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Abstract. We present algorithmic and hardness results for networigdgsoblems with degree or order con-
straints. The first problem we consider is therRy1IVABLE NETWORK DESIGN problem with degree constraints
on vertices. The objective is to find a minimum cost subgrapitivsatisfies connectivity requirements between
vertices and also degree upper bouils on the vertices. This includes the well-studiedN\VMUM BOUNDED
DEGREESPANNING TREE problem as a special case. Our main result (8,2 B, + 3)-approximation algorithm
for the edge-connectivity @&RvIVABLE NETWORK DESIGNproblem with degree constraints, where the cost of the
returned solution is at most twice the cost of an optimumtsmiu(satisfying the degree bounds) and the degree of
each vertex is at most2B,, + 3. This implies the first constant factor (bicriteria) apgroation algorithms for
many degree constrained network design problems, ingutie MINIMUM BOUNDED DEGREESTEINER FOREST
problem. Our results also extend to directed graphs anddwdhkie first constant factor (bicriteria) approximation
algorithms for the MNIMUM BOUNDED DEGREEARBORESCENCHroblem and the MNiMmuM BOUNDED DE-
GREE STRONGLY k-EDGE-CONNECTED SUBGRAPH problem. In contrast, we show that the vertex-connectivity
SURVIVABLE NETWORK DESIGN problem with degree constraints is hard to approximaten eveen the cost of
every edge is zero. A striking aspect of our algorithmic ltssa its simplicity. It is based on theerative relaxation
method, which is an extension of Jain’s iterative roundiregtrad. This provides an elegant and unifying algorithmic
framework for a broad range of network design problems.

We also study the problem of finding a minimum castdge-connected subgraph with at Idasertices, which
we call the(k, X)-subgraph problem. This generalizes some well-studiessicial problems such as tkeMST and
the minimum cost-edge-connected subgraph problems. We give a poly-Ibgaictapproximation for thék, 2)-
subgraph problem. However, by relating it to theNBsESTA-SUBGRAPH problem, we provide evidence that the
(k, X)-subgraph problem might be hard to approximate for arlyithar
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1. Introduction. Network design is a central topic in combinatorial optintiaa, ap-
proximation algorithms, and operations research. Theclssting of network design prob-
lems is to find a minimum cost subgraph satisfying conndgtiégquirements between ver-
tices. This captures a variety of classical problems sudfiiasmum CoSTFLOW problem,
MINIMUM STEINER TREE problem, FAMILTONIAN CYCLE problem, etc. Also, research
results in this area provide algorithmic tools and insigktg., hardness results) for the de-
sign of practical networks such as telecommunication neksvoA highlight of this line of
research is Jain’s 2-approximation algorithm for ther8IVABLE NETWORK DESIGN prob-
lem [23].

A recent research direction is to study a more general classtaork design problems
where there are natural budget constraints. This is metivy the need for more sophisti-
cated and realistic models for the design of practical ngiaoThe first type of constraints
we study isdegree constrainten vertices. The objective is to find a minimum cost sub-
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graph satisfying connectivity requirements as well as elefpounds (e.g. workloads) on the
vertices. A well-known example is the IMIMuM BOUNDED DEGREE SPANNING TREE
problem, which includes theRAVELING SALESMAN problem as a special case. Recently,
Goemans [19] obtained an approximation algorithm for thigbgem, with only an additive
error of two on the degrees, following a long line of reseaile observe that the basis un-
derlying the breakthrough results of Jain [23] and Goema&8kif theuncrossing technique
in combinatorial optimization.

We study a common generalization of the above two problemar rain result is
a generalization of the 2-approximation algorithm for tlige-connectivity SRVIVABLE
NETWORK DESIGN problem that simultaneously provides near-optimal bownrdshe de-
grees. This yields the first constant factor (bicriteriapraximation algorithms for many
degree-constrained network design problems, includiagMinimum BOUNDED DEGREE
STEINER NETWORK problem and the Mi\iMUuM BOUNDED DEGREESTEINER TREE prob-
lem. Our results extend to directed graphs and provide teedonstant factor (bicriteria)
approximation algorithms for MilMum BOUNDED DEGREEARBORESCENCEand MiNI-
MUM BOUNDED DEGREESTRONGLY k-EDGE-CONNECTEDSUBGRAPH. A striking aspect
of our method is itssimplicity. Our approach is based on therative relaxationmethod,
which is an extension of Jainierative roundingmethod. This provides an elegant and
unifying algorithmic framework for a broad range of netwat&sign problems. Very re-
cently, the iterative relaxation technique introducedhis {paper has been extended to give
an(1, B, + 1)-approximation algorithm for the MiiIMum BOUNDED DEGREE SPANNING
TREE problem [43], settling a conjecture of Goemans affirmagivéh contrast, we present
hardness results for the vertex-connectiviyRsI1IVABLE NETWORK DESIGN problem with
degree constraints, even when all edges have zero cost.

The second type of constraints we studyorgler constraints Specifically, we study
the problem of finding a minimum costedge-connected subgraph with at |efasertices,
which we call the(k, A)-subgraph problem. This generalizes some classical arlestuelied
problems such as theMST problem (which is thé€k, 1)-subgraph problem) and the mini-
mum costh-edge-connected subgraph problem (which is(the\)-subgraph problem with
n being the number of vertices). We give a poly-logarithmipraximation algorithm for the
(k, 2)-subgraph problem. However, by relating it to theNBBESTk-SUBGRAPH problem,
we give evidence that thé, \)-subgraph problem might be hard to approximate for arlyitrar
A

1.1. Previous Work. In the SURVIVABLE NETWORK DESIGN problem, we are given a
connectivity requirement,,, for each pair of vertices, and the goal is to find a minimum cost
subgraph satisfying the connectivity requirements. The general problem which captures
many interesting problems as special cases (e.g., minintemes tree, minimum Steiner
forest, minimumék-edge-connected subgraph) and has many applications. [2Bligave
a 2-approximation algorithm for the edge-connectivityRS1VABLE NETWORK DESIGN
problem by using an elegant iterative rounding approachofrast, the vertex-connectivity
SURVIVABLE NETWORK DESIGN problem is shown to be very hard to approximate [29].

Network design problems with degree constraints have bewliesl extensively lately.

A simpler setting is to minimize the maximum degree of a sapgr(without considering the
cost) satisfying given connectivity requirements. A walewn example is the MiimMuMm
DEGREESPANNING TREE (MDST) problem, where the objective is to find a spanning tree
of smallest maximum degree. This problem is already NP-haiitigeneralizes the AL -
TONIAN PATH problem. Furer and Raghavachari [12, 13] gave an apprdiamalgorithm
returning a solution with maximum degree at most one off thn@al solution. (Their result
holds for the Steiner tree problem as well.) Ravi, Raghaaacand Klein [37, 25] considered
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Connectivity Requirement Degree Cost and Degree This Paper
Spanning Tree B+ 1[13] (1, B+2)[19] (2,2B +3)
Steiner Tree B +1[13] (O(logn),O(Blogn)) [36] | (2,2B + 3)
Steiner Forest - - (2,2B + 3)
k-Edge-Connected SubgraphO(k logn) [11] - (2,2B+3)
Steiner Network - - (2,2B +3)

TaBLE 1.1
Results on Minimum Cost Bounded-Degree Network Desigriéhh For the cases without costs,
this paper presents an algorithm in which the degree bouadest moseB + 3.

the MINIMUM DEGREEk-EDGE-CONNECTED SUBGRAPH problem, and gave an approxi-
mation algorithm with performance ratio(n°) for any fixed§ > 0 in polynomial time,
andO(logn/loglog n) in sub-exponential time. Recently, Feder, Motwani and ZIij pb-
tained a polynomial timé& (% log n)-approximation algorithm for this problem, for afiyed
k, thus answering an open question in [37]. Our main resultiesphe first constant factor
approximation algorithm even for general edge-conndgtigiquirements.

For the problem of finding aninimum cossubgraph with given connectivity require-
ments and degree bounds, on every vertexv, the most-studied case is theitMum
BOUNDED DEGREE SPANNING TREE (MBDST) problem. LetoPT be the cost of an op-
timal solution which satisfies all the degree bounds. We saglgorithm is an«, f(B,))-
approximation algorithm if the returned solution has cashasta - OPT and the degree at
each vertex is at mostf(B,). The first approximation algorithm for the MBDST prob-
lem was anO(logn), O(B, log n))-algorithm in [34, 36]. This was subsequently improved
in a series of papers [27, 28, 7, 8, 38]. Recently, Goemarisni@e a major step on this
problem by giving &1, B, + 2)-approximation algorithm. The proof of Goemans’ result is
based on the uncrossing technique, and is considerablyesithan the previous results. Not
much is known for more general connectivity requirements. the MINIMUM BOUNDED
DEGREESTEINER TREE problem, there is atO(log n), O(B, log n))-approximation algo-
rithm [36]. This bound was improved {@(1), O(B, + logn))-approximation by [26], but
the algorithm runs in quasi-polynomial time. Our main résuiplies the first polynomial
time (2, 2B, + 3)-approximation algorithm even for general edge-connégtiequirements.

For network design problem with order constraints, the meet-studied problem is
the k-MST problem, where the objective is to find a minimum cosé tspanning at leagt
vertices. The approximation factor for this problem wasriaved fromv/k andO(log? k) in
[35, 3] down to constantin [6, 17] and very recently to 2 [18jr the case of metric costs on
the edges, thé-TSP problem, which asks to find a minimum cost TSP tour wvigiat least
k vertices, can also be approximated within factor 2 [18].

1.2. Our Results. Suppose that we are given an undirected graph with conitgctiv
requirements,,,, on pairs of vertices, andv, and a degree bounf, on each vertex. The
SURVIVABLE NETWORK DESIGN problem with degree constraints asks for a minimum cost
subgraph such that there are at legstedge-disjoint paths between vertieeandv and the
degree of each vertex is at mdst. Our main result is the following theorem.

THEOREM1.1. There is a polynomial timg, 2B, + 3)-approximation algorithm for the
SURVIVABLE NETWORK DESIGN problem with degree constraints. Moreover, on average,
the degree bounds are violated by at most 2.

This gives the first constant factor bicriteria approxiroatalgorithms for a broad range
of network design problems with degree constraints such@$fiNiIMuM STEINER TREE
problem, the MNIMUM STEINER FORESTproblem, and the MiiMuM k-EDGE-CONNECTED
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SUBGRAPH problem. It also implies the first constant factor approxioraalgorithm for the
minimum maximum-degree version of many problems (by sgti?p = B for all v). We
remark that Theorem 1.1 holds for (1) connectivity requieais that areveakly supermodu-
lar (technical definition is deferred to later); and (2) the cakere there are both lower and
upper degree bounds. In fact, the lower bounds will not biated.

For directed graphs, we study the problem of finding a mininmast subgraph which
satisfies connectivity requirements that erersecting supermodular crossing supermod-
ular (technical definition is deferred to later) and both indegaad outdegree constraints
(Bi" and B2“t, respectively, for eaclh € V). This includes the MiiMuM BOUNDED
DEGREEARBORESCENCEproblem, MNIMUM BOUNDED DEGREE STRONGLY k-EDGE-
CONNECTED SUBGRAPH problem, etc. We obtain the following results.

THEOREM1.2. There is a polynomial img3, 3Bi" +5, 3 BJ“* +5)-approximation algo-
rithm to find a minimum cost subgraph that satisfies crossiggeemodular connectivity re-
quirements, and indegree and outdegree constraints ircicegraphs. Fof0, 1}-valued in-
tersecting supermodular connectivity requirements ghea polynomial timé2, B, 2 Bo“ +
2)-approximation algorithm.

In contrast to the above theorems, we present a hardne#ioe$iue vertex-connectivity
version of the 8RvIVABLE NETWORK DESIGN problem with degree constraints, even when
the cost of the subgraph is not considered.

THEOREM1.3.Foranye > 0, there is no polynomial timgx, glog"~* " B, )-approximation
algorithm for the degree bounded vertex-connectiBitrvIVABLE NETWORK DESIGNprob-
lem unlessVP C DT IM E(nPoYo9(n)),

Next, we turn our attention to network design problems wittheo constraints. We study
the (k, \)-subgraph problem, i.e. the problem of finding a minimum cestige-connected
subgraph with at leagt vertices. This problem generalizes the classieMST problem to
higher connectivity requirements. For tfie 2)-subgraph problem, we are able to obtain the
following.*

THEOREM 1.4. There is anO(log k - log n)-approximation algorithm for thek, 2)-
subgraph problem.

For general values of, it seems that thék, \)-subgraph problem might be difficult as
shown by the following result.

THEOREM 1.5. An a-approximation algorithm for thék, A)-subgraph problem (even
for the unweighted case) for arbitrary, implies an(«a log? k)-approximation algorithm for
the DENSESTk-SUBGRAPH problem.

Notice that the best known approximation algorithm for theNBEST k-SUBGRAPH
problem has rati@(n%*) for some constart > 0 [14].

1.3. Techniques and Overview.The iterative rounding method for theuSvIVABLE
NETWORK DESIGN problem (without degree constraints) works as follows. nrdate the
SURVIVABLE NETWORK DESIGN problem as an integer linear program, and then solve the
linear relaxation of the problem to find a basic optimal dolutz. Pick an edge* with
highest value (i.ex.- > z. for all e € ) and add it to the solution subgraph(initially H
is empty). Then consider the residual problem, where the®dyH are pre-selected, and
repeat the above procedure (find a basic optimal solutichaadedge with highest value to
H, and construct the residual problem) until all the conw@gtrequirements are satisfied.
Jain [23] proved that the edge picked in each iteration hage\at least 1/2 (i.er.- > 1/2),
implying a 2-approximation algorithm for the problem.

1in the conference version of the paper we claimedCyiiog® n)-approximation algorithm for thék, 2)-
subgraph problem, with an incorrect proof. Here we provetgebapproximation ratio using a different and simpler
proof.



Survivable Network Design with Degree or Order Constraints 5

We return to the S8RvIVABLE NETWORK DESIGN problem with degree constraints.
The starting point is that degree constraints are definegl @misingle vertices, and so the
uncrossing technique as in [23, 19] can be applied to shotathi@sic optimal solution is
characterized by a laminar family of tight sets (see Lemm3& 2T'his immediately implies
that, in the first iteration, there exists an edge havingevaluleast 1/2. Now comes the key
difference. Since degree constraints paekingconstraints, after we have picked some frac-
tional edges in the previous iterations, we need to allownfor-integraldegree constraints
in the residual problem, otherwise the residual problem breainfeasible, or its cost may be
significantly higher. By doing so, however, it is not necegérue that the picked edges in
later iterations have value at least 1/2.

We introduce the idea aferative relaxationto overcome this difficulty. When there is
no edge of value at least 1/2 in a basic optimal solution, veegoin Lemma 2.2 that there
is a vertexv with degree constraint and it has degree at most 4. The neaisde “relax”
the problem by removing the degree constraintorirhen, we recompute a basic optimal
solution of the residual problem, and iterate this proced@&o, in each iteration, we either
round up an edge of value at least 1/2 or relax the problemrogveng the degree constraint
of a vertex of degree at most 4. Note that the relaxation stépiocurs an extra additive
constant 3 in the approximation ratio. This implie®a2B, + 3)-approximation algorithm
for the problem.

The above technique is also adapted to prove the claimeagtess for the directed
graph results (Theorem 1.2). Subsequently, the iteraghexaction method has found various
applications [4, 24, 30, 43]. In particular, in has been Jd&{ito settle the conjecture on the
MINIMUM BOUNDED DEGREESPANNING TREE problem affirmatively.

2. Survivable Network Design with Degree Constraints.In this section we study
SNDP with non-uniform upper and lower bounds on vertex degjand present a bicrite-
ria approximation algorithm which will imply Theorem 1.1. dve specifically, assume we
are given a complete graght = (V, E') and nonnegative costs: £ — R on the edges,
connectivity requirements ; on pairs of vertices, j, and a degree upper bousy for each
vertexv € W C V and a degree lower bourdd, for each vertex € U C V. We also have
an upper-bound, > 1 on the multiplicity of edge in the solution (which would be 1 if each
edge can be picked only once). The goal is to find a subset @fsddgf minimum cost such
that the subgrapi = (V, F') satisfies the connectivity requirements and the degreedsoun
that is, inH there arer, ,, edge disjoint paths between vertiees, for each pair, v, and
each vertex hasL, < degy(v) < B, and each edgeappears at mogf. times inH.

Our method is an extension of Jain’s iterative rounding methas outlined in Sec-
tion 1.3. An integer function on sets of verticgés 2 — Z* that hasf (V) = 0 is called
weakly supermodulaf one of the two inequalities:

f(A)+ f(B) < f(AnB) + f(AUB) or,

f(A)+F(B) < f(A=B)+ f(B—-A)

holds for every pair of setsl, B C V with AN B # (. An important point in Jain's

method is that the connectivity requiremengts are specified via a functiofi on the sets of

vertices by settingf(S) := max,cg,¢s{7uv}- Itis known thatf is weakly supermodular
in this case, and stays weakly supermodular when updategRhfrom one iteration to the
next (to account for one or more edges being added to thei@olstibgraph). We denote
z(U) := ) .cpy Te, andd(S) denotes the set of edges with exactly one end-poitst for
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1. InitializationF « (), f' < f,andvv € W: Bl = By;
2. While f" #0do
(a) Find a basic optimal solutionwith cut requirement’ and remove every edge
e with z, = 0.
(b) If there exists a vertex € W with at most 4 incident edges, removdrom
W and goto (a).
(c) If there exists an edge= (u,v) with 2z, > 1/2, add[x.| copies ofz. to F’
and decreas8,, and B, by z..
(d) ForeveryS CV: f/(S) « f(S)— [0r(5)|.
3. ReturnH = (V, F).

FI1G. 2.1.Bounded Degree SNDP Algorithm

S c V. Below is the LP relaxation for SNDP with degree bounds:

(LP) minimize zLp = Zcea:e

c€E
subject to z(6(9)) > f(9), VSCV
x(d(v)) > Ly, VYoeU
2(6(v)) < By, YvoeW
0 < z.<U, Veec E

Clearly the first part of Theorem 1.1 follows from the followgitheorem.

THEOREM?2.1.Ifthe LP has an optimal solution of cost p, then there exists an integral
solutionZ of cost< 2z, p that satisfies all the constraints ghand L, < 3 ) &e <
2B, + 3 forall v € V. Moreover,z can be computed in polynomial time.

First note that any degree lower bound constraint can bepocated as a connectiv-
ity constraint (withf({v}) := max{f({v}), L.} for the cutS = {v}). By doing so, the
new functionf obtained from the connectivity constraints and degree idyends remains
weakly supermodular. Therefore, if we satisfy all the caniwéty constraints then we have
satisfied the degree lower bounds too. Henceforth, we asthahaside from connectivity
constraints we only have degree upper bounds. We simplyteefeem as degree constraints.
Note that theB,’s can be fractional, since the algorithm can change theegelgounds frac-
tionally.

To prove Theorem 2.1, we use the algorithm as shown in FigdreThis is an iterative
relaxation procedure for (LP), which is outlined in SectloB. The correctness of the algo-
rithm is based on the following key lemma, which guaranthasthe algorithm terminates.

LEMMA 2.2.Letx be a basic solution of (LP), and” be the set of vertices with degree
constraints. Then either one of the following is true:

1. There exists an edge with value at least 1/2.
2. There exists a vertexe W such thatdeg(v) < 4.
Before giving the proof of this lemma, we first show that it irep Theorem 2.1.

ecd(v

Proof of Theorem 2.1The results of Jain [23] and Grotschel et al., [21, TheorefrB show
that a basic optimal solutiar* (if it exists) of the initial LP can be found in polynomial tén

It is known that the updated functigff stays weakly supermodular (since we are subtracting
a symmetric submodular function), and the LP for the rediguablems can be solved in
polynomial time [23]. By Lemma 2.2, the above algorithm waillvays terminate; clearly, the
returned solution satisfies
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We need to prove that the cost éf is at most2z,p, wherezy, p is the cost of the
optimal solutionz* of the initial LP, and thatleg(v) < 2B, + 3 for every vertexv. We
prove the former by induction on the number of iterations hich line (2c) of the algorithm
is executed. Suppose an edgevith =¥ > 1/2 is added toF in the first iteration. By
induction, the algorithm finds an edge g€tof cost at mos®z/ ., that satisfies the residual
connectivity requirements, whet¢ , is the optimal solution to the residual problem. Note
thatz} p, < zpp — cexl < zpp — % the first inequality holds since the restriction of
x* to the edges iy — e is a feasible solution to the residual LP. Hence, the cost @
c(F)=c(F')+ce <22 p+ce <2z1p.

Finally we prove that for every vertaxe V: degr(v) < 2B, + 3. Consider a degree
constraint on a vertex. Suppose the degree constraintonas never been removed. Since
we only add edges with value at least 1/2Foit is easy to see thategr(v) < 2B,. Now
suppose the degree constraint is removed aftedges incident on are added. Sa?, > 5.
Sincew is of degree at most 4 when its degree constraint is remokiedjegree of in the
final solution is at mostv + 4. As B, is an integer B, is the degree bound in the first
iteration), we haveegr(v) < o +4 < 2B, + 3. a

To prove Lemma 2.2, we need a characterization of the baasitfie solutions of (LP).
Consider any solutiom of the LP. We call a set of verticestight (with respect tar) if either
S = {v} andz satisfies the degree constraint fowith equality, i.e.,xz(6(v)) = B,, orz
satisfies the connectivity constraint fSrwith equality, i.e.,z(6(S)) = f(S) (in the latter
case,S may be a singleton or not). We say that a pair of $&t8 intersectif all of the sets
SNT,S—T,T— S are nonempty, and we say that a family of séts- {51, Sa, ..., S¢}
is laminar if no two of its sets intersect. For any s&tC V, let Xg denote the incidence
vector of the set of edgeg.S); note that in the constraint matrix of the LB is the row for
setS (the constraint foiS may be either a connectivity constraint or a degree bounbe T
following lemma characterizes the tight constraints @@nstraints satisfied as equalities) of
a basic feasible solution. The proof follows from standardrossing arguments. We include
a sketch for the sake of completeness.

LEMMA 2.3. Let the requirement functiofi of (LP) be weakly supermodular, and let x
be a basic solution of (LP) such that< z. < 1 for all edgese € E. Then, there exists a
laminar family £ of tight sets such thaf partitions into a set of singletong’ for the degree
constraints, and the remaining sef§ = £ — £’ for the connectivity constraints, such that:

(i) Every setS = {v} € £ hasB, > 0 and every set € L” hasf(S) > 1.

(ii) 1£] = |E].

(iif) The vectorsXg, S € L, are linearly independent.

(iv) x is the unique solution tdx(d(v)) = B,,V{v} € L'} U {x(6(9)) =
f(S),vS e L"}.

Proof. This result follows from the standard uncrossing methee, lsesmmas 4.1-4.3
of [23], or Chapter 52.4 of [41]. The main point is that if twight setsA, B intersect then
neither can be a singleton set, so the connectivity comssréor A, B must hold with equality
(degree constraints are defined on singletons and do nogéatevith other sets); then either
AN B,AU B are tight andX4 + Xp = Xanp + Xaup Or A — B, B — A are tight and
XA+ Xp=Xa_p+Xp_a. O

Now we sketch the proof of Lemma 2.2. This is similar to thegbraf key lemma in
[23] as described in [44, Theorem 23.6]. We derive a conttanti if none of the conditions
in Lemma 2.2 holds. Lef be the laminar family of tight sets obtained in Lemma 2.3 when
applied to the basic solution just before executing ling (#¢he algorithm. The number of
sets in is equal to the number of edgesth We can view. as a forest of rooted trees where
each node in the tree corresponds to a sétamd a root is a set not contained in any other set.
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SetT is theparentof S if it is the smallest set containing. Following the terminology of
[44], S is said toownan endpoint of edgee = (u,v) if S is the smallest set if containing

v. Note that there the total number of endpointé&irs 2m, wherem = |E(G)|. The proofis
established by showing that if every edgleasz. < 1/2 then we can assign endpoints to the
sets in such a way that for every $&tS gets at least 3 endpoints and each of its descendants
gets at least 2 endpoints. We get a contradiction of havingertten2m endpoints, once
this argument is applied to the roots of the trees in the fareaminar family. We need
one more definition from [44]. For every s8tc £ we define thecorequirement o5’ as
coreq(S) = 3[6(S)| — f(S). The counting argument leading to a contradiction is done
through the following lemma which is essentially Lemma 2302 [44].

LEMMA 2.4. LetT be a subtree rooted & and assume that, < 1/2forall e € E.
The endpoints owned By can be redistributed in such a way thégets at least 3 endpoints
and each of its descendants gets at least 2 endpoints. Fuardre, if coreq(S) # 1/2, then
S gets at least 4 endpoints anddfis a degree constraint then it gets at least 5 endpoints.

Proof. First, note that the fractional-value tight sets are stagis coming from degree
constraints. Each degree constraint is a leaf in the foreseach owns at least 5 endpoints
by the assumption on (line (2b)). The same argument as in [44] shows that evergrdéaf
(which is not a degree constraint) satisfies the requiresneithe lemma. We include the
proof here to illustrate the importance of threshéldmd the definition of co-requirement.
Let S be a leaf of£ which is not a degree constraint. Th&rtan receive one token for each
edge in§(S). Sincez(5(S)) = f(S) > 1 and there is no edgewith z. > %, we obtain
that|6(5)| > 3. ThusS receives at least three tokens and exactly three W& | = 1 and
z(8(S)) = f(S) = 1. Inthis casegoreq(S) = £ and the base case of the induction holds.

We now show that the claim holds for a non-leaf set as well. &yeassetS' has a surplus
of p if p 4+ 2 endpoints have been assigned to it. Consider a non-le&f set

(2) If S has two or more children, one of which is a degree constridiat it can collect
three endpoints from the surplus of its degree-constrathéd, and one endpoint from the
surplus of one of its other children, for a total of at least 4.

(2) If S has only one child, say’, and it is a degree constraint, then sirdegS) #
dc(S’) (by linear independence of incidence vectors of Lemma 253)wns at least one
endpoint. It can also collect 3 endpoints from the surpluS’ofor a total of at least 4.

(3) If none of the children of are degree constraints, then the same analysis as in [44]
shows thatS satisfies the requirements of the lemma. O

This completes the proof of Lemma 2.2, and hence the proohebilem 2.1.

Integrality Gap Example. One may wonder whether the bicriteria approximation guar-
antee of this theorem is best possible. The following exarspbws that the integrality gap
of the LP is at least the minimum betwegn 2B, +1) and(2, B, +2), defined as follows. If
the LP is feasible and has an optimal solution with eggt, then in any integral solution the
costis atleas2zy, p, and each vertex has degree at lea®B, + 1 or B, +2. Take a3-regular
3-edge connected gragh with no Hamiltonian path. Such graphs exist; the followirogme
struction was brought to our attention by Jim Geelen andules¥erstraete. L&t denote the
Petersen graph, |ét — v be the graph obtained froi by deleting vertex, and let us denote
the neighbors of in P by wy, we, andws (so these three vertices have degree 2in v).
Now, take three copies df — v, and three new verticas, vy, andvs, and attach them as
follows: add edges from; to each of the three copies of; (1 < j < 3) in the three copies
of P —w. Itis not hard to argue that this graph on 30 vertices doetand any Hamiltonian
path (a key observation is that in any potential Hamiltorpath, the path must visit all the
vertices of a copy of” — v befor exiting it; this is not possible given that the Petargeaph
is not Hamiltonian). Let;; = 1 for every pair of vertices irix and for alli € V, let B; = 1.
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Assigningz. = 1/3 to every edge gives a feasible solution with cd5{G)|/2 and degree
bounds satisfied. It can be seen that this is also an optirhal@a On the other hand, any
feasible integer solution with degree bounds at most 2 (wisie B; = B; + 1) needs to be
a Hamiltonian path irG.

Average Degree Bound.Let us assume tha? is the average degree upper bound (i.e.
B=1% ., B,). Thenthe arguments in the proof of Theorem 2.1 can alsodxtosshow
that in the final solution, the average degree of the vertecasmostB + 2; in other words,
the degree of each vertexn the final solution, on average, is at maést + 2 (i.e. the second
part of Theorem 1.1). To prove this, we modify each iteratibthe algorithm by adding the
following line after line (2a) and before line (2b) of the atghm:

(@") If there are any edges= (u,v) with 2. > 1 then add a copy of to F'; decreasé/,
and the bounds faB!, and B,, by 1 and go to Step 2d.

Itis easy to check that the same analysis shows that witlhéfosmulation the cost of the
solution is still at mos®2z, p. Consider the first iteration in which we have a totally fracal
solution, i.e.z. < 1 for all edgese. For each vertex let o, > 0 be the number of edges
incident with vertex> selected so far; thuB, = B, — «, because all the edgeselected so
far hadz. > 1, and the degree bounds were decremented by 1.

CLaiM 2.5.1f 0 < z. < 1 for all edges, then there are at mast — 1 edges in a basic
feasible solution of (LP).

Proof. By Lemma 2.3, the number of sets/his equal to the number of edges (remain-
ing) in the graph. Also, since the ground set hagertices, an easy induction shows that the
number of sets in a laminar family is at mast — 1. Therefore the number of edgesaGh
(with non-zero values) is at most. — 1. d

Each time we select an edgevith . > 1/2, the total degree of the solution subgraph
is at most one more than the total degree of the LP solutiamceShere are at mo8h, — 1
iterations left by the above claim, the total degree of tHatgm subgraph is larger than the
total degree of the LP solution by at m@st — 1. This implies that the average degree of the
solution subgraph is at most 2 more than the average degthe bP solution.

Minimizing the Maximum Degree. Our iterative rounding method applies also to the
setting of minimizing the maximum degree subject to edgeaeativity constraints. We start
with the above LP and introduce a new variale and replacing the degree constraints
z(8(v)) < B,,Yv € V by z(6(v)) < A,Vov € V. The objective function is to minimize
A. Let (LP-A) denote this linear program. The following theorem followsmediately
from Theorem 2.1, which implies the first constant factorragjpmation algorithm for many
smallest maximum degree subgraph problems.

THEOREMZ2.6. If (LP-A) has an optimal solution with objective vali&, then there ex-
ists an integral solutiort: of maximum degre€ 2[A*] + 3 that satisfies all of the constraints
on f. Moreover,z can be computed in polynomial time.

3. Directed Network Design with Degree Constraints.In this section we present bi-
criteria approximation algorithms for degree bounded wétvwdesign problems in directed
graphs, for some restricted classes of connectivity requénts. Our iterative relaxation
technique extends to directed graphs, via the results cb®&b6].

For a set of vertices, §°*(S) denotes the set of ardsw € E | u ¢ S,v € S}, and
§°u*(S) denotes the set of ardsiw € E | u € S,v ¢ S}. An integer function on sets of
verticesf : 2V — Z* is calledcrossing supermodulaf the inequality

f(A)+f(B) < f(ANB) + f(AUB)
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(DLP) minimize zpLp = Y ce

ecE
subject to Z z. > f(S), VSCV,r¢s

ecsin(S)

S w<Br veew
e€di™(v)

Z xegBZUt, Vove W,
e€dout (v)

0 < z. < U, Vee E

FiG. 3.1.LP for directed case with crossing supermodular functfon

holds for every pair of setgl, B C V suchthatAN B # () andAU B # V. Note
that the connectivity requirement of tiheedge-connected spanning subgrgpbblem can
be formulated via the crossing supermodular functfigs) = k, V@ # S C V, yet the
connectivity requirement of thairected Steiner treproblem cannot be so formulated.

First we address the problem of finding a minimum cost subigsafisfying crossing su-
permodular connectivity requirements and non-unifornrdegequirements (both in-degrees
and out-degrees). In the following the connectivity requients are specified by a crossing
supermodular functiorf. Figure 3.1 shows the LP-relaxation for our problem. As betd
is the upper bound on the multiplicity of edgeWe place out-degree bounds for vertices in
Wy C V and in-degree bounds for verticeslin, C V' both of which can be initialized t&
initially.

First we prove the following theorem which implies the firatipof Theorem 1.2.

THEOREM3.1.Ifthe above LP (for directed graphs) has an optimal solubboostz;, p,
then there exists an integral solutianof cost< 3z, p that satisfies all of the constraints on
f if fis crossing supermodular, anig(6°% (v)) < 3B“! + 5 and# (6™ (v)) < 3B + 5 for
all v € Wy andv € Wa, respectively. Moreovef; can be computed in polynomial time.

The proof of this theorem follows from an extension of themoetof Gabow [16] similar
to our proof of Theorem 2.1. The algorithm is presented iuFgd3.2. The following lemma
ensures that we always make progress either in step (23m(2t). Observe that the proof
of Theorem 3.1 follows from Lemma 3.2 by a similar argumeribgsoof of Theorem 1.1.

LEMMA 3.2. Given a basic solution: of (DLP) in Figure 3.1 wheref is a crossing
supermodular function, one of the following conditions tinestrue.

1. There exists € Wy with |6 (v)| < 6,
2. There exists € W, with [5°4¢(v)| < 6,
3. There exists an edgesuch thatz, > %

To prove Lemma 3.2, we first introduce some notation andmpiedries. We say that
a pair of setsA, B arecrossingif all of the setsANB,A— B,B— A,V — (AU B) are
nonempty, and we say that a family of séts= {A;, A,, ..., A/} is cross-fredf no two of
its sets are crossing. For any setC V, let X 4 denote the incidence vector of the set of arcs
5" (A). By an extension of a result of Frank [15] and Melkonian-Tar{B3] the following
lemma is immediate.

LEMMA 3.3. Let the requirement functiofiof (DLP) be crossing supermodular, and let
x be a basic solution of (LP) such that:< xz. < 1 for all edgese € E. Then there exists a
cross-free familyQ of tight sets and tight degree constraints far C W; and7, C W5 such
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1. Initialization ' «— 0, f' < f, andvVv € W;: B/i" = B andvv € Wy : Bl°vt =
Bg“’t.
2. While f" #0do
(a) Find a basic feasible solutiarwith cut requirement’ and remove every edg
e with z, = 0.
(b) If there exists a vertex € W with indegree at most 6, removefrom W7;
if there exists a vertex € W, with outdegree at most 6, removerom Ws.
Goto (a).
(c) For each edge = (u,v) with 2, > 1/3, adde to F' and decreas8/°“! and
B!™ by 1/3.
(d) ForeveryS C V: f/(S) « f(S) — |6 (9)].
3. ReturnHd = (V, F).

[¢)

FiG. 3.2.Bounded Degree Directed Graph Algorithm

that
() QI+ |T1| + |T2| = |E].
(ii) The vectorsx 4 for A € Q, x, for v € T, and xy, for v € T; are linearly
independent.
(iii) x is the unique solution tdz(6™(v)) = Bi*,Vv € T1} U {x(6°“(v)) =
Bo“t Vv € To} |J {x(8"(A)) = f(A),VA € Q}.

The cross free famil® corresponds to a laminar family = Z U O with |£| = | Q| such
thatz(67(S)) = f(S) for eachS € T andz(5°*(S)) = z(5"(V — S)) = f(V — S) for
eachS € O (see Melkonian-Tardos [33]). Also, we augment the fandilpy including in it
singleton sets corresponding to tight degree constrairifs and7 to obtainl’ = 7' U O’
whereZ’ = ZU{v}yer, andO’ = OU{v},en,. Observethatl'| = |Q|+|T4|+|Tz| = |E|.
We call members of’ squaresets and members 6F roundsets.

We now prove Lemma 3.2. The proof is an extension of a simédault (Theorem 3.1)
of Gabow [16] where the existence of an edge> % is proved when degree constraints are
not present. In the presence of degree constraints we staawither we have an edge with
T > % or the condition where a degree constraint is removed in Lai®@ s satisfied. The
laminar family£’ corresponds to a fore$t over the sets in the laminar family wheBee £’
is a child ofA € £’ if A is the smallest set containing. A node A of £’ is aleaf, chain
nodeor branching nodelepending on whether it h&@s1 or > 1 children. A chain node is a
1-chain node if it belongs to same family or O’ as its unique child; otherwise it is2achain
node.

Proof of Lemma 3.2The proof is by contradiction. Suppose neither of the thmelitions
holds. We show this leads to the contradiction to the fadt|@&a+ | 71| + [12| = |£'| = | E|.
The argument proceeds by assigning two tokens for each edget¢ each endpoint @),
and showing by a counting argument that we can collect twertekor each member in the
laminar family and are still left with some excess tokens.

The token assignment is a detailed argument following Galdi@} depending on the
different cases of the sets. We point out some simple casestfre argument in Gabow [16]
and where the presence of degree constraints lead us to different argument.

First, we give the following definitions following Gabow [[L6Consider a chain node
S with unique childA. Lete be an edge with an end ifi \ A. We will call e p-directed
(for parent-directed) if it is oriented consistent witfs family (Z' or ©@’). Formally, it is
p-directed ifS € 7' ande entersS or A, or S € O’ ande leavesS or A. Similarly, it is called
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c-directedif it is oriented consistent witkl’s family.

The following rule is used to assign the token for endpoiaf edgee.

DEFINITION 3.4. Token for the endpointof an edge: is given to nodeS of £’ if one of
the following holds:

1. WhenS is a leaf,v € S, ande is directed consistent with’s family, i.e., either
S € 7' ande € 6 (S) or S € O’ ande € §°4¢(8S).

2. WhenS is a 1-chain nodey € S\ A for A child of S and e is p-directed (or
equivalentlyg-directed).

Observe that each leaf node corresponding to a degree aimstotains at leasttokens,
otherwise the degree constraint can be removed. The leasnauly need two tokens for
themselves for the counting argument. The five extra tokemsissigned to other nodes in
three different steps, the first of which is the following Ie.

LEMMA 3.5. The number of endpoints available to leave£btan be redistributed to
give two tokens to each leaf and branching nod€’cdind five tokens to each leaf node which
is a degree constraint.

Proof. A leaf node not corresponding to a degree constraint géeasit four tokens, for
e.g,S € T receives one token for each edge §*(S) and|§™(S)| > 4 sincez (6 (S)) =
f(S) = 1 and there is no edgewith z. > 1. Leaf nodes which correspond to degree
constraint receive at least seven tokens. Since, the nuafilbeanching nodes in any tree is
strictly less than the number of leaves, we can assign twentokrom each of the leaves to
branching nodes giving the claim. O Now, we still have three extra tokens with the sets
corresponding to the degree constrained leaves one of widalse in the following lemma.

LEMMA 3.6. Each1-chain node has at least two available endpoints if eachrséY i
corresponding to the degree constraint donates one token.

Proof. Consider a 1-chain nodewith a child A where wlogS, A € 7’. Ifboth S, A € 7
then we haver(§7*(S)) = f(S) andz(§*(A)) = f(A). Observe that each edge in the
difference with a non-zeroK1 or —1) co-efficient gives one token t8. Independence of the
constraints implies that there must be at least one suchaufjéhe integrality off (S) and
f(A) implies that there cannot be exactly one such edge. Heéhabtains two tokens in this
case.

In the other case, we may have thatorresponds to a degree constraint. Then we do
not have integrality since(6*(A)) = B whereA = {v} and B need not be an integer.
But, the independence of constraints implies thagceives at least one token and it borrows
another token fromd for the induction claim to hold. O

Rest of the proof involves analysis®fthain nodes. Lemma 3.2 follows from Lemma 3.5
and Lemma 3.6 if we can show thiachain nodes can collect two tokens each for themselves
from the remaining unassigned tokens and two extra toketisasich degree constraint.

We start the analysis by defining a subtfégfor each2-chain nodes. Fg is the minimal
subtree ofF having$ as its root and each leaf either a leaf@for a 2-chain node other than
S. In particular,S is always an internal node of tre&; and not a leaf node.

The various treegs can overlap: A-chain nodes occurs at the root itFs and also as
a leaf inFr for T the first 2-chain node that is a proper ancestof oft is easy to see that
these are the only-possibilities. Also observe that a set corresponding tegaek constraint
can only occur in one tree since it can never be a root in sudea t

The token assignment is as follows. Each detorresponding to a degree constraint
gives two tokens to the-chain nodeS whereA € Fg. Thus, eacl2-chain nodeS receives
two tokens whenever there is a degree constraitiign In the remaining case we have that
there is no degree constraint Jjfis. The token assignment is identical in this case as to
Gabow [16] and we omit it here. This completes the proof of hen8.2. |
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3.1. {0, 1}-Valued Intersecting Supermodular Requirement Functions We now show
how to improve the bounds in the case of intersecting supéualaoconnectivity requirements
(i.e. parttwo of Theorem 1.2). Recall that an integer fusrctin sets of verticeg : 2V — Z+
is called intersecting supermodular if the inequality

f(A)+ f(B) < f(ANB)+ f(AUB)

holds for every pair of setd, B C V such thatd N B # (). This is a stronger requirement
than crossing supermodularity; for example the conndgtiéquirements of a strongli-
edge-connected subgraph cannot be formulated as an ittegseonnectivity requirement
function. The intersecting supermodular connectivityuisgment nonetheless captures the
problem of finding an arborescence rooted athere f(S) = 1 if » ¢ S and0 otherwise.
The linear programming relaxation is identical to the lingagram in Figure 3.1. We prove
the following theorem which implies the second part of Tleeoil.2.

THEOREM 3.7. Suppose we are given a directed gragha {0, 1}-valued intersecting
supermodular functiorf as the connectivity requirement and degree bouBifisand Bt
for each vertex and consider the corresponding LP relaxaéie in Figure 3.1. There exists
a polynomial time algorithm which returns a solutiéh of cost< 2 - z; p wherez, p is the
cost of the optimum solution to the LP relaxation. Moreovey$/(v) < 2BS5“* + 2 and
deg?(v) < Binforallv e V.

The algorithm is almost identical to the algorithm in Fig@r& with the following mod-
ifications: (i) we remove all indegree constraints, (ii) tes(2c), we only pick an edgeif
Te > % and decrease the degree bounds /3 and (jii) in step (2b), we remove an outdegree
constraint if a vertex’s outdegree is at most 3. At the endtaie a minimal subset of the
edges that satisfy the connectivity requirements. Forsetging supermodular requirement
functions, it can be easily shown that in any minimal feasgmnlution, the indegree bounds
are never violated. Henceforth we assume only out-degree constraints are.give

The following lemma is immediate from Frank [15] and Lemma. 3.

LEMMA 3.8. Let the requirement functiofiof (DLP) be intersecting supermodular, and
let z be a basic solution of (DLP) such that< . < 1 for all edgese € E. Then there exists
a laminar familyQ of tight sets and tight outdegree constraintsTarC W5 such that

() Q] + T2 = | E|.

(ii) The vectorsx 4 for A € Q andxy,, forv € 15 are all linearly independent.
(iii) « is the unique solution t§z(5°“!(v)) = B Vv € To} U {z(6™(A)) =
f(A),VA € Q}.

Observe that Lemma 3.8 differs from Lemma 3.3 since in the césntersecting su-
permodular functions, we can ensure that an independeot setqualities corresponds to a
laminar family, while in the case of crossing supermodulerctions we could only ensure
that an independent set of inequalities corresponds toss-dree family. We now prove the
following lemma which proves Theorem 3.7.

LEMMA 3.9. Given a basic solutiom of (DLP) in Figure 3.1 wher¢ is an intersecting
supermodular function, one of the following must be true.

1. There exists € Tb with [§°%!(v)| < 3,

2To see this, by way of contradiction, consider a veraxith indegree at least 2 in a minimal solution. Suppose

the ingoing edges af areuv andww. If G —ww is not a feasible solution, then there is a tightlSetith requirement

1 such thatu ¢ U andv € U. Similarly, if G — wv is not a feasible solution, then there is a tight Bétwith
requirement 1 such that ¢ W andv € W. Note thatu € W andw € U, otherwise it contradicts thdf and

W have only 1 incoming edge. Now, sineeis in the intersection ot/ and W, this implies that/ and W are
intersecting. So, by intersecting supermodularity, bétm W andU U W are tight. However, botlvw andwv
enterU N W, which contradicts thal/ N W is tight (since it has requirement 1 as we havfdal} requirement
function).
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2. There exists an edgesuch thatr, > 1.

Proof. Suppose none of the above conditions holds. Then eachueitte a tight out-
degree constraint must have at least four out-edges andeegeh must haver, < % Now,
we argue that this leads to a contradiction to the fact|@at+ | 7| = |E|. We prove this by
the following counting argument. For each edge we assigrettokens. We then redistribute
these tokens such that each constraint gets assigned tatheses tokens and we still have
extra tokens.

In the initial assignment, each edge gives one token to thd Ard two tokens to the tail
of the edge. Hence each vertex gets two tokens for each getiedident at it and one token
for each in-edge incident at it. For a vertexc T,, we use one token for each out-edge at
for the out-degree constraint of We use rest of the tokens for connectivity constraints.

Observe that each vertex with an out-degree constraintsimaus at least four out-edges
incident atit. Hence, when we take one token for each ouegag obtain at least four tokens
for the out-degree constraint, i.e., they have one excé&ss$o

For each vertex, we have one token for each in-edge and geathecident at it remaining.
Moreover, ifv ¢ T we still have two tokens for each out-edge incident.atVe re-assign
these tokens such that we collect at least three tokens ébraamnectivity constraint iQ.

For the laminar familyQ, let £ be the forest on the members of the laminar family. We
say that a vertex is owned byS € Q if S is the smallest set i@ containingu. Now, we
prove the following lemma.

LEMMA 3.10.Given a subtree of rooted atS, we can assign three tokens to each tight
degree constraint ity and three tokens to each stin the subtree. Moreover, we can assign
3 + |6°4t(.9)| tokens to the roo§.

Proof. The proofis by induction on the height of the subtree.

Base Case.S is a leaf. We have:(§"*(S)) = f(S) where f(9) is a positive integer.
The assumption that there is no edge with> % implies that there must be three edges in
9" (S). For each out-edge incident &t S can collect one token. Hence, there must be at
least three in-edge tokens ajad“*(.S)| out-edge tokens which can be assigned'to

Induction Case. S is not a leaf. By induction, we assigh+ |§°“*(R)| tokens to each
child R of S. Each childR of S donates one token t6 for each edge ih°“!(R). First
observe that we can assign one tokerytfor each out-edge € §°“*(S). If the tail of e is
in some childR of S, thenR has already donated one token for this edge. Else, the &il ha
been assigned one token for this edge in the initial assigharel can give one token 1%,
ThusS can be assigned one token for each edg&ih(.S).

Case 1. S has at least two childreR;, R,. Since each tight set has connectivity re-
quirement exactly 1, we have ., f(R) — f(S) > 1. Let Fy = §""(S) \ (Urd"™(R)) and
Fy = (Urd™(R)) \ 8" (S). The above inequality implies thatF,) > 1. But then we have
|F»| > 3, as there is no edgewith 2. > % So S can collect one token for each edgefin
(token assigned to head) afd (one of the two tokens assigned to tail) to get three tokens.

Case 2. S has exactly one child®. Sincef(S) = f(R) andys andxr are linearly
independent, we havdy| > 1 and|F»| > 1, whereF; and F; are defined as in previous
case. S@ can collect one token for each edgefin and one token for each edge#fh. If S
also has a child which is a degree constraint, then we carcallxt one excess token from
it. Otherwise, the tail of any edge if, does not have a tight degree constraint, and thus can
contribute two tokens t§. In either cases can collect the desired three tokens. 0O

Lemma 3.10 reassigns the tokens so that we have three takezesch member i@ and
three tokens for each vert&%. To prove Lemma 3.9 it remains to show that some tokens are
still left in excess. If any roof of the forestZ has at least one out-edge, th€rmas been
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assigned at least four tokens and one excess tokenSagfives us the contradiction. Else,
consider any roof. Any e € §*(S) must have their tail at a vertex not owned by any set
in Q. If the tail of e has a degree constraint present, it has at least one ex&ess télse
the out-token foe has not been used in the above assignment and is the excessabich
gives us the contradiction. This proves Lemma 3.9. O

4. Hardness Results of Network Design with Degree Constrais. In this section, we
show that unlike the degree bounded SNDP for which we predet®, 2B, + 3)-bicriteria
approximation algorithm, the vertex-connectivity versizvhich we call degree bounded VC-
SNDP is very hard to approximate. In the VC-SNDP we are givevemhted undirected
graphG = (V, E) with a degree bound, for everyv € V, and a connectivity requirement
functionr : V x V — Z*. The task is to find a minimum cost subgra@gh such that
there are at least, , vertex disjointpaths betweem andv and the degree of is at most
B,. As we will see, it is hard to get afo, glog' ~“n . B, )-approximation for this problem
under a reasonable complexity assumption. In other woves, when all edge costs are zero
and we just have to approximate the degree bounds, the pnael@ains hard. In fact the
same hardness holds for a special case of the problem, dagde-bounded subsetertex
connected subgraph (¥YC for short), in whichr,,, = k for every pairu,v € S for some
setS C V andr,, = 0 otherwise. Ana-approximation for @VC will find a solutionG’
in which the degree of every vertexis at mostaB,, and there are,,,, vertex-disjoint paths
between every pait, v € V. The following theorem immediately implies Theorem 1.3.

THEOREM4.1. UnlessNP C DTIME (nP¥0d(m)) there is no2's’ * "-approximation
for DkVC for some > 0.

Proof. The proof follows essentially the same construction as2®].[ The starting
point is the hardness of a graph problem, called MinRep i, [#8ich is essentially a graph
theoretic description of a two-prover one-round proof sgst The instance to the MinRep
problem consist of a bipartite gragh(V U C, E) together with a partitioning of each &f
andC to equal partslV = U, V; andC = |J{=, C;. EveryV; has sizea, = |V|/q,
and everyC; has sizes. = |C|/q.. GraphG also induces another bipartite super-grdph
where the super-vertices (i.e. vertices/oJ are theg, + ¢. setsV;’s andCj’s. There is a
super-edge betwedn and(; if there are vertices € V; andc € C; with vc € E. We say
that edgesc coversthe super-edg®;C;. A setS C V U C covers a super-eddeC; if there
are two vertices € SNV andc € SN C such thawe covers edgé;C;. The goal in the
MinRep problem is to select vertices from edghandC; such that every super-edge &f
is covered and the total number of vertices selected is nizeitn We further assume that for
every super edge;C;, every vertex inC; is adjacent to exactly one vertex 1. Also, we
can assume that the graphis regular on each side; say every super-vevighas degree,
and every super-verteX; has degree.. So the number of super-edgerig, = r.q.. From
the PCP theorem [1, 2] together with the parallel repetitimorem [39] it follows thakt

THEOREM4.2. Given an instance of 3SAT we can build an instanc¢&of MinRep in
DTIME (nPo¥9(n)) such that:

e If ¢ is ayes instance the@ has a solution of size, + q..
e If ¢is ano instance then every solution@has size at leagtios’ V(D) (g, + ¢,).
Therefore, unleshlP C DTIME (nP°Y°9(")) MinRep cannot be approximated within a factor

1—e

210g n

SReaders familiar with 2P1R proof systems can think of eagiesuertexV; as an/-tuple of variables and
eachC; as an/-tuple of clauses where we usédarallel repetition; each super-edge corresponds to aopair
queries sent to the two provers; the vertices in each sugréexvcorrespond to answers to the queries returned by
the corresponding prover.
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W

FiG. 4.1.Construction of grapfG'(V, E) from MinRep instanc&'(V U C, E)

Given an instancé&/(V U C, E) of MinRep, first we construct a gragh(V, E) as fol-
lows:

1. Create two new sets of verticBs= {u1, ..., uq, } andW = {w1,...,wq, }, where
u; is adjacent to all the vertices ¢f (1 < ¢ < ¢,) andw; is adjacent to all the
vertices ofC; (1 < j < q.).

2. For every super-edgéC; there are two new verticeﬁ andy;'.; andx{ is adjacent
to u; and to all the vertices iV — V; andC — C;. Similarly, y; is adjacent tav;
and to all the vertices in’ — C; andV — V.

3. LetX =, ; o andY = U, vj- The vertices inX UY form a clique.

4. For every super-edgéC; we requirek = |X| + Y| + (¢» — D)a, + (gc — 1)a.
vertex-disjoint paths betweerj andy;'..

5. Also, for every vertexi; € U we require a degree bound of + 1 and for every
vertexw; € W a degree bound of. + 1.

See Figure 4.1. NotgX| = |Y| and is equal to the number of super-edges. Also, the
degree of every,; € U (everyw; € W) is exactlya, + r, = a, + |X|/qy (IS ac +7c =
a. + | X|/q.). The analysis of [29] shows that: In every solutiGh C G which satisfies the
connectivity requirements;’ is a spanning subgraph and the number of edges beteen
andX and betweetV andY is exactly| X |. This is because every vertex € X can have
atmost(q, — 1)a, + (¢ — 1)ac + |Y| + (| X| — 1) paths to any other vertex i U'Y" using
the vertices of V — V;) U (C' — C;) UY U (X — {]}). Thus for one of its paths it has to
go throughu,. A similar argument works for each vert9}< ey.

Furthermore, ifGG is a yes instance of MinRep (i.e. has a solution of gize- ¢.) then
there is a solutio”’ C G which satisfies the connectivity requirementsSadind the number
of edges betweeti andV in G’ is ¢, (one edge betweem; andV;, 1 < i < ¢,) and the
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number of edges betweéi andC' in G’ is ¢. (one edge between; andCj, 1 < j < ¢.);
so the degree of every vertex € U isr, + 1 and every vertexy; € W has degree. + 1.
Conversely, ifG is a no instance of MinRep then in every subgré@ghc G satisfying the
connectivity requirements the total number of edges betwieandV and betweeit and
Cisatleases' " V(©l(g, +q.); so atleast one; € U or onew; € W has a degree larger
by a factor oRle’ " from its bound. This, together with Theorem 4.2 implies thetiding
between the following two cases is quasi-NP-hard:

e If G has a solution in which all the degree bounds are satisfied.

e If every solution ofG has at least one vertex bf with degree at leagfos’ ™ (ry +

1) or a vertex ofi¥ with degree at leagtios’ "(re +1).

This completes the proof of Theorem 4.1. [

We have a similar hardness result for the Low Degree DireStether Forest (LDSF)
problem. In LDSF, we are given a directed gragh= (V, E), degree bound8, for every
v € V, and connectivity requirements V x V — {0,1}. The goal is to find smallest > 1
and a subgrapfi’ satisfying the connectivity requirements in which the @éegof each vertex
v is at mostaB,,. The proof of Theorem 4.3 follows from a very similar constion as in
Theorem 4.1.

THEOREM 4.3. UnlessNP C DTIME (nP¥0d(m)) there is no2'°s’ * "-approximation
for LDSFfor somer > 0.

5. Minimum Cost A-connectedk-subgraphs. In this section we study the following
class of problems. Given are a (multi)gragiV, £) with a cost functiorc : £ — RT
on edges, a positive integets and a connectivity requiremeit > 1; the (k, A)-subgraph
problem asks to find a minimum costedge-connected subgraph®fvith at least: vertices.
We should point out that the edge cost functiois an arbitrary function. Furthermore, we
are not allowed to take more copies of an edge than are prigstte graph. Otherwise, a
2-approximate solution can be computed by taking a 2-apmprabe .--MST solutionT’, and
then taking)\ copies ofT".

Note that the k, \)-subgraph problem contains, as special cases, seversicelggrob-
lems. For instance, the minimum costedge-connected spanning subgraph problem is just
the minimum(n, A)-subgraph, and the classidaMST problem is th€k, 1)-edge-subgraph
problem. Another related and well-studied problem is tligt-® SP (finding a minimum cost
traveling salesman tour visiting at ledswertices) for the metric cost functions. Although
there are approximation algorithms for each of these speases, we are not aware of any
study of the more general problem @f, \)-subgraph. As we will see below, it seems that
this problem for an arbitrar} (and even unweighted graphs) is very difficult to approxamat

For this reason, we look into the approximability of tfie 2)-subgraph, which is the
first generalization of-MST to higher connectivity. We show th&k, 2)-subgraph has an
O(log k - logn)-approximation. It works for the rooted version of the perhlwhere a par-
ticular vertexr € V' is required to be in the solution. It is easy to see that givealgorithm
for the rooted version, we can try all possible vertices asrtiot to obtain an algorithm for
the unrooted version.

THEOREM 5.1. There is anO(log k - log n)-approximation algorithm for the rooted
(k, 2)-subgraph problem.

As mentioned earlier, we show that for an arbitraryhe(k, \)-subgraph problem seems
to be difficult. As an evidence, we show a reduction from#kgense-subgraph problem. In
the k-dense-subgraph problem we are given a gr&pand an integek and have to find
a subgraph wittk vertices with maximum number of induced edges. Despiteidersble
effort, the best known approximation algorithm for thelense-subgraph problem has ratio
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O(n%*) for some constarnt > 0 [14]. We will prove Theorem 1.5, which implies obtaining
any poly-logarithmic approximation for the, A)-subgraph problem would imply a poly-
logarithmic approximation for the-dense subgraph problem.

Remark: One may hope that the constant factor approximation alyostfor k--MST
[17, 18, 6] could be extended to obtain &tl)-approximation for(k, \)-subgraph for at
least the special case af= 2. There are several difficulties in this route which do nonsee
easy to overcome. Firstly, all the known constant approtiona fork-MST are based on the
primal-dual 2-approximation algorithm of Goemans and Mfitison [20] for prize-collecting
Steiner tree. It is not clear how to generalize this primadcheme to work for the 2-edge-
connected prize-collecting version. Secondly, the tym@eaond step in these algorithms is
to use a Lagrangian relaxation to reduce #&IST problem to the prize-collecting Steiner
tree. For this step to work, the known algorithms rely on # that we can assume the cost
function ismetric(i.e. satisfies triangle inequality) by simply taking thetrieecompletion of
the input graph. For 2-edge-connected subgraphs we carakat tinis assumption. However,
if we assume that the cost function is metric, then knownltgesm k-TSP [18] immediately
imply a 2-approximation algorithm fdik, 2)-subgraph. This uses the fact that the LP relax-
ation fork-TSP is equivalent to the LP relaxation fdr, 2)-subgraph when the cost function
is metric [5].

5.1. Proof of Theorem 5.1.0ur algorithm uses the solution to a related problem we
call density 2-edge-connected subgraph problem, dengtdaRECS. In this problem, we
are given an udirected graggh = (V, E) with a cost functiore : £ — R™ on edges. There
is a given vertex:, called theoot, and a subset of verticdsC V — r, calledterminals The
goal is to find a subgrap containingr and at least one terminal such that there are at least
2 edge-disjoint paths betweerand each terminal i’’, and the ratio of the total cost 6
to the number of terminals i@’ is minimized. We will later prove the following lemma:

LEMMA 5.2. There is anO(log n)-approximation for D2ECS.

Recall that an instancgto the rooted k, 2)-subgraph has a gragh = (V, E), parame-
terk, and a root- € V. First we preprocess the graph by removing some of the esrtieat
cannot be part of an optimum solution. Let us assume we lowwythe cost of an optimum
solution. Then for every vertex we find two edge-disjoint paths betweerandr of min-
imum total cost, let us denote it bis(v, ). For this we can use a min-cost flow algorithm
betweerv andr [41]. Then we delete those verticedor which dy (v, ) > OPT, as clearly
they cannot be part of the solution. We work with this prunersion of grapliG.

The overview of the algorithm is as follows. The algorithrétively finds a 2-edge-
connected subgraph containing the root with good densityalling the algorithm for D2ECS
(Lemma 5.2) and adds them to an intially empty solution, i@nttthe partial solution found
into the root, and iterate until there are at leastodes in the solution. Clearly the final
solution is 2-edge-connected and contains the root. If th@ humber of nodes at the
end isO(k), then a set-cover type analysis shows that the cost of theimolis at most
O(log k -log n.- oPT), where thdog n in the ratio is from the ratio of algorithm of Lemma 5.2
and thelog k comes from a set-cover type analysis. However, some caezidenl as the total
number of nodes in a good density solution found in evergiten by calling the algorithm
for D2ECS might be much larger than In that case we show how to prune the solution to
obtain one with9 (k) nodes and about the same density. The algorithm is presierftgglire
5.1.

Here are more details for some of the steps. To guess the g&lgefor every vertex
v # r, first we computels (r, v). Let L be thekth smallest value. Clearly, < opPT < kL.
So it is enough to start with estimateeT = L and then double the estimate @fT if the
algorithm does not succeed; we have to do this at gkig k) times.
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The Main (k, 2)-subgraph Algorithm
1. Guess the value of optimum solutiagT.
2. Delete all the vertices with ds (v, ) > oPT (recall thatr is the root).
3.8 0.
4. Whilek > 0 do
(a) Run D2ECS algorithm to find a good density subgraptontainingr.
(b) If |V(H)| < 2k then
i. Add H to S and updaté: — k — |V (H)|
ii. In G contractthe edges df (i.e. H is contracted int@).

(c) else
i. Find a subgrapli{’ of H with cost at mosO(logn - OPT) and at leask
nodes.
ii. Add H'to S and updaté: = 0.
5. returnS.

FIG. 5.1.The algorithm for(k, 2)-subgraph problem

As said earlier, if at every iteration we find a good densitstiphsolution with at most
k nodes then a simple set-cover type analysis shows that gi@ttihe final solution (which
will have ©(k) nodes) is within a facto®(log & - logn) of the optimum. We have to show
what to do in step (4ci) if one call to D2ECS returns a solutith more than, let’s say@k
nodes. Note that this happens at most once (in the lastidejats after this the number of
nodes in the solution built so far will be at legsand the algorithm terminates.

A nowhere-zero 6-flow in a directed graphV, A) is a functionf : A — Z¢ such that
for each node: (5 (v)) = f(6°“*(v)) and all values off are non-zero. For an undirected
graphH, we sayH has a no-where-zero 6-flow i has an orientation of its edges which
has a no-where-zero 6-flow. Seymour [42] proved that evesdd@e-connected graph has a
no-where-zero 6-flow and such a flow can be found in polynotiria (see [45, 41]}. Let
H(U, F) be a good density subgraph returned by D2ECS algorithm witterthar2k nodes
and letf be a no-where-zero 6-flow cH. We can obtain a directed multi-gragh(U, A)
from f andH by placingf(e) copies of each edgein the direction defined by the flow. Note
that D is an Eulerian graph with no directed cycle of lengttStarting fromr in D build an
Eulerian walk and partition this walk into arc-disjoint segntsP;, P, . . ., Py, each of which
induces a subgraph @f on k£ nodes, except possiblg, which will have betweerk and2k
nodes. So eacR, is a walk, say from node; to u;1; let's denote the connected subgraph
induced byP; in H by H;. Since the total cost of the edges of all these walks is at Bost
times the cost off, at least one of{;’s, say H;, has density at most 5 times the density of
H. Now find two edge-disjoint paths of minimum cost (if) fromu; tor, call themQ}, Q7,
and also two edge-disjoint paths of minimum cost (agaig)rfrom u;4 to r, call them

111, @71, We claim that the subgraph induced By U Q} UQ? U Q] , UQ3, |, denoted
by H’, is 2-edge-connected and has cost at migbg n - OPT). To prove the cost, note that
H; has betweei and2k nodes and has a density at most five times thaf pivhich in turn
is within O(log n) of the optimum density. Thus cost &f; is at mostO(logn - OPT). Also
the total cost of;)} U Q? U Q}H U Q?H is at mostO(opPT) (because of the preprocess step);

4A weaker and simpler result is that every 2-edge-conneataphghas a no-where-zero 8-flow and such a flow
can be easily obtained in polynomial time by applying Matrpartition theorem (or Nash-Williams/Tutte theorem
for disjoint spanning trees). Our proof works with a no-wéieero 8-flow as well.
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hence the total cost dfTJ/ is O(logn - OPT). To prove 2-edge-connectivity dF;, by way
of contradiction suppose that there is a cut-edgeH; andC1, C are the two components
of Hj — e. Note that because @)}, Q%,Q},,Q7,, both ofu; andu,, are in the same
component as, sayC;. But because’; is a directed walk fromu; to w4, in D we must
be able to travel front’; to C5 in both directions inH; (as bothu; andu;; are in the same
side); since there is no directed cycle of lengtlthere must be another edge# ¢ between
C4 andCs with a direction opposite of; soe is not a cut-edge it/

5.2. Proof of Lemma 5.2. The algorithm and analysis are built upon the LP relaxation
and uses ideas from [9]. Consider the following IP/LP retexaof D2ECS which is based
on the LP relaxation of SNDP without degree bounds (see teelfi? in Section 2). For
each edge and vertexo we have indicator variables. andy,, respectively, which indicate
whether they participate in the solution or not. We have radized the sun) ..y, to 1.

(LP-D2ECS) minimize > Cee
eclE
subject to z(6(9)) > 2y SCV-—-nrtelS
z(6(S)) —xe >y SCV—rteSe ed(s)
ZveT Yo = 1
0 < e,y < 1 Veec E,veT

Note that we have added the second set of constraints abaMatam a stronger LP
which will help us in the rounding phase. This LP can be soingablynomial time via the
ellipsoid method since there is a polynomial time sepenati@cle for this problem.

LEMMA 5.3. For an instance of D2ECS, letbe the density of the optimum solution and
o* be the value of the above LP. Theh < .

Proof. Let G’ be an optimum solution to the given instance of D2ECS and"et T
be the terminals ir’; assumgT’| = . Soo = (3. c(e))/L. For eacht € T' define
Y = % and for each edgec V letz, = % iff e € G’ and zero otherwise. All other variables
are set to zero. Itis easy to verify that this is a feasiblatsmh to LP-D2ECS. [

Now we present the algorithm for the D2ECS problem. Givenrstance of D2ECS
first we solve the LP-D2ECS to obtain an optimum fractiondlison (z*, y*); let its value
bea. Forp = 1 + 2[logn] we obtain disjoint subsets of the termindlg 75, ...,T, of T
as follows. Lety,.x = max;y;. For0 < a < 2[logn], letT, = {t | ymax/2°T! < y¢ <
Ymax/2%}. Sinced .y, = 1 there is an index such thad) , .. y; > 1/p. From this we
also have thalT}| - ymax/2" > 1/p. Now find a minimum cost subgraph with connectivity
requirement 2 between the terminals/inandr. For this we can use Jain’s algorithm on the
following standard LP for SNDP:

(LP-2ECS) minimize Y ¢z

eckE
subject to x(6(S)) > 2, VSCV —r,SNTy,#0
0 < z2.<1 Vee E

Observe that if we take the optimum solutior, y*) of LP-D2ECS and defing. =
min{1, z}-2°%1 /y.... } this yields a feasible solution to LP-2ECS on terminalfetf cost at
mMost2't o /ymax. TO see this, take any s6tC V —r with SNT;, # () and the corresponding
constraintz(§(S)) > 2 in LP-2ECS. This has corresponding constrair(%(.5)) > 2y; in
LP-D2ECS for eacht € S. Suppose we defing. = min{1,z? - 2°+! /y,...} andg; =
min{1,y; - 2°71 /ymax }. Note that for each € Ty, because; > yumax /2L 7 = 1. If all
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the edges € §(5) have values? < y; then after scaling we will have(s(.S)) > 2 because
the left hand side of (§(S5)) > 2y is grown at least as much as the RHS is scaled. If there is
atleastone edgé € §(5) with =%, > y; then because of the second set of constraints in LP-
D2ECS, we have*(6(S)) —z}, > y;. Thus after the scaling we still ha#€j(S)) —z. > 1
because again the LHS is grown at least as much as the RHSt Also1 becausg; = 1 and

xy > y;;s0z(6(S)) > 2. This shows there is a feasible solution to LP-2ECS with bean
setT;, andr with cost at mosR®*!a/ym.x. Jain proved that the integrality gap of LP-2ECS
is 2. Therefore, we can obtain an integral solution with @mivity of at least 2 between the
terminals inT} andr such that cost of the solution is at ma@st 2! - a /y,,... The density of
this solution is therefor2’*2 - a/ (ymax|T3|) Which isO(pa). Sincep = O(log n) the density

is O(logn) - a. Thus, we have af(logn)-approximation for D2ECS. This completes the
proof of Lemma 5.2 and thus Theorem 5.1.

5.3. Proof of Theorem 1.5.In this subsection we present the hardness proof of the
(k, \)-problem, based on the hardness of the derisssbgraph problem. The overall struc-
ture of the proof is as follows. Observe that a solution to(the\)-subgraph problem implies
a subgraph on at leaktvertices with minimum degree at leastWe prove that even finding
such a subgraph is hard, assuming that derisastbgraph problem is hard. This implies
a hardness for thgk, \)-subgraph problem too, based on the conjecture that theesigns
subgraph problem is hard.

To prove our hardness result we need the following auxillargma. Given a graph
G = (V, E) and integers:, \, first construct a grapt’ = (V, E) from G by adding a new
universal vertex:i.e. V =V U {2z} andE = E U {uz|u € V}.

LEMMA 5.4.1f G has a(\ + 1)-edge-connected subgragph with B + 1 vertices then
H — {z} C G has at leastB vertices and min-degree at least Conversely, ifiG has a
subgraphH with min-degree at least and at leastB vertices therff C G obtained from
by addingz and all its edges incident to the verticeskfis (A + 1)-edge connected with at
leastB + 1 vertices.

Proof. First consider the easy part: # C G is (A + 1)-edge-connected witt + 1
vertices then clearlyf = H — {z} has minimum degree at leasand has at leagt vertices.
Conversely, suppose that C G has min-degree at leastand B vertices. Clearly for every
vertexu ¢ H — {z}, there are at leastV; (u)| > A edge-disjoint paths of length 2 (using
Ny (w)) from z to u, plus one path which is the single edge betweemd:z. By transitivity
of edge-connectivityH is (A + 1)-edge-connected witB + 1 vertices. 0

Now we are ready to prove Theorem 1.5. Suppose we are giveaphgr = (V, F)
and integef as the instance of denséssubgraph and letl be our approximation algorithm
for the (k, \)-subgraph. Without loss of generality, we assume that 4 as for constant
values ofk the densegt-subgraph is polynomially solvable. Let us suppose thabgiienum
solution to densedt-subgraph instance is a graph(V’, E’') C G with |V'| = k and|E’| =
ok and furthermore suppose for now that we know the solufib(this will be cleared later).
Note that the density of’ (i.e. |E’|/|V’|) is o. We are going to obtain a subgraph@f
in which the minimum degree is large (i.e. close to the dghsihd the number of edges
of the subgraph is within a constant factor|&f|. To do this, we delete vertices froGY in
several rounds. L&, (V;, E;) be the graph at the beginning#®th round d; be the minimum
degree inGG;, andd; = |E;|/|V;| be its density. From this definitioy; = G’, d; = o, and
|[Vi| = k. Without loss of generality, we may assume that> 1, i.e. G’ has no isolated
vertices as deleting them does not remove any edges and ainanease the density.

Each round > 1 may have several iterations and in each iteration we remxaetly
one vertex. At the beginning of roundif §; < QI‘igk = z\v‘i\EﬂLgk then seth = 2§; and
iteratively delete every vertex @¥; with degree at most. The number of edges deleted in
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logk * logk
the minimum degree is at ledst= 24;; thusd; 1 > 26;. Sinced; > 1 and for everyi > 1,
d;+1 > 20;, we have strictly smaller thalog & rounds (because for the maximum degree of
G': A(@') < k—1). So after at most < log k rounds the algorithm stops. At this point

t ,
we have:|E;| > (1 — @) |By1| > ‘%‘ (becauséog k > 2 andt < log k which implies

1\t 1 d .
(1 - o57)" = 7) andd; > 5y0e7. Hence:

rounds is at most|V;| < 15| ThereforelE; | > (1 -1 ) |E;|. Roundi stops when

| Et| |E|
2logk — 8logk’

¢|Vil = (5.1)

Suppose we guess the valueddff andd; (we can simply try all possible values). By
the argument abové&; has a subgraph with min-degree at legsand at leastV;| vertices.

Furthermore:8|1§;k < §|Vi| < |E’'|. Now we run algorithmA for (|V;| + 1,4, + 1)-edge-

subgraph on grap&’ which is obtained fron by adding a universal vertex Since there
is a subgraph o& (namelyG;) with at least|V;| vertices and minimum degre® and by
Lemma 5.4, algorithn finds a subgrapli/ (V, E) € G which is (8, + 1)-edge-connected
and|V| > |V;| + 1. Furthermore, becauséis ana-approximation andﬁ—" < |E¢| < |E'|:
|E| < a|E’|. Delete vertex: (if it belongs to ) to obtain graph (V,E). SoH C G has
min-degree at leas; and at leas}V;| vertices.

Case L:if |[V| < k then we can adél — [V/| arbitrary vertices fron&x — H to H to obtain

a graphH with k vertices and at least|V'| > 6,|V;| edges. Sincé;|V;| > 8‘5;,« by (5.1),H
is a subgraph wittk vertices whose number of edges is at lda&t/ log k) of the optimum
solutionG’.

Case 2: Suppose thafl’| = gk for some3 > 1. Thusé,|V| = &6k < |E|. On the
other handE| < a|E’| < 8a - logk - §:|V;|, by (5.1). These two inequalities, together with
the fact thatV;| < k, imply that: 6,5 - k < 8« - logk - d; - k, which in turn implies

0 < 8a-logk. (5.2)

Now select uniformly at randorh vertices out of thesk verticesjnﬁ and obtain a grapi/
with & vertices. The expected number of induced edged df '%. 5 Since|E| > &|V| =

0¢0k, the expected number of edgesHfis at Ieast%’“ > % > Sgﬂk, which by (5.2)
|E|

is at Iea:le(&log2 =)
In either case, we can obtain a solution for the denkesibgraph whose number of
edges is within a factaR(1/a - log® k) of the optimum.

6. Concluding Remarks. We present the first constant factor bicriteria approxiorati
algorithms for SNDP with degree constraints. As a coro]lting implies the first constant
factor approximation algorithms for finding low degree staphs. (E.g. the best previous al-
gorithm for the Minimum Degreg-Edge-Connected Subgraph problem had r@tib log n)
for only fixed values of¢ [11].) Our techniques were recently generalized by [32] atdh
for SNDP with weighted degrees. In this problem there is lzotfeight function and a cost
function defined on the edges which are independent of e&aen. dthe goal is to find a min-
imum cost subgraph satisfying connectivity requiremertgeanot violating giverweighted
degree bounds.

Swe can actually do this deterministically too, using themoetof conditional probabilities.
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Subsequent to this paper, the iterative relaxation metlagdoleen successfully applied
to obtainadditive approximation algorithms for degree bounded network aepi@blems.
Singh and Lau [43] extended the iterative relaxation metbadbtain ar(1, B, +1)-approximation
algorithm for the MNIMUM BOUNDED DEGREE SPANNING TREE problem [43]. More re-
cently, Lau and Singh [31] have improved Theorem 1.1 andiédea(2, B, +3)-approximation
algorithm for the MNIMUM BOUNDED DEGREESTEINER FORESTproblem, and &2, B, +
67maz+3)-approximation algorithm for the bounded degree SNDP whgge = maxy, {7y }-
Bansal et al [4] have improved Theorem 1.2 and obtaine@al{% + 4)-approximation al-
gorithm for the MNIMUM BOUNDED DEGREEARBORESCENCHOr 0 < € < 1. They also
obtain an additive approximation algorithm for the minimoraximum-degree arborescence
problem which violates the degrees by at most 2. In all of theva results the iterative
relaxation method has been used to obtain (almost) tighysisdor the standard LP formu-
lations for the bounded degree network design problems fieithod has also been applied
to obtain new approximation results for other combinatamimization problems [24], and
to obtain simple proofs of classical results in combinataptimization and approximation
algorithms [30]. We hope this method will find further applions.

With regards to thék, \)-subgraph problem the situation is less clear. Although the
problem seems difficult to approximate for arbitrary valogs, the complexity of the prob-
lem for small values oh (even\ = 2 or 3) is unknown. We do not even know whether the
problem has a constant approximation factorXet 2, or if it has a polylogarithmic approx-
imation for any\ > 3. Recently, Chekuri and Korula [10] have presenteddlog n - log k)-
approximation for thek, 2)-subgraph problem where we require 2-vertex-connecthety
tween the vertices of the solution. Their algorithm (whicaswobtained independently) is
similar to the one in Theorem 1.4, but their analysis is défé. More recently, Safari and
Salavatipour [40] have shown that if the edge costs of thplggeatisfy triangle inequality,
then there is a®(1)-approximation for thék, \)-subgraph problem.
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