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9.1 Expanding Graphs and Probability Amplification

Roughly speaking an expanding graph is a graph in which every not too large subset of vertices has relatively
large number of neighbours (and so the graph is highly connected). There are tons of applications for
expanding graphs. Here we will see on application in amplifying success probability of or randomized
algorithms. There are several classes of expanding graphs. One of which is defined below.

Definition 9.1 An (n,d,a,c) OR_concentrator is a bipartite graph G(A U B, E), with |A| = |B| = n such
that:

1. Yv € A:d(v) < d.

2. VS C A such that |S| < an then it has at least ¢|S| neighbors in B.

Our main goal is to show that such graphs exist for constant d, a, ¢ and any value of n.

1

Theorem 9.2 For all large enough n, there is an (n,18, 3,2) OR_concentrator.

Proof: Consider a bipartite graph G(A U B, E) with |A| = |B| = n. For every v € A pick d vertices (with
replacement) uniformly randomly from B and connect v to them, i.e. they are going to be neighbors of v.
Note that degree of every vertex in A is at most d. We compute the probability that this graph satisfies the
two conditions stated above. For each set S, let &5 be the event that set S of size s has less than ¢s neighbors

in B. Then for a subset T C B: Pr[S going only to T] < (£)%. Since we have (7) choices to select S from
A, and at most (:9) choices for T' then:
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This implies that With positive probability an OR_concentrator of (n, 18, %, 2) exists [ |

We don’t know how to construct such an expanding graphs in polynomial time. We don’t even know how
to verify a proposed graph (this problem is NP-hard). But there are some constructive proofs for expanding
graphs that are nearly as good as the one proved above.

Theorem 9.3 For large enough n, there is a bipartite graph G(A U B, E) such that |A| = n, |B| = 2log”n
and:

1. Yv € B : d(v) < 12log’n.

2. VS C A with |S| = % has > 208°n _ . neighbors in B.

log2n 2
Proof: Consider a bipartite graph with that many vertices. For each vertex of A we choose d = ”Sbw

vertices of B u.r with replacement. For each v € B: E[d(v)] = 4log’n = p. Now, using Chernoff bound:
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Using union bound:

1
Pr[Some v € B has degree > 12log®n] < glog’n (e)_4l°g2" < 7

Now we bound the probability that condition 2 is violated. The probabilith that there is a set S with |S| = %

O, 2’", n
and |N(S)| < 218" —p] is at most (g) (21 Z )(1- 21—0227)% where the first term is for choosing S, the second

term for choosing those missed by S, and the last term for probability that all are non-edges. This is at
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Therefore the probability that either 1) or 2) is violated is < £ + £ = 1. Thus with positive probability they
are not violated. ]

There are ways to construct an expanding graph like the one in the previous theorem. The problem may
seem to be that the size of the graph is not polynomial (0(210g2 ™)). Fortunately, we don’t need an explicit
representation of the whole graph. We only need to be able to find neighbours of a given vertex in polynomial
time. There are implicit representation of such graphs that support the neighbourhood queries in polynomial
time. We show how we can use these graphs to amplify probability.

Recall the definition of RP. A language L € RP if there is an algorithm A s.t. it picks a random number
from 1...n (i.e. logn random bits) and:

1. if z € L: A(z,r) = 1 with probability + (or A(z,r) = 1 for at least half the choices of ).

2. if z ¢ L: A(z,r) =0 always.

To boost the success probability we can repeat the algorithm ¢ times. This will bring down the error
probability to at most 2. If t = logn then we have used log? n random bits and error probability is < %
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Consider an expanding graph as in Theorem 9.3. Given log® n random bits, use them to choose a random
vertex v € B. Then find the neighbours v, say N(v) = A’ C A where A’ = {a1,...,a;}. Compute A(z,a;)
for each 1 < i < k and accept iff at least one of these calls accepts. Note that & < 12 log2 n so there are only
a polynomial number of calls. Clearly if z ¢ L the algorithm rejects. If z € L, then for at least & vertices
of A the algorithm accepts (not that A has n vertices). So there are at most % vertices of A for which
algorithm A fails to give the right answer, call those vertices A*. So we fail to accept if all the neighbours

of B, i.e. ay,...,a are from A*. But there are at most n vertices of B that are not connected to anything
from A — A*. So the probability that neighbours of v € B are not from A — A* is at most -%—. Thus the

probability of failuer is at most n/2'°8" = 1/n'°8"~1 using only log® n random bits.

9.2 Lovasz Local Lemma

First, let’s start with an example. Suppose we are given a k-uniform hypergraph H with less than 2¢—!
edges. We claim that there is a 2-coloring of H s.t. no edge is monochromatic. If we color every vertex with
one of two colors u.r. then, for every edge e: Pr[e is monochromatic] = 2-(*~1), Since there are stritctly less
than 2F—! edges, Pr[3 some monochromatic edge] < 2(k=1) . 2=(k=1) = 1. So with positive probability H is
properly 2-colored. What if the number of edges is larger than 2¥~1? We might be able to get a 2-coloring
in that case if the dependencies between the edges is not too big.

In many examples of the probabilistic method, we have a set of “bad” events Aj, ..., A,, each occuring with
a probability, say p, and we want to prove that with positive probability none of these events happen. The
Local Lemma is a powerful tool in such cases. Before stating the lemma, we need some definitions. Two
(random) events A and B are called independent if Pr(A|B) = Pr(A). An event A is mutually independent
of a set {4;,...,4,} of events if Pr(A|A;, A...ANA;,) = Pr(A), for all distinct indices i1, ...,9;. Note that
the events might be pairwise independent but not mutually independent.

Lemma 9.4 ((Simple) Lovasz Local Lemma) Let £ be a set of bad events such that for each A € &:

1. Pr(A) <p< 1 and

2. A is mutually independent of all but at most d other events in £.

If 4pd < 1 then Pr( ﬂ A) > 0.
A;e€

Example 1: Suppose that H is a k-uniform and every edge interesects at most 2—3 other edges. Then H
is 2-colorable.

Proof: Color every vertex u.r. with one of two colors. For every edge e, let the bad event A, be the event
that e is monochromatic. Note That Pr[A.] < 2¥~!. What is the degree of dependencty? The following
priciple is very useful in computing the degree of dependency in may situations like this.

Mutual Independence Principle: Suppose that X = zq,...,x, is a sequence of independent random
trials. Suppose further that A,,..., A, is a set of events where each A; is determined by a set F; C X. If
F,n(F;,...,F;,) =0 then A; is mutually independent of {4;,,...,4;,}.

In our situation, we can say that A, is mutually independent of all those events A.r where eNe' = (). Thus
d < 2k-3. Since 4Pd < 4-2%—3.2- (k1) = 1 with positive probability no bad event A, happens, i.e. no edge
is monochromatic. ]

Example 2: Consider a k-SAT formula ® over variables z1,...,z, with clauses C4,...,Cy,. Suppose that
k—2
no variable appears in more than 2T clauses. Prove that @ is satisfiable
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Proof: Assign T/F with to each variable u.r. and independently. Define the bad event A; if C; is not
satisfied. To prove that the formula is satisfiable we have to show that no bad even A; (1 < ¢ < m) happens
with positive probability. We have Pr[A;] = 27*. Also, using mutual independenc principle, event A; is only
dependent on those A;’s s.t. C; and C; have at least a variable in common. Thus d < k- zkk_ ® =262 Since

4Pd = 27%.2k=2 .4 < 1, by LLL, with positive probability no bad event happens. [




