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17.1 Uncapacitated Facility Location (UFL)

Input:

e F aset of n facilities;
e C, a set of cities/clients/users, (|C| = m);
e f;, the cost of opening facility ¢;

e Forall 1 <i<n,1<j5<m: Cj is the cost of connecting city j to facility 4
Goal:

e Open a subset of the facilities and connect each city to an open facility such that the total cost of
opening facilities and connecting cities to open facilities is minimized

We assume that F'N C = (. However this is not always the case, in the complete case, the intersection of F'
and C may be non-empty. It turns out that any approximation ratio in the bipartite case carries over to the
complete case. Therefore, we only focus on the bipartite case.

Metric UFL: In the metric UFL problem, the connection costs satisfy the triangle inequality, i.e. for every
1<i<nand1<j<m: Cy <Cyj+Cyj +Cijr.

Uncapacitated Facility Location can be viewed as a set cover problem. In fact, the first approximation
algorithm for UFL was based on the greedy algorithm for set cover and has a factor O(logn)-approximation
[Hochbaum82]. This is the best factor for non-metric UFL.

Several approximation algorithms since then have appeared since then. Some of which are the following:

e The first constant factor approximation was developed by Shmoys/Trdds/Agrarawal in 1997 using
LP-rounding

e A 3—approximation using the Primal-dual technique was developed in 1999 by Jain and Vazirani (this
algorithm is presented in the text book).

o We see a greedy algorithm due to Jain/Mahdian/Markakis/Saberi/Vazirani (J. ACM 2003) which has
a factor 1.861—approximation. With some careful tuning, the factor can be reduced to 1.61

e The best known approximation factor is 1.52 by Mahdian/Ye/Zhang. (The lower bound for UFL is
1.462.)
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17.2 UFL as a Set Cover

In order to frame UFL as a Set Cover instance, we define the notion of stars (corresponding to sets) and
cost-effectiveness.

Star: A star is one facility and the cities that are connected to it. The cost of a star is the equal to the cost
of opening the facility and the sum of the connection costs. Formally, for a star (i,C’') which has facility 4
and cities C' C C, the cost is f; +>_;ccr Cij. The cost-effectiveness of (i,C") is:

fit+ 2 e0r Cij
|C|

Although the number of stars is exponentially large, we can find the most cost-effective star in polynomial
time. For each facility 4, sort the cities in a non-decreasing order based on the connection cost to i. The most
cost-effective star containing facility ¢ will consist of the first k cities for some value of k. As k is increases,
the cost-effectiveness improves until we reach an optimal cost-effectiveness, at which point cost-effectiveness
will begin to get worse. We can find this optimal cost-effectiveness for each facility ¢, then pick the best.

Here is the algorithm for general (non-metric) UFL:

Algorithm 0
1. Consider the stars as sets and the cities as elements
2. Apply the greedy set cover algorithm

Algorithm 0 is an O(logn)-approximation, but we can do better. Once a facility has been opened, the facility
can be used later for only the cost of connection (We only pay to open a facility once). This intuition can
be used to improve the algorithm. To take advantage of this, we redefine cost-effectiveness.

New definiton of cost-effectiveness: Given a star (¢, C'), assume that the 7 uncovered cities of C' have
costs Cyj; < Cijy < ... < Cyj,. The cost-effectiveness of star (i, C")is now:

gi + > o1 Cij.

r

where

~_ | fi iffacility 4 is open;
9971 0 otherwise

Algorithm 1

U is the set of uncovered cities

initially U + C and all facilities are unopened

while U # ( do:
Find the most cost-effective star (i, C")
Open i if it is not already open, connect all of C' to i
U«U-C
fi=0

We are going to analyse this algorithm using dual fitting. For this purpose, we formulate the UFL problem
as an IP/LP. We will only use this LP formulation for the purpose of the analysis of the algorithm. Let
be an indicator variable for a star s. Let S be the set of all stars and ¢, be the cost of star s.
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Primal LP Dual LP
minimize dcsxs maximize > y;
such that Vj € C: 37, . @5 > 1 such that Vs € S 3. y; < ¢

For the dual, we can think of the y;’s as the contribution of city j toward the total expense. We have to
maximize the total prices (contributions) such that the amount for every star is not more than its cost. The
constraint for the dual is ) jes max(0,y; — C;) < fi- This equation is derived by rewriting the constraint
on the dual using the formula for the cost of a star.

If we start raising the dual variables y; for uncovered cities (simultaneously), the most cost-effective star will
be the first star for which 3, max(0,y; — Cj;) < f; becomes tight. This suggests that we can rewrite
Algorithm 1 in the following way. We have a notion of time (which starts at zero) and will increase.

Restatement of Algorithm 1
U is the set of uncovered cities
initially time is zero, U < C, and all facilities are unopened
while U # § do:
Increase time and simlutaneously increase y; for every city j € U until either:
For some unopened facility, ), ,max(0,y; — Cy5) = fi
In this case, open facility ¢ and for every unconnected city j with y; > Cj;,
connect j to facility ¢+ and remove j from U
For some uncovered city j and opened facility i, y; = Cj;
In this case, connect city j to facility ¢ and remove j from U.

We know that Algorithm 1 returns a feasible primal from the condition on the while loop. The cost of the
solution is ) y; because the total amount each city pays goes toward opening a facility and for connection
costs or is just exactly the connection cost. This means that in this case, the cost of the primal solution is
the same as the cost of the dual solution. This is only possible when the primal and dual are both optimal,
or one of primal or dual is unfeasible.

In this case, the dual is not necessarily feasible because at each iteration we exclude some cities from U, so

at the end, for some facility we may have ;. max(0,y; — Ci;) > fi.

However, it can be shown that there is a dual feasible solution that differs from y by only a small factor.
More specifically it can be shown that:

Lemma 17.1 (JMMSVO03) For some v < 1.861, y;/v is a feasible dual solution

This implies that % > jYjisa lower bound for the cost of optimal primal solution. Since our primal solution
has cost . y; we have:

Theorem 17.2 Algorithm 1 is a 1.861— approximation algorithm for uncapacitated facility location.
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