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Today we will present some improved versions of the PCP Theorem and show how to derive hardness results
for Vertex Cover, Max-3SAT, and Independent Set.

22.1 Improved PCP Theorems

As we saw in the last lecture, PCP theorem says: NP = PCP; 1(O(logn),0(1)). We are interested to
reduce the number of query bits and also decrease the the probability of failure (i.e. better soundness). Our
first theorem says that the number of query bits can be as small as 3 bits (and as you show in assignment 3
this is best possible).

Theorem 22.1 For some s <1: NP = PCP; ;(O(logn), 3)

Proof: Let L € NP be an arbitrary language and y be an instance of L. By PCP theorem we can construct
a 3CNF formula F such that:

o if y € L there is a truth assignment for F' such that all clauses of F' are satisfied.

e if y ¢ L then for any truth assignment for F' at most (1 — €) fractions of clauses are satisfied.
We assume that the proof 7w given for y is the truth assignment to formula F' above. The verifier V given
y and proof 7, first computes F' in polytime. Then uses O(logn) bits to pick a random clause of F and
query the truth assignment to its 3 variables (which of course requires only 3 bits of the proof). The verifier
accepts if and only if the clause is satisfied. It is easy to see that:

e If y € L then there is a proof 7 s.t. V accepts with probability 1.

e If y ¢ L then for any proof m, V' accepts with probability at most 1 — e.

The downside of this theorem is that, although the number of query bits is best possible, the soundness

probability is much worse than % The following theorem shows that we can actually keep the soundness

probability arbitrary close to % while reading only 3 bits of the proof.

Theorem 22.2 (Guruswami/Sudan/Lewin/Trevisan/93) For all € > 0

NP = PC’Pl,%“(O(logn),S).

Note that the 3 bits of the proof are selected by the verifier adaptively. That is, the position of the second
bit checked may depend on the truth value of the first bit read. This theorem is tight by the following result:
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Theorem 22.3 (Karlof f/Zwick)
P =PCP, (O(logn), 3).

Earlier, Hastad proved the following result from which several tight hardness results follow:

Theorem 22.4 (Hastad’97) NP = PCP,__ 1, (O(logn),3) where the verifier selects the 3 bits of the

proof a priori. That is, the verifier uses O(logn) random bits to choose 8 positions, i1,i2,43 of the proof and
a bit b and accepts if and only if w(i1) ® w(iz) & w(iz) = b.

The following results follow from Hastad’s theorem.
Corollary 22.5 For any € > 0, it is NP-hard to approximate:

o Max-3SAT within a factor of (% +e),
e Vertex cover within a factor of (% +e),

o Maximum independent set is within a factor of (% +e€).

Definition 22.6 Given a system of linear equations module 2 with 3 distinct variable’s per equation (e.g
X1®Xo® X3 =b). The value of an assignment to the variable’s is the number of equations satisfied by that
assignment.

Max-E3LIN2: Given a system of linear equations module 2 with 3 distinct variable’s per equation, find an
assignment with maximum number of satisfied equations.

Clearly, given an assignment we can find the value of the assignment in polynomial time. There is also a
trivial %—approximation algorithm for this: consider the two assignments x; = 0 for all ¢ and z; = 1 for all
i. At least one of these two assignments satisfies at least half the equations. Surprisingly, this is the best
possible approximation factor one can hope for.

Theorem 22.7 Unless P=NP, there is no (% + €) -approzimation for Maz-ESLIN2 for any ¢ > 0.

Proof: Given a language L € NP and an instance y for L consider the verifier V for L from Héastad PC'P
theorem. Assume that for every random string V is going to read 3 positions 41,42,43 and accepts if and
only if 7(i1) ® w(i2) ® 7(iz) = b. So for every random bit string we have one linear equation.

We generate all the n? random bits and from V' and we get n? equations, one for each string. For random
string r;, V accepts if and only if the truth assignment 7(i1) @© w(i2) ® 7(i3) = b satisfy that equation.

If y is yes instance then there is a proof for y such that V accepts with probability > (1 — ¢€), i.e. a fraction
of > (1 — ) of equations are satisfied.

If y is a no instance then for any any proof V accepts with probability < % + ¢, i.e. at most a fraction of
< % + € of equation are satisfied.

1
This implies a hardness gap of fj: < % + 2e. [ ]

Using this theorem we prove the hardness results mentioned in Corollary 22.5.
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22.2 Hardness results for Max-3SAT, Vertex Cover, and Max In-
dependent Set

Theorem 22.8 Unless P=NP, there is no (% + €)-approximation algorithm for Max-3SAT, for any € > 0.

Proof: We give a gap-preserving reduction form Max-E3LIN2 problem to Max-3SAT. The reduction maps
every equation x @ y ® z = b in the instance of Max-E3LIN2 into a 3CNF formula with 4 clauses depending
on whether b =0 or b =1 as follows:

r@y®z=0,<(ZTVIVEIANZTVyVz)A(zVgVz)A(zVyV Z)
r@y®z=1,(xVyV2)A@EVIVZIA(ZTVYVZIA(T VYV 2)

Let I be the instance of Max-E3LIN2 and ¢(I) be the 3CNF formula obtained. Clearly if I has m equations,
then ¢(I) has 4m 3-clauses.

If T is a yes instance, i.e. there is an assignment with value at least (1 — €)m then the same assignment
satisfies at least 4(1 — €)m + 3em of clauses.

If I is a no instance, then every assignment has value at most (§+¢)m. Therefore at most 4(3+€)m+3(3—€)m
of clauses of ¢(I) are satisfied by any truth assignment.

Thus the hardness gap is

where €' is a constant depending on € only.
|

Finally, we use Theorem 22.7 to prove hardness results for vertex cover and maximum independent set. Note
that since a clique is the complement of an independent set, our hardness factor for maximum independent
set is the hardness of Max-Clique too.

Theorem 22.9 Unless P=NP, there is no % + € -approximation for vertexr cover problem and no % + €
-approzimation for Clique/Independent set, for any e > 0.

Proof: Note that the complement of a vertex cover is an independent set. We give a gap-preserving reduction
from an instance of Max-E3LIN2. Starting from an instance I for Max-E3LIN2 we construct a graph G with
4m vertices where m is the number of equations of I.

For every equation there are exactly four assignments that satisfy the equation. We have one vertex for each
of these 4 assignments. All four vertices of each equation are connected to each other.

We also add edges between pairs from different groups of 4 vertices that are “inconsistent”. A pair of
vertices from different equation are inconsistent if a variable is assigned different values in the assignment
corresponding to those vertices. (see Figure 22.1).

If I is a yes instance then there is an assignment for I which satisfies at least (1 — €)m of equations. Consider
the equations satisfied by this truth assignment and consider the assignment of these equations. Each of these
assignments corresponds to a vertex of G. It is easy to see that these (1 — €)m vertices are all independent
(i.e. no edge between them) because they are *not* inconsistent (come from the same truth assignment).
Thus G has an independent set of size > (1 — €)m, and so a vertex cover of size size < (3 + €)m.
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Figure 22.1: Reduction from Max-E3LIN2

Now suppose that I is a no instance, i.e. every assignment has value at most (% + ¢)m. This implies that
every set of size (% + €)m + 1 in G must have an edge. The reason is that: clearly such a set has an edge if
it has two vertices from the same set of 4 vertices. Also, if there is an independent set of size (3 + €)m + 1
then they correspond to a set of consistent assignments to equations that satisfy at least (% +e)m+1 of the
equations, which cannot be true. Thus the every independent set of G has size at most (% + €)m, and every
vertex cover has size at least (3.5 — €)m.

(8.5—¢)
The hardness gap for vertex cover is I = % + ¢/, and the hardness gap for independent set (and also
(3+9) !
clique) is =2~ =1 + €.
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