CMPUT 675: Randomized Algorithms Fall 2005

Lecture 4: Sept 20

Lecturer: Mohammad R. Salavatipour Scribe: Bruce Fraser

4.1 Chebyshev’s Inequality (Second Moment Method)

Recall the definition of variance and standard deviation:

Definition 4.1
Var[X] = E[X?] - (E[X])? = E[(X — E[X])?].

o(X) =+/Var[X].

We can upper bound the probability that a random variable is away from its mean using the variance.

Theorem 4.2 (Chebyshev’s Inequality) Let X be a random wvariable. Then for any A > 0:

Var[X]

Pr((X — B[X]) > A < —5;

Proof:

Pr{(X — E[X]) > A] = Pr[(X — E[X])? > \?] < E[(X—A—QE[XDZ]

by Markov’s Inequality. Thus:
Var[X]

Pr((X — B[X]) > A < — 5

Equivalently:
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The use of Markov’s inequality is referred to as first moment method and the use of Chebyshev’s inequality
is referred to as second moment method.

Example: Coupon collector problem (revisited)

Recall the coupon collector problem from last lecture. Let X be a random variable representing the total
number of trials needed to collect all n types of coupons. We computed that E[X] = nH,, so using Markov’s
inequality Pr[X > 2E[X]] = Pr[X > 2nH,] < ;. We would like to use Chebyshev’s inequality to get a
tighter bound.

Consider a series X; of random variables, where X; represents the time spent with exactly ¢ coupons. Then
all X; are independent and X = Z?:_Ol X;. Hence Var[X] = Var[}_ X;] = >_ Var[X;]. The X; are geometric
distributed random variables with parameters p; = “-*. Therefore E[X;] = p%' = ;4. It is straightforward

to show that Var[X;] = % < 1—)1'5. Using this we have:
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n—1 n—1 2 n—1
1
Var[X]zZVar[X,-]SZ(nqzi) :”221-_25”5 .
=0 i

i=0
Hence Var[X] € O(n?).
Now we have, by Chebyshev’s inequality: Pr[(X — E[X]) > nH,] < #’EB)Z. Hence Pr[(X — E[X]) >
nH,] € O (W) Thus it is with high probability that we can collect n coupons in O(nlnn) trials.

4.2 Finding the Median in linear time

Consider the problem of finding kth smallest element of a set S containing n elements. In particular, if
k =n/2, then we are finding the median of S. The obvious algorithm is to sort S first, which is O(nlogn).
But this is overkill, since we don’t need to find the rank of all elements (just one particular one). We are
looking for a faster, perhaps O(n), algorithm for finding the median. The idea of the algorithm is simple:
Sample! We hope that the median of our samples are close enough to the median of the whole set. We
present the algorithm for median finding. It can be easily adjusted to find kth smallest element for any value
of k.

Median finding Algorithm:

1. Sample with replacement ni elements and put in set R.

2. Sort R. (running time is O(n4 lgn)).

oo

3
3. Let | = X —/n, h = = + \/n. Find Ith and hth smallest elements of R, call them a and b,
respectively.

4. By comparing every element of S with a and b, we find r(a) (rank of a) and r(b) (rank of b) in S.
5. If r(a) > n/2 or if r(b) < n/2, then Fail and stop.
6. Let P = {x € S|la < = < b}. If |P| > 4n?# then Fail, otherwise sort P.

7. Return the median, the (n/2 — r(a) + 1)th element of P.

Clearly the total running time is 2n + o(n). There are three ways the algorithm can fail. Can we bound the
probability of each of these. Suppose m is the median. Then there are three events that can prompt failure:

1. &1: be the event that a > m
2. &: be the event that b <m

3. &s: be the event that [P| > 4nt

We will find uppr bounds on the probability of each event.

Lemma 4.3 Pr[&§] < 1.
ani
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Proof: Define the random variable X;:

1 if, for ith sample s, s < m,
X; = .
0 otherwise.

Since the samplings are independent and with replacement Pr[X; = 1] = 1/2 and Pr[X; = 0] = 1/2. Consider
3 3

random variable Y; = E?:l X;. Then event & corresponds to the event that Y; < % —+/n. Y is the sum
of independent Bernoulli trials. The variance and mean of Y; can be computed as follows:

oo

E[vi] = Y B[Xi] = =,

1\ /1 i
v = =30 - = (3) (1)1
Using second moment method:
nt Varlyy] n# 1
Prl¥y < "o — V] < PeflVi - B[Vi]| > v € e = 00 o
2 n dn  3p1

| |
L. Finally, we bound the probability of £3. Obviously, if
anz

&3 happens then either at least 2ni elements of P are greater than m, or at least 2ni are smaller than m.

Without loss of generality, suppose at least 2né of P are large than m (the arguments for the other case are
symmetric). Since b is larger than all z € P: r(b) > % + 2n4. There are

For &5 symmetric arguments show that Pr[€3] <

3 3
ni—<%+\/ﬁ>=%—\/ﬁ

elements e € R,e > b. Consider a series of Bernoulli random variables X;:

X, = 1 ,if, for s‘ample i, (i) > %+ 2nf 1)
0 ,otherwise.

Note that

- (2 4ok
E[Xi]:n g n— (3 +2n%)

1
n n 2

Now consider binomial random variable X = )" X;, representing the number of samples s such that r(s) >
4+ 2ni. Since X is binomial:

and

VarlX] =t BxI0- B0 =t (5= 2) (B4 2) =t (- A) <)
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3
4

3
We conclude that Pr[X > %% — \/n] < Pr[|X — E[X]| > > — /n] < P[|X — E[X]| > V/n].
Using Chebyshev’s inequality,
Var[X] ni% 1

P[|X_E[X]|Z\/E]ST<E in

e

Hence Pr[E;] < —Lt.
21

Since for every &, Pr[&] € O(n=%), we can conclude Pr[Failure] € O(n=%) and that the algorithm finds
the median in O(n) time with high probability.



