Continuous Arvand: Motion Planning with Monte Carlo Random Walks

> Weifeng Chen and Martin Müller Presented by Robert Holte Department of Computing Science University of Alberta

Introduction

- Monte Carlo random walks (MRW) have been successful in classical deterministic planning with discrete states and actions.
- MRW uses random exploration of the local neighbourhood of a search state.
- Arvand is a family of planners using MRW approach in classical planning.
- The current work is an initial study adapting MRW to plan in continuous spaces.

Random Walks in Discrete State Spaces

• MRW Procedure:

- Start state s
- $_{\odot}~$ Apply a sequence of randomly selected actions.
- Use heuristic *h* to evaluate the endpoint.
- Do this several times for s.
- If no improvement, restart, otherwise repeat from best endpoint.

• Advantages:

- Escape faster from local minima and plateaus
- Combines greedy exploitation with random exploration
- Avoid exhaustive search of dead-ends

 \bigcirc

Random Walk Parameters

- Choices for terminating a random walk
 - \circ Fixed length
 - Initial length, multiply when stuck
 - Local restarting rate r
 - Terminate walk with probability r at each step
- Global restart mechanisms
 - Fixed number of search episodes
 - Restarting threshold *t*:
 - Restart when no improvement in last *t* walks
 - *t* is calculated adaptively*

^{*} http://webdocs.cs.ualberta.ca/~mmueller/ps/2013/2013-IJCAI-arvand.pdf

Example – Barriers

Example – Barriers (video)

Classical vs Motion Planning

Main differences for MRW:

Component	Classical planning	Motion planning
State space	discrete	continuous
Goal checker	deterministic	approximate
Action execution	instant	continuous
Random walk	sample action	sample state
Kanuoni waik	\rightarrow new state	\rightarrow new motion
Heuristic	Instance-specific,	C-space-specific, e.g.
Ticuitsue	e.g. Fast Forward	geometric distance

MRW for Motion Planning

- Using a path pool
- Bidirectional search
- Anytime planning Arvand*

Path Pool

- Store a set of up to N random walks
- Utilize them for improving later searches
- Empty pool at global (re-)start
- Add/replace *n* < N paths at each time
 - Example: Pool size N = 6, n = 3

Path Selection

Pick path p with minimum *h*-value from pool

Path Expansion

Choose Paths to be Replaced

• Randomly choose *n* paths

Add New Paths to Pool

Bidirectional Arvand

- Alternate directions
- Choose the pair of endpoints that are closest, extend one of them, use the other as the goal.

Anytime Planning

- Most motion planners stop after they find the first valid plan is found.
- Anytime planning: restart and keep searching to find a better plan.

Implementation

- Continuous Arvand is built on top of Open Motion Planning Library (OMPL)
- Uses many OMPL primitives
 - \circ pre-defined state space
 - state sampler
 - distance function
 - \circ plan simplifier

Continuous Arvand Variants

Arvand_fixed	Constant parameters for walk length, number of walk
Arvand_extend	Initial walk length = 10, doubled after every 100 walks
Arvand2	Number of walks = 1, restarting rate r = 0.01
Arvand2_AGR	Restart search when the last <i>t</i> walks did not lower heuristic, <i>t</i> is calculated adaptively
BArvand	Bidirectional Arvand
Arvand*	Find a best plan within the time limit

Experiments - Setup

- 5+1 other planners from OMPL:
 - KPIECE, EST, PDST, RRT, PRM
 - Optimizing planner RRT*, compared with Arvand*
- 13 motion planning problems from OMPL:

 Maze, Barriers, Abstract, Apartment, BugTrap,
 Alpha, RandomPolygons, UniqueSolutionMaze,
 Cubicles, Pipedream, Easy, Home and Spirelli

Plan Length (Maze)

Planner	Path length	Simplified path length
KPIECE	285.35	149.64
EST	189.72	118.11
PDST	195.17	117.50
RRT	152.16	125.07
PRM	134.95	116.70
Arvand_fixed	120.68	88.72
Arvand_extend	187.00	105.30
Arvand2	4,630.43	139.96
Arvand2_AGR	10,739.10	153.31
BArvand	364.63	108.33

Rank of Arvand Versions

Metric	Arvand _fixed	Arvand _extend	Arvand2	Arvand2 _AGR	BArvand
Best in Memory	5/13	2/13	1/13	0/13	2/13
Avg Rank Memory	1.2/10	2.0/10	3.5/10	5.2/10	4.7/10

Rank of Arvand Versions

Metric	Arvand _fixed	Arvand _extend	Arvand2	Arvand2 _AGR	BArvand
Best in Memory	5/13	2/13	1/13	0/13	2/13
Avg Rank Memory	1.2/10	2.0/10	3.5/10	5.2/10	4.7/10
Best in Path Length	2/13	1/13	0/13	0/13	3/13
Avg rank Path Length	1.8/10	4.2/10	5.6/10	5.4/10	4.1/10

Rank of Arvand Versions

Metric	Arvand _fixed	Arvand _extend	Arvand2	Arvand2 _AGR	BArvand
Best in Memory	5/13	2/13	1/13	0/13	2/13
Avg Rank Memory	1.2/10	2.0/10	3.5/10	5.2/10	4.7/10
Best in Path Length	2/13	1/13	0/13	0/13	3/13
Avg rank Path Length	1.8/10	4.2/10	5.6/10	5.4/10	4.1/10
Best in Time	0/13	0/13	0/13	1/13	1/13
Avg Rank Time	8.0/10	8.5/10	5.8/10	5.2/10	5.5/10

Best Arvand vs Top 3 Other

Metric	Best Arvand	RRT	PRM	KPIECE	Other
Best in Memory	10/13	1/13	0/13	1/13	1/13
Avg Rank Memory	1.3/10	5.2/10	6.9/10	5.5/10	6.8/10

Best Arvand vs Top 3 Other

Metric	Best Arvand	RRT	PRM	KPIECE	Other
Best in Memory	10/13	1/13	0/13	1/13	1/13
Avg Rank Memory	1.3/10	5.2/10	6.9/10	5.5/10	6.8/10
Best in Path Length	6/13	1/13	6/13	0/13	0/13
Avg rank Path Length	1.8/10	4.9/10	3.1/10	7.8/10	5.5/10

Best Arvand vs Top 3 Other

Metric	Best Arvand	RRT	PRM	KPIECE	Other
Best in Memory	10/13	1/13	0/13	1/13	1/13
Avg Rank Memory	1.3/10	5.2/10	6.9/10	5.5/10	6.8/10
Best in Path Length	6/13	1/13	6/13	0/13	0/13
Avg rank Path Length	1.8/10	4.9/10	3.1/10	7.8/10	5.5/10
Best in Time	2/13	5/13	0/13	3/13	3/13
Avg Rank Time	3.5/10	2.4/10	5.9/10	3.0/10	3.9/10

Four Categories of Problems

- Easy (solvable in ~1 second by most planners)
 - $_{\odot}$ Maze, BugTrap, RandomPolygons, Easy

• Intermediate

Alpha, Barriers, Apartment

• Intermediate with long detour

- UniqueSolutionMaze, Cubicles, Pipedream_ring, Abstract
- Hard (avg. time > 1 minute, some time out)
 - Home, Spirelli

Results - Qualitative

- Continuous Arvand produces competitive short solutions for Easy problems in a short time.
- BArvand outperforms all other planners in the intermediate problems Alpha and Barriers.
- Poor performance for problems requiring long detours.
- Arvand2_AGR and BArvand can solve the hard problem Spirelli, other variants time out.

Experiments - Summary

- Overall, the family of continuous Arvand planners are competitive
- Can outperform other planners in some motion planning problems
- Usually use much less memory
- Do not perform well when long detours are required

Anytime Plan Length

Plan length as a function of time for Arvand* and RRT*

- Problem: Alpha
- Data averaged over 10 runs

Future Work

- Try further MRW techniques from classical planning
 - \circ On-Path Search Continuation
 - Smart Restarts
 - Adaptive local restarting
 - Evaluation of intermediate states along the walk
- Investigate other ways of using memory to speed up MRW, improve its plan quality, etc.
- Create a Portfolio Motion Planner

Conclusions

- Applied MRW approach to motion planning
- Works well for problems that do not require long detours
- Uses much less memory than other planners
- Highly configurable
- Different strengths and weaknesses compared to previous methods, and among our variations