COMPUT 675 Randomized Algorithms Fall 2005

Lecture 16: November 1

Lecturer: Mohammad R. Salavatipour Scribe: Bruce Fraser

16.1 Hashing

Consider a universe of objects U, where |[U| = m is very large. The set abstract data type implements
S CU,|S| = s << m, and has the following operations:

1. MakeSet(S)

2. Insert(i,S)

w

. Delete(i,S)

=~

. Find(1,S)

The Set ADT can be implemented with balanced trees (red-black trees, for instance) such that each operation
has a running time in ©(logn) in the worst case. However, using hashing we can achieve O(1) expected run
time per operation.

Herein we assume logm = medium word size (for example 32 bits).

Formally, we have a hash table T[0,...,n — 1] and a hash function h : U — T, we store z € U in location
h(zx) of T. Typically, the hash table size n, is much smaller than the size m of the universe.

16.1.1 Collisions

Definition 16.1 A hash function h : U — T is perfect for set S C U if it is collision free (i.e. if x,y € S,
z#y = h(x) # h(y)).

For any fixed set S there is perfect hash function but if if n < m, there is no hash function that is perfect
for every set S. What if the hash function is completely random?

If | S| = n, and hash function is uniformly random, analysis of the collision problem reduces to the Balls and
Bins problem. The expected number hashings per bucket is 1, and the maximum number of collisions for

any bucket is © (hi'l‘r?n) But we are more interested in expected number of collisions per bucket.

Definition 16.2 A family H of hash functions h : U — T is 2-universal if for all x,y € U(x # y) and for
h selected uniformly randomly from H implies that Pr[h(z) = h(y)] < %

Note that this is the same probability that a truly random hash function would give. In fact, most construc-
tion of 2-universal hash functions imply a stronger property that is called strongly 2-universal.

16-1

16-2 Lecture 16: November 1

Definition 16.3 A family H of hash functions is strongly 2-universal if for © # y € U and all n1,ny €
{0,..,n—1}

Prih(z) = ny and h(y) = ns] = =

A natural question would be: Can we get a better family of hash functions? It turns out that the answer is
no (at least not buy much):

Lemma 16.4 For any family of hash functions h: U — T,3x,y € U such that Pr[h(z) = h(y)] >

S|
3=

Theorem 16.5 Consider any seq. of operations with at most s inserts on a hash table of size n, where h is
selected uniformly randomly from a family H of 2-universal hash functions. Then the expected cost of each
operation is <1+ 2.

Proof: Say on an operation on element x € U, let Z be the number of elements in h(z). Costis 1+ Z =
> yev Zy (Where Z, = 1 if y is mapped to h(z)).

E[Z) = E[Y_ Z,) = sPr[h(y) = h(z)] <

Slw

Family of all hash functions is 2-universal. However, that family is much too large to handle, with a size of
n™. What follows is a procedure for constructing a 2-universal family.

Pick a prime number p, m < p < 2m, m = |U|. Let Z, = {0,1,....,p — 1}. Va,b € Z, with a # 0 we define
a hash function hgp : U — Zj as follows: hep(z) = ((ax +b) mod p) mod n. Similarly, we define a family
H = {hgla,b € Zp,a # 0}.

Is H 2-universal?

Fact: There are p(p — 1) functions in H and each function only needs O(log m) bits to be represented.
Theorem 16.6 H is a 2-universal family.

Proof: For any z,y € Z, need to bound,

Pr[has(z) = hap(y)] if z # y

Let’s define hgp(z) = gap(y) mod n where gqp(z) = (az + b) mod p. For hep(x) = hep(y) we must have
9ab(T) = gap(y) mod n. Let r,s € Z,. We claim:

0 fr=s

Pr{gas(z) = randgas(y) = 5] = { otherwise

1
p(p—1)

r—S8

If gop(x) = 7 and gap(y) = s then az +b =7 mod p ay +b = s mod p. TSo a = I=2. This system has
a unique solution for a and b in Z,, since x # y, a is non-zero if and only if r # s. For exactly one a, b:
Jap(z) =7, gap(y) = s. Since H has p(p — 1) functions and we pick h u.r. from H

Lecture 16: November 1 16-3

Prlgas(z) =7 A gap(y) = 8] < —.

We have hqp(2) = hep(y) if and only if 7 = s mod n. Therefore:

1
Pr [hep(7) = has(y)] = m) X [{(r,s)|r # sandr =s mod n}|
For each choice of r, there are [2] —1 other s s.t. r = s mod n. Therefore the set in the right-hand-side of
above has sizes at most p ([2 —1) < p(p—n_l). Thus Pr[hay(x) = hap(y)] < p(p1_1) . ”(”—n_l) =1 [

16.1.2 Static Dictionaries

Say the set S is fixed (given in advance) and we only are concerned with the £ind operation. Our goal is to
find an algorithm with a worst case time of O(1).

Definition 16.7 A family H of hash functions is perfect if for every subset S C U there is a hash h € H
such that h is perfect for S.

Theorem 16.8 There is a perfect family H of size O(ne™Ilnm) such that H is perfect for every set of size
15| < n.

Proof: Pick a random hash function h : U — N.
! 1
Pr[h being perfect | = % ~

by Stirling’s approximation. If we pick ”77: = e™*! functions,

Q| =

Pr[all being non-perfect | <

We need to find the value of ¢ such that for te™*! randomly chosen functions
1
Pr[all are non-perfect | < —

e

Setting ¢t = ne™Inm, Prlallarenon — per fect] < L.

The number of sets of size n is less than or equal to m™.

1 1
Pr[All are not perfect for at least a set S] < m” () <=
2mn 2

This result is only existential. There is another way of building perfect has families (due to Fredman,
Komlds, and Szemerédi 84). Consider random hashing, how big s can be w.r.t. n without having any
collisions? Consider Balls and Bins, with s balls n bins.

16-4 Lecture 16: November 1

1 2
E[number of collisions | = E Z cij| = (;) S5
,J

n 2n
If s = y/n then with probability of at least % we don’t have any collisons.

We employ a second hash function. Loosely speaking, for those elements that collide, use a second hash
function. Suppose the primary hash function creates buckets of size by,...,b.. Our scheme is to use two
layers of hash tables to handle collisions. Choose a secondary hash function from a 2-universal family with
table sizes b?. This has probability of at least 1/2 of being collision-free. Total size of hash tables in both
layers is size of primary plus }, b?.

Lemma 16.9 If we use a 2-universal hash family to hash a set into a table of size n > |S|, for bucket sizes

b;:
Pr [be > 43] < %

Proof: Note that b7 = b; + 2(1’2"). So:
2 . bi
Si = Yurey(3)

s\ 1
2 -
s+ (2)n

2

< s+l <2
2n

IA

Now Markov’s Inequality shows that Pr[}", b7 > 4s] < 1. [

So if we pick the primary hash function from a 2-universal family with n > s then with probability > 1/2
we have), b? < 4s. Once we have our primary and our secondary hash functions, we have a 2-level hash
function that has O(1)-time for find.

