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The Game of Go




Go

+ Classic two-player board game

+ Invented in China thousands of years
ago

+ Simple rules, complex strategy
+ Played by millions

+ Hundreds of top experts - professional
players

+ Until 2016, computers weaker than
humans




Go Rules

+ Start with empty board
+ Place stone of your own color

+ Goal: surround empty points
Oor opponent - capture

<+ Win: control more
than half the board

+ Komi: first player advantage
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Measuring Go Strength

+ People in Europe and America use the traditional Japanese
ranking system

+ Kyu (student) and Dan (master) levels

+ Separate Dan ranks for professional players
+ Kyu grades go down from 30 (absolute beginner) to 1 (best)
+ Dan grades go up from 1 (weakest) to about 6

+ There is also a numerical (Elo) system, e.g. 2500 = 5 Dan



Short History
of Computer Go




Computer Go History - Beginnings

+ 1960’s: initial ideas, designs on paper

+ 1970’s: first serious program - Reitman & Wilcox
+ Interviews with strong human players
+ Try to build a model of human decision-making
+ Level: “advanced beginner”, 15-20 kyu

+ One game costs thousands of dollars in computer time



1980-89 The Arrival of PC

+ From 1980: PC (personal computers) arrive

+ Many people get cheap access to computers

+ Many start writing Go programs

+ First competitions, Computer Olympiad, Ing Cup

+ Level 10-15 kyu



1990-2005: Slow Progress

+ Slow progress, commercial successes
* 1990 Ing Cup in Beijing
+ 1993 Ing Cup in Chengdu

+ Top programs Handtalk (Prof. Chen Zhixing), Goliath (Mark
Boon), Go++ (Michael Reiss), Many Faces of Go (David Fotland)

* GNU Go - open source program, almost equal to top commercial
programs

* Level - maybe 5 Kyu, but some “blind spots”



1998 - 29 Stone Handicap Game

+ Played at US Go Congress

+ Black: Many Faces of Go,
world champion and one of the
top Go programs at the time

2+ White: Martin Miiller,
5 Dan amateur

+ Result: White won by 6 points
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2000-08 Monte Carlo Revolution

+ Remi Coulom, Crazy Stone program:
Monte Carlo Tree Search (MCTS)

+ Levente Kocsis and Csaba Szepesvari:
UCT algorithm

+ Sylvain Gelly, Olivier Teytaud et al:
MoGo program

<+ Level: about 1 Dan
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Search - Game Tree Search

All possible move sequences

M P

Combined in a tree structure 1 . d|
Root is the current game T FE
position //‘-\ ///\\ N
Leaf node is end of game . - Sl
: \
Search used to find good B B e
move sequences P Image Source:
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Minimax principle
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Search - Monte Carlo Tree Search

* Invented about 10 years ago

(Coulom - Crazystone, UCT) // \

* Grow tree using win/loss
statistics of simulations // \\ // \\ gg ﬂ \\
g N

* First successful use of // \\ - // \\
simulations for classical two- gg ”\\
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* Scaled up to massively parallel b gg

oo
* MoGo; Fuego on several
thousand cores



Simulation

“ For complex problems, there
are far too many possible
future states

o

» Example:
predict the path of a storm

“ Sometimes, there is no good
evaluation

* We can sample long-term
consequences by simulating
many future trajectories
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Simulation in Computer Go

* Play until end of game i . |

L]

+ Find who wins at end

(easy)

“ Moves in simulation:

random + simple rules

“ Early rules hand-made Example:
Simple rule-based policy



Simulation in Computer Go (2)

* Later improvement:

* Machine-learned policy
based on simple features

* Probability for each move
* AlphaGeo:

machine-trained
simple network

* Fast: goal is about
1,000,000 moves/second /CPU



2008 First win on Y Stones

hd o o @
: s ]b X
+ MoGo program o [||o_
+ Used supercomputer with 3200 . ® t “se

CPUs e

J 4D A4

~ R .
Xt ] o

+ Won with 9 stones handicap vs
Myungwan Kim, 8 Dan
protessional




2003-15: Rapid Improvement

+ Improve Monte Carlo Tree Search

+ Better simulation policies
(trial and error)

+ Add Go knowledge in tree

+ Simple features, learn weights

by machine learning Ronledes
on simple features
+ Level: about 5-6 Dan in Fuego

3-4 stones handicap from top human players
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2009 - First 9x9 Win vs T()p Pro
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+ Fuego open source program | .

* Mostly developed at
University of Alberta

* First win against top human
professional on 9x9 board

= MCTS, deep searches

White: Fuego
Black: Chou Chun-Hsun 9 Dan

* 80 core parallel machine White wins by 2.5 points



Computer Go Before AlphaGo

* Summary of state of the art
before AlphaGo:

* Search - quite strong

* Simulations - OK, but hard to
improve

* Knowledge

* Good for move selection

* Considered hopeless for
position evaluation Who is better here?



2015 - Deep Neural Nets Arrive

* Two papers within a few weeks

* First by Clark and Storkey;,
University of Edinburgh

* Second paper by group at
DeepMind, stronger results

* Deep convolutional neural nets
(DCNN) used for move
prediction in Go

* Much better prediction than old
feature-based systems



AlphaGo

* Program by DeepMind DeepM | nd

* Based in London, UK and Edmonton (from 2017)
* Bought by Google
“ Expertise in Reinforcement Learning and search

+ 2014-16: worked on Go program for about 2 years,
mostly in secret

* One paper on move prediction (previous slide)



AlphaGo Matches

Fall 2015 - beat European champion
Fan Hui by 5:0 (kept secret)

January 2016 paper in Nature,
announced win vs Fan Hui

March 2016 match vs Lee Sedol
WlIlS 4:: 1 | At last a— computer progifzﬁll that

can beat a champion Go plaver Page g«

January 2017, wins fast games AI\_L s Ys TEMS /GO

60:0 against many top players

[OVE AN 1 FISEARCNETACS FOPUIAS SCIERCE 3 .'A“'qltm“
- SONGBIRDS SATCGUARD WHLIEN GENES
ALACAKITE TRANSPARENCY GOV 'SFILFISHT
May 20 1 7 matCh VS Ke ]le I g harvest of mi'iony D' It cpemmiess bazkefing Doddng'y vulling
¥ Maliermaroa POk o Endyioke s ur L5 e BN}

! CUARIs UV UMm L
hsEar MeLas [ 14 ]

Wins 3:0 then retires



The Science Behind AlphaGo



The Science Behind AlphaGo

a
Rollout policy SL policy network RL policy network Value networ Kk

* AlphaGo builds on @ ” ,,
decades of research in: M4 kX% ot @

* Building high ’f

performance game
playing programs

Human expert positions Self-play positions

* Reinforcement Learning

* (Deep) neural networks
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Main Components of AlphaGo

“ AlphaGo shares the same main components with
many other modern heuristic search programs:

* Search - MCTS (normal)

* Knowledge created by machine learning
(new types of knowledge)

* Simulations (normal)



Knowledge - Policy and Evaluation

* Two types of knowledge Yalue 'network
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* Encoded in deep convolutional
neural networks

“ Policy network
selects good moves for the
search (as in move prediction)
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“ Value network:
evaluation function,
measures probability of winning




Deep Neural Networks in AlphaGo

Rollout policy  SL policy network RL policy network Value network
* Three different deep neural networks *. Pa P
* Supervised Learning (SL) policy Vgl %& m @
network as in 2015 paper U, %%

* Learn from master games: 4 v
improved in details, more data -

Human expert positions Self-play positions

* New: Reinforcement Learning (RL)

from self-play for policy network

“ New: value network trained from

labeled data from self-play games



RL Policy Network

* Deep neural network, same architecture as SL
network

* Given a Go position
* Computes probability of each move being best
* Initialized with SL policy weights

* Trained by Reinforcement Learning from millions of
self-play games

* Adjust weights in network from win/loss result at
end of game only



Data for lraining Value Network

* Policy network can be used as a

strong and relatively fast player

* Randomize moves according to

their learned probability

# After training, played 30

million self-play games

* Pick a single position from each
game randomly

+ Label it with the win/loss

result of the game

+ Result: data set of 30 million Go

positions, each labeled as win
or loss

“ Next step: train the value

network on those positions



Value Network

a Value network

* Another deep neural network 00000088

3;.,

* Given a Go position
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* Computes probability of
winning
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Putting 1t All Together

A huge engineering effort
Many other technical contributions

Massive amounts of self-play
training for the neural networks

Massive amounts of testing/tuning

At last a computer program that
can beat a champion Go plaver Page g4

Large parallel hardware in earlier

matches Al\-L SYSTEMS 51'0
“Single TPU machine” in 2017 |l m— e
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What’s New in AlphaGo 20177

* Few details known as of now

+ Muc

* More publications promised

+ Muc
labels

* Main change: better games
data for training the value net

* 0Old system: 30 million games
played by RL policy net

* New system: unknown
number of games played by
the full AlphaGo system

+ Consequences:

n better quality of games

n better quality of final result

“ From strong amateur (RL
network) to full AlphaGo
strength

* Most likely,
many other improvements
in all parts of the system



The Legacy of AlphaGo



L.egacy of AlphaGo

* Research contributions, the path leading to AlphaGo
* Impact on communities

* Go players

* Computer Go researchers

* Computing science

* General public



Review: Contributions to AlphaGo

* Deepmind developed AlphaGo, with many great
breakthrough ideas

* AlphaGeo is also based on decades of research in heuristic
search and machine learning

* Much of that research was done at University of Alberta
* Next slide: references from AlphaGo paper in Nature

* Over 40% of references have a University of Alberta
(co-)author
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Impact on Game of Go

* AlphaGo received honorary 9 Dan diploma
from both Chinese and Korean Go associations

“ Strong impact on professional players

* Many new ideas, for example Ke Jie has
experimented a lot with AlphaGo style openings

* Goal: Go programs as teaching tools

+ Potential problem: cheating in tournaments?



What's Next in Computer Go?

* Currently, developing a top Go program
is Big Science

* Needs a large team of engineers
* Example: Tencent's FineArt

“ What can a small-scale university project
contribute?

“ One idea: work on solving parts of the game



Is the Game of Go Solved Now?

* Nol!

“ AlphaGo still makes mistakes

+ Example: 50 selt-play games

+ Which color should win?

+ 38 wins for White

< 12 wins for Black

“ One of these results must be wrong



Solving Go on Small Boards

“ Solving means proving the best

result against any possible
opponent play

* Much harder to scale up than
heuristic play

* 5x5, 5x6 Go are the largest

solved board sizes
(v.d.Werf 2003, 2009)

+ Much work to be done: 6x6, 7x7,




Solving Go Endgames

* How about solving 19x19 Go?

* Completely impossible, much too hard

* Solving endgames is more promising

* Can play some tull-board 19x19 puzzles pertectly

* Algorithms based on combinatorial game theory
(Berlekamp+Wolfe 1994, Miiller 1995)



Solving Go Endgame Puzzles
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Impact on Computing Science, Al

* The promise of AlphaGo: methods are general, little
game-specific engineering

* Shown that we have algorithms to acquire strong
knowledge from very complex domains

* Challenge: what about real life applications?
* Rules are not clear and change, hard to simulate
* Even more actions

* Less precise goals and evaluation



Impact on General Public

“ Massive publicity about AlphaGo’s success
 [llustration of the power of Al methods
“ Feelings of both opportunities and fear

* We can solve many complex problems with Al

+ Will Al destroy many good human jobs?
Or replace boring jobs with better ones?



Summary and Outlook

* DeepMind’s AlphaGo program is
an incredible research breakthrough

* Landmark achievement for
Computing Science

* Reviewed the main techniques that
made this progress possible

* One big question: will the techniques
apply to other problems?



