Lecture 18: Dynamic Programming

Agenda:
e Matrix-chain multiplication
e Dynamic programming: more characteristics

e Longest common subsequence

Reading:

e Textbook pages 323 — 324, 331 — 350

Lecture 18: Dynamic Programming

Matrix-chain multiplication:

e Input: matrices A1, Ao, ..., A, with dimensions dg xd1, d1 Xd»,
.., dn_1 X dy, respectively.

e Output: an order in which matrices should be multiplied such
that the product A1 x A> x ... x A, is computed using the
minimum number of scalar multiplications.

e Fact: suppose A; is a di X dp» matrix, Az is a d> X d3 matrix.

Then A; and A> is multipliable, and B = A; x A> can be
computed using di X d» X d3 scalar multiplications.

e Example: n =4 and (do,d1,...,d,) = (5,2,6,4,3)
Possible orders with different number of scalar multiplications:

((A1 x A2) X A3) x Aa 5 x2x64+5x6x44+5x%x4x3=240
(A1 X (Ao X A3)) x Aa 5x2x442x6x4+5x%x4x3=148
(A1 X A2) x (A3 x Az) B5x2x64+5x6x34+6x4x3=222
A1 X ((A2 x A3) x Ay) 5x2x342x6x44+2x4x3=102
A1 X (A2 x (A3 x Az)) B5x2x342x6x34+6x4x3=138

e An equivalent question: How we put the parentheses?

Lecture 18: Dynamic Programming

2nd implementation — recursion:

e Cannot afford exhaustive enumeration ...

e Try recursion?

M (i,j) — the minimum number of scalar multiplications
needed to compute product A; x Ajy1 x ... x A; (i <)

M(i,) = 0, if i =
Y1) =0 mingcp i {M (i, k) + M(k+1,5) + di—1dpd;}, ifi<y

for example,

M(171)+M(274)+d0 ><dl ><d4
M(1,4) = min{ M(1,2) + M(3,4) + do x d» x da }
M(]. 3)—|—M(4,4)—|—d0 X d3 X da

Y

pseudocode:

procedure M(i,7)

if ¢+ = 5 then
return O
else
cost «— oo
for t <1 to 53— 1 do
new «— M(i,t) + M(t + 1,75) + di—1 X di X d;
if new < cost then
cost «— new
return cost

running time: n =|j — i

when n =20

Ci,
T(n) = { s + Z?;é (T(G)+T(n—35—-1)), whenn>1

Lecture 18: Dynamic Programming

2"d implementation — recursion (cont’d):

e Solving the recurrence:
T(n) = o+ (TG +Th—j-1))

= ©+23 TG)

(223" 0T () +2T(n — 1)

j=0

T(n—1)42T(n—-1)

= 37(n—1)
= 3°T(n—-2)
— 3u7(0)

= 3"

e S0, recursion running time T'(n) € ©(3")

e Again, lots of repeated function calls ...

e Try memoization — 3" approach
An exercise !l!

Lecture 18: Dynamic Programming

4™ implementation — dynamic programming:

e Pseudocode:
procedure dpM(1,n)

for 1+ 1 to n do
M(i,7) < O
for shift+ 1 to n do
for 1 < 1 to n — shift do
] «— 1+ shift
cost «+— oo
for t <14 to 53— 1 do
new «— M((i,t) + M(t+1,5) + di—1 X di X d;
if new < cost then
cost < new
M (i, j) < cost
return M(1,n)

e Trace the example n = 4 and (do,d1,...,d,) = (5,2,6,4,3):

Lecture 18: Dynamic Programming

4™ implementation — dynamic programming:

e Pseudocode:
procedure dpM(1,n)

for 1+ 1 to n do
M(i,7) < O
for shift+ 1 to n do
for 1 < 1 to n — shift do
] «— 1+ shift
cost «+— oo
for t <14 to 53— 1 do
new «— M((i,t) + M(t+1,5) + di—1 X di X d;
if new < cost then
cost < new
M (i, j) < cost
return M(1,n)

e Trace the example n = 4 and (do,d1,...,d,) = (5,2,6,4,3):

Lecture 18: Dynamic Programming
4™ implementation — dynamic programming:
e Pseudocode:
procedure dpM(1,n)

for 1«1 to n do
M(i,7) «— O
for shift«— 1 to n do
for 1+ 1 to n — shift do
j «— 1+ shift
cost «— oo
for t <1 to 53— 1 do
new «— M(i,t) + M(t+1,5) +di—1 X di X d;
if new < cost then
cost «— new
M(z,7) < cost
return M(1,n)

e Trace the example n = 4 and (do,d1,...,d,) = (5,2,6,4,3):

m~matrix s-matrix

e The innermost for loopbody takes constant time ...
So dpM(n) worst case running time € ©(n3).

Lecture 18: Dynamic Programming

Dynamic programming key characteristics:
e Recurrence relation exists
e Recursive calls overlap
e Small number of subproblems
e Huge number of calls
e Avoid re-computation
e Bottom-up computation

e Top-down trace

Other problems suited to Dynamic programming:

e String matching: Longest Common Subsequence (next lec-
ture)

e Optimal binary search tree construction (textbook page 356)
e All pair shortest paths in (di)graphs (CMPUT 304)

e Optimal layout in VLSI (could be a thesis topic :-))

Lecture 19: Dynamic Programming

Some more observations on Matrix-chain multiplication:
e Suppose we have computed the order of multiplications

e Suppose the last matrix multiplication is between (A1 x...xA;)
and (Aj_|_1 X ... X An)

e Then the suborders obtained from the original order
are optimal orders for the subproblems, respectively (why 777)

e \We call this ... optimal substructures

e Equivalently, we need to

— compute optimal orders for
* multiplying matrices A1, Ao, ..., A;j

* multiplying A1, Ajqo,..., Ay,
x for every index j=1,2,...,(n—1)
— combine them into an order to multiplying A1, Ap,..., A,

— choose the best order out of the (n — 1) possibilities

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem:

Definitions:

Sequence/string:

dynamicprogramming iS a sequence over the English alpha-
bet

Base/letter/character

Subsequence:

the given sequence with zero or more bases left out
e.d., dog is a subsequence of dynamicprogramming
WARNINg: bases appear in the same order, but not nec-
essarily consecutive

Common subsequence

LCS problem: given two sequences X = z1x2...x, and
Y = y1iy2...ym, find @ maximum-length common subse-
quence of them.

e The LCS problem has the “optimal substructure” ...

— if , is NOT in the LCS (to be computed), then we only

need to compute an LCS of zi1x2...2n—1 and y1yo...ym

— similarly, if y,, is NOT in the LCS (to be computed),

then we only need to compute an LCS of z12>...2, and
Y1y2 . .- Ym—1 ...

if z,, and y,,, are both in the LCS (to be computed), then
Tn = Ym and we need to compute an LCS of x1z2... 201

and y1y2...Ym—1,
and then adding z, to the end to form an LCS for the
original problem

10

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont’'d):

e T herefore,

Letting DP[n,m] to denote the length of an LCS of X and
Y, then it is equal to

LCS(x1z2...Tp-1, Y1Y2---Ym),

max length of { LCS(x122...Tn, Y1Y2-.-Ym-1),
LCS(z1x2...Tn—1, Y1Y2---Ym—1) + 'z, if xn = ynm

e Correctness

e In general, let DPJi, j] denote the length of an LCS of z125 ...
and y1y>2...y;.

e Recurrence:

DP[i,j] = max< DPJ[i,j — 1],
DP[’i—l,j—l]-l—l, Ifmzzyj

e Base cases 777

11

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont'd)

— solving the recurrence:
e Divide-and-Conquer running time: Q(3min{nm})
e Memoization: ©(n x m)

e Dynamic programming:

Order of computations 7?77

procedure dpLCS(X,Y")

n « length[X]
m «— length[Y]
for 1< 1 to m do
DP(:,0) < O
for j«— 0 to n do
DP(0,5) <O
for 1+ 1 to m do
for j«— 1 to n do
if x; = y; then
DPli,j] «— DP[i —1,57—1] 41
else if DP[i— 1,j] > DP[i,7 — 1] then
else
return DP[n,m]

12

Lecture 19: Dynamic Programming

Longest common subsequence (LCS) problem (cont’'d):
e Correctness
e Can return an associated LCS ... trace back

e Running time: ©(n x m)

There are n x m entries each takes constant time to compute.

Can be reduced to ©(n x =) (CMPUT 606)

logm

e Space requirement ... ©(n x m)

Can be reduced to ©(min{n,m}) (CMPUT 606)

e Applications:
— Human (and other species) Genome Project

— Detecting cheating :-)

13

Lecture 19: Dynamic Programming

Have you understood the lecture contents?

well ok not-at-all topic

matrix-chain multiplication

deriving recurrence

avoiding re-computation

top-down — memoization
bottom-up — dynamic programming

optimal substructure

O 0o o o o o o
O 0o o o o o o
O 0o o o o o o

LCS computation

14

