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Abstract. Board game research has pursued two distinct but linked
objectives: solving games, and strong play using heuristics. In our case
study in the game of chess, we analyze how current AlphaZero type
architectures learn and play late chess endgames, for which perfect play
tablebases are available. We study the open source program Leela Chess
Zero in three and four piece chess endgames. We quantify the program’s
move decision errors for both an intermediate and a strong version, and
for both the raw policy network and the full MCTS-based player. We
discuss a number of interesting types of errors by using examples, explain
how they come about, and present evidence-based conjectures on the
types of positions that still cause problems for these impressive engines.
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1 Introduction

The AlphaZero algorithm [12] has demonstrated superhuman playing strength
in a wide range of games, such as chess, shogi, and Go. Yet as powerful as
neural networks (NNs) are at move selection and state evaluation, they are not
perfect. Judging from the varied outcome of self-play games in deterministic
complete information games such as chess and Go, even the best AlphaZero-
style players must still make mistakes. We investigate this gap between strong
play and perfect play. To analyze how these modern programs learn to play
sophisticated games, and also to test the limits to how well they learn to play,
we turn to a sample problem that has known exact solutions. While the full
game of chess has not yet been solved, exact solutions for endgames up to seven
pieces have been computed and compiled into endgame tablebases. We use the
AlphaZero-style open-source program Leela Chess Zero (Lc0) to analyze chess
endgames. We develop a methodology and perform large-scale experiments to
study and answer the following research questions:

– How do stronger and weaker networks differ for predicting perfect play?
– How does the search in Lc0 improve the prediction accuracy for endgames?
– How do stronger policies improve search results?
– How does reducing the search budget affect the correctness of Lc0?
– Which is easier to predict, wins or draws?
– How well does Lc0 recognize wins and losses?
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– Which kinds of endgame positions are easy and hard to learn? How does
that change with more learning?

– Are there cases where search negatively impacts move prediction? If such
cases exist, why do they occur?

2 Background

In previous work [11,6], perfect play has been compared against heuristic engines.

2.1 Chess Endgame Tablebases
Chess is a game in which the state space and game tree complexity is reduced as
the game progresses and pieces are captured. Chess endgames are sub-problems
in which the full rules of chess apply, but only a reduced set of game pieces
remains on the board. While the game of chess itself has not been solved to
date, endgames of up to seven pieces have been solved and are publicly available
[9]. A database of such endgame solutions is referred to as an endgame tablebase.
A solution for each position includes the outcome of the game given perfect play
for both players, the optimal moves that each player must make to reach that
outcome, and specific metrics such as the number of plies (moves by one player)
required to reach the outcome. There are advantages and disadvantages to each
kind of metric. In this paper, we use the depth to mate (DTM) metric, which
is the number of plies for a win or loss, assuming the winning side plays the
shortest way to win, and the losing side the longest to lose [4].

Endgame tablebases hosted online [5,10] differ in storage size and metrics.
Tablebase generators are often also available. Among these, the Syzygy [10] and
Gaviota [1] tablebases are free and widely used.

2.2 Leela Chess Zero
Leela Chess Zero (Lc0) is an adaptation of the Go program Leela Zero for chess.
Both programs are distributed efforts which reproduce AlphaZero for chess and
Go, respectively. Volunteers donate computing resources to generate self-play
games and optimize the NNs. Relying solely on community resources and efforts,
in 2020 Lc0 surpassed AlphaZero’s published playing strength in chess [7].

Like AlphaZero, Lc0 also takes a sequence of consecutive raw board positions
as input. It uses the same two-headed (policy and value) network architecture
as AlphaZero. Similar to AlphaZero, the policy head output guides the Monte
Carlo tree search (MCTS) as a prior probability, while the value head output
replaces rollouts for position evaluation. Over time the developers of Lc0 intro-
duced enhancements that were not in the original AlphaZero. For example, an
auxiliary output called the moves left head was added to predict the number
of plies remaining in the current game [3]. Another auxiliary output called the
WDL head separately predicts the probabilities that the outcome of the game
is a win, draw, or loss [8]. Lc0 uses two distinct training methods to generate
different types of networks that differ in playing strength. T networks are trained
by self-play, as in AlphaZero, while J networks are trained using self-play game
records generated from T networks. J networks are stronger and are used in
tournament play.
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3 Analyzing Chess Endgames with Leela Zero Chess
3.1 Tablebase Dataset Pre-processing

In order to evaluate the performance of a chess program in terms of finding exact
solutions, a ground truth to compare against is needed. For that, we use chess
endgame tablebases which describe perfect play of all positions up to 7 pieces
on the board. In this section we describe how to pre-process the tablebases.

We choose the open-source Gaviota tablebases as the source of ground truth.
We compare the perfect play against the tested program’s choice for all unique
legal positions in all nontrivial three and four piece endgames. Also, we took the
winning and drawing positions where there are more than one possible outcome.

Since the Gaviota tablebase is indexed and compressed, the following steps
are performed to create an iterable list of positions:

1. We use the method of Kryukov [5] to enumerate all unique legal positions and
store positions in the FEN format. Uniqueness refers to treating symmetric
positions as one; legality is checked using normal chess rules.

2. We use tools from python-chess [2] to extract the following information from
the Gaviota tablebase for each enumerated position: The position in FEN
format, lists of all winning, drawing and losing moves, the win-draw-loss
status, the DTM score, and the decision depth (see below).

3. The data for each endgame type is stored in MySQL for easy access.

We use the term decision depth to categorize positions in an endgame table-
base. For a winning position, the decision depth is simply the DTM score. For
drawing positions where there are also losing moves, the decision depth is the
highest DTM after a losing move.

3.2 Choice of AlphaZero Program and Its Parameters
We chose Lc0 0.27 as our AlphaZero-style program in our analysis, because it is
both publicly available and strong. Lc0 has evolved from the original AlphaZero
in many ways, but with the proper configuration, it can still perform similarly.
We use two specific settings and leave everything else in the default configuration.
Disabling Smart Pruning: AlphaZero selects the node with the highest PUCB
value during MCTS [13]. However, Lc0 does not always follow this behaviour.
This is due to smart pruning, which uses the simulation budget differently: it
stops considering less promising moves earlier, resulting in less exploration. We
set the Lc0 parameter -smart-pruning-factor=0 to disable smart pruning.
Single-threaded Search: For consistent analyses, we prefer the engine to be
deterministic between different experiment runs. Multi-threading introduces ran-
dom behaviour, so we run the engine with a single thread for consistency.

Lc0 supports a variety of NN backends. Since we used Nvidia Titan RTX
GPUs for our experiments, we chose the cudnn backend.

Many network instances are publicly available. For this research we chose
two specific snapshots of the T60 network generation:
Strong network: ID 608927 with (self-play) ELO rating 3062.00, which was
the best performing snapshot up to May 2, 2021
Weak network ID 600060, rating 1717.00, were the initial weights of this gen-
eration after 60 updates starting from random play.
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Table 1: Total number of mistakes by the policy net and MCTS with 400 simu-
lations, using strong and weak networks.

EGTB Total Positions Tested
Weak Network Strong Network
Policy MCTS-400 Policy MCTS-400

KPk 8596 390 13 5 0

KQk 20743 109 0 0 0

KRk 24692 69 0 0 0

KQkq 2055004 175623 12740 3075 36

KQkr 1579833 141104 3750 4011 46

KRkr 2429734 177263 6097 252 0

KPkp 4733080 474896 41763 20884 423

KPkq 4320585 449807 46981 6132 13

KPkr 5514997 643187 60605 13227 196

4 Experiments

4.1 Move Prediction Accuracy for Basic Settings

We evaluate the move decisions of Lc0 for all non-trivial three and four piece
endgame positions. We define a mistake as a move decision that changes the
game-theoretic outcome, either from a draw to a loss, or from a win to not a
win. Any outcome-preserving decision is considered correct. So the engine does
not need to choose the quickest winning move. Accuracy is measured in terms
of the number or frequency of mistakes, over a whole database.

Table 1 shows the number of mistakes, for each three and four piece table-
base, for both the weak and the strong network. Results are shown for both the
raw network policy, and for full Lc0 with 400 MCTS simulations. From the table
it is clear that both network training and search work very well. The strong net
makes significantly fewer mistakes, and search strongly improves performance
in each case where the network alone is insufficient. For all three piece posi-
tions, 400 MCTS simulations are enough to achieve perfect play. In four piece
endgames, a small number of mistakes still remain under our test conditions.

Effect of Search Budget on Winning and Drawing Positions To ana-
lyze how deeper search influences accuracy, we compare search budgets of 0 (raw
policy), 400, 800, and 1600 simulations per move decision. We call these settings
MCTS-0 = policy, MCTS-400, . . . We chose these relatively settings considering
our limited computational resources. Deeper search consistently helps for all of
these tablebases.

The error rate, defined as the fraction of mistakes in a set of positions, is
shown separately for the sets of winning and drawing positions in each tablebase
in Table 2. In many of these datasets, decisions are more accurate for draws
than for wins. The main exception is KQkr, which contains only a small fraction
(3.4%) of draws. The error rate for those draws is very high at 2%.
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Table 2: Error rate for winning and drawing move predictions for MCTS with
search budgets of 0 (raw policy), 400, 800 and 1600 simulations.

EGTB
% of Error

Winning Positions Drawing Positions
0 400 800 1600 0 400 800 1600

KPk 8.00e−2 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KQk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KRk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

KQkq 2.96e−1 3.21e−3 1.61e−3 0.00 2.74e−2 5.35e−4 8.03e−4 5.35e−4

KQkr 1.53e−1 1.41e−3 4.01e−4 0.00 2.01 2.93e−2 1.41e−2 1.17e−3

KRkr 2.33e−2 0.00 0.00 0.00 4.19e−3 0.00 0.00 0.00

KPkp 4.39e−1 1.02e−2 3.30e−3 1.46e−3 4.45e−1 6.18e−3 1.51e−3 3.29e−4

KPkq 1.18e−3 2.94e−6 1.34e−6 10.07e−6 2.94e−3 3.42e−6 0.00 0.00

KPkr 2.02e−1 4.11e−1 3.25e−3 4.92e−3 1.22e−3 1.81e−3 2.88e−4 1.31e−3

(a) Policy errors in winning positions. (b) Policy errors in drawing positions.

(c) MCTS-400 errors in winning positions. (d) MCTS-400 errors in drawing positions.

Fig. 1: Error rate for each decision depth in the KQkr tablebase.

4.2 Performance at Different Decision Depths
In this experiment, shown in Figure 1, we measure the error rate separately at
each decision depth. We evaluate both the raw policy and MCTS-400 using the
strong network. The figure shows that in contrast to raw policy, MCTS-400 only
makes mistakes at higher decision depths. Policy mistakes at all shallow decision
depths are completely corrected by search. At higher depths, some errors remain,
but there is no simple relation between decision depth and error rate there.

Figure 2 shows that there is a relationship between the sample size at each
decision depth and the error rate of the raw net. Each point in the figure cor-
responds to all positions of a specific decision depth in KQkr. The results in
other four piece tablebases are similar in that fewer positions at a given depth
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correspond to more errors. They are omitted here for brevity. Figure 1(c)-(d)
shows the corresponding results for MCTS-400. The engine only makes mistakes
in positions with higher decision depths. Search can routinely solve positions
with shallower decision depths regardless of the policy accuracy.

Fig. 2: Sample size (shown as percentage of the total number of positions) at each
decision depth vs. raw policy error rate (in log scale) for the KQkr tablebase.

4.3 Case Studies: Interesting Engine Mistakes

In this section we study a number of interesting cases where Lc0 makes mistakes.
While analyzing these mistakes, there is a large amount of common expected
behavior: search typically corrects policy inaccuracies, and larger searches correct
errors that are still made by smaller searches. However, there are cases where
search fails while the policy is correct. Several examples discussed below are
shown in Figure 3. The correct moves are indicated in green and blue, while
chosen incorrect moves are shown in red.

Policy Wrong, Search Correct: In Figure 3(a), Qg1 wins but Qa1 only
draws. The network’s prior probability (policy head) of the incorrect move Qa1
(0.1065) is higher than for the winning move Qg1 (0.0974). However, the value
head has a better evaluation for the position after the winning move (0.3477)
than the drawing move (0.0067). Therefore Qg1 becomes the best-evaluated
move after only a few simulations. Figure 4(a1-a4) shows details - the changes
of Q, U , Q+U and N during MCTS as a function of the number of simulations.
At each simulation, the move with the highest UCB value (Q+U) is selected for
evaluation. The Q value of a node is the average of its descendants’ values. The
exploration term U depends on the node’s visit count N and the node’s prior
probability. For this example, while the exploration term U(Qa1) > U(Qg1)
throughout, the UCB value remains in favour of the winning move. An accurate
value head can overcome an inaccurate policy in the search.

Policy and Search Both Wrong: In Figure 3(b), both Kd3 and Kd5 win,
but both the raw network and the search choose Kc3 which draws. Kd5 has by
far the lowest policy (0.2776) and value (0.3855), and its Q and N are consistently
low, keeping it in distant third place throughout. Both the initial policy and value
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80Z0Z0Z0Z
7J0Z0Z0Z0
60ZkZ0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3Z0ZQZ0Z0
20Z0Z0Z0Z
1Z0Z0Z0Zq

a b c d e f g h

(a) Policy wrong, search correct

80Z0Z0Z0Z
7Z0O0Z0Z0
60Z0Z0Z0Z
5j0Z0Z0Z0
40sKZ0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0Z0

a b c d e f g h

(b) Policy wrong, search also wrong

8qZ0Z0Z0Z
7j0Z0Z0Z0
60Z0Z0Z0Z
5Z0J0Z0Z0
40Z0Z0Z0Z
3Z0Z0Z0Z0
20Z0Z0Z0Z
1Z0Z0Z0L0

a b c d e f g h

(c) Policy correct, smaller search wrong

80Z0Z0Z0Z
7Z0Z0Z0o0
60Z0Z0Z0Z
5Z0Z0Z0Z0
40Z0Z0Z0Z
3J0Z0Z0Z0
20Z0O0Z0Z
1ZkZ0Z0Z0

a b c d e f g h

(d) Policy correct, all search wrong

Fig. 3: Examples for different types of engine mistakes.

are higher for Kc3 (0.3229 and 0.9144) than for the correct Kd3 (0.2838 and
0.8501). We extended the search beyond the usual 1600 simulations to see longer-
term behavior. The Q value of Kc3 remains highest for 6000 simulations, while
Kd3 catches up, as shown in Figure 4(b1). MCTS samples all three moves with
similar UCB values, but focuses most on the incorrect Kc3. At 1600 simulations,
the inaccurate value estimates play a large role in incorrectly choosing Kc3.
Beyond 6000 simulations, the Q value of Kd3 keeps improving, and MCTS
finally chooses a correct move at about 12000 simulations.

Policy Correct, Smaller Search Wrong: In Figure 3(c), Kb5 wins while
Kd6 draws. The prior probability of Kb5 is 0.0728, which is slightly higher
than Kd6’s at 0.0702, but the value, at 0.2707, is slightly lower than Kd6’s at
0.2834. Figure 4(c1) shows that the Q value of Kd6 is higher early on due to the
value head. As search proceeds, this reverses since the values in the subtree of
the winning move are better. In this example, MCTS overcomes an inaccurate
root value since the evaluations of its followup positions are more accurate.

Policy Correct, Search up to 1600 Simulations Wrong: In the ex-
ample shown in Figure 3(d), d4 wins. Up to 1600 simulations, MCTS chooses
the drawing move Kb3. The value of Kb3 (0.1457) is higher than that of d4
(0.1053), but the prior probability of d4 (0.3563) is higher than Kb3 (0.348).
Figure 4(d1-d4) shows the search progress. The Q value of d4 remains lower for
longer than in the previous example in Figure 3(c). At around 1500 simulations,
the UCB value of the correct move becomes consistently higher. This prompts
the search to sample the correct move more, At 2200 simulations, the Q value of



8 R. Haque et al.

the correct d4 spikes dramatically. At this point the search tree is deep enough
to confirm the win, and from 2700 simulations on, the engine plays d4.
5 Summary and Future Work
The important findings for three and four piece tablebases are: 1) NNs approach
perfect play as more training is performed. 2) Search helps improve prediction
accuracy. 3) The number of NN errors decreases for decision depths that have
a higher number of samples. 4) Search increases the rate of perfect play with
shallower decision depths. 5) Search corrects policy inaccuracies in cases where
the value head accuracy is high. 6) Small-scale search may negatively impact
accuracy in cases where the value head error is high. However, deep search
eventually overcome this problem in the endgames we analyzed.

Future extensions of this study include: 1) Extend the study for larger endgame
tablebases (with more pieces) to generalize our findings. 2) Perform frequency
analyses of self-play training data to get the number of samples at each decision
depth. 3) Analyze symmetric endgame positions to verify decision consistency.
4) Examine value head prediction accuracy and compare with policy accuracy. 5)
Study the case where the program preserves the win, but increases the distance
to mate. How often would the program run into the 50 move rule?
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(a1) Average action value Q (a2) Exploration term U

(a3) Upper confidence bound Q + U (a4) Visit count N

(b1) Average action value Q (b2) Exploration term U

(b3) Upper confidence bound Q + U (b4) Visit count N

Fig.4: Page 1 of 2. Development of relevant terms Q, U , Q + U , N in UCB for
Figure 3((a)-(b)).
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(c1) Average action value Q (c2) Exploration term U

(c3) Upper confidence bound Q + U (c4) Visit count N

(d1) Average action value Q (d2) Exploration term U

(d3) Upper confidence bound Q + U (d4) Visit count N

Fig. 4: Page 2 of 2. Development of relevant terms Q, U , Q + U , N in UCB for
Figure 3((c)-(d)).
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