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4.1 Designing algorithm using the primal-dual method

Consider the following example:
minimize : 1027 + 622 + 423
subject to: 2z + 23 —x3 > 2
1+ 22 +23 >3

Suppose z* is the value of the optimal solution and we are interested in finding upper and lower bounds for
z* without computing it. For instance, how can we say if z* < 40?7 For this question, it is enough to find
one feasible solution (not necessarily optimal) for which the objective function has value at most 40.

Now consider the following question: is z* > 10?7 To answer this we need to find lower bounds for all feasible
solutions. We can obtain lower bounds by looking at the constraints. For instance, from constraint 1, and
because the coefficients of variables x1, 2, z3 are all smaller in the constraint with respect to those in the
objective function, it follows that 2 is a lower bound for z*. By combining constraints 1 & 2 we obtain that
3z1 + 229 4+ 0x3 > 5 and therefore 5 is a new lower bound for z*. In general, any linear combination of these
constraints could lead to a lower bound, as long as the final coefficients of the variables are not larger than
those in the objective function. For instance, using a y; factor of constraint 1 and y, factor of constraint 2,
we get:

y1(221 + 22 — x3) > 211

ya2(x1 + 22 + x3) > 3y

subject to 2y; +y2 < 10
y1+y2 <6
-y +y2<4

And 2y, + 3y is a lower bound for z* as long as the three new constraints on y;,ys are satisfied. Since we
want to find the best lower bound, we have to maximize 2y; + 3y». This raises another linear program. The
first problem is called the primal LP and the second is called the dual. Every LP has a dual, the optimal
solution of the dual is the minimum of the primal. In general, for a primal LP of the form:

. . . n
minimize ), ¢;z;
subject to VZ, Z?:l Ai;Tj Z bl
T 2 0

The dual has the form:
. . n
maximize )., biy;
subject to V], E:il QijY; S Cj
¥y >0

Any feasible solution of primal is an upper bound for every feasible solution to the dual. In our example,

z* = (0, g, %), gives z* = 17 for the primal, y* = (1, 5) is the optimal dual with 17.
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Theorem 4.1 (LP-Duality Theorem) Primal has finite optimal solution iff the dual has finite optimal
solution. Also, if x* and y* are optimal solutions for the primal and dual, respectively, then

n m
D= biys
j=1 =1
Theorem 4.2 (Weak Duality Theorem) If Z and § are feasible solutions to the primal and dual, then
n m
D> Y biyi
j=1 i=1

Proof: Since 7 is dual feasible and z;’s are nonnegative,

n n m
Yoz > (Y aiyiz;
j=1 j=1 i=1

Similarly, since x is primal feasible and y;’s are nonnegative,

m n m
DO aiwi)yi > Y biys
i=1 j=1 i=1
The theorem follows by observing that
DO agyie; => (O aizs)ys
j=1 i=1 i=1 j=1

|

Theorem 4.3 Let x and y be primal and dual feasible solutions, respectively. Then x and y are both optimal
iff all of the following conditions are satisfied:
Primal complementary slackness conditions:

m

V1< j<n,either z; =0 or Zaijyi =c;j

i=1

Dual complementary slackness conditions:

n
V1< i<m,either y; =0 or Za,-jmj = b;
=1

To use the Primal-Dual method, we relax these conditions and obtain the relaxed complementary slackness
conditions:

If # and ¥ are feasible solutions to primal and dual, respectively and if they satisfy

Primal (relax) complementary slackness condition:

m
. . Cj
a>1,vV1<j<mn, eztherw]-=00r—1§ E a;jy; < ¢
Qa

i=1
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Dual (relaxed) complementary slackness condition:
n
B>1V1<i<m, either y;=0o0r b; < Zaija:j < b8
j=1
then
n m
Zcﬂj <a-B- sz’yi
j=1 i=1
where « - § is the approximation factor.

Remark: If o = § =1, then we have the original complementary slackness conditions.

The general idea of primary-dual method is to start with a primal infeasible and a dual feasible solution
(usually the trivial solution Z = 0 and ¥ = 0). Then we iteratively improve the feasibility of primal and
optimality of dual. Primal is always extended integrally at the end Primal is the feasible solution. At each
iteration, we use relaxed slackness conditions to help to find feasible solutions to the primal.

Big advantage of Primal-Dual over rounding: we don’t have to solve LP (which is time consuming although
polynomial time solvable).

4.2 PrimalDual applied to Set Cover

Recall the Set Cover problem and consider the LP-relaxation:

e Universe: e, es...e,
e Sets: S71,55...5;

e Cost: S = Qt

Primal:
minimize ) g cost(s) - s
subject to Ve €U :) ., 2s>1
zs >0
Dual:

Maximize ), .y ¥e
subject to VS €S :) g.cq¥e < cost(S)
Ye 20

Note that the dual problem is a packing problem. We can say, we are going to pack stuff into elements so
that the total amount packed is maximized without overpacking any set.

Remark: The dual of a covering problem is a packing problem and the dual of a packing problem is a
covering problem. Packing problems are typically harder.

We are going to use the Primal-Dual method with & = 1 and § = f. Primal Relaxed Slackness Condition:

VSGS:msaéO#Zye:cost(S)

eeS

We call a set S for which the right-hand-side equality holds a tight set (intuitively we cannot pack more stuff
into elements of that set).
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Dual Relaxed Slackness Condition:

YeeU:y. 20=>1< Z zs < f
S:e€S

The following is the PrimalDual Set Cover Algorithm.

T+ 0,7+ 0

while not all elements are covered do
pick an uncovered element e, raise y. until some set goes tight
pick all tight sets and update &
declare all the elements in those sets as covered

endwhile

output the set cover ¥

Theorem 4.4 This algorithm is an f approximation for set cover

Proof: The solution is clearly a set cover by the condition of the loop, i.e. as long as there is an uncovered
set we raise the corresponding value until some set that contains it goes tight and then it is picked. Thus all
elements are covered at the end and we have a feasible primal solution. No set is going to be overpacked, so
the dual is always feasible too. At the end, we have a feasible primal and a feasible dual solution. Moreover,
the algorithm picks tight sets only. Thus the primal slackness condition is satisfied. Also, for every element
e, it is covered (i.e. 1 < } g gx5) and there are at most f elements covering it (i.e. Y g, gs < f).
Thus the primal and dual complementary slackness conditions are satisfied. Therefore, we get an o - = f
approximation. ]



