
Challenges
in Monte Carlo

Tree Search
Martin Müller

University of Alberta

Contents

State of the Fuego project (brief)

Two Problems with simulations and search

Examples from Fuego games

Some recent and future(?) approaches

The Fuego Project

Open-source program
hosted on sourceforge
Originally developed at University
of Alberta
Game-independent kernel, General
Go engine, MC Go program
Applications and extensions:
MoHex (Hex), BlueFuego, Arrow
(Amazons),RLGo,…

GtpEngine

SmartGame

Go

SimplePlayers GoUct

FuegoTest FuegoMain

Fuego Go Program
High-level design similar to MoGo, many others

Many differences in details, implementation

First program to win a 9x9 game vs top human professional

Won 9x9 Olympiad in Pamplona 2009

Second in 9x9, 13x13 in Kanazawa 2010

Won 4th UEC cup (19x19) in 2010

Topics of This Talk

Two limitations of current MCTS

Take games against strong humans as examples
to illustrate these problems with Fuego

Discussion points:

Are these general issues with Go programs?

With Monte Carlo Tree Search?

Two Problems with MCTS

I believe that in the current “standard model” of MCTS, both
simulation and search processes are fundamentally flawed

Simulations - results do not reflect “true value” of a position

Search - a single global search cannot deal well with many
simultaneous local complications

Barcelona 2010: 9x9 with
Black vs Professionals

Two quick losses, follow same pattern

White quickly creates two safe groups (around move 10),
Program does not “see” they are safe for long time

Fuego-GB Evaluation Scores

Left - vs 4 Dan: seki misevaluation, program has no clue

Right - vs 9 Dan: overoptimistic, game lost after 10 moves

What Goes Wrong?

Simulations

systematic bias for attacker (Black here)

Often, one White group dies

I think some other programs such as Zen,
Valkyria have more knowledgeable simulations

Global Tree Search

9x9 Win with White
Difficult opening -
lots of territory for
human

Good reduction in
top right

0.5 point win for
program

What Went Well?

Program knows exactly how much it needs to reduce the top
right

Single focus on the board at each time - global search does
well

9x9 Loss with White vs 9 Dan
Program played well in
middle game

Winning up to move 39

Big fight covering 3/4 of
board

40 is losing move - loses
capturing race

Move 40: The Mistake

A would win. B loses One possible sequence.
 White wins the ko for everything

What Went Wrong?

Complex single fight involving many blocks of stones

Need to shift focus between top right, bottom right, top
left

MCTS too selective, misses crucial moves deep in the fight

Human: even more selective, but based on sound Go
knowledge

Sidebar: MoGo’s Mistake
MoGo won a good
game vs 9 Dan

Lost a good game
vs 4 Dan - shown here

White A loses semeai,
B or C would win

Similar kind
of mistake?

Two 13x13 Games

Left: vs Tsai 6 Dan amateur; Right: vs Yen 6 Dan amateur

Evaluation Problems

Main problem: high uncertainty about tactics in playouts

What Went Wrong?

Randomized playouts in Fuego-GB are tactically weak

Outcome of capturing races is mostly random

On bigger boards, global search cannot cover all local
fights

Selective search in MCTS often misses tactics

Evaluation Bias
Each misevaluated fight introduces systematic bias of a
number of points

In both 13x13 games, all biases in same direction:

Program does not clearly see that opponent stones are
safe

Result: program is about 20 points off in its evaluation

Even 1 point would be enough to lose games

Evaluation in Game vs Tsai

Some Recent Approaches

How to improve simulations?

How to improve search?

Local Accuracy in Playouts

Can we make playouts locally accurate?

Zen, Valkyria use much Go-specific knowledge

Knowledge arms race? Back to the bad old days?

Is this a problem specific to Go? Or a deeper, more
general problem with simulations?

Is there a generic way to solve it?

Towards Dynamic
Simulation Policies
Tesauro, Silver: simulation balancing (offline)

Rimmel: prefer RAVE moves in simulations

Drake: last winning reply

need more research

Using Domain Knowledge

We can easily solve many tactical questions with traditional
alphabeta or proof number search

How to integrate such knowledge with MCTS?

Today: in-tree only

Hex: virtual connection solver, endgame solver

Go Examples: Many Faces of Go, Steenvreter, FuegoEx

Preserve Tactical Invariants
Playouts should preserve “crucial properties” of position

Examples:

Safety of territories

Tactics, semeai

Life and Death

How to do that?

Improving on Global Search

Global search becomes bottleneck for problems with lots of
“local structure”

Ideal: flexible combination of local and global searches

How to do it?

Challenges and Ideas

Find good local sequences

Restrict search locally to those sequences

Recent work: case study using endgame puzzles

Optimal player using combinatorial game theory
available for evaluation

How to integrate with MCTS on rest of board?

Summary

MCTS has come a long way in a very short time

Now we seem to have hit some major road blocks

I believe that to achieve the next level of performance, we
must improve both:

content of simulations

global search

