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The Fuego Project

~ Open-source program
hosted on sourceforge

" Originally developed at Universit
| of l(\]lbertz i |

" Game-independent kernel, General
Go engine, MC Go program

 Applications and extensions:
oHex (Hex), BlueFuego, Arrow
(Amazons) RLGo,...




Fuego Go Program

' High-level design similar to MoGo, many others

— Many ditferences in details, implementation

First program to win a 9x9 game vs fop human professional

Won 9x9 Olympiad in Pamplona 2009
S

econd in 9x9, 13x13 in Kanazawa 2010
Won 4th UEC cup (19x19) in 2010

1 [—1 [— 1




Topics of This Talk

Two limitations of current MCTS
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Take games against strong humans as examples
to illustrate these problems with Fuego

' Discussion poins:
— Are these general issues with Go programs?

— With Monte Carlo Tree Search?




Two Problems with MCTS

| believe that in the current “standard model” of MCTS, both
simulation and search processes are fundamentally flawed

Simulations - results do not reflect “true value” of a position
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Search - a single global search cannot deal well with many
simultaneous local complications
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Program does not “see” they are safe for long time
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' Two quick losses, follow same pattern




Fuego-GB Evaluation Scores

Lett - vs 4 Dan: seki misevaluation, program has no clue

Right - vs 9 Dan: overoptimistic, game lost after 10 moves




What Goes Wrong?

'~ Simulations
— systematic bias for attacker (Black here)

— 0ften, one White group dies

— | think some other programs such as Zen,
Valkyria have more knowledgeable simulations

" Global Tree Search




9x9 Win with White
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- Difficult opening -
lots of territory for
human
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What Went Well?

' Program knows exactly how much it needs to reduce the top
right

 Single focus on the board at each time - global search does
well




Big fight covering 3/4 of
40 is losing move - loses

Program played well in
capturing race

middle game
Winning up fo move 39
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Move 40: The Mistake
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" Awould win. Bloses  One possible sequence.
White wins the ko for everything




What Went Wrong?

~ Complex single fight involving many blocks of stones

— Need to shift focus between top right, bottom right, fop
left

MCTS too selective, misses crucial moves deep in the fight

Human: even more selective, but based on sound Go
knowledge




Sidebar: MoGo's Mistake

~ MoGo won a good
game vs 9 Dan

' Lost a good game
vs 4 Dan - shown here

~ White A loses semeai,
B or C would win

'~ Similar kind
of mistake?
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- Left: vs Tsai 6 Dan amateur; Right: vs Yen 6 Dan amateur




Evaluation Problems

' Main problem: high uncertainty about tactics in playouts




What Went Wrong?

" Randomized playouts in Fuego-GB are tactically weak
— Qutcome of capturing races is mostly random

— On higger boards, global search cannot cover all local

fights

— Selective search in MCTS often misses tactics




Evaluation Bias

' Each misevaluated fight introduces systematic bias of o
number of points

' In both 13x13 games, all biases in same direction:

— Program does not clearly see that opponent stones are
safe

' Result: program is about 20 points off in its evaluation

— Even 1 point would be enough to lose games




Evaluation in Game vs Tsai

i i
60 80
move number




Some Recent Approaches

ow to improve simulations?
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ow fo improve search?




Local Accuracy in Playouts

~ Can we make playouts locally accurate?
— Ien, Valkyria use much Go-specific knowledge
— Knowledge arms race? Back to the bad old days?

— s this a problem specific to Go? Or a deeper, more
general problem with simulations?

— s there a generic way to solve it?




Towards Dynamic

Tesauro, Silver: simulation balancing (offline)

Rimmel: prefer RAVE moves in simulations

Drake: last winning reply

f
L
f
L
f
L
f
L

need more research




Using Domain Knowledge

~ We can easily solve many tactical questions with traditional
alphabeta or proof number search

" How to integrate such knowledge with MCTS?
— Today: in-tree only
— Hex: virtual connection solver, endgame solver

— Go Examples: Many Faces of Go, Steenvreter, FuegoEx




Preserve Tactical Invariants

Playouts should preserve “crucial properties” of position
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Examples:
— Safety of ferritories
— Tactics, semeai
— Life and Death

" How to do that?




Improving on Global Search

'~ Global search becomes bottleneck for problems with lofs of
“local structure”

|deal: flexible combination of local and global searches
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How to do it?




Challenges and ldeas

Find good local sequences

estrict search locally to those sequences
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Recent work: case study using endgame puzzles

— Optimal player using combinatorial game theory
available for evaluation

— How fo integrate with MCTS on rest of board?




Summary

MCTS has come a long way in a very short time

Now we seem to have hit some major road blocks
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| believe that to achieve the next level of performance, we
must improve both:

— content of simulations

— global search




