CMPUT 675: Randomized Algorithms Fall 2005

Lecture 14: Oct 25
Lecturer: Mohammad R. Salavatipour Scribe: Zac Friggstad

14.1 Example 1: Card Shufling

Recall the Fundamental Theorem for Markov Chains.
Theorem 14.1 Any finite, irreducible, ergodic Markov chain M with n states has the following properties.

1. M has a unique stationary distribution m.

2. Foralll <i,j <n,
1
H t -
tl—lglo Pj’i — T hz’,i
where Pjt,z- is the probability of being in state i after t steps from state j and h; ; is the hitting time from
state i to itself.

Consider the following process. Given a deck of n cards, a step is taken by choosing any card uniformly at
random, removing it from the deck and placing it on top. This defines a Markov chain with n! states where
a state is some permuation of the cards. By choosing the top card, the state does not change in a step so
the Markov chain is ergodic. Given permuations IT; and IIy, IIy can reach I, in at most n steps. This can
be accomplished by selecting the bottom card of I, finding it in II; and moving that card to the top of
II,. Remove the bottom card from II, and repeat the process until all the cards from II» are exhausted.
This produces the permutation II; from IT;. Since each state can reach any state, then this Markov chain
is irreducible. Then by the Fundamental Theorem for Markov Chains, this Markov chain has a unique
stationary distribution. Let m, be the probability associated with state x in the stationary distribution 7.
Since each state has n neighbors (one for each card choice) and the probability of a neighbor going to state
x is the same for all neighbors (namely %), then the following system of equations is satisfied.

1
Z —TMy = Ty (14.1)
n
yEN (z)
om =1 (14.2)
z€V

where N(z) denotes the neighboring states of z. Notice that 7, = % satisfies this since
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and
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Definition 14.2 The variant distance of distributions D1 and D2 on a countable set S is

1
1Dy = Daf| = 52 |D1(z) — Da(z)|
z€S

So if we say variant distance between two distributions is at most € it means any permunation of the cards
has probability at most % + € of occuring. Our goal is to find ¢t = #(g) steps needed to be e-close to 7 for a
given € > 0.

Definition 14.3 Say P! is the distribution of states after t steps if we start at state z in a Markov chain
M. Define

Ag(t) = [P~

Alt) = max A (t)

() = min{t| A,(t) <e}
(e) = max 7, ()

So 7(g) defines the minimum number of steps required to be within distance € from w from any start state
x. 7(€) is also called the mixing time of M. We say M is rapidly mixing if 7(g) is polynomial in the input
size n and in In(1).

Typically we want to bound the mixing time (or say that a chain is rapidly mixing). A common technique
for this is copuling. The idea is to start with two copies of the Markov chain and run the simultaneously.
We make the moves at each step of these chain in such a way that these two chains get closer and closer to
each other but still follow a Markov chain. If after some time they become identical it must be a stationary
distribution.

Definition 14.4 A coupling of a Markov chain M with states S is a Markov chain Z; = (X,Y:) on S x S
such that
Pr(Xip1 =2'| Ze = (z,y)) = Pr(Myq = 2" | My = )

and
Pr(Yir =o' Z = (z,y)) = Pr(Myqy = y' [My = y)

Lemma 14.5 (from [1]) For any A C S, let D;(A) = 3,4 Di(x) for i =1,2. Then

[[D1 = Dao| = I£§§|D1(A) — Dy(4)].

Proof: Let ST C S be the set of states such that D;(z) > Da(x), and let S~ C S be the set of states such
that Ds(z) > Dj(z). Then,

Ijlca,‘}s( Dl(A) — DQ(A) = D1(5+) — DQ(S+)

and
max D5(A) — D1(A) = D2(S7) — D1(S7).

Since D1(S) = D5(S) = 1, we have

D1(S*) + Dy(S7) = Da(S) + Da(S7) = 1,
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which yields
Dy (S%) — Dy(ST) = Dy(S™) — D1(S7).
Therefore
max |D1(A) — Dy(A)| = [D1(8F) — Da(SH)| = |D1(S7) — Da(S7)| -
Finally, since
|D1(ST) = Da(S1)| + [ D1(S7) = D2(S7)| =D [Di(x) — Da(z)| = 2|Dy — Dyl
€S
we have
max |D1(A) = D2(A)| = ||D1 — D2l
| ]

Lemma 14.6 (Coupling Lemma) Let Z; = (X¢,Y;) be a coupling for a Markov chain M with state space
S. If for a time T and for all x,y € S,

Pr(Xr #Yr| Xo=zand Yo =y) <e
then 7(e) <T.
Proof: (from [1]) Consider the coupling when Y} is chosen according to the stationary distribution and X
takes on any arbitrary value. For the given T and € and for any A C S,

PI‘(XT € A) > PI‘((XT = YT) n (YT S A))
1-— Pr((XT 75 YT) U (YT ¢ A))

> (1-Pr(Vr ¢ 4)) - Pr(Xy £ V)
> Pr(YyeA) —¢
= w(A)—e.

Here the second line follows from the union bound. For the third line, the fact that Pr(Xr # Yr) < ¢ for any
initial states Xy and Yy is used. In particular, this will hold when Yj is chosen according to the stationary
distribution. The last line follows from Pr(Yy € A) = w(A) since Y7 is distributed according to the stationary
distribution if Y is. Repeating the same argument for the set S — A shows that Pr(X; € A) > n(S — A4) —¢
or Pr(X; € A) < w(A) + €. From this it follows that

max |pZ(A) - 7r(A)| <eg,

so by Lemma 14.5 the variation distance from the stationary distribution after the chain runs for T steps is
bounded above by ¢ ]

Consider the following coupling of the Markov chain for the cards example. Choose a j between 1 and n
uniformly at random. Move the j’th card in X; to the top of the deck to get X;11. Find the same card
in the other deck and move that card to the top to get Y;4+1. This is a valid coupling of the Markov chain
because in both chains, each card is placed on top with probability % It is easy to see that the two chains
get closer. Once a card moves to the top then it will always have the same position in both decks. The
decks are guaranteed to be identical when every card has been drawn at least once. So we have to bound the
number of time we need to draw cards such that every card is drawn at least once; this is just the coupon
collector’s problem. If nlnn 4 en steps are taken, then the probability that a fixed card is not drawn is

nlnn+cn —
(1 _ l) < e-tmnte) - €7
n n
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By the union bound, the probability that any card is not drawn is upper bound by e €. So

e 1
e Ss—)—cﬁlns—)czln(—).
€

The expression nlnn + nln() is polynomial in n and In(2) so the Markov chain is rapidly mixing.

14.2 Example 2: Independent Sets of Size k

Given a graph G = G(V, E) of n vertices with maximum degree A, the goal is to select, uniformly at random,
a sample among all independent sets of size k < m. Notice that we can always find one of size at least

A7 by picking an arbitrary vertex, removing all adjacent vertices (at most A) and repeating until no more

vertices can be found.

Consider the following process. Start with an arbitrary independent set of size k by performing a greedy
selection strategy as stated above for k steps. At each step Xy, choose v € Xy and w € V uniformly at
random and perform the operation exchange(v,w, X;) described as

exchange(v, w, X;)
ifw ¢ X; and (X¢ — v) |J{w} is an independent set
then Xt+]_ «— (Xt — U) U {UJ}
else X1 + X;.

Define the states of the Markov chain for this problem to be independent sets of size k. Since there are (Z)
subsets of V of size k then there can be no more than this number of independent sets of size k, so this
Markov chain is finite. If w € X;, which can happen with probability %, then X1 = X¢ so this Markov
chain is ergodic.

To show that this is irreducible, consider states S; and Ss. Fix av € S; — Sy and a w € S2 — S1. Our goal
is to move our selection of v to w using legitimate moves and not moving any u € Sy [)S2. For each u € Sy
that is adjacent to w (u ¢ Sa necessarily), move all vertices in Sy adjacent to w to an arbitrary part of the
graph such that the independent set property is retained and this new location is not adjacent to w. This
can be done since there are k vertices selected and 1 vertex that we are after so there are at most

<73(A"+1)+1) (A+1)=%+A+1

vertices that cannot be used for this temporary move. Thus there are at least

n— (9+A+1) - (2—"—(A+1))
3 3
vertices that can be used. Since A +1 < 2 (otherwise k = 0) then there is a vertex that can be used for
this intermediate move. Once all of the vertices in S; adjacent to w are moved, then v can be moved to w.
Repeat this process for all vertices v € S; — Sy until S; = S3. Therefore, this Markov chain is irreducible
and has a stationary distribution .

The goal is now to show that this Markov chain is rapidly mixing. Consider the coupling Z; = (X;,Y;) for
the Markov chain where

_ 1 i i+l k
Xy = {vt,...,vt,vt ,...,vt}

_ 1 i il k
Y, = {Ut,...,vt,ut ,...,ut}
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for some 0 < i < k where v] # ul for any i < j,1 < k (order the elements so the same ones are “on the left”).
Consider the following selection strategy for this coupled Markov chain.

step(X;, Vi)
choose v € X; and w € V uniformly at random
exchange(v,w, X;)
if v € Y; then exchange(v,w,Y;)
else say v = ut®, then exchange(uit® w,Y}).

Let d; = | X — Yy| be the difference in sets after ¢ steps. Some facts about d; are as follows.

[ dt:()—)dH_l:O.
L |dt—dt+1| S 1.

o If diyy = d; + 1 then v € X;(Y; and w is a neighbor of a vertex in (Y; — X)) (X — Y;). The first

2d: (A+1)
n

happens with probability % and the second with probability at most . Therefore

k—d; _ 2di (A +1)
k n

Pr(dt+1 :dt+1| dy >0) <

o Ifdiy1 =di — 1 then v ¢ Y; and w is not a vertex or neighbor of (X;JV;) — {UZJFO‘, ufra}. The first

n—(k+d,—2)(A+1)

happens with probability % and the second with probability at least . Therefore

dy n— —2)(A+1

n
Thus,
E[dt+1 | dt] = dt +Pr(dt+1 = dt + 1) — PI‘(dt+1 = dt — 1)
k n k n
< 4 (1_ n—(3k—dt—2)(A+1)>‘
kn

Using the conditional expectation equality, we have

E[dy41] = E[E[dis1 |di]] < E[d] (1 n—(Bk—d —2)(A+ 1)) .

kn

So by induction we get

n—3k—d —2)(A+ 1))t < e—tn—(3k=3)(A+1))/kn_

Eld;] < 1—
[d:] < do ( kn

Since k < 3(A—n+1) then
tlg(r)lo E[d;] = 0.
Finally, it can be verified algebraically that
knln(})
< g
6 S T EE—3 BT

which is bound by a polynomial in n and in ln(%). Therefore, this Markov chain is rapidly mixing.
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