CMPUT 675: Randomized Algorithms Fall 2005
Lecture 11: Oct 13

Lecturer: Mohammad R. Salavatipour Scribe: Tim Furtok

11.1 Algorithmic version of LLL

Today we are going to see how to turn the LLL into an algorithm.

Suppose we have a set F = {f1,..., fn} of independent random trials, each taking values in some domain of
cardinality . Suppose we also have “bad” events E, ..., E,,, such that each E; is determined by the values
of the trials in F; C F. We say E; intersects E; iff F; N F; # (). Let d be the maximum number of other E;’s
that any E; intersects. Let w = max; |F;|. We can typically assume that w < d (but not always). Also, we
assume that we can compute the conditional probability of every event E; fast, if we have determined the
outcomes of some of the trials in it. More formally we can compute Pr*[E;] = Pr*[E;| fi, = wiy,-- -, fi, = Wi,
for any set of outcomes wj,,...,w;, . Let us denote this probability by Pr*(E;). Then:

Theorem 11.1 (Molloy and Reed [1]) If Pr(E;) < p, for 1 <i <m, and pd® < O(1), then we can find
an assignment for all the f;’s in randomized poly(m,y~?1°81°6™) time such that (-, E; holds.

Remark: in the case of k-uniform hypergraph 2-coloring, we have v = 2 and t; € O(k), w € O(k) < d
where d = 2°F with a ~ 1/50.

Proof: We have three phases. In our first phase, we carry out the trials fy, fa,. .. sequentially. After each f;
we compute Pr*(E;), for each j such that f; € Fy. If Pr*(E;) > p? we call E; dangerous, undo f; and freeze
all the other trials in F; and don’t touch them until the next phase. So after the first phase has finished, we
have a setting of some of the random trials in F, such that:

Pr(E;) <pd, 1<i<m.

It can be easily verified, using the simple case of the Local Lemma, that there exists a setting for the
remaining trials of F, such that A;.,,, Fi- So there is an extension of this partial solution to a feasible
solutiorll. Note that we can easily deduce that the probability that each event E; becomes dangerous is at
most ps.

Let G be the dependency graph of the problem, i.e. the graph whose vertices correspond to bad events E;
and two vertices F; and E; are adjacent iff F; N F; # (. Let us call a set of vertices C of G a (1, 2)-tree if C
is the set of vertices of a connected subgraph in the square of G, where the square of a graph is the graph in
which two vertices are adjacent if they are at distance at most 2 in the original graph. We call a (1, 2)-tree
dangerous if all of its vertices correspond to dangerous events.

Observation: No event E; intersects two events which belong to two different mazimal dangerous (1,2)-
trees, because otherwise these two events would be at distance 2 of each other and so these (1, 2)-trees would
have been merged.

Therefore we can deal with the frozen trials in each maximal dangerous (1, 2)-tree independently.

Lemma 11.2 With probability at least %, there is no dangerous (1,2)-tree of size greater than dlog2m.

11-1



11-2 Lecture 11: Oct 13

Proof: Call T C G a (2,3)-tree if the E; € T are such that their mutual distances in G are at least 2,
(E;, E;) € T if the distance of E; and E; in G is either 2 or 3, and the resulting graph is connected. It
is easy to see that for each dangerous (1,2)-tree of size u(d + 1), there is a dangerous (2, 3)-tree of size u,
because from every set of d + 1 vertices in a (1, 2)-tree, consisting a vertex and its neighbors in G, we can
select one vertex. It can be proved [2] that the number of (2,3)-trees of size u is at most (ed®)“. Also the
vertices of any such tree correspond to independent vertices of G. So the probability of each being dangerous
is independent from the others. Thus the probability that all the events of a (2,3)-tree of size u become
dangerous is at most (p%)u So the expected number of these trees is at most m(ed?’p%)u which is less than
1 for u = log 2m. [ ]

Now, if pgdlog 2m < % then a random setting will avoid all the corresponding FE;’s with probability at
least % Otherwise we repeat the first phase until there is no (1,2)-tree of size greater than dlog2m. The
expected number of times we have to do this is constant. Now in the second phase, we apply the same
method to the frozen trials of each dangerous (1,2)-tree independently. Using similar arguments we find
disjoint components, each having size at most O(d(log d+loglogm)). So the number of frozen trials f; in each
is at most O(wd(logd + loglogm)) € O(d?(logd + loglogm)). Note that in this case p3dlog2m > 1 and so
d?> < O((log m)%) Therefore the number of trials in each component will be at most O((log m)% loglogm).
So we can do an exhaustive search over all possible outcomes of each f; in each component and this takes

2
O((logm)? loglogm) " For the cases that v € O(log®(m +n)), for some constant ¢, this will give a polynomial
time algorithm. ]

References

[1] M. MoLLOY AND B. REED, Further algorithmic aspects of the Local Lemma, STOC 1998.

[2] D. KNUTH, The Art of Computer Programming, Vol I, Addision Wesley (1998).



