Three-Head Neural Network Architecture for Monte Carlo Tree Search

Chao Gao, <u>Martin Müller</u>, Ryan Hayward University of Alberta

Deep Neural Net Architectures for MCTS

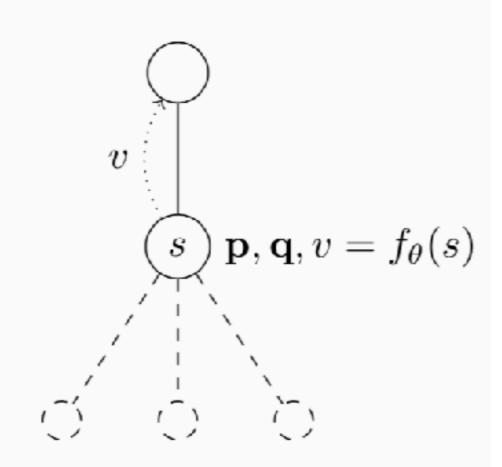
- Move prediction in Go (Clark+Storkey 2015, Maddison et al 2015): Single deep convolutional net, "policy net"
- Early AlphaGo (Silver et al 2016): Two separate policy and value nets
- AlphaGo Zero (Silver et al 2017), Alpha Zero (Silver et al 2017): Single residual net with two heads policy and value
- In this work: add a **third head**
 - One-step value predictions (Q-values) for all moves

Two Head Architecture $(p,v) = f_{\theta}$ $\begin{pmatrix} -\phi & \phi \\ + & \phi \\ + & \phi \end{pmatrix}$

- f.. Deep net
 with parameters *θ*
- Input: Go position

- Output (**p**,v)
- **p** = a-priori probability of each move being best
- v = evaluation of *current* state

Third Head for Q-Values

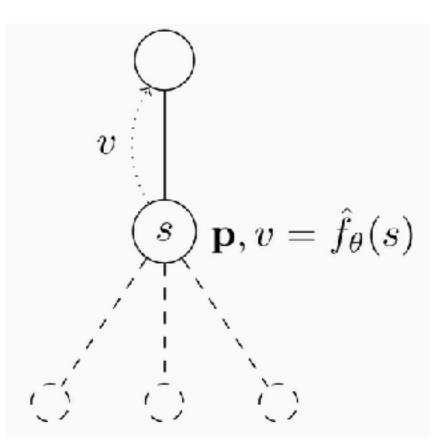


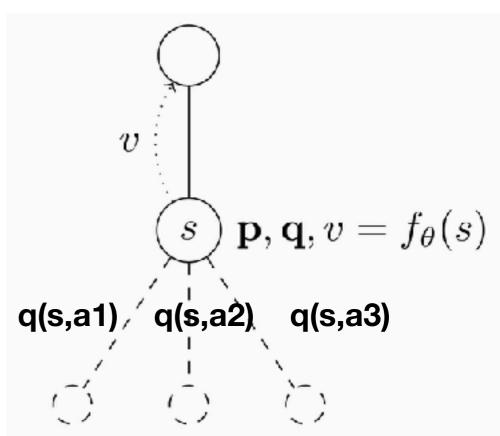
Third output **q(s, a)**: after-state evaluation after each legal move a

Main advantage:

- Estimated value of children immediately available...
- ...before evaluating them

Use in MCTS





- 2-head: backup value v of s
- No value estimate of children
- 3-head: backup value v of s
- Also backup q-value of children

Relation Between v and q

- v .. evaluation from current player's point of view
- **q** .. evaluation from opponent's view
- Best move for us:
 - minimize among all q values
 - negate to change point of view to us
- Minimax consistency:
 v(s) = min q(s,a_i)
 or v(s) + min q(s,a_i) = 0
- Use for learning consistent v and q estimates

Training of 2 Head Network

- Minimize loss function over labeled training data (s,a,z_s)
 - State s, action a played,
 z_s game result from current player's view
 - z_s = +1: win
 - $z_s = -1$: loss
- 2 head loss function (with parameters w and c)

$$\hat{L}(\hat{f}_{\theta}; \mathcal{D}) = \sum_{(s, a, z_s) \in \mathcal{D}} \left(w(z_s - v(s))^2 - \log p(a|s) + c||\theta||^2 \right)$$

Training of 3 Head Network

- Three changes to loss function:
 - 1. Replace v-loss with average of v- and q-loss $(z_s - v(s))^2 \longrightarrow \frac{1}{2}(z_s - v(s))^2 + \frac{1}{2}(z_s + q(s, a))^2$

2. Add AND constraint: if s is loss, all actions lose

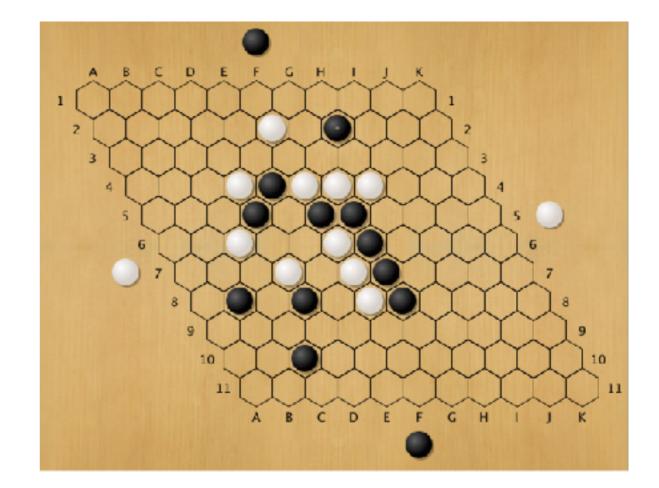
$$L_Q(f_{\theta}; \mathcal{D}) = \sum_{(s, a, z_s) \in \mathcal{D}} \frac{\max(-z_s, 0)}{|\mathcal{A}(s)|} \sum_{a' \in \mathcal{A}(s)} (z_s + q(s, a'))^2$$

3. Add minimax consistency loss

$$L_P(f_{ heta}; \mathcal{D}) = \sum_{(s, a, z_s) \in \mathcal{D}} (\min_{a'} q(s, a') + v(s))^2$$

Game of Hex

- Classic abstract board game, invented in 1940's
- Goal: connect your two sides
- Theorem: exactly one player will connect
- Some similarities to Go
 - Simpler rules
 - Deep, difficult game



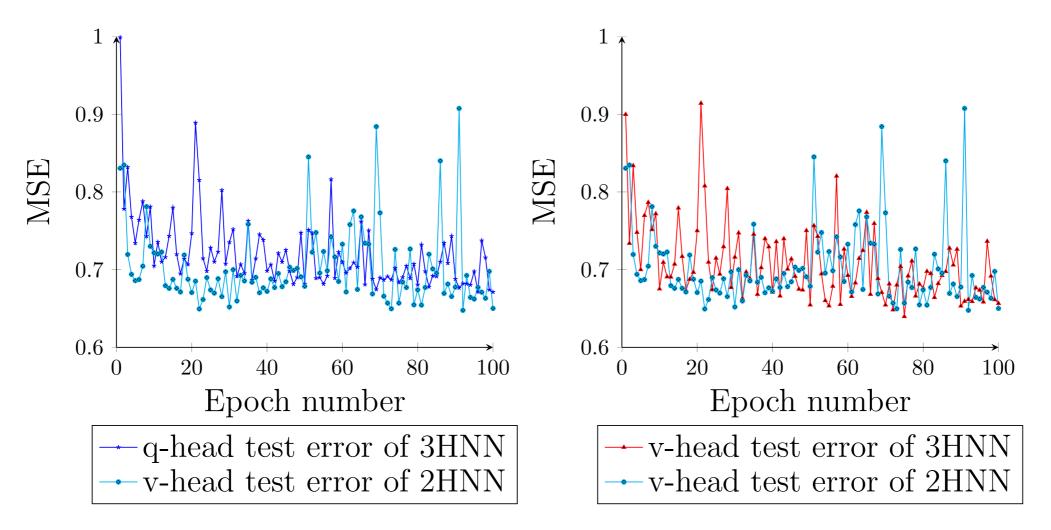
Neural Net for Hex

Input $15 \times 15 \times 4$ Input: 13x13 Hex board padded with extra borders $(3 \times 3, 32)$ Convolution Residual net, 10 blocks 10 residual blocks 3 heads for p, q, v $(1 \times 1, 1)$ $(1 \times 1, 1)$ Convolution Convolution Compare with 2 head network • - without the q head 169 fully 1 fully consoftmax connected units nected unit Ú tanh tanh

Hex Training Data

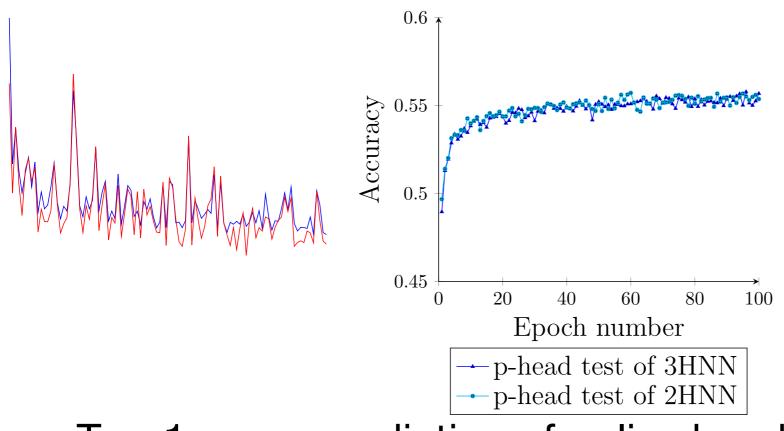
- Self-play 13x13 Hex games
 - From previous strongest program MoHex 2.0
 - About 10⁶ positions
- Labeled by game outcomes z
- Data augmentation: for lost positions, all actions lose

Test Errors 2 vs 3 Heads



- q error comparable to v error very good news!
 1-step predictions as good as direct evaluation
- v errors comparable with 2 and 3 heads

Policy Move Prediction



- Top-1 move prediction of policy head
 - Is the highest probability move the same as in test data?
- Again, 2 and 3 head nets are very similar

Play against Previous Mohex-CNN

Player	Player as black	Player as white	Overall winrate
MoHex-3HNN	76.5%	70.6%	73.5%
MoHex-2HNN threshold 0	65.9%	57.6%	61.8%
MoHex-2HNN default threshold	69.4%	56.5%	62.9%

- Integrated new nets with MoHex' Monte Carlo Tree Search
- Played against last year's MoHexCNN
- Iterate over all opening moves many are very lopsided
 - 73.5% is a large score in this test

2 vs 3 Heads

 64.1% wins for 3 heads against strongest version of 2 head

macmcrae.com

Combining q and v

- Idea: v and q estimate for different but closely related states
- Use minimax consistency arguments
 - Combine v and q into a single estimate v'
- Two versions of this idea in the paper
- Both win 55-58% against plain v

Advantages of Three Heads

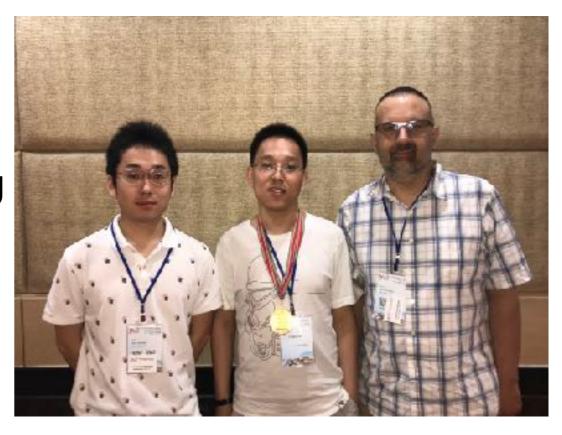
- Many more state evaluations in the same time due to q-values
- Slightly stronger evaluation by combining v and q
- Some advantages during learning see paper

Alpha Zero Style Training

- Early result, not in paper
- 3 head architecture also works well with Alpha Zero approach
- Continuously improve **p**, **q**, v by self-play
- Warm start with best version above
- After 400,000 training games, "significantly stronger"
- Why not train from zero knowledge? Practical reasons

2018 Computer Olympiad

- Two strong Hex entries this year, MoHexCNN (Gao/Ualberta), EzoCNN (Takada)
 - MoHexCNN: 3-head plus Alpha Zero style training
 - EzoCNN: CNN, trained 4-5 months by selfplay, 10 million games
- Both win over 80% against MoHex 2.0
- Two board sizes: 11x11 and 13x13
- MoHexCNN won both matches 5-0



Kei Takada (Ezo), Chao Gao (MoHex), Ryan Hayward (MoHex)

Summary

- 3 head architecture, learns q-values as well
- Game-independent idea, applied to Hex
- More data efficient, sees one step further "for free"
- Also works well with Alpha Zero self-play training
- Far surpasses previous best Hex programs