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Abstract. We present algorithmic and hardness results for network design problems with degree or order con-
straints. The first problem we consider is the SURVIVABLE NETWORK DESIGN problem with degree constraints
on vertices. The objective is to find a minimum cost subgraph which satisfies connectivity requirements between
vertices and also degree upper boundsBv on the vertices. This includes the well-studied MINIMUM BOUNDED

DEGREESPANNING TREE problem as a special case. Our main result is a(2, 2Bv + 3)-approximation algorithm
for the edge-connectivity SURVIVABLE NETWORK DESIGNproblem with degree constraints, where the cost of the
returned solution is at most twice the cost of an optimum solution (satisfying the degree bounds) and the degree of
each vertexv is at most2Bv + 3. This implies the first constant factor (bicriteria) approximation algorithms for
many degree constrained network design problems, including the MINIMUM BOUNDED DEGREESTEINER FOREST

problem. Our results also extend to directed graphs and provide the first constant factor (bicriteria) approximation
algorithms for the MINIMUM BOUNDED DEGREEARBORESCENCEproblem and the MINIMUM BOUNDED DE-
GREE STRONGLY k-EDGE-CONNECTEDSUBGRAPH problem. In contrast, we show that the vertex-connectivity
SURVIVABLE NETWORK DESIGN problem with degree constraints is hard to approximate, even when the cost of
every edge is zero. A striking aspect of our algorithmic results is its simplicity. It is based on theiterative relaxation
method, which is an extension of Jain’s iterative rounding method. This provides an elegant and unifying algorithmic
framework for a broad range of network design problems.

We also study the problem of finding a minimum costλ-edge-connected subgraph with at leastk vertices, which
we call the(k, λ)-subgraph problem. This generalizes some well-studied classical problems such as thek-MST and
the minimum costλ-edge-connected subgraph problems. We give a poly-logarithmic approximation for the(k, 2)-
subgraph problem. However, by relating it to the DENSESTk-SUBGRAPH problem, we provide evidence that the
(k, λ)-subgraph problem might be hard to approximate for arbitrary λ.
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1. Introduction. Network design is a central topic in combinatorial optimization, ap-
proximation algorithms, and operations research. The basic setting of network design prob-
lems is to find a minimum cost subgraph satisfying connectivity requirements between ver-
tices. This captures a variety of classical problems such asM INIMUM COST FLOW problem,
M INIMUM STEINER TREE problem, HAMILTONIAN CYCLE problem, etc. Also, research
results in this area provide algorithmic tools and insights(e.g., hardness results) for the de-
sign of practical networks such as telecommunication networks. A highlight of this line of
research is Jain’s 2-approximation algorithm for the SURVIVABLE NETWORK DESIGNprob-
lem [23].

A recent research direction is to study a more general class of network design problems
where there are natural budget constraints. This is motivated by the need for more sophisti-
cated and realistic models for the design of practical networks. The first type of constraints
we study isdegree constraintson vertices. The objective is to find a minimum cost sub-
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graph satisfying connectivity requirements as well as degree bounds (e.g. workloads) on the
vertices. A well-known example is the MINIMUM BOUNDED DEGREE SPANNING TREE

problem, which includes the TRAVELING SALESMAN problem as a special case. Recently,
Goemans [19] obtained an approximation algorithm for this problem, with only an additive
error of two on the degrees, following a long line of research. We observe that the basis un-
derlying the breakthrough results of Jain [23] and Goemans [19] is theuncrossing technique
in combinatorial optimization.

We study a common generalization of the above two problems. Our main result is
a generalization of the 2-approximation algorithm for the edge-connectivity SURVIVABLE

NETWORK DESIGN problem that simultaneously provides near-optimal boundson the de-
grees. This yields the first constant factor (bicriteria) approximation algorithms for many
degree-constrained network design problems, including the MINIMUM BOUNDED DEGREE

STEINER NETWORK problem and the MINIMUM BOUNDED DEGREESTEINER TREEprob-
lem. Our results extend to directed graphs and provide the first constant factor (bicriteria)
approximation algorithms for MINIMUM BOUNDED DEGREEARBORESCENCEand MINI -
MUM BOUNDED DEGREESTRONGLY k-EDGE-CONNECTEDSUBGRAPH. A striking aspect
of our method is itssimplicity. Our approach is based on theiterative relaxationmethod,
which is an extension of Jain’siterative roundingmethod. This provides an elegant and
unifying algorithmic framework for a broad range of networkdesign problems. Very re-
cently, the iterative relaxation technique introduced in this paper has been extended to give
an(1, Bv + 1)-approximation algorithm for the MINIMUM BOUNDED DEGREESPANNING

TREE problem [43], settling a conjecture of Goemans affirmatively. In contrast, we present
hardness results for the vertex-connectivity SURVIVABLE NETWORK DESIGN problem with
degree constraints, even when all edges have zero cost.

The second type of constraints we study isorder constraints. Specifically, we study
the problem of finding a minimum costλ-edge-connected subgraph with at leastk vertices,
which we call the(k, λ)-subgraph problem. This generalizes some classical and well-studied
problems such as thek-MST problem (which is the(k, 1)-subgraph problem) and the mini-
mum costλ-edge-connected subgraph problem (which is the(n, λ)-subgraph problem with
n being the number of vertices). We give a poly-logarithmic approximation algorithm for the
(k, 2)-subgraph problem. However, by relating it to the DENSESTk-SUBGRAPH problem,
we give evidence that the(k, λ)-subgraph problem might be hard to approximate for arbitrary
λ.

1.1. Previous Work. In the SURVIVABLE NETWORK DESIGN problem, we are given a
connectivity requirementruv for each pair of vertices, and the goal is to find a minimum cost
subgraph satisfying the connectivity requirements. This is a general problem which captures
many interesting problems as special cases (e.g., minimum Steiner tree, minimum Steiner
forest, minimumk-edge-connected subgraph) and has many applications. Jain[23] gave
a 2-approximation algorithm for the edge-connectivity SURVIVABLE NETWORK DESIGN

problem by using an elegant iterative rounding approach. Incontrast, the vertex-connectivity
SURVIVABLE NETWORK DESIGN problem is shown to be very hard to approximate [29].

Network design problems with degree constraints have been studied extensively lately.
A simpler setting is to minimize the maximum degree of a subgraph (without considering the
cost) satisfying given connectivity requirements. A well-known example is the MINIMUM

DEGREESPANNING TREE (MDST) problem, where the objective is to find a spanning tree
of smallest maximum degree. This problem is already NP-hardas it generalizes the HAMIL -
TONIAN PATH problem. Fürer and Raghavachari [12, 13] gave an approximation algorithm
returning a solution with maximum degree at most one off the optimal solution. (Their result
holds for the Steiner tree problem as well.) Ravi, Raghavachari, and Klein [37, 25] considered
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Connectivity Requirement Degree Cost and Degree This Paper
Spanning Tree B + 1 [13] (1, B + 2) [19] (2, 2B + 3)
Steiner Tree B + 1 [13] (O(log n), O(B log n)) [36] (2, 2B + 3)

Steiner Forest - - (2, 2B + 3)
k-Edge-Connected SubgraphO(k log n) [11] - (2, 2B + 3)

Steiner Network - - (2, 2B + 3)
TABLE 1.1

Results on Minimum Cost Bounded-Degree Network Design Problems. For the cases without costs,
this paper presents an algorithm in which the degree boundesare at most2B + 3.

the MINIMUM DEGREEk-EDGE-CONNECTED SUBGRAPH problem, and gave an approxi-
mation algorithm with performance ratioO(nδ) for any fixedδ > 0 in polynomial time,
andO(log n/ log log n) in sub-exponential time. Recently, Feder, Motwani and Zhu [11] ob-
tained a polynomial timeO(k log n)-approximation algorithm for this problem, for anyfixed
k, thus answering an open question in [37]. Our main result implies the first constant factor
approximation algorithm even for general edge-connectivity requirements.

For the problem of finding aminimum costsubgraph with given connectivity require-
ments and degree boundsBv on every vertexv, the most-studied case is the MINIMUM

BOUNDED DEGREE SPANNING TREE (MBDST) problem. LetOPT be the cost of an op-
timal solution which satisfies all the degree bounds. We say an algorithm is an(α, f(Bv))-
approximation algorithm if the returned solution has cost at mostα · OPT and the degree at
each vertexv is at mostf(Bv). The first approximation algorithm for the MBDST prob-
lem was an(O(log n), O(Bv log n))-algorithm in [34, 36]. This was subsequently improved
in a series of papers [27, 28, 7, 8, 38]. Recently, Goemans [19] made a major step on this
problem by giving a(1, Bv + 2)-approximation algorithm. The proof of Goemans’ result is
based on the uncrossing technique, and is considerably simpler than the previous results. Not
much is known for more general connectivity requirements. For the MINIMUM BOUNDED

DEGREESTEINER TREE problem, there is an(O(log n), O(Bv log n))-approximation algo-
rithm [36]. This bound was improved to(O(1), O(Bv + log n))-approximation by [26], but
the algorithm runs in quasi-polynomial time. Our main result implies the first polynomial
time (2, 2Bv +3)-approximation algorithm even for general edge-connectivity requirements.

For network design problem with order constraints, the mostwell-studied problem is
thek-MST problem, where the objective is to find a minimum cost tree spanning at leastk
vertices. The approximation factor for this problem was improved from

√
k andO(log2 k) in

[35, 3] down to constant in [6, 17] and very recently to 2 [18].For the case of metric costs on
the edges, thek-TSP problem, which asks to find a minimum cost TSP tour visiting at least
k vertices, can also be approximated within factor 2 [18].

1.2. Our Results. Suppose that we are given an undirected graph with connectivity
requirementsruv on pairs of verticesu andv, and a degree boundBv on each vertexv. The
SURVIVABLE NETWORK DESIGN problem with degree constraints asks for a minimum cost
subgraph such that there are at leastruv edge-disjoint paths between verticesu andv and the
degree of each vertex is at mostBv. Our main result is the following theorem.

THEOREM1.1. There is a polynomial time(2, 2Bv+3)-approximation algorithm for the
SURVIVABLE NETWORK DESIGN problem with degree constraints. Moreover, on average,
the degree bounds are violated by at most 2.

This gives the first constant factor bicriteria approximation algorithms for a broad range
of network design problems with degree constraints such as the MINIMUM STEINER TREE

problem, the MINIMUM STEINER FORESTproblem, and the MINIMUM k-EDGE-CONNECTED
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SUBGRAPH problem. It also implies the first constant factor approximation algorithm for the
minimum maximum-degree version of many problems (by setting Bv = B for all v). We
remark that Theorem 1.1 holds for (1) connectivity requirements that areweakly supermodu-
lar (technical definition is deferred to later); and (2) the casewhere there are both lower and
upper degree bounds. In fact, the lower bounds will not be violated.

For directed graphs, we study the problem of finding a minimumcost subgraph which
satisfies connectivity requirements that areintersecting supermodularor crossing supermod-
ular (technical definition is deferred to later) and both indegree and outdegree constraints
(Bin

v and Bout
v , respectively, for eachv ∈ V ). This includes the MINIMUM BOUNDED

DEGREEARBORESCENCEproblem, MINIMUM BOUNDED DEGREESTRONGLY k-EDGE-
CONNECTEDSUBGRAPH problem, etc. We obtain the following results.

THEOREM1.2. There is a polynomial time(3, 3Bin
v +5, 3Bout

v +5)-approximation algo-
rithm to find a minimum cost subgraph that satisfies crossing supermodular connectivity re-
quirements, and indegree and outdegree constraints in directed graphs. For{0, 1}-valued in-
tersecting supermodular connectivity requirements, there is a polynomial time(2, Bin

v , 2Bout
v +

2)-approximation algorithm.
In contrast to the above theorems, we present a hardness result for the vertex-connectivity

version of the SURVIVABLE NETWORK DESIGNproblem with degree constraints, even when
the cost of the subgraph is not considered.

THEOREM1.3.For anyǫ > 0, there is no polynomial time(∞, 2log1−ǫ nBv)-approximation
algorithm for the degree bounded vertex-connectivitySURVIVABLE NETWORK DESIGNprob-
lem unlessNP ⊆ DTIME(npolylog(n)).

Next, we turn our attention to network design problems with order constraints. We study
the(k, λ)-subgraph problem, i.e. the problem of finding a minimum costλ-edge-connected
subgraph with at leastk vertices. This problem generalizes the classicalk-MST problem to
higher connectivity requirements. For the(k, 2)-subgraph problem, we are able to obtain the
following.1

THEOREM 1.4. There is anO(log k · log n)-approximation algorithm for the(k, 2)-
subgraph problem.

For general values ofλ, it seems that the(k, λ)-subgraph problem might be difficult as
shown by the following result.

THEOREM 1.5. An α-approximation algorithm for the(k, λ)-subgraph problem (even
for the unweighted case) for arbitraryλ, implies an(α log2 k)-approximation algorithm for
theDENSESTk-SUBGRAPH problem.

Notice that the best known approximation algorithm for the DENSESTk-SUBGRAPH

problem has ratioO(n
1

3
−ǫ) for some constantǫ > 0 [14].

1.3. Techniques and Overview.The iterative rounding method for the SURVIVABLE

NETWORK DESIGN problem (without degree constraints) works as follows. Formulate the
SURVIVABLE NETWORK DESIGN problem as an integer linear program, and then solve the
linear relaxation of the problem to find a basic optimal solution x. Pick an edgee∗ with
highest value (i.e.xe∗ ≥ xe for all e ∈ E) and add it to the solution subgraphH (initially H
is empty). Then consider the residual problem, where the edges inH are pre-selected, and
repeat the above procedure (find a basic optimal solution, add an edge with highest value to
H , and construct the residual problem) until all the connectivity requirements are satisfied.
Jain [23] proved that the edge picked in each iteration has value at least 1/2 (i.e.xe∗ ≥ 1/2),
implying a 2-approximation algorithm for the problem.

1In the conference version of the paper we claimed anO(log3 n)-approximation algorithm for the(k, 2)-
subgraph problem, with an incorrect proof. Here we prove a better approximation ratio using a different and simpler
proof.
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We return to the SURVIVABLE NETWORK DESIGN problem with degree constraints.
The starting point is that degree constraints are defined only on single vertices, and so the
uncrossing technique as in [23, 19] can be applied to show that a basic optimal solution is
characterized by a laminar family of tight sets (see Lemma 2.3). This immediately implies
that, in the first iteration, there exists an edge having value at least 1/2. Now comes the key
difference. Since degree constraints arepackingconstraints, after we have picked some frac-
tional edges in the previous iterations, we need to allow fornon-integraldegree constraints
in the residual problem, otherwise the residual problem maybe infeasible, or its cost may be
significantly higher. By doing so, however, it is not necessarily true that the picked edges in
later iterations have value at least 1/2.

We introduce the idea ofiterative relaxationto overcome this difficulty. When there is
no edge of value at least 1/2 in a basic optimal solution, we prove in Lemma 2.2 that there
is a vertexv with degree constraint and it has degree at most 4. The new idea is to “relax”
the problem by removing the degree constraint onv. Then, we recompute a basic optimal
solution of the residual problem, and iterate this procedure. So, in each iteration, we either
round up an edge of value at least 1/2 or relax the problem by removing the degree constraint
of a vertex of degree at most 4. Note that the relaxation step only incurs an extra additive
constant 3 in the approximation ratio. This implies a(2, 2Bv + 3)-approximation algorithm
for the problem.

The above technique is also adapted to prove the claimed guarantees for the directed
graph results (Theorem 1.2). Subsequently, the iterative relaxaction method has found various
applications [4, 24, 30, 43]. In particular, in has been used[43] to settle the conjecture on the
M INIMUM BOUNDED DEGREESPANNING TREE problem affirmatively.

2. Survivable Network Design with Degree Constraints.In this section we study
SNDP with non-uniform upper and lower bounds on vertex degrees and present a bicrite-
ria approximation algorithm which will imply Theorem 1.1. More specifically, assume we
are given a complete graphG = (V, E) and nonnegative costsc : E → R+ on the edges,
connectivity requirementsri,j on pairs of verticesi, j, and a degree upper boundBv for each
vertexv ∈ W ⊆ V and a degree lower boundLv for each vertexv ∈ U ⊆ V . We also have
an upper-boundUe ≥ 1 on the multiplicity of edgee in the solution (which would be 1 if each
edge can be picked only once). The goal is to find a subset of edgesF of minimum cost such
that the subgraphH = (V, F ) satisfies the connectivity requirements and the degree bounds,
that is, inH there areru,v edge disjoint paths between verticesu, v, for each pairu, v, and
each vertexv hasLv ≤ degH(v) ≤ Bv and each edgee appears at mostUe times inH .

Our method is an extension of Jain’s iterative rounding method, as outlined in Sec-
tion 1.3. An integer function on sets of verticesf : 2V → Z+ that hasf(V ) = 0 is called
weakly supermodularif one of the two inequalities:

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B) or,

f(A) + f(B) ≤ f(A−B) + f(B −A)

holds for every pair of setsA, B ⊆ V with A ∩ B 6= ∅. An important point in Jain’s
method is that the connectivity requirementsruv are specified via a functionf on the sets of
vertices by settingf(S) := maxu∈S,v/∈S{ruv}. It is known thatf is weakly supermodular
in this case, and stays weakly supermodular when updating the LP from one iteration to the
next (to account for one or more edges being added to the solution subgraph). We denote
x(U) :=

∑

e∈U xe, andδ(S) denotes the set of edges with exactly one end-point inS for
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1. InitializationF ← ∅, f ′ ← f , and∀v ∈ W : B′
v = Bv;

2. Whilef ′ 6≡ 0 do
(a) Find a basic optimal solutionx with cut requirementf ′ and remove every edge

e with xe = 0.
(b) If there exists a vertexv ∈ W with at most 4 incident edges, removev from

W and goto (a).
(c) If there exists an edgee = (u, v) with xe ≥ 1/2, add⌈xe⌉ copies ofxe to F

and decreaseB′
u andB′

v by xe.
(d) For everyS ⊆ V : f ′(S)← f(S)− |δF (S)|.

3. ReturnH = (V, F ).

FIG. 2.1.Bounded Degree SNDP Algorithm

S ⊂ V . Below is the LP relaxation for SNDP with degree bounds:

(LP) minimize zLP =
∑

e∈E

ce xe

subject to x(δ(S)) ≥ f(S), ∀S ⊆ V

x(δ(v)) ≥ Lv, ∀ v ∈ U

x(δ(v)) ≤ Bv, ∀ v ∈ W

0 ≤ xe ≤ Ue ∀ e ∈ E

Clearly the first part of Theorem 1.1 follows from the following theorem.
THEOREM2.1. If the LP has an optimal solution of costzLP , then there exists an integral

solution x̂ of cost≤ 2zLP that satisfies all the constraints onf andLv ≤
∑

e∈δ(v) x̂e ≤
2Bv + 3 for all v ∈ V . Moreover,x̂ can be computed in polynomial time.

First note that any degree lower bound constraint can be incorporated as a connectiv-
ity constraint (withf({v}) := max{f({v}), Lv} for the cutS = {v}). By doing so, the
new functionf obtained from the connectivity constraints and degree lower bounds remains
weakly supermodular. Therefore, if we satisfy all the connectivity constraints then we have
satisfied the degree lower bounds too. Henceforth, we assumethat aside from connectivity
constraints we only have degree upper bounds. We simply refer to them as degree constraints.
Note that theBv ’s can be fractional, since the algorithm can change the degree bounds frac-
tionally.

To prove Theorem 2.1, we use the algorithm as shown in Figure 2.1. This is an iterative
relaxation procedure for (LP), which is outlined in Section1.3. The correctness of the algo-
rithm is based on the following key lemma, which guarantees that the algorithm terminates.

LEMMA 2.2. Letx be a basic solution of (LP), andW be the set of vertices with degree
constraints. Then either one of the following is true:

1. There exists an edge with value at least 1/2.
2. There exists a vertexv ∈ W such thatdeg(v) ≤ 4.

Before giving the proof of this lemma, we first show that it implies Theorem 2.1.

Proof of Theorem 2.1:The results of Jain [23] and Grötschel et al., [21, Theorem 6.4.9] show
that a basic optimal solutionx∗ (if it exists) of the initial LP can be found in polynomial time.
It is known that the updated functionf ′ stays weakly supermodular (since we are subtracting
a symmetric submodular function), and the LP for the residual problems can be solved in
polynomial time [23]. By Lemma 2.2, the above algorithm willalways terminate; clearly, the
returned solution satisfiesf .
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We need to prove that the cost ofF is at most2zLP , wherezLP is the cost of the
optimal solutionx∗ of the initial LP, and thatdegF (v) ≤ 2Bv + 3 for every vertexv. We
prove the former by induction on the number of iterations in which line (2c) of the algorithm
is executed. Suppose an edgee with x∗

e ≥ 1/2 is added toF in the first iteration. By
induction, the algorithm finds an edge setF ′ of cost at most2z′LP that satisfies the residual
connectivity requirements, wherez′LP is the optimal solution to the residual problem. Note
that z′LP ≤ zLP − cex

∗
e ≤ zLP − ce

2 ; the first inequality holds since the restriction of
x∗ to the edges inE − e is a feasible solution to the residual LP. Hence, the cost ofF is
c(F ) = c(F ′) + ce ≤ 2z′LP + ce ≤ 2zLP .

Finally we prove that for every vertexv ∈ V : degF (v) ≤ 2Bv + 3. Consider a degree
constraint on a vertexv. Suppose the degree constraint onv has never been removed. Since
we only add edges with value at least 1/2 toF , it is easy to see thatdegF (v) ≤ 2Bv. Now
suppose the degree constraint is removed afterα edges incident onv are added. So,Bv > α

2 .
Sincev is of degree at most 4 when its degree constraint is removed, the degree ofv in the
final solution is at mostα + 4. As Bv is an integer (Bv is the degree bound in the first
iteration), we havedegF (v) ≤ α + 4 ≤ 2Bv + 3.

To prove Lemma 2.2, we need a characterization of the basic feasible solutions of (LP).
Consider any solutionx of the LP. We call a set of verticesS tight (with respect tox) if either
S = {v} andx satisfies the degree constraint forv with equality, i.e.,x(δ(v)) = Bv, or x
satisfies the connectivity constraint forS with equality, i.e.,x(δ(S)) = f(S) (in the latter
case,S may be a singleton or not). We say that a pair of setsS, T intersectif all of the sets
S ∩ T, S − T, T − S are nonempty, and we say that a family of setsL = {S1, S2, . . . , Sℓ}
is laminar if no two of its sets intersect. For any setS ⊆ V , let χS denote the incidence
vector of the set of edgesδ(S); note that in the constraint matrix of the LP,χS is the row for
setS (the constraint forS may be either a connectivity constraint or a degree bound). The
following lemma characterizes the tight constraints (i.e.constraints satisfied as equalities) of
a basic feasible solution. The proof follows from standard uncrossing arguments. We include
a sketch for the sake of completeness.

LEMMA 2.3. Let the requirement functionf of (LP) be weakly supermodular, and let x
be a basic solution of (LP) such that0 < xe < 1 for all edgese ∈ E. Then, there exists a
laminar familyL of tight sets such thatL partitions into a set of singletonsL′ for the degree
constraints, and the remaining setsL′′ = L − L′ for the connectivity constraints, such that:

(i) Every setS = {v} ∈ L′ hasBv > 0 and every setS ∈ L′′ hasf(S) ≥ 1.
(ii) |L| = |E|.
(iii) The vectorsχS , S ∈ L, are linearly independent.
(iv) x is the unique solution to{x(δ(v)) = Bv, ∀{v} ∈ L′}

⋃ {x(δ(S)) =
f(S), ∀S ∈ L′′}.

Proof. This result follows from the standard uncrossing method, see Lemmas 4.1–4.3
of [23], or Chapter 52.4 of [41]. The main point is that if two tight setsA, B intersect then
neither can be a singleton set, so the connectivity constraints forA, B must hold with equality
(degree constraints are defined on singletons and do not intersect with other sets); then either
A ∩ B, A ∪ B are tight andχA + χB = χA∩B + χA∪B or A − B, B − A are tight and
χA + χB = χA−B + χB−A.

Now we sketch the proof of Lemma 2.2. This is similar to the proof of key lemma in
[23] as described in [44, Theorem 23.6]. We derive a contradiction if none of the conditions
in Lemma 2.2 holds. LetL be the laminar family of tight sets obtained in Lemma 2.3 when
applied to the basic solution just before executing line (2c) of the algorithm. The number of
sets inL is equal to the number of edges inG. We can viewL as a forest of rooted trees where
each node in the tree corresponds to a set inL and a root is a set not contained in any other set.
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SetT is theparentof S if it is the smallest set containingS. Following the terminology of
[44], S is said toownan endpointv of edgee = (u, v) if S is the smallest set inL containing
v. Note that there the total number of endpoints inG is 2m, wherem = |E(G)|. The proof is
established by showing that if every edgee hasxe < 1/2 then we can assign endpoints to the
sets in such a way that for every setS, S gets at least 3 endpoints and each of its descendants
gets at least 2 endpoints. We get a contradiction of having more than2m endpoints, once
this argument is applied to the roots of the trees in the forest of laminar family. We need
one more definition from [44]. For every setS ∈ L we define thecorequirement ofS as
coreq(S) = 1

2 |δ(S)| − f(S). The counting argument leading to a contradiction is done
through the following lemma which is essentially Lemma 23.21 of [44].

LEMMA 2.4. Let T be a subtree rooted atS and assume thatxe < 1/2 for all e ∈ E.
The endpoints owned byT can be redistributed in such a way thatS gets at least 3 endpoints
and each of its descendants gets at least 2 endpoints. Furthermore, if coreq(S) 6= 1/2, then
S gets at least 4 endpoints and ifS is a degree constraint then it gets at least 5 endpoints.

Proof. First, note that the fractional-value tight sets are singletons coming from degree
constraints. Each degree constraint is a leaf in the forest and each owns at least 5 endpoints
by the assumption onx (line (2b)). The same argument as in [44] shows that every other leaf
(which is not a degree constraint) satisfies the requirements of the lemma. We include the
proof here to illustrate the importance of threshold1

2 and the definition of co-requirement.
Let S be a leaf ofL which is not a degree constraint. ThenS can receive one token for each
edge inδ(S). Sincex(δ(S)) = f(S) ≥ 1 and there is no edgee with xe ≥ 1

2 , we obtain
that |δ(S)| ≥ 3. ThusS receives at least three tokens and exactly three when|δ(S)| = 1 and
x(δ(S)) = f(S) = 1. In this case,coreq(S) = 1

2 and the base case of the induction holds.
We now show that the claim holds for a non-leaf set as well. We say a setS has a surplus

of p if p + 2 endpoints have been assigned to it. Consider a non-leaf setS.
(1) If S has two or more children, one of which is a degree constraint,then it can collect

three endpoints from the surplus of its degree-constrainedchild, and one endpoint from the
surplus of one of its other children, for a total of at least 4.

(2) If S has only one child, sayS′, and it is a degree constraint, then sinceδG(S) 6=
δG(S′) (by linear independence of incidence vectors of Lemma 2.3),S owns at least one
endpoint. It can also collect 3 endpoints from the surplus ofS′, for a total of at least 4.

(3) If none of the children ofS are degree constraints, then the same analysis as in [44]
shows thatS satisfies the requirements of the lemma.

This completes the proof of Lemma 2.2, and hence the proof of Theorem 2.1.

Integrality Gap Example. One may wonder whether the bicriteria approximation guar-
antee of this theorem is best possible. The following example shows that the integrality gap
of the LP is at least the minimum between(2, 2Bv +1) and(2, Bv +2), defined as follows. If
the LP is feasible and has an optimal solution with costzLP , then in any integral solution the
cost is at least2zLP , and each vertexv has degree at least2Bv +1 or Bv +2. Take a3-regular
3-edge connected graphG with no Hamiltonian path. Such graphs exist; the following con-
struction was brought to our attention by Jim Geelen and Jacques Verstraete. LetP denote the
Petersen graph, letP −v be the graph obtained fromP by deleting vertexv, and let us denote
the neighbors ofv in P by w1, w2, andw3 (so these three vertices have degree 2 inP − v).
Now, take three copies ofP − v, and three new verticesv1, v2, andv3, and attach them as
follows: add edges fromvj to each of the three copies ofwj (1 ≤ j ≤ 3) in the three copies
of P − v. It is not hard to argue that this graph on 30 vertices does nothave any Hamiltonian
path (a key observation is that in any potential Hamiltonianpath, the path must visit all the
vertices of a copy ofP − v befor exiting it; this is not possible given that the Petersen graph
is not Hamiltonian). Letrij = 1 for every pair of vertices inG and for alli ∈ V , let Bi = 1.
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Assigningxe = 1/3 to every edge gives a feasible solution with cost|V (G)|/2 and degree
bounds satisfied. It can be seen that this is also an optimal solution. On the other hand, any
feasible integer solution with degree bounds at most 2 (which is 2Bi = Bi + 1) needs to be
a Hamiltonian path inG.

Average Degree Bound.Let us assume that̃B is the average degree upper bound (i.e.
B̃ = 1

n

∑

v∈V Bv). Then the arguments in the proof of Theorem 2.1 can also be used to show
that in the final solution, the average degree of the verticesis at mostB̃ + 2; in other words,
the degree of each vertexv in the final solution, on average, is at mostBv +2 (i.e. the second
part of Theorem 1.1). To prove this, we modify each iterationof the algorithm by adding the
following line after line (2a) and before line (2b) of the algorithm:
(a’) If there are any edgese = (u, v) with xe ≥ 1 then add a copy ofe to F ; decreaseUe

and the bounds forB′
u andB′

v by 1 and go to Step 2d.
It is easy to check that the same analysis shows that with thisreformulation the cost of the

solution is still at most2zLP . Consider the first iteration in which we have a totally fractional
solution, i.e.xe < 1 for all edgese. For each vertexv let αv ≥ 0 be the number of edges
incident with vertexv selected so far; thusB′

v = Bv −αv because all the edgese selected so
far hadxe ≥ 1, and the degree bounds were decremented by 1.

CLAIM 2.5. If 0 < xe < 1 for all edges, then there are at most2n− 1 edges in a basic
feasible solution of (LP).

Proof. By Lemma 2.3, the number of sets inL is equal to the number of edges (remain-
ing) in the graph. Also, since the ground set hasn vertices, an easy induction shows that the
number of sets in a laminar family is at most2n − 1. Therefore the number of edges inG
(with non-zero values) is at most2n− 1.

Each time we select an edgee with xe ≥ 1/2, the total degree of the solution subgraph
is at most one more than the total degree of the LP solution. Since there are at most2n − 1
iterations left by the above claim, the total degree of the solution subgraph is larger than the
total degree of the LP solution by at most2n− 1. This implies that the average degree of the
solution subgraph is at most 2 more than the average degree ofthe LP solution.

Minimizing the Maximum Degree. Our iterative rounding method applies also to the
setting of minimizing the maximum degree subject to edge-connectivity constraints. We start
with the above LP and introduce a new variable∆, and replacing the degree constraints
x(δ(v)) ≤ Bv, ∀v ∈ V by x(δ(v)) ≤ ∆, ∀v ∈ V . The objective function is to minimize
∆. Let (LP-∆) denote this linear program. The following theorem followsimmediately
from Theorem 2.1, which implies the first constant factor approximation algorithm for many
smallest maximum degree subgraph problems.

THEOREM2.6. If (LP-∆) has an optimal solution with objective value∆∗, then there ex-
ists an integral solution̂x of maximum degree≤ 2⌈∆∗⌉+3 that satisfies all of the constraints
onf . Moreover,x̂ can be computed in polynomial time.

3. Directed Network Design with Degree Constraints.In this section we present bi-
criteria approximation algorithms for degree bounded network design problems in directed
graphs, for some restricted classes of connectivity requirements. Our iterative relaxation
technique extends to directed graphs, via the results of Gabow [16].

For a set of verticesS, δin(S) denotes the set of arcs{uv ∈ E | u 6∈ S, v ∈ S}, and
δout(S) denotes the set of arcs{uv ∈ E | u ∈ S, v 6∈ S}. An integer function on sets of
verticesf : 2V → Z+ is calledcrossing supermodularif the inequality

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)
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(DLP) minimize zDLP =
∑

e∈E

ce xe

subject to
∑

e∈δin(S)

xe ≥ f(S), ∀S ⊆ V, r /∈ S

∑

e∈δin(v)

xe ≤ Bin
v , ∀ v ∈W1

∑

e∈δout(v)

xe ≤ Bout
v , ∀ v ∈W2

0 ≤ xe ≤ Ue, ∀ e ∈ E

FIG. 3.1.LP for directed case with crossing supermodular functionf

holds for every pair of setsA, B ⊆ V such thatA ∩ B 6= ∅ and A ∪ B 6= V . Note
that the connectivity requirement of thek-edge-connected spanning subgraphproblem can
be formulated via the crossing supermodular functionf(S) = k, ∀∅ 6= S ( V , yet the
connectivity requirement of thedirected Steiner treeproblem cannot be so formulated.

First we address the problem of finding a minimum cost subgraph satisfying crossing su-
permodular connectivity requirements and non-uniform degree requirements (both in-degrees
and out-degrees). In the following the connectivity requirements are specified by a crossing
supermodular functionf . Figure 3.1 shows the LP-relaxation for our problem. As beforeUe

is the upper bound on the multiplicity of edgee. We place out-degree bounds for vertices in
W1 ⊆ V and in-degree bounds for vertices inW2 ⊆ V both of which can be initialized toV
initially.

First we prove the following theorem which implies the first part of Theorem 1.2.
THEOREM3.1. If the above LP (for directed graphs) has an optimal solutionof costzLP ,

then there exists an integral solution̂x of cost≤ 3zLP that satisfies all of the constraints on
f if f is crossing supermodular, and̂x(δout(v)) ≤ 3Bout

v + 5 andx̂(δin(v)) ≤ 3Bin
v + 5 for

all v ∈W1 andv ∈ W2, respectively. Moreover,̂x can be computed in polynomial time.
The proof of this theorem follows from an extension of the method of Gabow [16] similar

to our proof of Theorem 2.1. The algorithm is presented in Figure 3.2. The following lemma
ensures that we always make progress either in step (2b) or step (2c). Observe that the proof
of Theorem 3.1 follows from Lemma 3.2 by a similar argument asin proof of Theorem 1.1.

LEMMA 3.2. Given a basic solutionx of (DLP) in Figure 3.1 wheref is a crossing
supermodular function, one of the following conditions must be true.

1. There existsv ∈ W1 with |δin(v)| ≤ 6,
2. There existsv ∈ W2 with |δout(v)| ≤ 6,
3. There exists an edgee such thatxe ≥ 1

3 .
To prove Lemma 3.2, we first introduce some notation and preliminaries. We say that

a pair of setsA, B arecrossingif all of the setsA ∩ B, A − B, B − A, V − (A ∪ B) are
nonempty, and we say that a family of setsL = {A1, A2, . . . , Aℓ} is cross-freeif no two of
its sets are crossing. For any setA ⊆ V , let χA denote the incidence vector of the set of arcs
δin(A). By an extension of a result of Frank [15] and Melkonian-Tardos [33] the following
lemma is immediate.

LEMMA 3.3. Let the requirement functionf of (DLP) be crossing supermodular, and let
x be a basic solution of (LP) such that:0 < xe < 1 for all edgese ∈ E. Then there exists a
cross-free familyQ of tight sets and tight degree constraints forT1 ⊆W1 andT2 ⊆W2 such
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1. InitializationF ← ∅, f ′ ← f , and∀v ∈ W1: B′in
v = Bin

v and∀v ∈ W2 : B′out
v =

Bout
v .

2. Whilef ′ 6≡ 0 do
(a) Find a basic feasible solutionx with cut requirementf ′ and remove every edge

e with xe = 0.
(b) If there exists a vertexv ∈ W1 with indegree at most 6, removev from W1;

if there exists a vertexv ∈ W2 with outdegree at most 6, removev from W2.
Goto (a).

(c) For each edgee = (u, v) with xe ≥ 1/3, adde to F and decreaseB′out
u and

B′in
v by 1/3.

(d) For everyS ⊆ V : f ′(S)← f(S)− |δin
F (S)|.

3. ReturnH = (V, F ).

FIG. 3.2.Bounded Degree Directed Graph Algorithm

that
(i) |Q|+ |T1|+ |T2| = |E|.
(ii) The vectorsχA for A ∈ Q, χv for v ∈ T1, andχV \v for v ∈ T2 are linearly
independent.
(iii) x is the unique solution to{x(δin(v)) = Bin

v , ∀v ∈ T1}
⋃ {x(δout(v)) =

Bout
v , ∀v ∈ T2}

⋃ {x(δin(A)) = f(A), ∀A ∈ Q}.
The cross free familyQ corresponds to a laminar familyL = I ∪O with |L| = |Q| such

thatx(δin(S)) = f(S) for eachS ∈ I andx(δout(S)) = x(δin(V − S)) = f(V − S) for
eachS ∈ O (see Melkonian-Tardos [33]). Also, we augment the familyL by including in it
singleton sets corresponding to tight degree constraints in T1 andT2 to obtainL′ = I ′ ∪ O′

whereI ′ = I∪{v}v∈T1
andO′ = O∪{v}v∈T2

. Observe that|L′| = |Q|+|T1|+|T2| = |E|.
We call members ofI ′ squaresets and members ofO′ roundsets.

We now prove Lemma 3.2. The proof is an extension of a similar result (Theorem 3.1)
of Gabow [16] where the existence of an edgexe ≥ 1

3 is proved when degree constraints are
not present. In the presence of degree constraints we show that either we have an edge with
xe ≥ 1

3 or the condition where a degree constraint is removed in Lemma 3.2 is satisfied. The
laminar familyL′ corresponds to a forestF over the sets in the laminar family whereB ∈ L′
is a child ofA ∈ L′ if A is the smallest set containingB. A nodeA of L′ is a leaf, chain
nodeor branching nodedepending on whether it has0, 1 or > 1 children. A chain node is a
1-chain node if it belongs to same familyI ′ orO′ as its unique child; otherwise it is a2-chain
node.

Proof of Lemma 3.2:The proof is by contradiction. Suppose neither of the three conditions
holds. We show this leads to the contradiction to the fact that |Q|+ |T1|+ |T2| = |L′| = |E|.
The argument proceeds by assigning two tokens for each edge (one to each endpoint ofe),
and showing by a counting argument that we can collect two tokens for each member in the
laminar family and are still left with some excess tokens.

The token assignment is a detailed argument following Gabow[16] depending on the
different cases of the sets. We point out some simple cases from the argument in Gabow [16]
and where the presence of degree constraints lead us to give adifferent argument.

First, we give the following definitions following Gabow [16]. Consider a chain node
S with unique childA. Let e be an edge with an end inS \ A. We will call e p-directed
(for parent-directed) if it is oriented consistent withS’s family (I ′ or O′). Formally, it is
p-directed ifS ∈ I′ ande entersS or A, orS ∈ O′ ande leavesS or A. Similarly, it is called
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c-directedif it is oriented consistent withA’s family.
The following rule is used to assign the token for endpointv of edgee.
DEFINITION 3.4. Token for the endpointv of an edgee is given to nodeS ofL′ if one of

the following holds:
1. WhenS is a leaf,v ∈ S, ande is directed consistent withS’s family, i.e., either

S ∈ I′ ande ∈ δin(S) or S ∈ O′ ande ∈ δout(S).
2. WhenS is a 1-chain node,v ∈ S \ A for A child of S and e is p-directed (or

equivalently,c-directed).
Observe that each leaf node corresponding to a degree constraint obtains at least7 tokens,

otherwise the degree constraint can be removed. The leaf nodes only need two tokens for
themselves for the counting argument. The five extra tokens are assigned to other nodes in
three different steps, the first of which is the following lemma.

LEMMA 3.5. The number of endpoints available to leaves ofL′ can be redistributed to
give two tokens to each leaf and branching node ofL′ and five tokens to each leaf node which
is a degree constraint.

Proof. A leaf node not corresponding to a degree constraint gets atleast four tokens, for
e.g,S ∈ I receives one token for each edgee ∈ δin(S) and|δin(S)| ≥ 4 sincex(δin(S)) =
f(S) ≥ 1 and there is no edgee with xe ≥ 1

3 . Leaf nodes which correspond to degree
constraint receive at least seven tokens. Since, the numberof branching nodes in any tree is
strictly less than the number of leaves, we can assign two tokens from each of the leaves to
branching nodes giving the claim. Now, we still have three extra tokens with the sets
corresponding to the degree constrained leaves one of whichwe use in the following lemma.

LEMMA 3.6. Each1-chain node has at least two available endpoints if each set in L′
corresponding to the degree constraint donates one token.

Proof. Consider a 1-chain nodeS with a childA where wlogS, A ∈ I′. If bothS, A ∈ I
then we havex(δin(S)) = f(S) andx(δin(A)) = f(A). Observe that each edge in the
difference with a non-zero (+1 or−1) co-efficient gives one token toS. Independence of the
constraints implies that there must be at least one such edgeand the integrality off(S) and
f(A) implies that there cannot be exactly one such edge. Hence,S obtains two tokens in this
case.

In the other case, we may have thatA corresponds to a degree constraint. Then we do
not have integrality sincex(δin(A)) = Bin

v whereA = {v} andBin
v need not be an integer.

But, the independence of constraints implies thatS receives at least one token and it borrows
another token fromA for the induction claim to hold.

Rest of the proof involves analysis of2-chain nodes. Lemma 3.2 follows from Lemma 3.5
and Lemma 3.6 if we can show that2-chain nodes can collect two tokens each for themselves
from the remaining unassigned tokens and two extra tokens with each degree constraint.

We start the analysis by defining a subtreeFS for each2-chain nodeS. FS is the minimal
subtree ofF havingS as its root and each leaf either a leaf ofL′ or a 2-chain node other than
S. In particular,S is always an internal node of treeFS and not a leaf node.

The various treesFS can overlap: A2-chain nodeS occurs at the root inFS and also as
a leaf inFT for T the first 2-chain node that is a proper ancestor ofS. It is easy to see that
these are the only2-possibilities. Also observe that a set corresponding to a degree constraint
can only occur in one tree since it can never be a root in such a tree.

The token assignment is as follows. Each setA corresponding to a degree constraint
gives two tokens to the2-chain nodeS whereA ∈ FS . Thus, each2-chain nodeS receives
two tokens whenever there is a degree constraint inFS . In the remaining case we have that
there is no degree constraint inFS . The token assignment is identical in this case as to
Gabow [16] and we omit it here. This completes the proof of Lemma 3.2.
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3.1. {0, 1}-Valued Intersecting Supermodular Requirement Functions. We now show
how to improve the bounds in the case of intersecting supermodular connectivity requirements
(i.e. part two of Theorem 1.2). Recall that an integer function on sets of verticesf : 2V → Z+

is called intersecting supermodular if the inequality

f(A) + f(B) ≤ f(A ∩B) + f(A ∪B)

holds for every pair of setsA, B ⊆ V such thatA ∩ B 6= ∅. This is a stronger requirement
than crossing supermodularity; for example the connectivity requirements of a stronglyk-
edge-connected subgraph cannot be formulated as an intersecting connectivity requirement
function. The intersecting supermodular connectivity requirement nonetheless captures the
problem of finding an arborescence rooted atr wheref(S) = 1 if r /∈ S and0 otherwise.
The linear programming relaxation is identical to the linear program in Figure 3.1. We prove
the following theorem which implies the second part of Theorem 1.2.

THEOREM 3.7. Suppose we are given a directed graphG, a {0, 1}-valued intersecting
supermodular functionf as the connectivity requirement and degree boundsBin

v andBout
v

for each vertex and consider the corresponding LP relaxation as in Figure 3.1. There exists
a polynomial time algorithm which returns a solutionH of cost≤ 2 · zLP wherezLP is the
cost of the optimum solution to the LP relaxation. Moreover,degout

H (v) ≤ 2Bout
v + 2 and

degin
H (v) ≤ Bin

v for all v ∈ V .
The algorithm is almost identical to the algorithm in Figure3.2 with the following mod-

ifications: (i) we remove all indegree constraints, (ii) in step (2c), we only pick an edgee if
xe ≥ 1

2 and decrease the degree bounds by1/2, and (iii) in step (2b), we remove an outdegree
constraint if a vertex’s outdegree is at most 3. At the end, wetake a minimal subset of the
edges that satisfy the connectivity requirements. For intersecting supermodular requirement
functions, it can be easily shown that in any minimal feasible solution, the indegree bounds
are never violated2. Henceforth we assume only out-degree constraints are given.

The following lemma is immediate from Frank [15] and Lemma 3.3.
LEMMA 3.8. Let the requirement functionf of (DLP) be intersecting supermodular, and

let x be a basic solution of (DLP) such that0 < xe < 1 for all edgese ∈ E. Then there exists
a laminar familyQ of tight sets and tight outdegree constraints forT2 ⊆W2 such that

(i) |Q|+ |T2| = |E|.
(ii) The vectorsχA for A ∈ Q andχV \v for v ∈ T2 are all linearly independent.
(iii) x is the unique solution to{x(δout(v)) = Bout

v , ∀v ∈ T2}
⋃ {x(δin(A)) =

f(A), ∀A ∈ Q}.
Observe that Lemma 3.8 differs from Lemma 3.3 since in the case of intersecting su-

permodular functions, we can ensure that an independent setof inequalities corresponds to a
laminar family, while in the case of crossing supermodular functions we could only ensure
that an independent set of inequalities corresponds to a cross-free family. We now prove the
following lemma which proves Theorem 3.7.

LEMMA 3.9. Given a basic solutionx of (DLP) in Figure 3.1 wheref is an intersecting
supermodular function, one of the following must be true.

1. There existsv ∈ T2 with |δout(v)| ≤ 3,

2To see this, by way of contradiction, consider a vertexv with indegree at least 2 in a minimal solution. Suppose
the ingoing edges ofv areuv andwv. If G−uv is not a feasible solution, then there is a tight setU with requirement
1 such thatu 6∈ U andv ∈ U . Similarly, if G − wv is not a feasible solution, then there is a tight setW with
requirement 1 such thatw 6∈ W andv ∈ W . Note thatu ∈ W andw ∈ U ; otherwise it contradicts thatU and
W have only 1 incoming edge. Now, sincev is in the intersection ofU andW , this implies thatU andW are
intersecting. So, by intersecting supermodularity, bothU ∩ W andU ∪ W are tight. However, bothuv andwv

enterU ∩ W , which contradicts thatU ∩ W is tight (since it has requirement 1 as we have a{0, 1} requirement
function).
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2. There exists an edgee such thatxe ≥ 1
2 .

Proof. Suppose none of the above conditions holds. Then each vertex with a tight out-
degree constraint must have at least four out-edges and eachedgee must havexe < 1

2 . Now,
we argue that this leads to a contradiction to the fact that|Q|+ |T2| = |E|. We prove this by
the following counting argument. For each edge we assign three tokens. We then redistribute
these tokens such that each constraint gets assigned at least three tokens and we still have
extra tokens.

In the initial assignment, each edge gives one token to the head and two tokens to the tail
of the edge. Hence each vertex gets two tokens for each out-edge incident at it and one token
for each in-edge incident at it. For a vertexv ∈ T2, we use one token for each out-edge atv
for the out-degree constraint ofv. We use rest of the tokens for connectivity constraints.

Observe that each vertex with an out-degree constraints must have at least four out-edges
incident at it. Hence, when we take one token for each out-edge, we obtain at least four tokens
for the out-degree constraint, i.e., they have one excess tokens.

For each vertex, we have one token for each in-edge and out-edge incident at it remaining.
Moreover, ifv /∈ T2 we still have two tokens for each out-edge incident atv. We re-assign
these tokens such that we collect at least three tokens for each connectivity constraint inQ.

For the laminar familyQ, letL be the forest on the members of the laminar family. We
say that a vertexv is owned byS ∈ Q if S is the smallest set inQ containingv. Now, we
prove the following lemma.

LEMMA 3.10.Given a subtree ofL rooted atS, we can assign three tokens to each tight
degree constraint inS and three tokens to each setR in the subtree. Moreover, we can assign
3 + |δout(S)| tokens to the rootS.

Proof. The proof is by induction on the height of the subtree.

Base Case.S is a leaf. We havex(δin(S)) = f(S) wheref(S) is a positive integer.
The assumption that there is no edge withxe ≥ 1

2 implies that there must be three edges in
δin(S). For each out-edge incident atS, S can collect one token. Hence, there must be at
least three in-edge tokens and|δout(S)| out-edge tokens which can be assigned toS.

Induction Case. S is not a leaf. By induction, we assign3 + |δout(R)| tokens to each
child R of S. Each childR of S donates one token toS for each edge inδout(R). First
observe that we can assign one token toS for each out-edgee ∈ δout(S). If the tail of e is
in some childR of S, thenR has already donated one token for this edge. Else, the tail has
been assigned one token for this edge in the initial assignment and can give one token toS.
ThusS can be assigned one token for each edge inδout(S).

Case 1. S has at least two childrenR1, R2. Since each tight set has connectivity re-
quirement exactly 1, we have

∑

R∈Q f(R)− f(S) ≥ 1. Let F1 = δin(S) \ (∪Rδin(R)) and
F2 = (∪Rδin(R)) \ δin(S). The above inequality implies thatx(F2) ≥ 1. But then we have
|F2| ≥ 3, as there is no edgee with xe ≥ 1

2 . SoS can collect one token for each edge inF1

(token assigned to head) andF2 (one of the two tokens assigned to tail) to get three tokens.

Case 2. S has exactly one childR. Sincef(S) = f(R) andχS andχR are linearly
independent, we have|F1| ≥ 1 and|F2| ≥ 1, whereF1 andF2 are defined as in previous
case. SoS can collect one token for each edge inF1, and one token for each edge inF2. If S
also has a child which is a degree constraint, then we can alsocollect one excess token from
it. Otherwise, the tail of any edge inF2 does not have a tight degree constraint, and thus can
contribute two tokens toS. In either caseS can collect the desired three tokens.

Lemma 3.10 reassigns the tokens so that we have three tokens for each member inQ and
three tokens for each vertexT2. To prove Lemma 3.9 it remains to show that some tokens are
still left in excess. If any rootS of the forestL has at least one out-edge, thenS has been
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assigned at least four tokens and one excess token withS gives us the contradiction. Else,
consider any rootS. Any e ∈ δin(S) must have their tail at a vertex not owned by any set
in Q. If the tail of e has a degree constraint present, it has at least one excess token. Else
the out-token fore has not been used in the above assignment and is the excess token which
gives us the contradiction. This proves Lemma 3.9.

4. Hardness Results of Network Design with Degree Constraints. In this section, we
show that unlike the degree bounded SNDP for which we presented a(2, 2Bv + 3)-bicriteria
approximation algorithm, the vertex-connectivity version, which we call degree bounded VC-
SNDP is very hard to approximate. In the VC-SNDP we are given aweighted undirected
graphG = (V, E) with a degree boundBv for everyv ∈ V , and a connectivity requirement
function r : V × V → Z+. The task is to find a minimum cost subgraphG′ such that
there are at leastru,v vertex disjointpaths betweenu andv and the degree ofv is at most
Bv. As we will see, it is hard to get an(∞, 2log1−ǫ n · Bv)-approximation for this problem
under a reasonable complexity assumption. In other words, even when all edge costs are zero
and we just have to approximate the degree bounds, the problem remains hard. In fact the
same hardness holds for a special case of the problem, calleddegree-bounded subsetk-vertex
connected subgraph (DkVC for short), in whichruv = k for every pairu, v ∈ S for some
setS ⊆ V andruv = 0 otherwise. Anα-approximation for DkVC will find a solutionG′

in which the degree of every vertexv is at mostαBv and there areruv vertex-disjoint paths
between every pairu, v ∈ V . The following theorem immediately implies Theorem 1.3.

THEOREM 4.1. UnlessNP ⊆ DTIME(npolylog(n)) there is no2log1−ǫ n-approximation
for DkVC for someǫ > 0.

Proof. The proof follows essentially the same construction as in [29]. The starting
point is the hardness of a graph problem, called MinRep in [29], which is essentially a graph
theoretic description of a two-prover one-round proof system. The instance to the MinRep
problem consist of a bipartite graphG(V ∪ C, E) together with a partitioning of each ofV
andC to equal parts:V =

⋃qv

i=1 Vi andC =
⋃qc

i=1 Cj . EveryVi has sizeav = |V |/qv

and everyCj has sizeac = |C|/qc. GraphG also induces another bipartite super-graphH ,
where the super-vertices (i.e. vertices ofH) are theqv + qc setsVi’s andCj ’s. There is a
super-edge betweenVi andCj if there are verticesv ∈ Vi andc ∈ Cj with vc ∈ E. We say
that edgevc coversthe super-edgeViCj . A setS ⊆ V ∪C covers a super-edgeViCj if there
are two verticesv ∈ S ∩ V andc ∈ S ∩ C such thatvc covers edgeViCj . The goal in the
MinRep problem is to select vertices from eachVi andCj such that every super-edge ofH
is covered and the total number of vertices selected is minimized. We further assume that for
every super edgeViCj , every vertex inCj is adjacent to exactly one vertex inVi. Also, we
can assume that the graphH is regular on each side; say every super-vertexVi has degreerv

and every super-vertexCj has degreerc. So the number of super-edge isrvqv = rcqc. From
the PCP theorem [1, 2] together with the parallel repetitiontheorem [39] it follows that3:

THEOREM 4.2. Given an instanceφ of 3SAT we can build an instanceG of MinRep in
DTIME(npolylog(n)) such that:

• If φ is a yes instance thenG has a solution of sizeqv + qc.
• If φ is a no instance then every solution ofG has size at least2log1−ǫ |V (G)|(qv +qc).

Therefore, unlessNP⊆ DTIME(npolylog(n)) MinRep cannot be approximated within a factor
2log1−ǫ n.

3Readers familiar with 2P1R proof systems can think of each super-vertexVi as anℓ-tuple of variables and
eachCj as anℓ-tuple of clauses where we usedℓ parallel repetition; each super-edge corresponds to a pairof
queries sent to the two provers; the vertices in each super-vertex correspond to answers to the queries returned by
the corresponding prover.
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Vqv

ui

U

yi
j

W

wj wqc

V1 Vi

xj
i

uqv

u2u1

C1 Cqc
Cj

w1 w2

FIG. 4.1.Construction of graphG(V , E) from MinRep instanceG(V ∪ C, E)

Given an instanceG(V ∪ C, E) of MinRep, first we construct a graphG(V , E) as fol-
lows:

1. Create two new sets of verticesU = {u1, . . . , uqv
} andW = {w1, . . . , wqc

}, where
ui is adjacent to all the vertices ofVi (1 ≤ i ≤ qv) andwj is adjacent to all the
vertices ofCj (1 ≤ j ≤ qc).

2. For every super-edgeViCj there are two new verticesxj
i andyi

j ; andxj
i is adjacent

to ui and to all the vertices inV − Vi andC − Cj . Similarly, yi
j is adjacent towj

and to all the vertices inC − Cj andV − Vi.
3. LetX =

⋃

i,j xj
i andY =

⋃

i,j yi
j . The vertices inX ∪ Y form a clique.

4. For every super-edgeViCj we requirek = |X | + |Y | + (qv − 1)av + (qc − 1)ac

vertex-disjoint paths betweenxj
i andyi

j.
5. Also, for every vertexui ∈ U we require a degree bound ofrv + 1 and for every

vertexwj ∈ W a degree bound ofrc + 1.
See Figure 4.1. Note|X | = |Y | and is equal to the number of super-edges. Also, the

degree of everyui ∈ U (everywj ∈ W ) is exactlyav + rv = av + |X |/qv (is ac + rc =
ac + |X |/qc). The analysis of [29] shows that: In every solutionG′ ⊂ G which satisfies the
connectivity requirements,G′ is a spanning subgraph and the number of edges betweenU
andX and betweenW andY is exactly|X |. This is because every vertexxj

i ∈ X can have
at most(qv − 1)av + (qc − 1)ac + |Y |+ (|X | − 1) paths to any other vertex inX ∪ Y using
the vertices of(V − Vi) ∪ (C − Cj) ∪ Y ∪ (X − {xj

i}). Thus for one of itsk paths it has to
go throughui. A similar argument works for each vertexyi

j ∈ Y .
Furthermore, ifG is a yes instance of MinRep (i.e. has a solution of sizeqv + qc) then

there is a solutionG′ ⊂ G which satisfies the connectivity requirements ofS and the number
of edges betweenU andV in G′ is qv (one edge betweenui andVi, 1 ≤ i ≤ qv) and the



Survivable Network Design with Degree or Order Constraints 17

number of edges betweenW andC in G′ is qc (one edge betweenwj andCj , 1 ≤ j ≤ qc);
so the degree of every vertexui ∈ U is rv + 1 and every vertexwj ∈ W has degreerc + 1.
Conversely, ifG is a no instance of MinRep then in every subgraphG′ ⊂ G satisfying the
connectivity requirements the total number of edges between U andV and betweenW and
C is at least2log1−ǫ |V (G)|(qv +qc); so at least oneui ∈ U or onewj ∈W has a degree larger
by a factor of2log1−ǫ n from its bound. This, together with Theorem 4.2 implies thatdeciding
between the following two cases is quasi-NP-hard:

• If G has a solution in which all the degree bounds are satisfied.
• If every solution ofG has at least one vertex ofU with degree at least2log1−ǫ n(rv +

1) or a vertex ofW with degree at least2log1−ǫ n(rc + 1).
This completes the proof of Theorem 4.1.

We have a similar hardness result for the Low Degree DirectedSteiner Forest (LDSF)
problem. In LDSF, we are given a directed graphG = (V, E), degree boundsBv for every
v ∈ V , and connectivity requirementsr : V ×V → {0, 1}. The goal is to find smallestα ≥ 1
and a subgraphG′ satisfying the connectivity requirements in which the degree of each vertex
v is at mostαBv. The proof of Theorem 4.3 follows from a very similar construction as in
Theorem 4.1.

THEOREM 4.3. UnlessNP ⊆ DTIME(npolylog(n)) there is no2log1−ǫ n-approximation
for LDSF for someǫ > 0.

5. Minimum Cost λ-connectedk-subgraphs. In this section we study the following
class of problems. Given are a (multi)graphG(V, E) with a cost functionc : E → R+

on edges, a positive integersk, and a connectivity requirementλ ≥ 1; the (k, λ)-subgraph
problem asks to find a minimum costλ-edge-connected subgraph ofG with at leastk vertices.
We should point out that the edge cost functionc is an arbitrary function. Furthermore, we
are not allowed to take more copies of an edge than are presentin the graph. Otherwise, a
2-approximate solution can be computed by taking a 2-approximatek-MST solutionT , and
then takingλ copies ofT .

Note that the(k, λ)-subgraph problem contains, as special cases, several classical prob-
lems. For instance, the minimum costλ-edge-connected spanning subgraph problem is just
the minimum(n, λ)-subgraph, and the classicalk-MST problem is the(k, 1)-edge-subgraph
problem. Another related and well-studied problem is that of k-TSP (finding a minimum cost
traveling salesman tour visiting at leastk vertices) for the metric cost functions. Although
there are approximation algorithms for each of these special cases, we are not aware of any
study of the more general problem of(k, λ)-subgraph. As we will see below, it seems that
this problem for an arbitraryλ (and even unweighted graphs) is very difficult to approximate.

For this reason, we look into the approximability of the(k, 2)-subgraph, which is the
first generalization ofk-MST to higher connectivity. We show that(k, 2)-subgraph has an
O(log k · log n)-approximation. It works for the rooted version of the problem where a par-
ticular vertexr ∈ V is required to be in the solution. It is easy to see that given an algorithm
for the rooted version, we can try all possible vertices as the root to obtain an algorithm for
the unrooted version.

THEOREM 5.1. There is anO(log k · log n)-approximation algorithm for the rooted
(k, 2)-subgraph problem.

As mentioned earlier, we show that for an arbitraryλ, the(k, λ)-subgraph problem seems
to be difficult. As an evidence, we show a reduction from thek-dense-subgraph problem. In
the k-dense-subgraph problem we are given a graphG and an integerk and have to find
a subgraph withk vertices with maximum number of induced edges. Despite considerable
effort, the best known approximation algorithm for thek-dense-subgraph problem has ratio
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O(n
1

3
−ǫ) for some constantǫ > 0 [14]. We will prove Theorem 1.5, which implies obtaining

any poly-logarithmic approximation for the(k, λ)-subgraph problem would imply a poly-
logarithmic approximation for thek-dense subgraph problem.

Remark: One may hope that the constant factor approximation algorithms fork-MST
[17, 18, 6] could be extended to obtain anO(1)-approximation for(k, λ)-subgraph for at
least the special case ofλ = 2. There are several difficulties in this route which do not seem
easy to overcome. Firstly, all the known constant approximations fork-MST are based on the
primal-dual 2-approximation algorithm of Goemans and Williamson [20] for prize-collecting
Steiner tree. It is not clear how to generalize this primal-dual scheme to work for the 2-edge-
connected prize-collecting version. Secondly, the typical second step in these algorithms is
to use a Lagrangian relaxation to reduce thek-MST problem to the prize-collecting Steiner
tree. For this step to work, the known algorithms rely on the fact that we can assume the cost
function ismetric(i.e. satisfies triangle inequality) by simply taking the metric completion of
the input graph. For 2-edge-connected subgraphs we cannot make this assumption. However,
if we assume that the cost function is metric, then known results onk-TSP [18] immediately
imply a 2-approximation algorithm for(k, 2)-subgraph. This uses the fact that the LP relax-
ation fork-TSP is equivalent to the LP relaxation for(k, 2)-subgraph when the cost function
is metric [5].

5.1. Proof of Theorem 5.1.Our algorithm uses the solution to a related problem we
call density 2-edge-connected subgraph problem, denoted by D2ECS. In this problem, we
are given an udirected graphG = (V, E) with a cost functionc : E → R+ on edges. There
is a given vertexr, called theroot, and a subset of verticesT ⊆ V − r, calledterminals. The
goal is to find a subgraphG′ containingr and at least one terminal such that there are at least
2 edge-disjoint paths betweenr and each terminal inG′, and the ratio of the total cost ofG′

to the number of terminals inG′ is minimized. We will later prove the following lemma:
LEMMA 5.2. There is anO(log n)-approximation for D2ECS.
Recall that an instanceI to the rooted(k, 2)-subgraph has a graphG = (V, E), parame-

terk, and a rootr ∈ V . First we preprocess the graph by removing some of the vertices that
cannot be part of an optimum solution. Let us assume we knowOPT, the cost of an optimum
solution. Then for every vertexv we find two edge-disjoint paths betweenv andr of min-
imum total cost, let us denote it byd2(v, r). For this we can use a min-cost flow algorithm
betweenv andr [41]. Then we delete those verticesv for which d2(v, r) > OPT, as clearly
they cannot be part of the solution. We work with this pruned version of graphG.

The overview of the algorithm is as follows. The algorithm iteratively finds a 2-edge-
connected subgraph containing the root with good density, by calling the algorithm for D2ECS
(Lemma 5.2) and adds them to an intially empty solution, contract the partial solution found
into the root, and iterate until there are at leastk nodes in the solution. Clearly the final
solution is 2-edge-connected and contains the root. If the total number of nodes at the
end isΘ(k), then a set-cover type analysis shows that the cost of the solution is at most
O(log k · log n ·OPT), where thelog n in the ratio is from the ratio of algorithm of Lemma 5.2
and thelog k comes from a set-cover type analysis. However, some care is needed as the total
number of nodes in a good density solution found in every iteration by calling the algorithm
for D2ECS might be much larger thank. In that case we show how to prune the solution to
obtain one withΘ(k) nodes and about the same density. The algorithm is presentedin Figure
5.1.

Here are more details for some of the steps. To guess the valueOPT, for every vertex
v 6= r, first we computed2(r, v). Let L be thekth smallest value. Clearly,L ≤ OPT≤ kL.
So it is enough to start with estimateOPT = L and then double the estimate ofOPT if the
algorithm does not succeed; we have to do this at mostO(log k) times.
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The Main (k, 2)-subgraph Algorithm
1. Guess the value of optimum solution,OPT.
2. Delete all the verticesv with d2(v, r) > OPT (recall thatr is the root).
3. S ← ∅.
4. Whilek > 0 do

(a) Run D2ECS algorithm to find a good density subgraphH containingr.
(b) If |V (H)| ≤ 2k then

i. Add H to S and updatek ← k − |V (H)|
ii. In G contract the edges ofH (i.e. H is contracted intor).

(c) else
i. Find a subgraphH ′ of H with cost at mostO(log n · OPT) and at leastk

nodes.
ii. Add H ′ to S and updatek = 0.

5. returnS.

FIG. 5.1.The algorithm for(k, 2)-subgraph problem

As said earlier, if at every iteration we find a good density partial solution with at most
k nodes then a simple set-cover type analysis shows that the cost of the final solution (which
will have Θ(k) nodes) is within a factorO(log k · log n) of the optimum. We have to show
what to do in step (4ci) if one call to D2ECS returns a solutionwith more than, let’s say,2k
nodes. Note that this happens at most once (in the last iteration) as after this the number of
nodes in the solution built so far will be at leastk and the algorithm terminates.

A nowhere-zero 6-flow in a directed graphD(V, A) is a functionf : A → Z6 such that
for each nodev: f(δin(v)) = f(δout(v)) and all values off are non-zero. For an undirected
graphH , we sayH has a no-where-zero 6-flow ifH has an orientation of its edges which
has a no-where-zero 6-flow. Seymour [42] proved that every 2-edge-connected graph has a
no-where-zero 6-flow and such a flow can be found in polynomialtime (see [45, 41]).4 Let
H(U, F ) be a good density subgraph returned by D2ECS algorithm with more than2k nodes
and letf be a no-where-zero 6-flow onH . We can obtain a directed multi-graphD(U, A)
fromf andH by placingf(e) copies of each edgee in the direction defined by the flow. Note
thatD is an Eulerian graph with no directed cycle of length2. Starting fromr in D build an
Eulerian walk and partition this walk into arc-disjoint segmentsP1, P2, . . . , Pℓ, each of which
induces a subgraph ofH on k nodes, except possiblyPℓ which will have betweenk and2k
nodes. So eachPi is a walk, say from nodeui to ui+1; let’s denote the connected subgraph
induced byPi in H by Hi. Since the total cost of the edges of all these walks is at most5
times the cost ofH , at least one ofHi’s, sayHj , has density at most 5 times the density of
H . Now find two edge-disjoint paths of minimum cost (inG) from uj to r, call themQ1

j , Q
2
j ,

and also two edge-disjoint paths of minimum cost (again inG) from uj+1 to r, call them
Q1

j+1, Q
2
j+1. We claim that the subgraph induced byHj ∪Q1

j ∪Q2
j ∪Q1

j+1 ∪Q2
j+1, denoted

by H ′
j , is 2-edge-connected and has cost at mostO(log n · OPT). To prove the cost, note that

Hj has betweenk and2k nodes and has a density at most five times that ofH , which in turn
is within O(log n) of the optimum density. Thus cost ofHj is at mostO(log n · OPT). Also
the total cost ofQ1

j ∪Q2
j ∪Q1

j+1 ∪Q2
j+1 is at mostO(OPT) (because of the preprocess step);

4A weaker and simpler result is that every 2-edge-connected graph has a no-where-zero 8-flow and such a flow
can be easily obtained in polynomial time by applying Matroid partition theorem (or Nash-Williams/Tutte theorem
for disjoint spanning trees). Our proof works with a no-where-zero 8-flow as well.
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hence the total cost ofH ′
j is O(log n · OPT). To prove 2-edge-connectivity ofH ′

j , by way
of contradiction suppose that there is a cut-edgee ∈ H ′

j andC1, C2 are the two components
of H ′

j − e. Note that because ofQ1
j , Q

2
j , Q

1
j+1, Q

2
j+1, both ofuj anduj+1 are in the same

component asr, sayC1. But becausePj is a directed walk fromuj to uj+1 in D we must
be able to travel fromC1 to C2 in both directions inH ′

j (as bothuj anduj+1 are in the same
side); since there is no directed cycle of length2, there must be another edgee′ 6= e between
C1 andC2 with a direction opposite ofe; soe is not a cut-edge inH ′

j .

5.2. Proof of Lemma 5.2.The algorithm and analysis are built upon the LP relaxation
and uses ideas from [9]. Consider the following IP/LP relaxation of D2ECS which is based
on the LP relaxation of SNDP without degree bounds (see the first LP in Section 2). For
each edgee and vertexv we have indicator variablesxe andyv, respectively, which indicate
whether they participate in the solution or not. We have normalized the sum

∑

v∈T yv to 1.

(LP-D2ECS) minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ 2yt S ⊆ V − r, t ∈ S
x(δ(S)) − xe′ ≥ yt S ⊆ V − r, t ∈ S, e′ ∈ δ(S)

∑

v∈T yv = 1
0 ≤ xe, yv ≤ 1 ∀ e ∈ E, v ∈ T

Note that we have added the second set of constraints above toobtain a stronger LP
which will help us in the rounding phase. This LP can be solvedin polynomial time via the
ellipsoid method since there is a polynomial time seperation oracle for this problem.

LEMMA 5.3. For an instance of D2ECS, letσ be the density of the optimum solution and
σ∗ be the value of the above LP. Thenσ∗ ≤ σ.

Proof. Let G′ be an optimum solution to the given instance of D2ECS and letT ′ ⊆ T
be the terminals inG′; assume|T ′| = ℓ. Soσ = (

∑

e∈G′ c(e))/ℓ. For eacht ∈ T ′ define
yt = 1

ℓ and for each edgee ∈ V let xe = 1
ℓ iff e ∈ G′ and zero otherwise. All other variables

are set to zero. It is easy to verify that this is a feasible solution to LP-D2ECS.
Now we present the algorithm for the D2ECS problem. Given an instance of D2ECS

first we solve the LP-D2ECS to obtain an optimum fractional solution (x∗, y∗); let its value
beα. Forp = 1 + 2⌈logn⌉ we obtain disjoint subsets of the terminalsT1, T2, . . . , Tp of T
as follows. Letymax = maxt yt. For0 ≤ a ≤ 2⌈log n⌉, let Ta = {t | ymax/2a+1 < yt ≤
ymax/2a}. Since

∑

t∈T yt = 1 there is an indexb such that
∑

t∈Tb
yt ≥ 1/p. From this we

also have that|Tb| · ymax/2b ≥ 1/p. Now find a minimum cost subgraph with connectivity
requirement 2 between the terminals inTb andr. For this we can use Jain’s algorithm on the
following standard LP for SNDP:

(LP-2ECS) minimize
∑

e∈E

ce xe

subject to x(δ(S)) ≥ 2, ∀S ⊆ V − r, S ∩ Tb 6= ∅
0 ≤ xe ≤ 1 ∀ e ∈ E

Observe that if we take the optimum solution(x∗, y∗) of LP-D2ECS and definẽxe =
min{1, x∗

e ·2b+1/ymax} this yields a feasible solution to LP-2ECS on terminal setTb of cost at
most2b+1α/ymax. To see this, take any setS ⊆ V −r with S∩Tb 6= ∅ and the corresponding
constraintx(δ(S)) ≥ 2 in LP-2ECS. This has corresponding constraintsx(δ(S)) ≥ 2yt in
LP-D2ECS for eacht ∈ S. Suppose we definẽxe = min{1, x∗

e · 2b+1/ymax} and ỹt =
min{1, y∗

t · 2b+1/ymax}. Note that for eacht ∈ Tb, becausey∗
t > ymax/2b+1: ỹt = 1. If all
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the edgese ∈ δ(S) have valuesx∗
e ≤ y∗

t then after scaling we will havẽx(δ(S)) ≥ 2 because
the left hand side ofx(δ(S)) ≥ 2yt is grown at least as much as the RHS is scaled. If there is
at least one edgee′ ∈ δ(S) with x∗

e′ > y∗
t then because of the second set of constraints in LP-

D2ECS, we havex∗(δ(S))−x∗
e′ ≥ y∗

t . Thus after the scaling we still havẽx(δ(S))− x̃e′ ≥ 1
because again the LHS is grown at least as much as the RHS. Alsox̃e′ = 1 becausẽyt = 1 and
x∗

t > y∗
t ; so x̃(δ(S)) ≥ 2. This shows there is a feasible solution to LP-2ECS with terminal

setTb andr with cost at most2b+1α/ymax. Jain proved that the integrality gap of LP-2ECS
is 2. Therefore, we can obtain an integral solution with connectivity of at least 2 between the
terminals inTb andr such that cost of the solution is at most2×2b+1 ·α/ymax. The density of
this solution is therefore2b+2 ·α/(ymax|Tb|) which isO(pα). Sincep = O(log n) the density
is O(log n) · α. Thus, we have anO(log n)-approximation for D2ECS. This completes the
proof of Lemma 5.2 and thus Theorem 5.1.

5.3. Proof of Theorem 1.5. In this subsection we present the hardness proof of the
(k, λ)-problem, based on the hardness of the densestk-subgraph problem. The overall struc-
ture of the proof is as follows. Observe that a solution to the(k, λ)-subgraph problem implies
a subgraph on at leastk vertices with minimum degree at leastλ. We prove that even finding
such a subgraph is hard, assuming that densestk-subgraph problem is hard. This implies
a hardness for the(k, λ)-subgraph problem too, based on the conjecture that the densestk-
subgraph problem is hard.

To prove our hardness result we need the following auxiliarylemma. Given a graph
G = (V, E) and integersk, λ, first construct a grapĥG = (V̂ , Ê) from G by adding a new
universal vertexx i.e. V̂ = V ∪ {x} andÊ = E ∪ {ux|u ∈ V }.

LEMMA 5.4. If Ĝ has a(λ + 1)-edge-connected subgrapĥH with B + 1 vertices then
Ĥ − {x} ⊆ G has at leastB vertices and min-degree at leastλ. Conversely, ifG has a
subgraphH with min-degree at leastλ and at leastB vertices thenĤ ⊆ Ĝ obtained fromH
by addingx and all its edges incident to the vertices ofH is (λ + 1)-edge connected with at
leastB + 1 vertices.

Proof. First consider the easy part: if̂H ⊆ Ĝ is (λ + 1)-edge-connected withB + 1
vertices then clearlyH = Ĥ−{x} has minimum degree at leastλ and has at leastB vertices.
Conversely, suppose thatH ⊆ G has min-degree at leastλ andB vertices. Clearly for every
vertexu ∈ Ĥ − {x}, there are at least|NH(u)| ≥ λ edge-disjoint paths of length 2 (using
NH(u)) from x to u, plus one path which is the single edge betweenu andx. By transitivity
of edge-connectivity,̂H is (λ + 1)-edge-connected withB + 1 vertices.

Now we are ready to prove Theorem 1.5. Suppose we are given a graphG = (V, E)
and integerk as the instance of densestk-subgraph and letA be our approximation algorithm
for the (k, λ)-subgraph. Without loss of generality, we assume thatk ≥ 4 as for constant
values ofk the densestk-subgraph is polynomially solvable. Let us suppose that theoptimum
solution to densestk-subgraph instance is a graphG′(V ′, E′) ⊆ G with |V ′| = k and|E′| =
σk and furthermore suppose for now that we know the solutionG′ (this will be cleared later).
Note that the density ofG′ (i.e. |E′|/|V ′|) is σ. We are going to obtain a subgraph ofG′

in which the minimum degree is large (i.e. close to the density) and the number of edges
of the subgraph is within a constant factor of|E′|. To do this, we delete vertices fromG′ in
several rounds. LetGi(Vi, Ei) be the graph at the beginning ofi-th round,δi be the minimum
degree inGi, anddi = |Ei|/|Vi| be its density. From this definition:G1 = G′, d1 = σ, and
|V1| = k. Without loss of generality, we may assume thatδ1 ≥ 1, i.e. G′ has no isolated
vertices as deleting them does not remove any edges and can only increase the density.

Each roundi ≥ 1 may have several iterations and in each iteration we remove exactly
one vertex. At the beginning of roundi, if δi < di

2 log k = |Ei|
2|Vi| log k then setb = 2δi and

iteratively delete every vertex ofGi with degree at mostb. The number of edges deleted in



22 L. Lau, S. Naor, M.R. Salavatipour, and M. Singh

roundi is at mostb|Vi| < |Ei|
log k . Therefore|Ei+1| ≥

(

1− 1
log k

)

|Ei|. Roundi stops when

the minimum degree is at leastb = 2δi; thusδi+1 ≥ 2δi. Sinceδ1 ≥ 1 and for everyi ≥ 1,
δi+1 ≥ 2δi, we have strictly smaller thanlog k rounds (because for the maximum degree of
G′: ∆(G′) ≤ k − 1). So after at mostt < log k rounds the algorithm stops. At this point

we have:|Et| ≥
(

1− 1
log k

)t

|E1| ≥ |E′|
4 (becauselog k ≥ 2 andt < log k which implies

(1− 1
log k )t ≥ 1

4 ) andδt ≥ dt

2 log k . Hence:

δt|Vt| ≥
|Et|

2 log k
≥ |E′|

8 log k
. (5.1)

Suppose we guess the values of|Vt| andδt (we can simply try all possible values). By
the argument above,G has a subgraph with min-degree at leastδt and at least|Vt| vertices.

Furthermore: |E′|
8 log k ≤ δt|Vt| ≤ |E′|. Now we run algorithmA for (|Vt| + 1, δt + 1)-edge-

subgraph on grapĥG which is obtained fromG by adding a universal vertexx. Since there
is a subgraph ofG (namelyGt) with at least|Vt| vertices and minimum degreeδt and by
Lemma 5.4, algorithmA finds a subgrapĥH(V̂ , Ê) ⊆ Ĝ which is(δt + 1)-edge-connected

and|V̂ | ≥ |Vt|+ 1. Furthermore, becauseA is anα-approximation and|E
′|

4 ≤ |Et| ≤ |E′|:
|Ê| ≤ α|E′|. Delete vertexx (if it belongs toĤ) to obtain graphH(V , E). SoH ⊆ G has
min-degree at leastδt and at least|Vt| vertices.

Case 1:if |V | < k then we can addk−|V | arbitrary vertices fromG−H to H to obtain

a graphH with k vertices and at leastδt|V | ≥ δt|Vt| edges. Sinceδt|Vt| ≥ |E′|
8 log k by (5.1),H

is a subgraph withk vertices whose number of edges is at leastΩ(1/ log k) of the optimum
solutionG′.

Case 2: Suppose that|V | = βk for someβ > 1. Thusδt|V | = δtβk ≤ |E|. On the
other hand|E| ≤ α|E′| ≤ 8α · log k · δt|Vt|, by (5.1). These two inequalities, together with
the fact that|Vt| ≤ k, imply that:δtβ · k ≤ 8α · log k · δt · k, which in turn implies

β ≤ 8α · log k. (5.2)

Now select uniformly at randomk vertices out of theβk vertices inH and obtain a graphH

with k vertices. The expected number of induced edges ofH is |E|
β2 . 5 Since|E| ≥ δt|V | =

δtβk, the expected number of edges ofH is at leastδtk
β ≥

δt|Vt|
β ≥ |E′|

8β log k , which by (5.2)

is at leastΩ( |E′|
α·log2 k

).
In either case, we can obtain a solution for the densestk-subgraph whose number of

edges is within a factorΩ(1/α · log2 k) of the optimum.

6. Concluding Remarks. We present the first constant factor bicriteria approximation
algorithms for SNDP with degree constraints. As a corollary, this implies the first constant
factor approximation algorithms for finding low degree subgraphs. (E.g. the best previous al-
gorithm for the Minimum Degreek-Edge-Connected Subgraph problem had ratioO(k log n)
for only fixed values ofk [11].) Our techniques were recently generalized by [32] to hold
for SNDP with weighted degrees. In this problem there is botha weight function and a cost
function defined on the edges which are independent of each other. The goal is to find a min-
imum cost subgraph satisfying connectivity requirements while not violating givenweighted
degree bounds.

5we can actually do this deterministically too, using the method of conditional probabilities.
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Subsequent to this paper, the iterative relaxation method has been successfully applied
to obtainadditiveapproximation algorithms for degree bounded network design problems.
Singh and Lau [43] extended the iterative relaxation methodto obtain an(1, Bv+1)-approximation
algorithm for the MINIMUM BOUNDED DEGREESPANNING TREE problem [43]. More re-
cently, Lau and Singh [31] have improved Theorem 1.1 and obtained a(2, Bv+3)-approximation
algorithm for the MINIMUM BOUNDED DEGREESTEINER FORESTproblem, and a(2, Bv +
6rmax+3)-approximationalgorithm for the bounded degree SNDP wherermax = maxu,v{ruv}.
Bansal et al [4] have improved Theorem 1.2 and obtained an(1

ǫ , Bv

1−ǫ + 4)-approximation al-
gorithm for the MINIMUM BOUNDED DEGREEARBORESCENCEfor 0 < ǫ ≤ 1

2 . They also
obtain an additive approximation algorithm for the minimummaximum-degree arborescence
problem which violates the degrees by at most 2. In all of the above results the iterative
relaxation method has been used to obtain (almost) tight analysis for the standard LP formu-
lations for the bounded degree network design problems. This method has also been applied
to obtain new approximation results for other combinatorial optimization problems [24], and
to obtain simple proofs of classical results in combinatorial optimization and approximation
algorithms [30]. We hope this method will find further applications.

With regards to the(k, λ)-subgraph problem the situation is less clear. Although the
problem seems difficult to approximate for arbitrary valuesof λ, the complexity of the prob-
lem for small values ofλ (evenλ = 2 or 3) is unknown. We do not even know whether the
problem has a constant approximation factor forλ = 2, or if it has a polylogarithmic approx-
imation for anyλ ≥ 3. Recently, Chekuri and Korula [10] have presented anO(log n · log k)-
approximation for the(k, 2)-subgraph problem where we require 2-vertex-connectivitybe-
tween the vertices of the solution. Their algorithm (which was obtained independently) is
similar to the one in Theorem 1.4, but their analysis is different. More recently, Safari and
Salavatipour [40] have shown that if the edge costs of the graph satisfy triangle inequality,
then there is anO(1)-approximation for the(k, λ)-subgraph problem.
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[13] M. Fürer and B. Raghavachari,Approximating the minimum-degree Steiner tree to within one of optimal, J. of
Algorithms 17(3):409-423, 1994.

[14] U. Feige, G. Kortsarz and D. Peleg,The dense k-subgraph problem, Algorithmica, 29(3): 410-421, 2001.
Preliminary version in the Proc. 34-th IEEE Symp. on Foundations of Computer Science (FOCS) pp
692-701, 1993.

[15] A. Frank,Kernel Systems of Directed Graphs, Acta Sci. Math (Szeged) 41:63-76, 1979.
[16] H. Gabow,On theL∞-norm of extreme points for crossing supermodular directednetwork LPs, In Proceed-

ings of IPCO 2005.
[17] N. Garg,A 3-Approximation for the minimum tree spanningk vertices, In Proceedings of the 37th Annual

Symposium on Foundations of Computer Science (FOCS), 302-309, 1996.
[18] N. Garg,Saving an epsilon: a 2-approximation for the k-MST problem in graphs, In Proceedings of the

thirty-seventh annual ACM symposium on Theory of computing(STOC), 396 - 402, 2005.
[19] M.X. Goemans,Minimum Bounded-Degree Spanning Trees,Proceedings of the 47th Annual IEEE Sympo-

sium on Foundations of Computer Science, 2006, pp. 273–282.
[20] M. Goemans and D. Williamson,A general Approximation Technique for Constrained Forest Problems, SIAM

J. on Computing, 24:296-317, 1995.
[21] M.Grötschel, L.Lovász and A.Schrijver,Geometric Algorithms and Combinatorial Optimization, Springer-

Verlag, New York, 1988.
[22] M. Hajiaghayi, G. Kortsarz and M. Salavatipour,Approximating Buy-at-Bulk and Shallow-light k-Steiner

trees, In proceedings of APPROX 2006, LNCS 4110, pp 153-163, 2006.
[23] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network problem, Combinatorica,

21:39-60, 2001.
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