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Alphabeta Search

• Minimax principle

• My turn: choose best move

• Opponent’s turn: they choose move that’s 
worst for me

• Alphabeta (αβ): prune irrelevant parts of 
tree



αβ Successes (1)

• Full search: solve the game

• checkers (Schaeffer et al 2007)

• Nine men’s morris (Gasser 1994)

• Gomoku (5 in a row) (Allis 1990)

• Awari, 5x5 Go, 5x5 Amazons,.....



αβ Successes (2)

• Not solved, but super-human strength:

• chess (Deep Blue team, 1996)

• Othello (Buro 1996)

• Grandmaster strength:

• shogi (Japanese chess)

• xiangqi (Chinese chess)



αβ Failures

• Go

• General Game Playing (GGP)

• Why fail?

• Focus on Go here



Go

• Classic Asian board game

• Simple rules, complex strategy

• Played by millions

• Hundreds of top experts - professional 
players

• Until recently, computers much weaker 
than humans



Go Rules
• Start: empty board

• Goal: surround

• Empty points

• Opponent (capture)

• Win: control more than 
half the board

• Komi: compensation for first player 
advantage
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• End: both players pass

• Territory - intersections surrounded by one player

• The player with more (stones+territory) wins the game

• Komi: adjustment for first player advantage (e.g. 7.5 points)

End of Game



Why does αβ 
Fail in Go?

• Depth and width of game tree 

• 250 moves on average 

• game length > 200 moves

• Lack of good evaluation function



Monte Carlo Methods

• Recently popular (mainly last 5 years)

• Hugely successful

• Backgammon (Tesauro)

• Go (many)

• Amazons, Havannah, Lines of Action, ...



Monte Carlo Simulation

• No evaluation function? No problem!

• Simulate rest of game using random moves 
(easy)

• Score the game at the end (easy)

• Use that as evaluation (hmm, but...)



The GIGO Principle

• Garbage in, garbage out

• Even the best algorithms do not work if the 
input data is bad

• How can we gain any information from 
playing random moves?



Well, it Works!

• For some games, anyway

• Even random moves often preserve some 
difference between a good position and a 
bad one

• The rest is statistics...

• ...well, not quite.



Basic 
Monte Carlo Search

• Play lots of random games starting with 
each possible move

• Keep winning statistics for each move

• Play move with best winning percentage



Simulation - Example

• Random legal moves, 
but…

• …do not fill one point 
eyes

• End of game after both 
pass

• Evaluate by Chinese 
rules:
+1 for win
  0 for loss

valkyria-ExBoss-randomgame.sgf



Example
(for one 
move)
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Example
(for one 
move)

Current position s

Simulation

 1      1      0      0        Outcomes

V(s) = 2/4 = 0.5



Evaluation
• Surprisingly good e.g. in Go - much better 

than random or simple knowledge-based 
players

• Still limited

• Prefers moves that work “on average”

• Often these moves fail against the best 
response

• “Silly threats”



How to Improve?

1. Better-than-random simulations

2. Add game tree (as in αβ)

3. Add statistics over move quality (RAVE, 
AMAF) - not today

4. Add knowledge in the game tree - not today

1. human knowledge

2. machine-learnt knowledge



1. Better Simulations

• Goal: strong correlation between initial 
position and result of simulation

• Preserve wins and losses

• How?



Knowledge in 
Simulations

• MoGo-style patterns

• Tactical rules



MoGo-Style Patterns
• 3x3 or 2x3 patterns

• Apply as response near last move



Tactical rules
• Escape from threats

• Stabilize/attack weak stones



Example 
of Biased Simulation

valkyria-ExBoss-biased-random-game.sgf



Building a better 
Random Policy

• Two main approaches

• Crazy Stone: use rules, patterns to set 
probabilities for each legal move

• MoGo, Fuego: hierarchy of rules

• Find set of highest priority rules

• Choose randomly from this (often 
small) set



2.  Add Game Tree

• Using simulations directly as an evaluation 
function for αβ fails

• Too much noise, or too slow if running 
many simulations per state

• Result: Monte Carlo was ignored for over 
10 years in Go



Monte Carlo 
Tree Search

• Idea: use results of simulations to guide 
growth of the game tree

• Exploitation: focus on promising moves

• Exploration: focus on moves where 
uncertainty about evaluation is high

• Two contradictory goals?



UCB Formula

• Multi-armed bandits (slot machines in 
Casino)

• Which bandit has best payoff?

• Explore all arms, but: 

• Play promising arms more often

• Minimize regret from playing poor arms



UCT Algorithm
• Kocsis and Szepesvari (2006)

• Apply UCB in each node of a game tree

• Which node to expand next?

• Start at root (current state)

• While in tree, choose child n that maximizes

UCTValue(parent, n) = 

winrate(n) + C*sqrt(ln(parent.visits)/n.visits)



• UCTValue(parent, n) = 

winrate(n) + C * sqrt(ln(parent.visits)/n.visits)

• winrate(n) .. exploitation term - average success 
of n so far

• 1/n.visits .. part of exploration term - explore 
nodes with very few visits - reduce 
uncertainty

• ln(parent.visits) .. part of exploration term - 
explore all nodes at least a little bit

• C .. exploration constant - how important is 
exploration relative to exploitation?
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Summary - Monte-
Carlo Tree Search

• Amazingly successful in games where 
alphabeta failed

• Top in Backgammon, Go, General Game 
Playing, Hex, Amazons, Lines of Action, 
Havannah,...

• Similar methods work in multiplayer 
games (e.g. card games), planning and 
puzzles



Summary(2)

• Very successful in practice

• Scales OK to parallel machines

• Reasons for why and how it works still 
poorly understood

• Some limitations (see later)



The Fuego Project

• Developed at UofA (Enzenberger, Müller, 
Arneson,...)

• Open-source program hosted on sourceforge

• http://fuego.sourceforge.net/

• Goals:

• General game-independent framework

• Strong programs, e.g. Go, Hex,  Amazons

http://fuego.sourceforge.net
http://fuego.sourceforge.net


Fuego Structure
• Game-independent kernel: 

smartgame library

• MCTS, alphabeta, 
common data structures, 
utility classes

• General Go engine

• Go board, rules, blocks, 
static safety algorithms

• Fuego - Monte Carlo Go program

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain



Fuego Go Successes
• 2009: First program to beat top human 

professional Chou Chun-Hsun in 9x9 game 
with no handicap

• Won 2009 Computer Olympiad 9x9 Go, 
2010 UEC cup (19x19)

• 2nd places in Olympiad: 2009 (19x19), 2010 
(9x9 and 13x13)

• This year: 3rd(9x9), 4th(13x13), 5th(19x19)

• Fuego ranked 1st on 9x9 CGOS all-time



Projects using Fuego(1)

• Bluefuego: MPI library for Fuego

• Developed by IBM

• Scales to hundreds of cores

• MoHex: world’s strongest Hex program

• Developed by Ryan Hayward’s group in 
Alberta

• Uses SmartGame kernel, MCTS engine

• Won Olympiad 2009, 2010, 2011



• Explorer: ``classical’’ Go program

• Strong solvers for Tsume Go, safe 
territory, endgame

• Uses Fuego’s SmartGame, Go libraries

• FuegoEx: add Explorer knowledge to 
Fuego

• Tactical search (block capture)

• Pattern matching - 4000 handmade large 
irregular patterns

• Filter: prune blunders from MCTS

Projects using Fuego(2)



• RLGO (Dave Silver)

•  Reinforcement-learning based Go program

• Uses SmartGame, Go, GoUct

• TsumeGo Explorer (Kishimoto + Müller)

• World’s best Life and Death solver for 
enclosed areas

•  Uses SmartGame, Go

• Arrow (Müller) Amazons-playing program 

•  uses classical alpha-beta search other basic 
functionality from SmartGame

• Arrow2 (Huntley,  VanEyck) MCTS-based - 
third in 2011 Olympiad

Projects using Fuego(3)



Parallel Search

• Shared memory parallelization 
(Enzenberger)

• Good speedup up to about 8 cores

• Lockfree shared game tree

• Memory-limited

• Distributed memory - BlueFuego (IBM)



Research Challenges

• How to improve simulations?

• offline

• online (during a game)

• How to achieve “locally strong” play?

• Global search cannot see enough

• How to scale to massively parallel systems?



AI Planning

• Related idea: Monte Carlo random walks

• Add exploration into the search

• Arvand planner (Nakhost)

• Strong in finding plans

• Weaker in plan quality

• Strong for problems with limited resources

• Recent work: add local search tree (Xie)



Summary

• Monte Carlo methods have revolutionized 
search and games

• Still not well understood

• Lots of good research to be done

• General method, promising for many other 
applications


