CMPUT 675: Approximation Algorithms Winter 2005

Lecture 23: April 6th
Lecturer: Mohammad R. Salavatipour Scribe: Junfeng Wu

23.1 Hardness of Clique

Definition 23.1 (MAX-CLIQUE) Given a graph with n vertices, find a mazimum size clique in it, i.e. a
complete subgraph of mazimum size.

Last lecture we proved a constant hardness for Clique. The best known algorithm for approximating clique
has a factor of O(#) which is quite high. Note that this is slightly better than the trivial algorithm which
picks a single vertex and returns (which has approximation factor O(n)). It turns out that we cannot do
much better than this. Hastad has proved that for any € > 0 there is no polytime approximation algorithm
for clique with factor nz=¢ (if P#NP) or n'~¢ (if ZPP#NP). Our goal is to prove a polynomial hardness for
clique.

To prove this hardness result, we start with a constant hardness result for Clique. Then show that it is hard
to approximate Clique within any constant factor. Finally, we show how to improve this to a polynomial.

Consider a PCP, 3 (dlogn,q) verifier F' for SAT, where d and ¢ are constants. Let 1,73, ...,7,4 be the set of
all possible random strings to F. Given an instance ¢ of SAT, we construct a graph G from F and ¢ which
will be an instance of Clique. G has one vertex V,,; . for each pair (i,0), where ¢ is for the random string r;
and o is a truth assignment to ¢ variables. The number of of all the vertices (i.e. the size of the graph) is
|V| = n?29.

Equivalently, we define the vertices as follows. An accepting transcript for ' on ¢ with random string r; is

g pairs (p1,a1),...,(pg,aq) s.t. for every truth assignment that has values a1, ..., a4 for variables p1,...,p,,
verifier F' given r; checks positions pi,...,p; in that order and accepts. Note that once we have ¢, r;,
ai,...,aq it is easy to compute py,...,p,. For each transcript we have a vertex in G.

Two vertices (i,0) and (i',0') are adjacent iff o, ¢’ don’t assign different values to same variable, i.e. they
are consistent.

If ¢ is a yes instance: so there is a proof (truth assignment) 7, such that F' accepts (given 7) on all random
strings. For each r;, there is a corresponding ¢ (which has the same answers as in 7) and is an accepting
transcript. We have n¢ random strings and therefore there are n? vertices of G (corresponding to those).
They form a clique (because they come from the same truth assignment and therefore are consistent, i.e.
adjacent); therefore G has a clique of size > n<.

if ¢ is a no instance: we want to show that every clique in G has size at most "Td By way of contradiction

suppose we have a clique C of size ¢ > ”Td Assume that (i1,01)..-(ic,0.) are the vertices in the clique.

Therefore the transcripts o7 ...0. (partial truth assignment) are consistent. We can extend this truth assign-
ment to a whole proof (truth assignment) such that on random strings 41, ..., ., verifier F' accepts. therefore

verifier accepts for > "Td strings, which contradicts the assumption that ¢ is a no instance.
The gap created here is exactly the soundness probability and the smaller S is, the larger gap we get.

By simulating a verifier PCPI’% (dlogn,q) for k times and accepting iff all of those simulations accept, we

23-1

23-2 Lecture 23: April 6th

get a PCPy 1 (k-dlogn, k- q) verifier. Note that in this case the size of the construction G is nk42k1 which
’2

is polynomial as long as k is some constant. This will show a hardness of 2¥, which is a constant.

Corollary 23.2 For any constant S, it is NP-hard to approximation clique within a factor of S. say
(S =1/2¢)

To get an n®-gap, we need S to be polynomially small, and for that we need to repeat k = Q(logn)
times. Therefore, k- ¢ = O(logn) which is Ok. But the length of random string becomes klogn =
Q(log2 n), and the size of graph becomes super-polynomial. Therefore, to get a polynomial hardness result
for Clique we need a PCP verifier with O(logn) random bits and polynomially small soundness probability,
ie. PCP; 1(O(logn),O(logn)).

The trick here is to start with only O(logn) random bits and use expander graphs to generate O(logn)
random strings, each of length about logn.

Definition 23.3 (Expagder Graph) Every vertez has the same constant degree, say d, and for every non-
empty set S C V, |E(S,S)| > min{|S|,|S|}.

There are explicit construction of expander graphs. Let H be an expander graph with n? nodes. For each
node we assign a label which is a binary string of length dlogn. We can generate a random walk in H using
only O(logn) random bits: we need dlogn bits to choose the first vertex, and we only need constant number
of random bits to choose the neighbor at every step. Therefore, to have a random walk of length O(logn)
we need only O(logn) bits.

Theorem 23.4 For any set S of vertices of H with < "2—d vertices, there is a constant k such that the
probability that a random walk of length klogn lies entirely in S is < %

Here is the outline of the proof of this theorem. By definition of the expander graphs, if you have a set S of
vertices, we expect a constant fraction of edges out of the vertices of S be going into S. Therefore, if you
start a random walk from a vertex in S, at every step, there is a constant probability that this walk jumps
into S. So the probability that a random walk of length Q(logn) stays entirely within S is polynomially
small.

Next lecture, we will show how, given a PCP verifier F for a language in PC’PL% (dlogn,q), generate a PCP
verifier F' which uses O(logn) random bits, queries only O(logn) bits, has completeness 1, and soundness
1, ie. NP =PCP, 1(O(logn),O(logn)).

