denominator of (4.4) is adjusted to
be the total weight of all positions, rather than the total number of them.

Values for weighted � will not be limited to the range [-1, 1] if weights less than 1 are
used. All example weights can be uniformly scaled, so there is no need to use such
weights. For certain applications, such as the optimization procedure described in
Section 5, the denominator of (4.4) is irrelevant, so this guideline need not be strictly
adhered to.

The implementations developed actually compute weighted � . However, these
implementations have not been thoroughly tested with non-uniform weights.

4.6 Application

Earlier, we defined analysts ae and ao and tuples E and O without explaining their
names. Analyst ao represents an oracle: ideally, every position is assessed with its game-
theoretic value: win, draw, or loss. Analyst ae represents an imperfect evaluator. Then,
the concordance of the assessments E and O is a direct measurement of the quality of
the estimates made by analyst ae.

We usually will not have access to an oracle, but we will have access to values that are
superior to what the imperfect evaluator provides. In practice, ao might be collected
human expertise (and depending on the domain, possibly error-checked by a machine),
or a second program that is known to be superior to the program being tuned. When
neither is available, ao can be constructed by conducting a look-ahead search using ae as
its evaluation function. In all cases, � measures the degree of similarity between the two
analysts.

4.7 An alternative ordinal metric

Pearson correlation is the most familiar correlation metric. It measures the linear
correlation between two interval-scale variables. When the data is not already of
interval scale, it is first ranked. In this case, the correlation measure is referred to as
Spearman correlation, or Spearman’s � .

There is a special formula for computing � when the data is ranked; however, it is exact
only in the absence of ties. In our application, we have seven categories of human
assessment, but orders of magnitude more data points, so ties will be abundant.
Therefore, it is most appropriate to apply Pearson’s formula directly to the ranked data.

])()(][)()([2222 ����

� � �
−−

−
=

yynxxn

yxxyn
ρ (4.15)

The value computed by this least-square mean error function will be affected greatly by
outliers. While ranking the data may reduce the pronouncement of this effect, it will not
eliminate it. Changing a data point can change the correlation value computed, but there

19

is no guarantee that an increase in value is meaningful. In contrast, the structure of
Kendall’s � is such that no adjustment in the value of a machine assessment yields a
higher concordance unless strictly more position pairs are ordered properly than before.

The asymptotic time complexity of computing Spearman’s � is � (m log m). As we
noted earlier, the time complexity of computing Kendall’s � is � (m log m + UV). Both
algorithms sort their inputs, but afterwards, Spearman’s � takes time � (m), while
Kendall’s � takes time � (UV): for our intended use, these are equivalent. Not only does
� more directly measure what interests us (“for all pairs of positions (A, B), is position B
better than position A?”), it is no less efficient to compute than the plausible alternative.
Therefore, we use � in our experiments.

5 Feature weight tuning via Kendall’s �

We will now attempt to tune feature weights by maximizing the value of Kendall’s � .
After describing the gradient-ascent procedure by which new weights are selected, we
discuss our distributed implementation of the hill-climber.

The decision to implement a form of gradient ascent was made not because it was
thought to be the most efficient method to attempt to learn effective weights, but
because the behaviour of gradient ascent is well understood and predictable, allowing
inferences from tuning attempts using the proposed optimization metric, Kendall’s � , to
be made from the results of hill-climbing. Once some success had been achieved, inertia
led to the complete system described in this section.

A discussion of problems related to the practical application of gradient ascent for
tuning evaluation function weights (notably: performance) is deferred to Subsection 8.1.

5.1 Estimated gradient ascent

We wish to apply gradient ascent to find weights that maximize Kendall’s � . However,
this metric is non-continuous, and so not differentiable. Therefore, we must measure the
gradient empirically. The procedure is:

1. determine � for the current base vector
2. for each weight w in the current base vector

a. select a value � by which to perturb the weight w6
b. create two delta weight vectors by replacing the weight w from the

current base vector with w+� and w- � , while leaving other weights alone
c. determine � for these test weight vectors
d. determine a new value for w for the base vector of the next iteration

based upon the three known values for � .

6 In our most recent implementation, � begins at 1% of the current value of w, and the percentage used is
gradually lowered in successive iterations. However, if a random value between 0 and 1 is larger than � , it
is used instead (for that weight and iteration only). This prevents an inability of a weight to move a
meaningful distance whenever w is close to zero.

20

In each iteration, the concordance of the current base vector – that is to say, the weight
vector currently serving as a base from which to explore – is measured. In addition, for
each weight being tuned, we generate two test weight vectors by perturbing that weight
higher and lower while holding the other weights constant. We refer to these as delta
weight vectors because they are only slightly different from the base weight vector.

The two generated weight values are equidistant from the original value. The values of �
at these test vectors are also computed, after which a decision on how to adjust each
weight is made. The cases considered are illustrated in Figure 2.

Figure 2. Distinct cases to be handled during estimated gradient ascent.

If there is no significant change in concordance between the current (base) vector and
the test vectors, then the current value of the weight is retained. This precautionary
category avoids large moves of the weight where the potential reward does not justify
the risk of making a misstep.

When � either ascends or descends in the region as the weight is increased, the new
weight value is interpolated from the slope defined by the sampled points. The
maximum change from the previous weight is bounded to 3 times the distance of the
test points, to avoid occasional large swings in parameter settings.

When the points are concave up, we adopt the greedy strategy of moving directly to the
weight value known to yield the highest concordance. Of course, this must be one of the
tested values.

When the points are concave down, we can be even greedier than to remain with the
weight yielding the highest measured concordance. Inverse parabolic interpolation is
used to select the new weight value at the apex of the parabola that fits through the three
points, in the hope that this will lead us to the highest � in the region.

21

Once this procedure has been performed for all of the weights being tuned, it is possible
to postprocess the weight changes, for instance to normalize them. However, this does
not seem to be necessary. The chosen values now become the new base vector for the
next iteration.

As with typical gradient ascent algorithms, the step size made along the slope calculated
when the concordances are clearly ascending or descending slowly decreases
throughout the execution of the algorithm.

It remains to be said that simpler variations of this hill-climbing algorithm that sampled
only one point per weight or that did not specially handle the roughly flat and concave
cases fare more poorly in practice than the one presented here.

5.2 Distributed Computation

The work presented in Subsection 4.3 allows us to compute � from two lists of
preferences in negligible time. However, establishing the level of concordance at
sampled weight vectors nonetheless dominates the running time of the gradient ascent,
because computing the machine assessments for each of the training positions is
expensive.

Distributing the work for a single weight vector would lead to a large communication
overhead, because all of the preferences must be made available to a single machine to
compute � . Instead, we compute all assessments for a weight vector on a single
processor, after which the concordance is immediately computed.

A supervisor process queues work in a database table to be performed by worker
processes. It then sleeps, waking up periodically to check if all concordances have been
computed. By contrast, worker processes idle until they find work in the queue that they
can perform. They reserve it, perform it, store the value of � computed, and then look
for more work to do. Once all concordances have been computed, the supervisor
process logs the old base vector and its concordance. Additionally, when any tested
weight vector’s concordance exceeds the best concordance yet present in the work
history, the tested weight vector with maximum concordance is also recorded. The
supervisor process then computes the new current base vector, computes the new test
weight vectors, and replaces the old material in the work queue with the new.

Occasionally a worker process does not report back, for instance, when the machine it
was running on has been rebooted. The supervisor process cancels the work reservation
when a worker does not return a result within a reasonable length of time, so that
another worker may perform it.

The low coupling between the supervisor and worker processes results from the work
by Pinchak et al. on placeholder scheduling [33].

6 Application-specific issues

Here we detail some points of interest of the experimental design.

22

6.1 Chess engine

Many chess programs, or chess engines, exist. Some are commercially available; most
are hobbyist. For our work, we selected CRAFTY, by Robert Hyatt [21] of the University
of Alabama. CRAFTY is the best chess engine choice for our work for several reasons:
the source was readily available to us, facilitating experimentation; it is the strongest
such open-source engine today; previous research has already been performed using

CRAFTY. Most of our work was performed with version 19.1 of the program.

6.2 Training Data

To assess the correlation of � with improved play, we used 649,698 positions from
Chess Informant 1 through 85 [36]. These volumes cover the important chess games
played between January 1966 and September 2002. This data set was selected because it
contains a variety of assessed positions from modern grandmaster play, the assessments
are made by qualified individuals, it is accessible in a non-proprietary electronic form,
and chess players around the world are familiar with it. The 649,698 positions are
distributed amongst the human assessment categories and side to move as shown in
Table 10.

Table 10. Distribution of Chess Informant positions

Human
assessment

Black is
to move

White is
to move

Total
positions

��� 153,182 1,720 154,902
�� 123,261 6,513 130,134
�� 65,965 15,543 81,508
�� 35,341 72,737 108,078
�� 5,205 32,775 37,980
�� 2,522 55,742 58,264
��� 889 78,303 79,192

It is evident from the distribution of positions shown that when annotating games,
humans are far more likely to make an assessment in favour of one player after that
player has just moved. (When the assessment is one of equality, the majority of the time
it is given after each player has played an equal number of moves.) It is plausible that a
machine-learning algorithm could misinterpret this habit to deduce that it is
disadvantageous to be the next to play. We postpone a discussion of the irregular
number of positions in each category until Subsection 7.2.2.

The “ random sample” is a randomly selected 32,768-position subset of the 649,698
positions. The “stratified sample” is a stratified random sample of the 649,698 positions,
including 2,341 positions of each category and side to move. In two categories, where
2,341 positions were not available, 4,194,304-node searches were performed from
positions with the required assessment but the opposite side to move. The best move
found by CRAFTY was played, and the resulting position was used. It is not guaranteed
that the move made was not a mistake that would change the human’s assessment of the
position. However, it is guaranteed that no position and its computationally generated
successor were both used.

23

There are alternate ways that the positions could have been manipulated to generate the
stratified sample, none appearing to have significant benefits over the approach chosen
here. However, adjusting the weight assigned to each example in inverse proportion to
the frequency of its human assessment, as is possible via the weighting procedure given
in Subsection 4.5, is a serious alternative. This was not done because it was deemed
worthwhile to learn from more positions, and because our code to compute Kendall’s �
has not been frequently exercised with non-uniform weights.

6.3 Test suites

English chess grandmaster John Nunn developed the Nunn [29] and Nunn II [31] test
suites of 10 and 20 positions, respectively. They serve as starting positions for matches
between computer chess programs, where the experimenter is interested in the engine’s
playing skill independent of the quality of its opening book. Nunn selected positions
that are approximately balanced, commonly occur in human games, and exhibit variety
of play. We refer to these collectively as the “Nunn 30” .

Don Dailey, known for his work on the computer chess programs STARSOCRATES and
CILKCHESS, created a collection of two hundred commonly reached positions, all of
which are ten ply from the initial position. We refer to these collectively as the “Dailey
200” . Dailey has not published these positions himself, but all of the positions in the
Dailey 200, and also the Nunn 30, are available in Gomboc’s M.Sc. thesis [16].

6.4 Use of floating-point computation

We modified CRAFTY so that variables holding machine assessments are declared to be
of an aliased type rather than directly as integers. This allows us to choose whether to
use floating-point or integer arithmetic via a compilation switch. When compiled to use
floating-point values for assessments, CRAFTY is slower, but only by a factor of two to
three on a typical personal computer. Experiments were performed with this modified
version: the use of floating-point computation provides a learning environment where
small changes in values can be rewarded. However, all test matches were performed
with the original, integer-based evaluation implementation (the learned values were
rounded to the nearest integer): in computer-chess competition, no author would
voluntarily take a 2% performance hit, much less one of 200%.

It might strike the reader as odd that we chose to alter CRAFTY in this manner rather than
scaling up all the evaluation-function weights. There are significant practical
disadvantages to that approach. How would we know that everything had been scaled?
It would be easy to miss some value that needed to be changed. How would we identify
overflow issues? It might be necessary to switch to a larger integer type. How would we
know that we had scaled up the values far enough? It would be frustrating to have to
repeat the procedure.

By contrast, the choice of converting to floating-point is safer. Precision and overflow
are no longer concerns. Also, by setting the typedef to be a non-arithmetic type we can

24

cause the compiler to emit errors wherever type mismatches exist. Thus, we can be
more confident that our experiments rest upon a sound foundation.

6.5 Search effort quantum

Traditionally, researchers have used search depth to quantify search effort. For our
learning algorithm, doing so would not be appropriate: the amount of effort required to
search to a fixed depth varies wildly between positions, and we will be comparing the
assessments of these positions. However, because we did not have the dedicated use of
computational resources, we could not use search time either. While it is known that
chess engines tend to search more nodes per second in the endgame than the
middlegame, this difference is insignificant for our short searches because it is dwarfed
by the overhead of preparing the engine to search an arbitrary position. Therefore, we
chose to quantify search effort by the number of nodes visited.

For the experiments reported here, we instructed CRAFTY to search either 1024 or
16,384 nodes to assess a position. Early experiments that directly called the static
evaluation or quiescence search routines to form assessments were not successful.
Results with 1024 nodes per position were historically of mixed quality, but improved
as we improved the estimated gradient ascent procedure. It is our belief that with a
larger training set, calling the static evaluation function directly will perform acceptably.

There are positions in our data set from which CRAFTY does not complete a 1-ply search
within 16,384 nodes, because its quiescence search explores many sequences of
captures. When this occurs, no evaluation score is available to use. Instead of using
either zero or the statically computed evaluation (which is not designed to operate
without a quiescence search), we chose to throw away the data point for that particular
computation of � , reducing the position count (m). However, the value of � for similar
data of different population sizes is not necessarily constant. As feature weights are
changed, the shape of the search tree for positions may also change. This can cause

CRAFTY to not finish a 1-ply search for a position within the node limit where it was
previously able to do so, or vice versa. When many transitions in the same direction
occur simultaneously, noticeable irregularities are introduced into the learning process.
Ignoring the node-count limitation until the first ply of search has been completed may
be a better strategy.

6.6 Performance

Experiments were first performed using idle time on various machines in our
department. In the latter stages of our research, we have had (non-exclusive) access to
clusters of personal computer workstations. This is helpful because, as discussed in
Subsection 5.2, the task of computing � for distinct weight vectors within an iteration is
trivially parallel. Examining 32,768 positions at 1024 nodes per position and computing
� takes about two minutes per weight vector. The cost of computing � is negligible in
comparison, so in the best case, when there are enough nodes available for the
concordances of all weight vectors of an iteration to be computed simultaneously,
learning proceeds at the rate of 30 iterations per hour.

25

7 Experimental results

After demonstrating that concordance between human judgments and machine
assessments increases with increasing depth of machine search, we attempt to tune the
weights of 11 important features of the chess program CRAFTY.

7.1 Concordance as machine search effort increases

In Table 11 we computed � for depths (plies) 1 through 10 for n = 649,698 positions,
performing work equivalent to 211 billion (109) comparisons at each depth. S+ and S–
are reported in bill ions. As search depth increases, the difference between S+ and S–,
and therefore � , also increases. The sum of S+ and S– is not constant because at different
depths different amounts of extra y-pairs and duplicate pairs are encountered.

Table 11. � Computed for Various Search Depths, n = 649,698

depth S+ / 109 S- / 109 �
1 110.374 65.298 0.2136
2 127.113 48.934 0.3705
3 131.384 45.002 0.4093
4 141.496 36.505 0.4975
5 144.168 34.726 0.5186
6 149.517 30.136 0.5656
7 150.977 29.566 0.5753
8 152.792 22.938 0.6153
9 153.341 22.368 0.6206
10 155.263 20.435 0.6388

It is difficult to predict how close an agreement might be reached using deeper searches.
Two effects come into play: diminishing returns from additional search, and diminishing
accuracy of human assessments relative to ever more deeply searched machine
assessments. Particularly interesting is the odd-even effect on the change in � as depth
increases. It has long been known that searching to the next depth of an alpha-beta
search requires relatively much more effort when that next depth is even than when it is
odd [22]. Notably, � tends to increase more in precisely these cases.

This result, combined with knowing that play improves as search depth increases [49],
in turn justifies our attempt to use this concordance as a metric to tune selected feature
weights of CRAFTY’s static evaluation function. That the concordance increases
monotonically with increasing depth lends credibility to our belief that � is a direct
measure of decision quality.

7.2 Tuning of CRAFTY’s feature weights

Crafty uses centipawns (hundredths of a pawn) as its evaluation function resolution, so
experiments were performed by playing CRAFTY as distributed versus CRAFTY with the
learned weights rounded to the nearest centipawn. Each program played each position
both as White and as Black. The feature weights we tuned are given, along with their
default values, in Table 12.

26

Table 12. Tuned features, with CRAFTY’s default values

feature default value
king safety scaling factor 100

king safety asymmetry scaling factor -40
king safety tropism scaling factor 100

blocked pawn scaling factor 100
passed pawn scaling factor 100

pawn structure scaling factor 100
bishop 300
knight 300

rook on the seventh rank 30
rook on an open file 24

rook behind a passed pawn 40

The six selected scaling factors were chosen because they act as control knobs for many
subterms. Bishop and knight were included because they participate in the most
common piece imbalances. Trading a bishop for a knight is common, so it is important
to include both to show that one is not learning to be of a certain weight chiefly because
of the weight of the other. We also included three of the most important positional terms
involving rooks. Material values for the rook and queen are not included because trials
showed that they climbed even more quickly than the bishop and knight do, yielding no
new insights. This optimization problem is not linear: dependencies exist between the
weights being tuned.

7.2.1 Tuning from arbitrary values

Figure 3 illustrates the learning. The 11 parameters were all initialized to 50, where 100
represents both the value of a pawn and the default value of most scaling factors. For
ease of interpretation, the legends of Figures 3, 4, and 5 are ordered so that its entries
coincide with the intersection of the variable being plotted with the rightmost point on
the x-axis. For instance, in Figure 3, bishop is the topmost value, followed by knight,
then , and so on. is measured on the left y-axis in linear scale; weights are measured
on the right y-axis in logarithmic scale, for improved visibility of the weight
trajectories.
Rapid improvement is made as the bishop and knight weights climb swiftly to about
285, after which continues to climb, albeit more slowly. We attribute most of the
improvement in to the proper determination of weight values for the minor pieces. All
the material and positional weights are tuned to reasonable values.

27

The scaling factors learned are more interesting. The king tropism and pawn structure
scaling factors gradually reached, then exceeded CRAFTY’s default values of 100. The
scaling factors for blocked pawns, passed pawns, and king safety are lower, but not
unreasonably so. However, the king safety asymmetry scaling factor dives quickly and
relentlessly. This is unsurprising: CRAFTY’s default value for this term is –40.

Tables 13 and 14 contain match results of the weight vectors at specified iterations
during the learning illustrated in Figure 3. Each side plays each starting position both as
White and as Black, so with the Nunn 30 test, 60 games are played, and with the Dailey
200 test, 400 games are played. Games reaching move 121 were declared drawn.

Table 13. Match Results: random sample; 16,384 nodes per assessment; 11 weights
tuned from 50 vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
0 3 1 56 5.83

100 3 9 48 12.50
200 14 21 25 40.83
300 21 26 13 56.67
400 19 28 13 55.00
500 18 26 16 51.67
600 18 23 19 49.17

Table 14. Match results for random sample; 16,384 nodes per assessment; 11 weights
tuned from 50 vs. default weights; 5 minutes per game; Dailey 200 test suite.

iteration wins draws losses percentage score

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0 100 200 300 400 500 600
8
9
10

20

30

40

50

60
70
80
90
100

200

300

co
nc

or
da

nc
e

(τ
)

va
lu

e
(p

aw
n

=
 1

00
; d

ef
au

lt
sc

al
in

g
fa

ct
or

 =
 1

00
)

iteration

Figure 3: Change in Weights from 50 as τ is Maximized, Random Sample

bishop (50 -> 294)
knight (50 -> 287)

tau (0.2692 -> 0.3909)
king tropism s.f. (50 -> 135)

pawn structure s.f. (50 -> 106)
blocked pawns s.f. (50 -> 76)

passed pawn s.f. (50 -> 52)
king safety s.f. (50 -> 52)

rook on open file (50 -> 42)
rook on 7th rank (50 -> 35)

rook behind passed pawn (50 -> 34)
king safety asymmetry s.f. (50 -> 8)

28

0 3 13 384 2.38
100 12 31 357 6.88
200 76 128 196 35.00
300 128 152 120 51.00
400 129 143 128 50.13
500 107 143 150 44.63
600 119 158 123 49.50

The play of the tuned program improves drastically as learning occurs. Of interest is the
apparent gradual decline in percentage score for later iterations on the Nunn 30 test
suite. The DEEP THOUGHT team [1, 2, 20, 32] found that their best parameter settings
were achieved before reaching maximum agreement with GM players. Perhaps we are
also experiencing this phenomenon. We used the Dailey 200 test suite to attempt to
confirm that this was a real effect, and found that by this measure too, the weight
vectors at iterations 300 and 400 were superior to later ones.

We conclude that the learning procedure yielded weight values for the variables tuned
that perform comparably to values tuned by hand over years of games versus
grandmasters. This equals the performance achieved by Schaeffer et al. [40].

7.2.2 Tuning from CRAFTY’s default values

We repeated the just-discussed experiment with one change: the feature weights start at
CRAFTY’s default values rather than at 50. Figure 4 depicts the learning. Note that we
have negated the values of the king safety asymmetry scaling factor in the graph so that
we could retain the logarithmic scale on the right y-axis, and for another reason, for
which see below.

While most values remain normal, the king safety scaling factor surprisingly rises to
almost four times the default value. Meanwhile, the king safety asymmetry scaling
factor descends even below -100. The combination indicates a complete lack of regard
for the opponent’s king safety, but great regard for its own. Table 15 shows that this
conservative strategy is by no means an improvement.

Table 15. Match results: random sample; 16,384 nodes per assessment; 11 weights
 tuned from defaults vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
25 19 23 18 50.83
50 16 31 13 52.50
75 11 32 17 45.00

100 14 28 18 46.67
125 9 23 28 34.17
150 8 35 17 42.50

29

The most unusual behaviour of the king safety and king safety asymmetry scaling fac-
tors deserves specific attention. When the other nine terms are left constant, these two
terms behave similarly to how they do when all eleven terms are tuned. In contrast,
when these two terms are held constant, no significant performance difference is found
between the learned weights and CRAFTY’s default weights. When the values of the king
safety asymmetry scaling factor are negated as in Figure 4, it becomes visually clear
from their trajectories that the two terms are behaving in a co-dependent manner.

Having identified this anomalous behaviour, it is worth looking again at Figure 3. The
match results suggest that all productive learning occurred by iteration 400 at the latest,
after which a small but perceptible decline appears to occur. The undesirable co-
dependency between the king safety and king safety asymmetry scaling factors also
appears to be present in the later iterations of the first experiment.

Table 10 in Subsection 6.2 shows that there are a widely varying number of positions in
each category. Let us consider the effect this has upon our optimization metric. Our
procedure maximizes the difference between the number of correct decisions made and
the number of incorrect decisions made. Each position is thought to be of equal
importance, but there are more positions in certain categories. Our optimization does not
take into account that with a lopsided sample, correct decisions involving human
assessments that occur less frequently will be sacrificed to achieve a higher number of
correct decisions involving those that occur more often. Undesirably, weights will be
tuned not in accordance with strong play over the complete range of human
assessments, but instead to maximize decision quality amongst the overrepresented
human assessments.

0.42

0.44

0.46

0.48

0.5

0.52

0 25 50 75 100 125 150
20

40

60

80

100

150

200

250

300

350
400

co
nc

or
da

nc
e

(τ
)

va
lu

e
(p

aw
n

=
 1

00
; d

ef
au

lt
sc

al
in

g
fa

ct
or

 =
 1

00
)

iteration

Figure 4: Change in Weights from Crafty’s defaults as τ is Maximized, Random Sample

king safety s.f. (100 -> 362)
tau (0.4186 -> 0.5130)

bishop (300 -> 279)
knight (300 -> 274)

0 - king safety asym. s.f. (-40 -> -132)
king tropism s.f. (100 -> 119)

blocked pawns s.f. (100 -> 111)
pawn structure s.f. (100 -> 93)

passed pawn s.f. (100 -> 88)
rook behind passed pawn (40 -> 36)

rook on 7th rank (30 -> 33)
rook on open file (24 -> 26)

30

Accordingly, we retried tuning weights from their default values, but using the stratified
sample so that the learning would be biased appropriately. Additionally, a look-ahead
limit of just 1024 nodes was used, trading away machine assessment accuracy to gain an
increased number of iterations, because we desire to demonstrate playing strength
stability. We can see that the co-dependency is no longer present in Figure 5. Validating
our thought experiment regarding the reason for its previous existence, the match results
in Table 16 demonstrate that the learner is now performing acceptably.

Compared against earlier plots, the trajectory of has a relatively jagged appearance.
Unlike in the other two graphs, here the concordance is not climbing at a significant
rate. Consequently, the left y-axis has been set to provide a high level of detail. In
addition, because only 1024 nodes of search are being used to form evaluations instead
of 16,384, changes in weights are more likely to affect the score at the root of the tree,
causing � to fluctuate more. This effect can be countered by using a larger training set.

Most weights remained relatively constant during the tuning. The king tropism term
climbed quickly to the neighbourhood of 125 centipawns, then remained roughly level;
this is in line with previous tuning attempts. Also, both placing a rook on an open file
and posting a rook upon the seventh rank again reached the region of thirty-five to forty
hundredths of a pawn.

Table 16. Match Results: stratified sample; 1024 nodes per assessment; 11 weights
tuned from defaults vs. default weights; 5 minutes per game; Nunn 30 test suite.

iteration wins draws losses percentage score
0 14 36 10 53.33

0.45

0.451

0.452

0.453

0.454

0.455

0.456

0.457

0.458

0 400 800 1200 1600 2000 2400 2800 3200
15

25

40

60

80

100

150

200

250

300

co
nc

or
da

nc
e

(τ
)

va
lu

e
(p

aw
n

=
 1

00
; d

ef
au

lt
sc

al
in

g
fa

ct
or

 =
 1

00
)

iteration

Figure 5: Change in Weights from Crafty’s Defaults as τ is Maximized, Stratified Sample

bishop (300 -> 291)
knight (300 -> 290)

tau (0.4516 -> 0.4568)
king tropism s.f. (100 -> 125)

pawn structure s.f. (100 -> 101)
king safety s.f. (100 -> 97)

passed pawn s.f. (100 -> 94)
blocked pawns s.f. (100 -> 67)

0 - king safety asym. s.f. (-40 -> -42)
rook on open file (24 -> 40)
rook on 7th rank (30 -> 38)

rook behind passed pawn (40 -> 18)

31

200 17 26 17 50.00
400 9 26 25 36.67
600 18 21 21 47.50
800 14 25 21 44.17

1000 17 28 15 51.67
1200 18 26 16 51.67
1400 16 30 14 51.67
1600 21 19 20 50.83
1800 9 34 17 43.33
2000 14 33 13 50.83
2200 13 27 20 44.17
2400 15 30 15 50.00
2600 11 31 18 44.17
2800 14 30 16 48.33
3000 13 33 14 49.17
3200 15 29 16 49.17

The value of placing a rook behind a passed pawn descended considerably over the
learning period, which is interesting insofar as this is thought to be an important feature
by humans. Probably the reason is that its application is insufficiently specific: there are
many positions where it is slightly beneficial, but occasionally it can be a key
advantage. Rather than attempt to straddle the two cases, as CRAFTY’s default value for
the weight, 40, does, it could be preferable to give a smaller bonus, but include a
second, more specific feature that provides an extra reward when its additional criteria
are satisfied.

Finally, we are left with the blocked pawns scaling factor. For a long time, this weight
remained near its default of 100, but as of approximately iteration 2200 it began to fall,
and continued doing so for 1000 iterations thereafter, with no clear indication that it
would stop doing so anytime soon. The purpose of this term is for CRAFTY to penalize
itself when there are many pawns that are blocked, so that it avoids such positions when
playing humans, who have a comparative skill advantage in such positions.

It is no surprise that when tuning against human assessments, this feature weight would
go down, because it is not bad per se for a position to be blocked. Here we have not
merely a case where the program author has a different objective than the metric
proposed, but a philosophical difference between Robert Hyatt, the program’s author,
and ourselves. The author has set his weights to provide the best performance in his test
environment, which is playing against humans on internet chess servers. This is an
eminently reasonable decision for someone who feels that their time is better expended
on improving their program’s parallel search than its static evaluation function. We
believe that a better long-term strategy is to tackle the evaluation problem head-on: do
not penalize playing into perfectly acceptable positions that the machine subsequently
misplays. Instead, accept the losses, and implement new evaluation features that shore
up its ability to withstand such positions against humans. In the end, the program will be
stronger for it.

The match results do not indicate a change in playing strength due to this weight
changing, which is unsurprising given that if such positions were reached, neither the

32

standard nor the tuned CRAFTY would have any advantage over the other in
understanding them. Both would be at a relative disadvantage when playing a program
that included additional evaluation features as suggested above.

8 Conclusion

We have proposed a new procedure for optimizing static evaluation functions based
upon globally ordering a multiplicity of positions in a consistent manner. This
application of ordinal correlation is fundamentally different from prior evaluation-
function tuning techniques that attempt to select the best moves in certain positions and
hope that this skill is generalizable, or bootstrap from zero information.

If we view the playing of chess as a Markov decision process, we can say that rather
than attempting to learn policy (what move to play) directly, we attempt to learn an
appropriate value function (how good is the position?), which in turn specifies the
policy to be followed when in particular states. Thus, we combine an effective idea
behind temporal-difference learning with supervised learning. Prior, successful
supervised learning work by Buro [7, 8] and Tesauro [46, 48] also shares this property.

Alternatively, we can view the preferences over the set of pairs of positions as
constraints: we want to maximize the number of inequalities that are satisfied. As shown
in Section 4, our method powerfully leverages m position evaluations into m(m-1)/2
constraints.

A cautionary note: we tuned feature weights in accordance with human assessments.
Doing so may simply not be optimal for computer play. Nonetheless, it is worth noting
that having reduced the playing ability of a grandmaster-level program to candidate
master strength by significantly altering several important feature weights, the learning
algorithm was able to restore the program to grandmaster strength.

8.1 Reflection

While some weights learned nearly identical values in our experiments, other features
exhibited more variance. For cases such as the blocked pawns scaling factor, it appears
that comparable performance may be achieved with a relatively wide range of values.

The amount of training data used is small enough that overfitting may be a
consideration. The program modification that would most readily allow this to be
determined is to have the program compute � on a second, control set of positions that
are used only for testing. If the concordance for the training set continues to climb while
the concordance for the control set declines, overfitting will be detected.

The time to perform our experiments was dominated by the search effort required to
generate machine assessments. Therefore, there is no significant obstacle to attempting
to maximize Spearman’s � (or perhaps even Pearson correlation, notwithstanding
Stevens).

33

Future learning experiments should ultimately use more positions, because the
information gathered to make tuning decisions grows quadratically as the position set
grows. We believe that doing this will reduce the search effort required per position to
tune weights well. If sufficient positions are present for tuning based only upon the
static evaluation can be performed, much time can be saved. For instance, piece square
tables for the six chess pieces imply 6 * 64 = 384 features, but for any single position,
only a maximum of 32 can have any effect. Furthermore, CRAFTY’s evaluation is
actually more dependent upon table lookup than this simple example shows.

Furthermore, it is not necessary to use the entire training set at each iteration of the
algorithm. One could select different samples for each iteration, thereby increasing the
total number of positions that strong weight vectors are compared against. Alternatively,
one can start with very few positions, perhaps 1024, and slowly increase the number of
positions under consideration as the number of iterations increases. This would speed
the adjustment of important weights that are clearly set to poor values according to
relatively few examples before considering more positions for finer tuning. Combining
these ideas is also possible.

Precomputing and making a copy of CRAFTY’s internal board representations for each of
the test positions could yield a further significant speedup. When computing the
concordance for a weight vector, it would be sufficient to perform one large memory
copy, then to search each position in turn. If the static evaluation function is called
directly, then it is even possible to precompute a symbolic representation of the position.
A training time speedup of orders of magnitude should be possible with these changes.

However, we would like to state that it was not originally planned to attempt to
maximize � only upon assessments at a specific level of search effort. Unfortunately, we
encountered implementation difficulties, and so reverted to the approach described
herein. We had intended to log the node number or time point along with the new score
whenever the evaluation of a position changes. This would have, without the use of
excessive storage, provided the precise score at any point throughout the search. We
would have tuned to maximize the integral of � over the period of search effort.
Implementation of this algorithm would more explicitly reward reaching better
evaluations more quickly, improving the likelihood of tuning feature weights and
perhaps even search control parameters effectively. Here too, precomputation would be
worthwhile.

The gradient-ascent procedure is effective, but convergence acceleration is noticeably
lacking. It is somewhat of an arduous climb for parameters to climb from 50 to near
300, not because there was any doubt that they would reach there, but simply because of
the number of iterations required for them to move the requisite distance. Fortunately,
this is less likely to be a factor in practical use, where previously tuned weights likely
would be started near their existing values.

Perhaps the most problematic issue with the gradient ascent implementation occurs
when weights are near zero, where it is no longer sufficient to generate a sample point
based on multiplying the current weight by a value slightly greater than one. Enforcing
a strict minimum distance between the existing weight and its test points is not

34

sufficient: the weight may become trapped. We inject some randomness into the
sampling procedure when near zero, but it would be premature to say that this is a
complete solution.

It would be worthwhile to attempt approaches other than gradient ascent. The original
motivation for implementing the hill-climber was to be able to observe how our fitness
metric performed. It was felt that a gradient ascent procedure would provide superior
insight into its workings relative to an evolutionary method approach due to its more
predictable behaviour. As previously mentioned in Subsection 7.2, CRAFTY uses weights
expressed in centipawns, so when we test weights with CRAFTY, we round them to the
nearest centipawn. Sometimes much time is spent tuning a weight to make small
changes that will be lost when this truncation of precision occurs. If an alternative
method, for instance an evolutionary method, can succeed while operating only at the
resolution of centipawns, strong feature weight vectors could be identified more
quickly. Additionally, the running time per iteration of evolutionary methods is
independent of the number of weights being tuned. With such a method, we could
attempt to tune many more features simultaneously.

Schaeffer et al. [40] found that when using temporal-difference learning, it is best to
tune weights at the level of search effort that one will be applying later. We believe this
is because the objective function is constantly updated as part of that learning algorithm.
In contrast, with the procedure presented herein, the objective function is determined
separately, in advance. Therefore, if one chooses to use a specific level of search effort
to determine the pseudo-oracle values of states as described in Subsection 4.6, then
directly tuning the static evaluation function should yield values that perform well in
practice when the program plays with a similar level of search effort.

It may be argued that deeper searches would lead to different preferred weights because
more positions of disparate character will be reached by the search. However, this too
can be mimicked by increasing the number of positions in the training set.

A pseudo-oracle is not an oracle, so when the value of � improves significantly, it makes
sense to redetermine the objective function using the new weights that have been
learned, and resume the gradient ascent procedure (without resetting the weight values,
of course). Temporal-difference learning elegantly finesses this issue precisely because
the objective function is augmented at each learning step.

8.2 Future directions

The use of positions labelled as “unclear” or “with compensation for the material” may
be possible by treating such assessments as being in concordance with selected other
categories, and in discordance with the remainder. The specific categories treated as
equivalent for these two assessments would necessarily vary depending upon the source
of the assessments. For example, with data from Chess Informant [36], an assessment of
“unclear” likely indicates that neither side has a clear advantage, but for data from
Nunn’s Chess Openings [30], an unclear assessment may be treated as if it were an
assessment of equality. In a third work, an unclear assessment may simply mean the
annotator is unable or unwilling to disclose an informative assessment. Similar issues

35

arise when handling the “with compensation for the material” assessment. Additionally,
the use of additional, non-assessment annotation symbols (e.g., “with the attack” , “with
the initiative”) could also be explored.

While our experiments used chess assessments from humans, it is possible to use
assessments from deeper searches and/or from a stronger engine, or to tune a static
evaluation function for a different domain. Depending on the circumstances, merging
consecutively ordered fine-grained assessments into fewer, larger categories might be
desirable. Doing so could even become necessary should the computation of � dominate
the time per iteration, but this is unlikely unless one uses both an enormous number of
positions and negligible time to form machine assessments.

Examining how concordance values change as the accuracy of machine assessments is
artificially reduced would provide insight into the amount of precision that the heuristic
evaluation function should be permitted to express to the search framework that calls it.
Too much precision reduces the frequency of cut-offs, while insufficient precision
would result in the search receiving poor guidance.

Elidan et al. [12] found that perturbation of training data could assist in escaping local
maxima during learning. Our implementation of � , designed with this finding in mind,
allows non-integer weights to be assigned to each cell. Perturbing the weights in an
adversarial manner as local maxima are reached, so that positions are weighted slightly
more important when generally discordant, and slightly less important when generally
concordant, could allow the learner to continue making progress.

It would also be worthwhile to examine positions of maximum disagreement between
human and machine assessments, in the hope that study of the resulting positions will
identify new features that are not currently present in CRAFTY’s evaluation. Via this
process, a number of labelling errors would be identified and corrected. However,
because our metric is robust in the presence of outliers, we do not believe that this
would have a large effect on the outcome of the learning process. Improvements in data
accuracy could allow quicker learning and a superior resulting weight vector, though we
suspect the differences would be small.

Integrating the supervised learning procedure developed here with temporal-difference
learning, as suggested by Utgoff and Clouse [51], would be interesting.

A popular pastime amongst computer-chess hobbyists is to attempt to discover feature
weight settings that result in play mimicking their favourite human players. By tuning
against appropriate training data, e.g., from opening monographs and analyses published
in Chess Informant and elsewhere that are authored by the player to be mimicked,
training an evaluation function to assess positions similarly to how a particular player
might actually do so should now be possible.

Furthermore, there are human chess annotators known for their diligence and accuracy,
and others notorious for their lack thereof. Computing values of � pitting an individual’s
annotations against the assessments that a program makes after a reasonable amount of
search would provide an objective metric of the quality of their published analysis.

36

Producers of top computer-chess software play many games against their commercial
competitors. They could use our method to model their opponent’s evaluation function,
then use this model in a minimax (no longer negamax) search. Matches then played
would be more likely to reach positions where the two evaluation functions differ most,
providing improved winning chances for the program whose evaluation function is
more accurate, and object lessons for the subsequent improvement of the other. For this
particular application, using a least square error function rather than Kendall’s � could
be appropriate, if the objective is to hone in on the exact weights used by the opponent.7

Identifying the most realistic mapping of CRAFTY’s machine assessments to the seven
human positional assessments is also of interest. This information would allow CRAFTY
(or a graphical user interface connected to CRAFTY) to present scoring information in a
human-friendly format alongside the machine score.

We can measure how correlated a single feature is with success by setting the weight of
that feature to unity, setting all other feature weights to zero, and computing Kendall’s � .
This creates the possibility of applying � as a mechanism for feature selection. However,
multiple features may interact: when testing the combined effective discriminating
power of two or three features it would be necessary to hold one constant and optimize
the weights of the others.

The many successes of temporal-difference learning have demonstrated that it can tune
weights equal to the best hand-tuned weights. We believe that, modulo the current
performance issues, the supervised learning approach described here is also this
effective. Learning feature weights is something that the AI community knows how to
do well. While there are undoubtedly advances still to be made with respect to feature
weight tuning, for the present it is time to refocus on automated feature generation and
selection, the last pieces of the puzzle for fully automated evaluation function
construction.

Acknowledgements

We would like to thank Yngvi Björnsson, for the use of his automated game-playing
software, and for fruitful discussions; Don Dailey, for access to his suite of 200 test
positions; Robert Hyatt, for making CRAFTY available, and also answering questions
about its implementation; Peter McKenzie, for providing PGN to EPD conversion
software; NSERC, for partial financial support [Grant OPG 7902 (Marsland)]; all those
who refereed the material presented herein.

7 More than one commercial chess software developer was somewhat perturbed by this possibil ity after
this material was presented at the Advances in Computer Games 10 conference [15], which was held in
conjunction with the 2003 World Computer Chess Championship. Newer versions of some programs will
be attempting to conceal information that makes such reverse engineering possible. Ideas that were
discussed included not outputting the principal variation at low search depths, truncating the principal
variation early when it is displayed, declining to address hashing issues that occasionally cause
misleading principal variations to be emitted, and mangling the low bits of the evaluation scores reported
to users. Commercial chess software developers must walk a fine l ine between effectively hindering
reverse engineering by their competitors and displeasing their customers.

37

References

[1] Anantharaman, T. S. (1990). A Statistical Study of Selective Min-Max Search in

Computer Chess. Ph.D. thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
U.S.A. University Report CMU-CS-90-173.

[2] Anantharaman, T. S. (1997). Evaluation Tuning for Computer Chess: Linear Discriminant
Methods. ICCA Journal, Vol. 20, No. 4, pp. 224-242.

[3] Baxter, J., Tridgell, A., and Weaver, L. (1998). KNIGHTCAP: A Chess Program that Learns
by Combining TD(

�
) with Game-tree Search. Proceedings of the Fifteenth International

Conference in Machine Learning (IMCL) pp. 28-36, Madison, WI.
[4] Beal, D. F. and Smith, M. C. (1997). Learning Piece Values Using Temporal Differences.

ICCA Journal, Vol. 20, No. 3, pp. 147-151.
[5] Beal, D. F. and Smith, M. C. (1999a). Learning Piece-Square Values using Temporal

Differences. ICCA Journal, Vol. 22, No. 4, pp. 223-235.
[6] Beal, D. F. and Smith, M. C. (1999b). First Results from Using Temporal Difference

Learning in Shogi. Computers and Games (eds. H. J. van den Herik and H. Iida), pp. 113-
125. Lecture Notes in Computer Science 1558, Springer-Verlag, Berlin, Germany.

[7] Buro, M. (1995). Statistical Feature Combination for the Evaluation of Game Positions.
Journal of Artificial Intelligence Research 3, pp. 373-382, Morgan Kaufmann, San
Francisco, CA.

[8] Buro, M. (1999). From Simple Features to Sophisticated Evaluation Functions.
Computers and Games (eds. H. J. van den Herik and H. Iida), pp. 126-145. Lecture Notes
in Computer Science 1558, Springer-Verlag, Berlin, Germany.

[9] Chellapilla, K., and Fogel, D. (2001). Evolving a Checkers Player without Relying on
Human Experience. In IEEE Transactions on Evolutionary Computation, Vol. 5, No. 4,
pp. 422-428.

[10] Chellapilla, K., and Fogel, D. (1999). Evolving Neural Networks to Play Checkers
Without Relying on Expert Knowledge. In IEEE Transactions on Neural Networks, Vol.
10, No. 6, pp. 1382-1391.

[11] Cliff, N. (1996). Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum
Associates.

[12] Elidan, G., Ninio, M., Friedman, N., and Schuurmans, D. (2002). Data Perturbation for
Escaping Local Maxima in Learning. Proceedings AAAI 2002 Edmonton, pp. 132-139.

[13] Fawcett, T. E. and P. E. Utgoff (1992). Automatic feature generation for problem solving
systems. Proceedings of the Ninth International Conference on Machine Learning, pp.
144-153. Morgan Kaufman.

[14] Fürnkranz, J. (2001). Machine Learning in Games: A Survey. In Machines that Learn to
Play Games (eds. J. Fürnkranz and M. Kubat), pp. 11-59. Nova Scienti fic Publishers.
ftp://ftp.ai.univie.ac.at/papers/oefai-tr-2000-31.pdf

[15] Gomboc, D., Marsland, T. A., and Buro, M. (2003). Ordinal Correlation for Evaluation
Function Tuning. Advances in Computer Games: Many Games, Many Challenges (eds. H.
J. van den Herik et al.), pp. 1-18. Kluwer Academic Publishers.

[16] Gomboc, D. (2004). Tuning Evaluation Functions by Maximizing Concordance. M.Sc.
Thesis, University of Alberta, Edmonton, Alberta, Canada.
http://www.cs.ualberta.ca/~games/papers/theses/gomboc_msc.pdf.

[17] Hartmann, D. (1987a). How to Extract Relevant Knowledge from Grandmaster Games,
Part 1: Grandmasters have Insights – the Problem is What to Incorporate into Practical
Programs. ICCA Journal, Vol. 10, No. 1, pp. 14-36.

[18] Hartmann, D. (1987b). How to Extract Relevant Knowledge from Grandmaster Games,
Part 2: The Notion of Mobility, and the Work of De Groot and Slater. ICCA Journal, Vol.
10, No. 2, pp. 78-90.

38

[19] Hartmann, D. (1989). Notions of Evaluation Functions tested against Grandmaster
Games. In Advances in Computer Chess 5 (ed. D.F. Beal), pp. 91-141. Elsevier Science
Publishers, Amsterdam, The Netherlands.

[20] Hsu, F.-h., Anantharaman, T. S., Campbell, M. S., and Nowatzyk, A. (1990). DEEP

THOUGHT. In Computers, Chess, and Cognition (eds. T. A. Marsland and J. Schaeffer), pp.
55-78. Springer-Verlag.

[21] Hyatt, R.M. (1996). CRAFTY – Chess Program. ftp://ftp.cis.uab.edu/pub/hyatt/v19/crafty-
19.1.tar.gz.

[22] Kaneko, T., Yamaguchi, K., and Kawai, S. (2003). Automated Identification of Patterns in
Evaluation Functions. Advances in Computer Games: Many Games, Many Challenges
(eds. H. J. van den Herik et al.), pp. 279-298. Kluwer Academic Publishers.

[23] Kendall, G. and Whitwell, G. (2001). An Evolutionary Approach for the Tuning of a Chess
Evaluation Function using Population Dynamics. Proceedings of the 2001 IEEE Congress
on Evolutionary Computation, pp. 995-1002.
http://www.cs.nott.ac.uk/~gxk/papers/cec2001chess.pdf.

[24] Levinson, R. and Snyder, R. (1991). Adaptive Pattern-Oriented Chess. AAAI, pp. 601-
606.

[25] Marsland, T. A. (1983). Relative Efficiency of Alpha-Beta Implementations. IJCAI 1983,
pp. 763-766.

[26] Marsland, T. A. (1985). Evaluation-Function Factors. ICCA Journal, Vol. 8, No. 2, pp. 47-
57.

[27] van der Meulen, M. (1989). Weight Assessment in Evaluation Functions. In Advances in
Computer Chess 5 (ed. D.F. Beal), pp. 81-90. Elsevier Science Publishers, Amsterdam,
The Netherlands.

[28] Mysliwietz, P. (1994). Konstruktion und Optimierung von Bewertungstfunktionen beim
Schach. Ph.D. Thesis, Universität Paderborn, Paderborn, Germany.

[29] Nunn, J., Friedel, F., Steinwender, D., and Liebert, C. (1998). Computer ohne Buch, in
Computer-Schach und Spiele, Vol. 16, No. 1, pp. 7-14.

[30] Nunn, J., Burgess, G., Emms, J., and Gallagher, J. (1999). Nunn’s Chess Openings.
Everyman.

[31] Nunn, J. (2000). Der Nunn-Test II, in Computer-Schach und Spiele, Vol. 18, No. 1, pp.
30-35. http://www.computerschach.de/test/nunn2.htm.

[32] Nowatzyk, A. (2000). http://www.tim-mann.org/deepthought.html.
[33] Pinchak, C., Lu, P., and Goldenberg, M. (2002). Practical Heterogeneous Placeholder

Scheduling in Overlay Metacomputers: Early Experiences. 8th Workshop on Job
Scheduling Strategies for Parallel Processing, Edinburgh, Scotland, U.K., pp. 85-105.
Reprinted in LNCS 2537 (2003), pp. 205-228.
http://www.cs.ualberta.ca/~paullu/Trellis/Papers/placeholders.jsspp.2002.ps.gz.

[34] Plaat, A., Schaeffer, J., Pijls, W., and Bruin, A. de (1996). Best-First Fixed-Depth Game-
Tree Search in Practice. Artificial Intelligence, Vol. 87, Nos. 1-2, pp. 255-293.

[35] Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes in C:
The Art of Scientific Computing, Second Edition, pp. 644-645. Cambridge University
Press.

[36] Sahovski Informator (1966). Chess Informant: http://www.sahovski.com/.
[37] Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers.

IBM Journal of Research and Development, No. 3, pp. 211-229.
[38] Samuel, A. L. (1967). Some Studies in Machine Learning Using the Game of Checkers. II

– Recent Progress. IBM Journal of Research and Development, Vol. 2, No. 6, pp. 601-
617.

[39] Sarle, W. S. (1997). Measurement theory: Frequently asked questions, version 3.
ftp://ftp.sas.com/pub/neural/measurement.html. Revision of publication in Disseminations
of the International Statistical Applications Institute, Vol. 1, Ed. 4, 1995, pp. 61-66.

39

[40] Schaeffer, J., Hlynka, M., and Jussila, V. (2001). Temporal Difference Learning Applied
to a High-Performance Game-Playing Program. Proceedings IJCAI 2001, pp. 529-534.

[41] Shannon, C. E. (1950). Programming a Computer for Playing Chess. Philosophical
Magazine, Vol. 41, pp. 256-275.

[42] Stevens, S. S. (1946). On the theory of scales of measurement. Science, 103, 677-680.
[43] Stevens, S. S. (1951). Mathematics, measurement, and psychophysics. In S. S. Stevens

(ed.), Handbook of experimental psychology, pp 1-49). New York: Wiley.
[44] Stevens, S. S. (1959). Measurement. In C. W. Churchman, ed., Measurement: Definitions

and Theories, pp. 18-36. New York: Wiley. Reprinted in G. M. Maranell, ed., (1974)
Scaling: A Sourcebook for Behavioral Scientists, pp. 22-41. Chicago: Aldine.

[45] Sutton, R. S. (1988). Learning to Predict by the Methods of Temporal Differences.
Machine Learning, Vol. 3, pp. 9-44.

[46] Tesauro, G. (1989). Connectionist Learning of Expert Preferences by Comparison
Training. Advances in Neural Information Processing Systems 1 (ed. D. Touretzky), pp.
99-106. Morgan Kauffman.

[47] Tesauro, G. (1995). Temporal Difference Learning and TD-GAMMON. Communications of
the ACM, Vol. 38, No. 3, pp. 55-68. http://www.research.ibm.com/massive/tdl.html.

[48] Tesauro, G. (2001). Comparison Training of Chess Evaluation Functions. In Machines that
Learn to Play Games (eds. J. Fürnkranz and M. Kubat), pp. 117-130. Nova Scientific
Publishers.

[49] Thompson, K. (1982). Computer Chess Strength. Advances in Computer Chess 3, (ed.
M.R.B. Clarke), pp. 55-56. Pergamon Press, Oxford, U.K.

[50] Tukey, J. W. (1962). The Future of Data Analysis. In The Collected Works of John W.
Tukey, Vol. 3 (1986) (ed. L. V. Jones), pp. 391-484. Wadsworth, Belmont, California,
U.S.A.

[51] Utgoff, P. E. and Clouse, J. A. (1991). Two Kinds of Training Information for Evaluation
Function Learning. AAAI, pp. 596-600.

[52] Utgoff, P. E. (1996). ELF: An evaluation function learner that constructs its own features.
Technical Report 96-65, Department of Computing Science, University of Massachusetts,
Amherst, Massachusetts, U.S.A.

[53] Utgoff, P. E. and D. Precup (1998). Constructive function approximation. In Feature
Extraction, Construction, and Selection: a Data-Mining Perspective (eds. Motoda and
Liu), pp. 219-235. Kluwer Academic Publishers.

[54] Utgoff, P. E. and D. J. Stracuzzi (1999). Approximation via Value Unification. In
Proceedings of the Sixteenth International Conference on Machine Learning (ICML), pp.
425-432. Morgan Kaufmann.

[55] Utgoff, P. E. (2001). Feature Construction for Game Playing. In Machines that Learn to
Play Games (eds. J. Fürnkranz and M. Kubat), pp. 131-152. Nova Scientific Publishers.

[56] Utgoff, P.E. and D. J. Stracuzzi (2002). Many-layered learning. In Neural Computation,
Vol. 14, pp. 2497-2539.

[57] Velleman, P. and Wilkinson, L. (1993). Nominal, Ordinal, Interval, and Ratio Typologies
are Misleading. http://www.spss.com/research/wilkinson/Publications/Stevens.pdf. A
previous version appeared in The American Statistician, Vol. 47, No. 1, pp. 65-72.

