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Abstract

Greedy Best-First Search (GBFS) is a powerful algorithm at
the heart of many state of the art satisficing planners. One
major weakness of GBFS is its behavior in so-called uninfor-
mative heuristic regions (UHRS) - parts of the search space
in which no heuristic provides guidance towards states with
improved heuristic values.

This work analyzes the problem of UHRs in planning in de-
tail, and proposes a two level search framework as a solution.
In Greedy Best-First Search with Local Exploration (GBFS-
LE), a local exploration is started from within a global GBFS
whenever the search seems stuck in UHRs.

Two different local exploration strategies are developed and
evaluated experimentally: Local GBFS (LS) and Local Ran-
dom Walk Search (LRW). The two new planners LAMA-LS
and LAMA-LRW integrate these strategies into the GBFS
component of LAMA-2011. Both are shown to yield clear
improvements in terms of both coverage and search time on
standard International Planning Competition benchmarks, es-
pecially for domains that are proven to have large or un-
bounded UHRs.

Introduction

In the latest International Planning Competition IPC-2011
(Garcfa-Olaya, Jiménez, and Linares Lopez 2011), the plan-
ner LAMA-2011 (Richter and Westphal 2010) was the clear
winner of the sequential satisficing track, by both measures
of coverage and plan quality. LAMA-2011 finds a first so-
lution using Greedy Best-First Search (GBFS) (Bonet and
Geffner 2001; Helmert 2006) with popular enhancements
such as Preferred Operators, Deferred Evaluation (Richter
and Helmert 2009) and Multi-Heuristic search (Richter and
Westphal 2010). Solutions are improved using restarting
weighted A*.

GBFS always expands a node n that is closest to a goal
state according to a heuristic h. While GBFS makes no
guarantees about solution quality, it can often find a solu-
tion quickly. The performance of GBFS strongly depends
on the quality of h. Misleading or uninformative heuristics
can massively increase its running time.

The main focus of this paper is on one such problem with
GBFS: uninformative heuristic regions (UHRs), which in-
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cludes local minima and plateaus. A local minimum is a state
with minimum h-value within a local region which is not
a global minimum. A plateau is an area of the state space
where all states have the same heuristic value. GBFS, be-
cause of its open list, can get stuck in multiple UHRs at the
same time.
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Figure 1: Overview of h* topology, from Hoffmann’s work
(2011). Domains with unrecognized dead ends are not
shown.

Hoffmann has studied the problem of UHRs for the case
of the optimal relaxation heuristic h* (Hoffmann 2005;
2011). He classified a large number of planning benchmarks,
shown in Figure 1, according to their maximum exit distance
from plateaus and local minima, and by whether dead ends
exist and are recognized by h™. The current work proposes
local exploration to improve GBFS. The focus of the analy-
sis is on domains with a large or even unbounded maximum
exit distance for plateaus and local minima, but without un-
recognized dead ends. In these domains, there exists a plan
from each state in an UHR (with AT < o0).

As an example, the IPC domain 2004-notankage has no
dead ends, but contains unbounded plateaus and local min-
ima (Hoffmann 2011). Instance #21 shown in Figure 2
serves to illustrate a case of bad search behavior in GBFS
due to UHRs. The figure plots the current minimum heuris-
tic value h,,;, in the closed list on the z-axis against the
log-scale cumulative search time needed to first reach h o, -
The solid line is for GBFS with 2. The two huge increases
in search time, with the largest (763 seconds) for the step
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Figure 2: Cumulative search time (in seconds) of GBFS,
GBFS-LS and GBFS-LRW with A for first reaching a
given h,,;, in 2004-notankage #21.

from A,y = 2 to hyin = 1, correspond to times when
the search is stalled in multiple UHRs. Since the large ma-
jority of overall search time is used to inefficiently find an
escape from UHRs, it seems natural to try switching to a
secondary search strategy which is better at escaping. Such
ideas have been tried several times before. This related work
is reviewed and compared in the next section.

The current paper introduces a framework which adds a
local search algorithm to GBFES in order to improve its be-
havior in UHRs. Two such algorithms, local GBFS (LS(n))
and local random walks (LRW(n)), are designed to find
quicker escapes from UHRs, starting from a node n within
the UHRs. The main contributions of this work are:

e An analysis of the problem of UHRs in GBFS, and its
consequences for limiting the performance of GBFS in
current benchmark problems in satisficing planning.

e A new search framework, Greedy Best-First Search with
Local Exploration (GBFS-LE), which runs a separate lo-
cal search whenever the main global GBFS seems to be
stuck. Two concrete local search algorithms, local GBFS
(LS) and local random walks (LRW), are shown to be less
sensitive to UHRs and when incorporated into GBFS are
shown to outperform the baseline by a substantial margin
over the IPC benchmarks.

e An analysis of the connection between Hoffmann’s theo-
retical results on local search topology (Hoffmann 2005;
2011) and the performance of adding local exploration
into GBFS.

The remainder of the paper is organized as follows: after
a brief review of previous work on strategies for escaping
from UHR, the new search framework GBFS-LE is intro-
duced, compared with related work, and evaluated experi-
mentally on IPC domains. A discussion of possible future
work includes perspectives for addressing the early mistakes
problem within GBFS-LE.
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Search Strategies for Escaping UHRs

There are several approaches to attack the UHR prob-
lem. Better quality heuristics (Hoffmann and Nebel 2001;
Helmert 2004; Helmert and Geffner 2008) can shrink the
size of UHRs, as can combining several heuristics (Richter
and Westphal 2010; Roger and Helmert 2010). Additional
knowledge from heuristic computation or from problem
structure can be utilized in order to escape from UHRs.
Examples are helpful actions (Hoffmann and Nebel 2001)
and explorative probes (Lipovetzky and Geffner 2011). The
third popular approach is to develop search algorithms that
are less sensitive to flaws in heuristics. Algorithms which
add a global exploration component to the search, which is
especially important for escaping from unrecognized dead
ends, include restarting (Nakhost and Miiller 2009; Coles,
Fox, and Smith 2007; Richter, Thayer, and Ruml 2010)
and non-greedy node expansion (Valenzano et al. 2014;
Imai and Kishimoto 2011; Xie et al. 2014). The current pa-
per focuses on another direction: adding a local exploration
component to the globally greedy GBFS algorithm.

The planner Marvin adds machine-learned plateau-
escaping macro-actions to enforced hill-climbing (Coles and
Smith 2007). YAHSP constructs macro actions from FF’s
relaxed planning graph (Vidal 2004). Identidem adds explo-
ration by expanding a sequence of actions chosen probabilis-
tically, and proposes a framework for escaping from local
minima in local-search forward-chaining planning (Coles,
Fox, and Smith 2007). Arvand (Nakhost and Miiller 2009)
uses random walks to explore quickly and deeply. Arvand-
LS (Xie, Nakhost, and Miiller 2012) combines random
walks with local greedy best-first search, while Roamer
(Lu et al. 2011) adds exploration to LAMA-2008 by using
fixed-length random walks. Analysis in (Nakhost and Miiller
2012) shows that while random walks outperform GBFS in
many plateau escape problems, they fail badly in domains
such as Sokoban, where a precise action sequence must be
found to escape. However, while escaping from UHRs has
been well studied in the context of these local search based
planners, there is comparatively little research on how to use
search for escaping UHRs in the context of GBFS. This pa-
per begins to fill this gap.

GBFS-LE: GBFS with Local Exploration

The new technique of Greedy Best-First Search with Local
Exploration (GBFS-LE) uses local exploration whenever a
global GBFS (G-GBFS) seems stuck. If G-GBFS fails to
improve its minimum heuristic value h,,;, for a fixed num-
ber of node expansions, then GBFS-LE runs a small local
search for exploration, LocalExplore(n), from the best node
n in a global-level open list. Algorithm 1 shows GBFS-LE.
STALL_SIZE and MAX_LOCAL_TRY, used in Line 22, are
parameters which control the tradeoff between global search
and local exploration.

The main change from GBFS is the call to LocalEx-
plore(n) at Line 24 whenever there has been no improve-
ment in heuristic value over the last STALL_SIZE node ex-
pansions.

Two local exploration strategies were tested. The first is



Algorithm 1 GBFS-LE

Input Initial state I, goal states G
Parameter STALL_SIZE, MAX_LOCAL_TRY
Output A solution plan

1: (open, huin) < ([I], (1))
2: stalled < 0; nuLocalTry < 0
3: while open # () do
4:  n <+ open.remove_min()
5. ifn € G then
6: return plan from / ton
7:  endif
8:  closed.insert(n)
9:  for each v € successors(n) do
10: if v & closed then
11: open.insert(v, h(v))
12: if i > h(v) then
13: Romin h(U)
14: stalled < 0; nuLocalTry < 0
15: else
16: stalled < stalled + 1
17: end if
18: end if
19:  end for
20:  if stalled == STALL_SIZE
and nuLocalTry < MAX_LOCAL_TRY then
21: n <« open.remove_min()
22: Local Explore(n){local GBFS or random walks}
23: stalled < 0; nuLocalTry < nuLocalTry + 1
24:  endif
25: end while

local GBFS search starting from node n, LocalExplore(n) =
LS(n), which shares the closed list of G-GBFS, but main-
tains its own separate open list local_open that is cleared
before each local search. LS(n) succeeds if it finds a node
v with h(v) < hp, before it exceeds the LSSIZE limit.
In any case, the remaining nodes in local_open are merged
into the global open list. A local search tree grown from a
single node n is much more focused and grows deep much
more quickly than the global open list in G-GBFS. It also
restricts the search to a single plateau, while G-GBFS can
get stuck when exploring many separate plateaus simulta-
neously. Both G-GBFS and LS(n) use a first-in-first-out tie-
breaking rule, since last-in-first-out did not work well: it of-
ten led to long aimless walks within a UHR.

The second local exploration strategy tested is local ran-
dom walk search, LocalExplore(n) = LRW(n). The im-
plementation of random walks from the Arvand planner
(Nakhost and Miiller 2009; Nakhost et al. 2011) is used.
LRW (n) runs up to a pre-set number of random walks start-
ing from node n, and evaluates the endpoint of each walk us-
ing h'F". Like LS(n), LRW (n) succeeds if it finds a node v
with h(v) <l within its exploration limit. In this case,
v is added to the global open list, and the path from n to v
is stored for future plan extraction. In case of failure, unlike
LS(n), no information is kept.

Parameters, as in Arvand-2011, are expressed as a tu-
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ple (len_walk, e_rate, e_period, Walk Type) (Nakhost and
Miiller 2009). Random walk length scaling is controlled
by an initial walk length of len_walk, an extension rate
of e_rate and an extension period of NUMWALKS x
e_period. This is very different from Roamer, which uses
fixed length random walks. The choices for WalkType
are pure random (PURE) and Monte Carlo Helpful Ac-
tions (MHA), which bias random walks by helpful actions.
For example, in configuration (1,2,0.1, MHA) all random
walks use the MHA walk type, and if h,,;, does not im-
prove for NUMWALKS %0.1 random walks, then the length
of walks, len_walk, which starts at 1, will be doubled.
LRW was tested with the following two configurations:
(1,2,0.1, MHA), which is used with preferred operators,
and (1,2,0.1, PURE).

The example of Figure 2 is solved much faster, in around
1 second, by both GBFS-LS and GBFS-LRW, while GBFS
needs 771 seconds. The three algorithms built exactly the
same search trees when they first achieved the minimum h-
value 6. The local GBFS in GBFS-LS, because of focusing
on one branch, found a 5 step path that decreases the mini-
mum h-value using only 10 expansions. The i-values along
the path were 6, 7, 7, 6 and 4, showing an initial increase
before decreasing. h-values along GBFS-LRW’s path also
increased before decreasing. In contrast, GBFS gets stuck
in multiple separate h-plateaus since it needs to expand over
10000 nodes with h-value 6, which were distributed in many
different parts of the search tree. Only after exhausting these,
it expands the first node with A = 7. In this example, the lo-
cal explorations, which expand or visit higher h-value nodes
earlier, massively speed up the escape from UHRs.

There are several major differences between GBFS-LS
and GBFS-LRW. GBFS-LS keeps all the information gath-
ered during local searches by copying its nodes into the
global open list at the end. GBFS-LRW keeps only end-
points that improve h,,;,, and the paths leading to them. This
causes a difference in how often the local search should be
called. For GBFS-LS, it is generally safe to do more lo-
cal search, while over-use of local search in GBFS-LRW
can waste search effort!. This suggests using more conser-
vative settings for the parameters MAX _LOCAL_TRY and
LSSIZE in LRW(n). The two algorithms also explore UHRs
very differently. LS(n) systematically searches the subtree of
n, while LRW(n) samples paths leading from n sparsely but
deeply.

Experimental Results

Experiments were run on a set of 2112 problems in 54 do-
mains from the seven International Planning Competitions
which are publicly available?, using one core of a 2.8 GHz
machine with 4 GB memory and 30 minutes per instance.
Results for planners which use randomization are averaged
over five runs. All planners are implemented on the Fast

"Each step in a random walk generates all children and ran-
domly picks one, which is only slightly cheaper than one expansion
by LS when Deferred Evaluation is applied.

The current IPC test set does not include Blocksworld, Hanoi,
Ferry and Simple-Tsp from Figure 1.



Downward code base FD-2011 (Helmert 2006). The trans-
lation from PDDL to SAS+ was done only once, and this
common preprocessing time is not counted in the 30 min-
utes. Parameters were set as follows: STALL _SIZE = 1000
for both algorithms. (MAX_LOCAL_TRY, LSSIZE) = (100,
1000) for GBFS-LS and (10, 100) for GBFS-LRW.

Local Search Topology for /"

For the purpose of experiments on UHR, the detailed classi-
fication by h* of Figure 1 can be coarsened into three broad
categories:

e Unrecognized-Deadend: 195 problems from 4 domains
with unrecognized dead ends: Mystery, Mprime, Freecell
and Airport.

e Large-UHR: 383 problems from domains with UHRs
which are large or of unbounded exit distance, but with
recognized dead ends: column 3 in Figure 1, plus the top
two rows of columns 1 and 2.

o Small-UHR: 669 problems from domains without UHRs,
or with only small UHRs, corresponding to columns 1 and
2 in the bottom row of Figure 1.

Note, problems from these three categories are only a sub-
set of the total 2112 problems. Only part of the 54 domains
were analyzed in Hoffmann’s work (Hoffmann 2011).

Performance of Baseline Algorithms

Heuristic GBFS GBFS-LS GBFS-LRW
FF 1561 1657 1619.4
CG 1513 1602 15732
CEA 1498 1603 1615.2

Table 1: IPC coverage out of 2112 for GBFS with and with-
out local exploration, and three standard heuristics.

The baseline study evaluates GBFS, GBFS-LS and
GBFS-LRW without the common planning enhancements
of preferred operators, deferred evaluation and multi-
heuristics. Three widely used planning heuristics are tested:
FF (Hoffmann and Nebel 2001), causal graph (CG) (Helmert
2004) and context-enhanced additive (CEA) (Helmert and
Geffner 2008). Table 1 shows the coverage on all 2112
IPC instances. Both GBFS-LS and GBFS-LRW outperform
GBFS by a substantial margin for all 3 heuristics.

Figure 3(a) compares the time usage of the two proposed
algorithms with GBFS using h'F" over all IPC benchmarks.
Every point in the figure represents one instance, plotting
the search time for GBFS on the z-axis against GBFS-LS
(top) and GBFS-LRW (bottom) on the y-axis. Only prob-
lems for which both algorithms need at least 0.1 seconds are
shown. Points below the main diagonal represent instances
that the new algorithms solve faster than GBFS. For ease
of comparison, additional reference lines indicate 2x, 10x
and 50X relative speed. Data points within a factor of 2 are
shown in grey in order to highlight the instances with sub-
stantial differences. Problems that were only solved by one
algorithm within the 1800 second time limit are included at

x = 10000 or y = 10000. Both new algorithms show sub-
stantial improvements in search time over GBFS.

Figures 3(b) and (c) restrict the comparison to Large-
UHR and Small-UHR respectively. In Large-UHR, GBFS-
LS and GBFS-LRW solve 19 (+9.7%) and 30 (+15.3%)
more problems than GBFS (195/383) respectively. Both out-
perform GBFS in search time. However, in Small-UHR,
GBFS-LS and GBFS-LRW only solve 3 (+0.5%) and 7
(+1.1%) more problems than GBFS (634/669), and there
is very little difference in search time among the three al-
gorithms. This result clearly illustrates the relationship be-
tween the size of UHRs and the performance of the two local
exploration techniques. For Unrecognized-Deadend, GBFS-
LS is slightly slower than GBFS with the same coverage
(162/195), while GBFS-LRW is slightly faster and solves
7 (+3.7%) more problems. The effect of local exploration
on the performance in the case of unrecognized dead-ends is
not clear-cut.

Performance with Search Enhancements

Experiments in this section test the two proposed algorithms
when three common planning enhancements are added: De-
ferred Evaluation, Preferred Operators and Multiple Heuris-
tics. K" is used as the primary heuristic in all cases.

e Deferred Evaluation delays state evaluation and uses the
parent’s heuristic value in the priority queue (Richter and
Helmert 2009). This technique is used in G-GBFS and
LS(n), but not in the endpoint-only evaluation of random
walks in LRW(n).

e The Preferred Operators enhancement keeps states
reached via a preferred operator, such as helpful actions
in K7, in an additional open list (Richter and Helmert
2009). An extra preferred open list is also added to
LS(n). Boosting with default parameter 1000 is used,
and Preferred Operator first ordering is used for tie-
breaking as in LAMA-2011 (Richter and Westphal 2010).
In LRW (n), preferred operators are used in form of
the Monte Carlo with Helpful Actions (MHA) technique
(Nakhost and Miiller 2009), which biases random walks
towards using operators which are often preferred.

e The Multi-Heuristics approach maintains additional open
lists in which states are evaluated by other heuristic
functions. Because of its proven strong performance
in LAMA, the Landmark count heuristic h!"™ (Richter,
Helmert, and Westphal 2008) is used as the second heuris-
tic. Both G-GBFS and LS(n) use a round robin strategy for
picking the next node to expand. In Fast Downward, h!™
is calculated incrementally from the parent node. When
Multi-Heuristics is applied to GBFS-LRW, the LRW (n)
part still uses A" because the path-dependent landmark
computation was not implemented for random walks.
When LRW (n) finds an heuristically improved state s,
GBFS-LRW evaluates and expands all states along the
path to s in order to allow the path-dependent compu-
tation of h!™(s) in G-GBFS. Without Multi-Heuristics,
only s itself is inserted to the open list.

Table 2 shows the experimental results on all IPC do-
mains. Used as a single enhancement, Preferred Operators
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Figure 3: Comparison of time usage of the three baseline algorithms. 10000 corresponds to runs that timed out or ran out of
memory. Results shown for one typical run of GBFS-LRW, which is selected by comparing all 5 runs and picking the most

typical one. They are all very similar.

improves all three algorithms. Deferred Evaluation improves
GBFS-LS and GBFS-LRW, but fails for GBFS, mainly due
to plateaus caused by the less informative node evaluation
(Richter and Helmert 2009). In GBFS-LS and GBFS-LRW,
the benefit of faster search outweighs the weaker evalua-
tion. Multi-Heuristics strongly improves GBFS and GBFS-
LS, but is only a modest success in GBFS-LRW. This is not
surprising since LRW(n) does not use h™, and in order to
evaluate the new best states generated by LRW(n) with h'™
in G-GBFS, all nodes on the random walk path need to be
evaluated, which degrades performance.

Enhancement GBFS GBFS-LS GBFS-LRW
(none) 1561 1657 1619.4

PO 1826 1851 1827.4

DE 1535 1721 1635

MH 1851 1874 1688.4

PO + DE 1871 1889 1880.6

PO + MH 1850 1874 1854.2

DE + MH 1660 1764 1730.2

PO + DE + MH 1913 1931 19254

Table 2: Number of instances solved with search enhance-
ments, out of 2112. PO = Preferred Operators, DE = De-
ferred Evaluation, MH = Multi-Heuristic.

Comparing State of the Art Planners in terms of
Coverage and Search Time

The final row in Table 2 shows coverage results when all
three enhancements are applied. The performance compar-
isons in this section use this best known configuration in
terms of coverage for three algorithms based on GBFS,
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GBFS-LS and GBFS-LRW, which closely correspond to the
“coverage-only” first phase of the LAMA-2011 planner:

LAMA-2011: only the first GBFS iteration of LAMA
is run, with deferred evaluation, preferred operators and
multi-heuristics with 2" and h'™ (Richter and Westphal
2010).

LAMA-LS: Configured like LAMA-2011, but with
GBEFS replaced by GBFS-LS.

LAMA-LRW: GBFS in LAMA-2011 is replaced by
GBFS-LRW.

Table 3 shows the coverage results per domain. LAMA-
LS has the best overall coverage, 18 more than LAMA-2011,
closely followed by LAMA-LRW. LAMA-LS solves more
problems in 7 of the 10 domains where LAMA and LAMA-
LS differ in coverage. This number for LAMA-LRW is 7
out of 11. Although LAMA-LRW uses a randomized algo-
rithm, our 5 runs for LAMA-LRW had quite stable results:
1927, 1924, 1926, 1924 and 1926. By comparison, adding
the landmark count heuristic, which differentiates LAMA-
2011 from other planners based on the Fast Downward code
base, improves the coverage of LAMA-2011 by 42, from
1871 to 1913.

Using the same format as Figure 3 for baseline GBFS,
Figure 4 compares the search time of the three planners
over the IPC benchmark. Both LAMA-LS and LAMA-
LRW show a clear overall improvement over LAMA-2011
in terms of speed. The benefit of local exploration for search
time in Large-UHR still holds even with all enhancements
on. Both LAMA-LS and LAMA-LRW solve 12 more prob-
lems (4.1%) than LAMA-2011’s 290/383 in Large-UHR,
while in Small-UHR they solve 1 and 2 fewer problems re-
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LAMA-LRW.
Domain Size LAMA-2011 LAMA-LS LAMA-LRW
00-miconic-ful 150 136 136 135.6
02-depot 22 20 20 19.6
02-freecell 80 78 79 78 .2
04-airport-str 50 32 34 32.8
04-notankage 50 44 43 44
04-optical-tel 48 4 6 4
04-philosoph 48 39 47 47.8
04-satellite 36 36 35 35
06-storage 30 18 23 21
06-tankage 50 41 41 42
08-transport 30 29 30 29.6
11-floortile 20 6 5 6
11-parking 20 18 20 16.8
11-transport 20 16 16 17
Total 2112 1913 1931 1925.4
Unsolved 199 181 186.6

Table 3: Domains with different coverage for the three plan-
ners. 33 domains with 100% coverage and 7 further domains
with identical coverage for all planners are not shown.

spectively than LAMA-2011’s 646/669.

For further comparison, the coverage results of some
other strong planners from IPC-2011 on the same hardware
are: FDSS-2 solves 1912/2112, Arvand 1878.4/2112, Lama-
2008 1809/2112, fd-auto-tune-2 1747/2112, and Probe
1706/1968 (failed on the ":derive" keyword in 144 prob-
lems).

Although the local explorations are inclined to increase
the solution length, the influence is not clear-cut since they
also solve more problems. The IPC-2011 style plan quality
scores for LAMA-2011, LAMA-LS and LAMA-LRW are
1898.0, 1899.6 and 1900.5.
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Conclusions and Future Work

While local exploration has been investigated before in the
context of local search planners, it also serves to facilitate
escaping from UHRs for greedy best-first search. The new
framework of GBFS-LE, GBFS with Local Exploration, has
been tested successfully in two different realizations, adding
local greedy best-first search in GBFS-LS and random walks
in GBFS-LRW.

Future work should explore more types of local search
such as FF’s enforced hill-climbing (Hoffmann and Nebel
2001), and try to combine different local exploration meth-
ods in a principled way. One open problem of GBFS-LE
is that it does not have a mechanism for dealing with un-
recognized dead-ends. Local exploration in GBFS-LE al-
ways starts from the heuristically most promising state in
the global open list, which might be mostly filled with nodes
from such dead-ends. In domains such as 2011-nomystery
(Nakhost, Hoffmann, and Miiller 2012), almost all explo-
ration will occur within such dead ends and therefore be
useless. It would be interesting to combine GBFS-LE with
an algorithm for increased global-level exploration, such as
DBFS (Imai and Kishimoto 2011) and Type-GBFS (Xie et
al. 2014).
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