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Abstract7

In this paper, we present approximation algorithms for the airport and railway problem (AR) on8

several classes of graphs. The AR problem, introduced by [?], is a combination of the Capacitated9

Facility Location problem (CFL) and the network design problem. An AR instance consists of a10

set of points (cities) V in a metric d(., .), each of which is associated with a non-negative cost fv11

and a number k, which represent respectively the cost of establishing an airport (facility) in the12

corresponding point, and the universal airport capacity. A feasible solution is a network of airports13

and railways providing services to all cities without violating any capacity, where railways are14

edges connecting pairs of points, with their costs equivalent to the distance between the respective15

points. The objective is to find such a network with the least cost. In other words, find a forest,16

each component having at most k points and one open facility, minimizing the total cost of edges17

and airport opening costs. Adamaszek et al. [?] presented a PTAS for AR in the two-dimensional18

Euclidean metric R2 with a uniform opening cost. In subsequent work [?] presented a bicriteria19
4
3

(
2 + 1

α

)
-approximation algorithm for AR with non-uniform opening costs but violating the airport20

capacity by a factor of 1 +α, i.e. (1 +α)k capacity where 0 < α ≤ 1, a
(
2 + k

k−1 + ε
)
-approximation21

algorithm and a bicriteria Quasi-Polynomial Time Approximation Scheme (QPTAS) for the same22

problem in the Euclidean plane R2. In this work, we give a 2-approximation for AR with a uniform23

opening cost for general metrics and an O(logn)-approximation for non-uniform opening costs. We24

also give a QPTAS for AR with a uniform opening cost in graphs of bounded treewidth and a QPTAS25

for a slightly relaxed version in the non-uniform setting. The latter implies O(1)-approximation on26

graphs of bounded doubling dimensions, graphs of bounded highway dimensions and planar graphs27

in quasi-polynomial time.28
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1 Introduction34

We study a problem that integrates capacitated facility location and network design problems.35

The problem referred to as Airport and Railway problem denoted as AR (introduced by [?]36

and studied further in [?]) is the following. Suppose we are given a complete weighted graph37

G = (V,E) embedded in some metric space (for instance the Euclidean plane), with two38

cost functions f : V → R≥0 for opening facilities (also known as airports) at vertices (also39

known as cities) and c : E → R≥0 for installing railways on the edges in order to connect40

cities to airports. We are also given a positive integer k ∈ Z+ as the capacity of each airport.41

The goal is to partition the vertices into a set of clusters each of size at most k, find a set of42

vertices A ⊆ V at which we open facilities (airports) so that each cluster has exactly one43

airport, and a set of edges R ⊆ E, such that the edges on each cluster induce a connected44
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Figure 1 a) An example tree where we assume the airport capacity is 3 and u1 and u2 have an
opening cost of zero while other vertices have cost infinity; b) The solution to ÃR. Pink vertices
represent cities with an airport. Each edge is coloured to indicate its cluster. The dashed edge is
used by both clusters; c) The solution to AR′. Each directed edge is labelled with its flow value.

graph, while minimising the total cost of the edges plus the opening of selected facilities.45

Clearly, the graph induced by each cluster must be a tree. So we have a collection of
trees, each of size at most k and each having an open facility. The idea is each open facility
serves as an airport that will serve all the cities in the cluster it belongs to (including the
city at that vertex). The goal is to minimise the total cost

C =
∑
v∈A

fv +
∑
e∈R

ce.

To be more precise, a cluster is an airport and the set of all the cities served by it, together46

with the set of railways connecting the cities to the airport that forms a tree. Adamaszek et47

al. [?] also defined a relaxed version of AR (they called AR′) where in a feasible solution a48

component of the forest might have multiple airports and multiple copies of any edge and49

each component allows routing one unit of flow from all its cities to the airports so that each50

airport receives at most k flows and each copy of an edge has capacity k. Note that in this51

version of the problem, the cities belonging to different airports can share the edges of the52

network. So an edge might be used by cities from different clusters but no more than k in53

total; in this case, the cost of the edge occurs only once in the objective.54

When considering special metrics (e.g. shortest path metrics induced by trees or other55

special graph classes) we may not have a feasible solution to AR in the strict setting that56

clusters need to be disjoint. For this reason, we consider a slightly relaxed version of AR,57

denoted by ÃR where the clusters do not need to be edge-disjoint but each cluster will pay58

for the edges it uses separately. In other words, each edge is allowed to be used by multiple59

clusters but each of them needs to pay the cost of the edges they use separately. Considering60

this relaxed version becomes useful when we are working on specific metrics e.g. shortest61

path metrics of certain graph classes such as trees (e.g. see Figure 1). Note that in ÃR, each62

connected component in a feasible solution may contain multiple clusters and the total cost63

that we want to minimise is
∑
v∈A fv +

∑
e∈R ce · ϕ(e) where ϕ(e) is the number of clusters64

using the edge e. We highlight that AR′ is a strictly more relaxed setting vs. ÃR. In AR′
65

the cities sending flows to different airports can share the edges of the network and if the66

flow over an edge is ≤ k (even if used to send flow to different airports) the cost of the edge67

is paid for only once. This is not the case in ÃR. For instance, a feasible solution to ÃR in68

this Figure 1 has two clusters, one u1, u, v and the other u2, v1, v2 and has a total cost of 669

whereas a feasible solution to AR′ has one component with cost 5.70

The AR problem has some characteristics of the Capacitated Facility Location (CFL)71

problem and network design problem. The instance of AR is the same as CFL with uniform72

capacities. However, in CFL one has to open a number of facilities and assign each client/city73

to an open facility (by a direct edge) so that each facility is assigned at most k clients and74

we minimise the total opening cost and connection cost. The main difference is that in CFL75

each cluster forms a star (with the facility being the centre) while in AR each cluster is a tree,76
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whose cost might be much cheaper than the star. In AR, the clients might share the same77

path to be connected to the facility and hence reduce the total cost of forming the railroad78

network. AR has also similarities to the Capacitated Vehicle Routing Problem (CVRP)79

and Capacitated Minimum Spanning Tree (CMST). In CMST, the goal is to construct a80

minimum-cost collection of trees covering all the input vertices, each tree spanning at most k81

vertices, connected to a single root node. As discussed in [?], AR can be modelled as CMST82

in general weighted (non-metric) graphs.83

The following variants of AR have been studied [?, ?]. For some constant β > 1, ARβ84

refers to the bicriteria version of AR, where airport capacity is allowed to be violated by85

a factor of β (also known as resource augmentation). AR∞ is a relaxed version where the86

airport capacity is dropped, or equivalently, set to infinity: k = +∞. When airport opening87

costs are uniform we refer to it by 1AR. Another special case is ARP where each component88

is a path with both endpoints having an airport. ARP is a relaxation of the capacitated89

vehicle routing problem (CVRP) since not all the paths need to have a common endpoint90

(the centralised dépôt in CVRP). The original problem is sometimes denoted as ARF (or91

simply AR) where we have a general forest.92

1.1 Related Work93

As mentioned above, [?, ?] have studied AR and some variants of it defined above. No true94

(non-trivial) approximation is known for AR in general setting. For the case of uniform95

airport opening cost, for both 1AR and 1ARP , [?] show that the problems are NP-hard in96

Euclidean metrics and present PTAS’s for them.97

In [?] the authors consider bicriteria approximations. They present a 4
3 ·(2+ 1

p )-approximate98

for AR1+p, p ∈ (0, 1] for general metrics. For Euclidean R2 they present a QPTAS for AR1+µ,99

for arbitrary µ > 0 (i.e. violating the capacities by 1 + µ) and a (2 + k
k−1 + ε)-approximation100

in polynomial time. To obtain the latter result they obtain a PTAS for AR′ on Euclidean101

metrics and show that a solution to AR′ implies a solution for AR at a loss of factor 2 + k
k−1 .102

In CFL, we are given a weighted (metric) graph G = (V,E), a facility opening cost103

function f : V → R≥0, and edge costs c : E → R≥0, and a capacity uv. The goal is to104

open a set of facilities F ⊆ V , and assign each point v ∈ V to an open facility so that each105

open facility v has at most uv points assigned to it while minimizing the total opening costs106

plus the assignment costs of points to open facilities. The only difference between CFL107

and AR is that in CFL the assignment edges in each cluster form a star whereas in AR it108

forms a minimum tree spanning the nodes of that cluster. There are constant approximation109

algorithms for CFL in general as well as uniform settings [?, ?].110

For CVRP and its variants there are constant-factor approximations in general settings111

and QPTAS for special metrics such as Euclidean and doubling metrics and minor-free112

graphs [?, ?, ?, ?]. Another related problem is the capacitated cycle cover problem (CCCP)113

studied in [?]. In this problem, we are given a weighted graph G and parameters k and γ.114

The goal is to find a spanning collection of cycles of size at most k while minimizing the115

cost of the edges of the cycles plus γ times the number of cycles. This problem is related116

to Min-Max Tree Cover and Bounded Tree Cover studied earlier [?, ?]. In [?] the authors117

present a (2 + 2
7 )-approximation for CCCP. This also implies a (4 + 4

7 )-approximation for118

uniform AR.119

For CMST, Jothi and Raghavachari [?] give a 3.15-approximation algorithm for Euclidean120

CMST and a (2 + γ)-approximation for metric CMST, where γ ≤ 2 is the ratio of minimum-121

cost Steiner tree and minimum spanning tree. As pointed out by [?], AR can be reduced to122

CMST in non-metric setting.123
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We refer to [?] for discussion of other related works such as capacitated-cable facility124

location problem (CCFLP) [?] and sink clustering problem [?].125

1.2 Contributions126

Although AR (and ÃR) are similar to both CFL and CVRP, the mix of capacitated facility127

location and network design components appears to make it significantly more difficult128

than both. The approximability of AR for general metrics remains uncertain. Even for129

more restricted settings such as special metrics (e.g. trees) or uniform opening costs, the130

approximability of the problem is open.131

In this paper, we make progress on some special cases. First, we consider AR with132

uniform opening cost (i.e. 1AR) on various metrics. For general metrics, we present a simple133

2-approximation algorithm for this.134

▶ Theorem 1. There is a 2-approximation for uniform AR on general metrics.135

We also consider graphs of bounded treewidth and present a QPTAS for ÃR on such136

metrics.137

▶ Theorem 2. There is a QPTAS for uniform ÃR on graphs of bounded treewidth which138

runs in time nO(ωω·log3 n/(ε2 logω ω)). where ω is the treewidth of the input graph.139

Next, we consider AR′ in the general setting (i.e. with non-uniform facility opening costs).140

We propose an exact algorithm for trees and graphs of bounded treewidth.141

▶ Theorem 3. AR′ can be solved in polynomial time on graphs with bounded treewidth.142

Using embedding results for general metrics into tree metrics with O(logn) distortion as143

well as embedding of graphs of bounded doubling dimension, graphs of bounded highway144

dimension, and minor-free graphs into graphs with polylogarithmic treewidth as well as145

O(1)-reduction from AR to AR′ ([?]) we obtain the following corollary.146

▶ Corollary 4. There is a polynomial time O(logn)-approximation for AR on general graphs,147

a QPTAS for AR′ and therefore a quasi-polynomial O(1)-approximation for AR for graphs148

with bounded doubling dimension, graphs of bounded highway dimension, and minor-free149

graphs.150

We also show that at a factor 2 loss, we can reduce the general AR problem to the case151

that facilities have cost 0 or +∞, we denote this case by 0/+∞ AR. In other words, the152

special case of the problem that all facilities (to be opened) are given to us and we simply153

have to build clusters of size at most k each of which has one of the open facilities. Even for154

this special case, a good approximation remains elusive.155

▶ Theorem 5. Given an instance G for AR, we can build an instance G′ for 0/+∞ AR156

such that any α-approximate solution to 0/+∞ AR implies a 2α-approximate solution for157

AR on G.158

In the next section, we prove Theorem 1. Then in Section 3 we prove Theorem 2 and in159

Section 4 we prove Theorem 3 and Corollary 4. We defer the proof of Theorem 5 to the full160

version.161
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2 Algorithm for Uniform AR in General Metric162

In this section, we prove Theorem 1. Since each facility (airport) is trivially serving its own163

city, we refer to the remaining capacity k − 1 (to serve other clients) as k for simplicity.164

We assume opening a facility at each vertex costs a uniform value f . Given an instance G165

we first define a modified instance G̃ for each input graph G. The graph G̃ is obtained by166

adding a dummy node r to G and connecting r to all the vertices v ∈ V with an edge of cost167

cvr = f . We first define the MSTσ
r problem and prove the following lower bound.168

▶ Definition 6. In the MSTσ
r problem, we are given a graph G = (V,E) with a vertex r ∈ V .169

The task is to find the minimal cost of the spanning tree of the input graph, while ensuring170

that the degree of vertex r in the solution is at most σ.171

▶ Lemma 7. If σ is the number of components in an optimum solution to AR on G then172

the cost of an optimal solution to the MSTσ
r problem on G̃ is a lower bound on the optimal173

solution to AR on G.174

Proof. Consider an optimal solution ξ to AR on G. Say there are σ components in ξ. After175

adding into ξ a dummy node r and connecting r to the vertices that are open facilities with176

an edge of cost f , we obtain a spanning tree T for G̃ of the same cost, where the vertex r has177

a degree of σ. Namely, this is a feasible solution to MSTσ
r . Therefore, an optimal solution178

to MSTσ
r on G̃ cannot cost more than the optimal solution to AR on G. ◀179

Our algorithm first guesses the number of components in the optimal solution. We do180

this by enumerating all possibilities. Say there are σ components in the optimal solution for181

some integer σ ≤ n. Note that we know σ ≥
⌈
n
k

⌉
for certain, as otherwise there must exist182

some cities that are not getting served. Our algorithm is as follows.183

Construct the instance G̃. Solve the MSTσ
r problem on instance G̃. After removing the184

dummy vertex r, we obtain a set T = {T1, T2, . . . Tσ} of σ connected components (i.e. trees).185

Note that we can solve the MSTσ
r problem using the technique of matroid intersection [?].186

Let M1 = (Ẽ, I1) represent the graphic matroid of G̃ (also known as the cycle matroid or187

polygon matroid), where the ground set Ẽ is the set of edges in G̃, and the set of independent188

sets I1 consists of acyclic subgraphs of G̃. That is to say, each independent set corresponds189

to the edges of a forest in the underlying graph G̃. Let M2 = (Ẽ, I2) denote the partition190

matroid, where the set of independent sets I2 is defined as follows, where N(r) represents all191

the edges incident to the vertex r and Ṽ is the vertex set of G̃,192

I2 =
{
S ⊆ Ẽ

∣∣∣ |S ∩N(r)| ≤ σ, |S ∩ (Ẽ \N(r))| ≤ |Ṽ | − 1 − σ
}
.193

In other words, each independent set of this partitional matroid corresponds to the edge set194

of a subgraph of G̃ with at most |Ṽ | − 1 edges, where there are at most σ edges incident to195

the vertex r and at most |Ṽ | − 1 − σ edges not incident to r.196

Note that a feasible solution to MSTσ
r is an independent set of both matroids. The197

underlying graph must form a spanning tree, so it is an independent set of M1. The set of198

edges must satisfy the degree requirement for vertex r, so it is an independent set of M2.199

For each connected component Ti ∈ T , we obtain a cycle Ci in the following way: double200

the edges of Ti and trace them while short-cutting whenever we encounter a vertex that201

has been visited. We cut each cycle Ci into a set of disjoint subpaths of fixed length k,202

except for at most one subpath per cycle that is strictly shorter than k. Essentially, we have203

transformed the trees in T into a set of paths. Let Pk denote the set of paths with length204

exactly k. For each path in Pk, we simply open one of its cities as an airport. Note that205

SWAT 2024



14:6 Approximation Algorithms for the Airport and Railway Problem

|Pk| ≤
⌊
n
k

⌋
since there are at most n vertices (other than the vertex r) in the graph. In206

addition, as we know σ ≥
⌈
n
k

⌉
, we have |Pk| ≤

⌊
n
k

⌋
≤

⌈
n
k

⌉
≤ σ. Consequently, the cost of207

opening these |Pk| airports is |Pk| · f ≤ σ · f . For those subpaths of length less than k, we208

simply open one of its vertices as the facility. Note that since there are |T | = σ trees Ti209

(hence there are σ corresponding cycles Ci), we have at most σ such short subpaths. The210

current cost is bounded by twice the edge cost of all the trees in T , as well as the facility211

cost of all these subpaths, which is at most f · σ + |Pk| · f ≤ 2σ · f . Meanwhile, the cost of212

the MSTσ
r solution is the edge cost of all the trees in T , plus the cost of incident edges of r213

in the solution, which is f · σ. Thus, it is obvious that the cost is no more than twice the214

cost of the MSTσ
r solution.215

From the analysis above, it should be easy to see that Theorem 1 follows.216

3 QPTAS for Uniform Case in Graphs of Bounded Treewidth217

In this section, our goal is to prove Theorem 2. First, recall the definition of graphs with218

bounded treewidth.219

▶ Definition 8. A tree decomposition of a graph G = (V,E) is a tree T = (V ′, E′) and a220

mapping Ξ : V ′ → 2V where each vertex β ∈ V ′ (also known as a bag) corresponds to a set221

of vertices of G, such that222

For each vertex v in G, it must be included in at least one bag of T .223

For each edge uv in G, the pair of vertices u, v ∈ V must be included in at least one bag224

of T .225

For each vertex v in G, consider the set of all the bags in T that include v. These bags226

induce a connected component in T .227

The width of a tree decomposition is defined as the cardinality of its largest bag minus228

one. The treewidth of a graph G is the smallest w such that G has a tree decomposition229

with width w. Given a graph G = (V,E) of treewidth ω, there is a tree decomposition230

T = (V ′, E′) of G where T is binary, with depth h ∈ O(logn) (where n = |V |) and treewidth231

not exceeding ω′ = 3ω + 2, according to [?]. For simplicity, denote ω′ as ω instead. We232

assume the tree height h = δ logn for some constant δ > 0.233

Our algorithm for uniform ÃR on bounded treewidth graph relies on the technique234

developed in [?] for designing QPTAS for CVRP on such metrics. First, we ignore the235

concept of facilities/airports, we simply pay an extra f for each cluster in our solution (later236

we designate one vertex in each cluster as the facility to be opened). For that, we define a237

new version of the problem which we call UAR (meaning AR with undetermined airports).238

▶ Definition 9. (UAR) The goal is to find a set F of (not necessarily disjoint) clusters
(i.e. trees) using edges in the graph. The size of each cluster must not exceed the capacity
constraint k. Each cluster γ ∈ F has a cost of f and we want to minimise the total cost,
which is defined as

|F| · f +
∑
γ∈F

cost(γ)

where cost(γ) denotes the railway cost of the cluster γ.239

Since this is a relaxed version of the original problem (as we do not specify the location of240

the facilities), its cost is a lower bound of that of the original problem. We can think of each241

vertex in V to have one unit of demand which needs to be sent to an airport to be served. We242

may add dummy demands to a vertex during the algorithm, so a vertex may end up having243

more than one unit of demand. The size of a cluster is defined to be the sum of demands244
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on all its vertices, instead of just the number of vertices. Note that a component may not245

include every vertex that it passes through, as a component may be simply using the edges246

of a vertex to get to somewhere else, which can also be seen as not picking up the demand of247

the vertex. Be mindful that, from the perspective of demands, the size of a component is the248

number of demands it includes, instead of the number of vertices. Therefore the clusters249

in the solution are not necessarily edge-disjoint or vertex-disjoint, but the total number of250

demands in each cluster obeys the capacity constraint.251

For clarity, we refer to the vertices in T as bags, to differentiate them from the vertices252

in G. For the notation β, we refer to it as the name of the bag β ∈ V (T ) as well as the253

corresponding set of vertices β ⊆ V (G). For each bag β, denote the union of vertices in all254

of the bags in the subtree Tβ as Cβ . Note that Cβ also denotes the set of all bags in Tβ .255

Each vertex of G may appear in multiple bags of T as tree decomposition generates256

duplicates. In order to make sure the demand of a vertex does not get duplicated in T , for257

every vertex v ∈ V (G), we assume that the copy/instance of v in the bag β̃ that is the closest258

to the root bag (we know there is a unique one and we denote this copy of v as ṽ) has a259

demand of one, and the rest of the copies of v (which resides in other bags) have demand260

zero.261

Given an optimal solution denoted as OPT, we will demonstrate a process for transforming262

it into a near-optimal solution for UAR and thereby show the existence of such a near-optimal263

solution. This transformation occurs incrementally on T , moving from the bottom to the264

top, one level at a time. The solution before modifying level ℓ is denoted as OPTℓ, and after265

the modification as OPTℓ−1.266

Overview of the approach and relation to [?]: Our goal is to show the existence of267

a near-optimum solution with certain structures. Suppose OPT is an optimum solution for268

UAR and opt is its value. We aim to find a near-optimal solution, of cost (1 +O(ε))opt,269

where each vertex has at least one unit of demand, and the size of partial clusters in any270

subtree Tβ can only be one of polylogarithmically many values. Two concepts are required to271

describe the following data structures, namely, the notions of partial and complete clusters.272

We consider a non-root bag β ∈ V (T ) and the subtree rooted at β, Tβ . A complete cluster in273

Tβ is a cluster that is entirely in the graph Cβ , and a partial cluster is one that uses vertices274

both inside Cβ and outside. Similar to [?], we first assume that the number of clusters in275

OPT is sufficiently large, that is, at least λ logn for some large number λ. Otherwise, if the276

number of clusters in OPT is upper-bounded by Σ = λ logn then a simple DP can solve the277

problem exactly (see [?]). Given an optimal solution OPT, we will demonstrate a process278

for transforming it into a near-optimal solution with certain structural properties that help279

us find one using dynamic programming. This transformation occurs incrementally on T ,280

moving from the bottom to the top, one level at a time. The solution before modifying level281

ℓ is denoted as OPTℓ, and after the modification as OPTℓ−1. Looking at how OPTℓ looks282

like, we would like to “approximately” keep the sizes of partial clusters that extend below β283

in Tβ . A standard approach is to “bucket” the sizes of partial clusters into buckets where284

each bucket contains all those sizes that are within (1 + ε) of each other (e.g. bucket i being285

values in (1 + ε)i . . . [(1 + ε)i+1 − 1]. This will reduce the complexity of the DP table to286

quasi-polynomial: we keep the number of partial clusters of each bucket and try to fill in the287

DP table bottom-up. The problem is that then when we are combining solutions in the DP288

table, since we are keeping the sizes approximately (and sacrificing precision), we may violate289

the capacities unknowingly. The idea developed in [?] was to modify OPT by reducing the290

sizes of the clusters (at a small increase in the number of clusters) so that even if we scale291

the sizes of the new clusters by a small number, they are still capacity-respecting. They292
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used a technique that was used later in [?], called adaptive rounding that we also use here293

to round the sizes of partial clusters in Tβ for any bag β ∈ T . At each bag β, for clusters294

that are in the same “bucket” we swap parts of them with a net effect of reducing their sizes295

while having only a poly-logarithmic many possible bucket sizes at the end. We formalize296

this in the following.297

▶ Definition 10. Define the threshold values {σ1, . . . , στ} where298

σi =
{
i 1 ≤ i ≤ ⌈1/ε⌉
⌈σi−1 · (1 + ε)⌉ i > ⌈1/ε⌉

299

in such a way that the last threshold στ = k. So τ ∈ O(log k/ε).300

We adapted the definitions from [?]. Consider a bag β that is situated at level ℓ. We301

consider partial clusters that cross β and based on their size in Cβ we bucket them. Bucket i302

contains those partial clusters whose size is in the range [σi, σi+1). Now let’s focus on all303

(partial) clusters that are in bucket i of bag β. Each of these clusters has some vertices in Cβ304

and some vertices outside. For a set S ⊂ β consider all the partial clusters in bucket i that305

their intersection with β is S. So each of them will form a number of connected components306

in Cβ where each component contains some part of S; this defines a partition of S. We307

consider all those partial clusters that have the same partition of S together (defined below).308

▶ Definition 11. For a bag β at level ℓ in T , for each set S ⊆ β and partition ℘S of S,309

consider the set b℘S

S which contains the clusters that use exactly the set of vertices S ⊆ β310

to span into Cβ, where ℘S denotes a partition of the set S based on connectivity of the of311

those clusters in Cβ. Define the i-th bucket of b℘S

S , denoted as bi, to store clusters in OPTℓ312

that have a size between [σi, σi+1) inside Cβ, where σi is the i-th threshold value. Denote313

this bucket by a tuple (β, bi, S, ℘S). Denote the number of clusters in bucket (β, bi, S, ℘S) as314

nS,℘S

β,i .315

Essentially, the set S represents the interface that the clusters in the bucket (β, bi, S, ℘S)316

use to attach to the rest of their parts in Cβ , and ℘S is a set that describes the connectivity317

between the vertices of S in Cβ . That is, each part in the partition ℘S specifies a subset318

of vertices of S that need to be connected below. So if u, v ∈ S and there is some set319

P ∈ ℘S such that P ⊇ {u, v}, then u and v need to be connected in Cβ by some cluster. For320

simplicity, we just write ℘S as ℘.321

▶ Definition 12. A bucket b is said to be small if it contains no more than α log2 n/ε322

clusters and is otherwise said to be big, for some constant α ≥ max{1, 20δ}.323

▶ Definition 13. For a big bucket (β, bi, S, ℘), define g groups where g = 2δ logn
ε , denoted as324

Gβ,S,℘i,1 , Gβ,S,℘i,2 , . . . , Gβ,S,℘i,g in the following way (for simplicity assume the size of this bucket325

is a multiple of g, if not add some empty clusters to achieve this). Sort the clusters in326

the (padded) bucket in non-decreasing order, and put the first nS,℘
β,i

g clusters into Gβ,S,℘i,1 , the327

second nS,℘
β,i

g into Gβ,S,℘i,2 , etc. For each group Gβ,S,℘i,j , denote the size of its smallest cluster as328

hβ,S,℘,min
i,j and the size of its biggest cluster as hβ,S,℘,max

i,j .329

Suppose we are considering a big bucket of β and a partial cluster Γ is in the group j > 1330

of the big bucket. We find its top (that is, the part of the cluster that is outside of Tβ)331

and reassign it to another partial cluster (that is no bigger than Γ) with the same order in332

the previous group (i.e., group j − 1) as the order of Γ in group j. The vertices that were333
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originally covered by the partial clusters in the last group are referred to as orphans. This is334

essentially the rounding between groups of a big bucket that was done in [?] for the CVRP335

on bounded treewidth graphs. The idea is that by this operation, the size of each cluster336

goes down enough such that if we “approximate” the sizes by the size of the biggest cluster337

in each group, we are still satisfying the capacity constraints. However, some vertices that338

were covered by the partial clusters of the last group are now left “uncovered” (or orphan).339

We will use some extra clusters to pick up (serve) the now orphan vertices.340

We come up with a structure theorem that shows the existence of a near-optimal solution341

with certain structures, and then provide a dynamic programming algorithm for the UAR342

problem.343

3.1 Structure Theorem for Graphs with Bounded Treewidth344

The steps of modifying OPT to a near-optimal solution (denoted as OPT′) are largely the345

same as the ones in [?]. Let’s assume we randomly choose clusters from OPT, denoted as346

C, with a probability of ε. After selecting these clusters, we duplicate each chosen one and347

assign both duplicates of each chosen cluster to one of the levels ℓ that it visits1, with equal348

probability. These duplicated clusters are referred to as the extra clusters. We will bound349

their total cost. The proof is very similar to the one in [?] and we only need to show the350

part concerning the facility costs.351

Recall f is the (uniform) facility opening cost, ε is the probability each cluster γ in OPT352

is selected as the extra cluster, k is the capacity of each cluster, and ω is the treewidth of G.353

▶ Lemma 14. The expected cost of the extra clusters sampled is 2ε · opt.354

We make use of the following modified definitions and lemmata from [?]. They apply to355

our problem as the proofs of the lemmata are almost identical.356

Denote the bags in level ℓ of T as Bℓ. Define the set Xℓ to comprise the extra clusters357

assigned to bags at level ℓ. For every bag β ∈ Bℓ and its bucket (β, bi, S, ℘), let XS,℘
β,i358

represent the extra clusters (using vertices in S to span into Cβ , with ℘ depicting connectivity359

downwards) in Xℓ whose partial clusters inside Cβ has a size that falls within the range360

defined by bucket bi. For an extra cluster γ ∈ XS,℘
β,i , it covers some partial cluster ζ ∈ Gβ,S,℘i,g361

(which is without its top). That is, the extra cluster γ only picks up demands at the levels362

≥ ℓ and acts as the top of ζ, in particular, this combined cluster picks up only those demands363

of ζ’s vertices (which are all orphans).364

▶ Lemma 15. At any level ℓ, each bag β ∈ Bℓ and its big buckets (β, bi, S, ℘) satisfy, w.h.p.∣∣∣XS,℘
β,i

∣∣∣ ≥ ε2

δ logn · nS,℘β,i .

▶ Lemma 16. For all bags β at level ℓ in T , their big buckets (β, bi, S, ℘) and partial clusters365

in Gβ,S,℘i,g ⊆ bi, we can make adjustments to the extra clusters present in XS,℘
β,i without366

incurring any additional cost, and introduce some dummy demands within β when necessary,367

so that:368

1. The partial clusters in Gβ,S,℘i,g are now incorporated into some clusters in XS,℘
β,i . (That369

is, all the demands that were covered by some partial cluster in Gβ,S,℘i,g are picked up by370

some cluster in XS,℘
β,i .)371

1 If a cluster γ passes crosses bag of level ℓ, we say γ visits or crosses level ℓ.
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2. The modified partial clusters that cover the orphans (i.e., vertices in Gβ,S,℘i,g ) have precisely372

the size of hβ,S,℘,max
i,g and all clusters remain underneath the size limit of k units of demand.373

3. For each modified partial cluster in the set XS,℘
β,i , its partial clusters at a bag β′ ∈ Bℓ′ is374

also of one of O(log k log2 n/ε2) many sizes, where ℓ′ is any lower levels > ℓ.375

Note that when we add dummy demands for some cluster γ in some bucket (β, bi, S, ℘),376

we simply add these dummy demands onto the vertices in S. Using these lemmata and a very377

similar proof to the one in [?], we can obtain a Structure Theorem for our UAR problem in378

the case of graphs with bounded treewidth.379

▶ Theorem 17. (Structure Theorem) Consider an instance I for the UAR problem. Denote its380

optimal solution as OPT, with cost opt. We can transform OPT to another solution OPT′
381

so that, with high probability, OPT′ is a near-optimal solution of cost at most (1 + 2ε)opt.382

Additionally, at every β in OPT′, all the clusters in Cβ have one of O(log k log2 n/ε2)383

possible sizes. Consider a bucket (β, bi, S, ℘) in OPT′. We must have384

If bi is small, the number of partial clusters in Cβ whose size falls within bi is at most385

α log2 n/ε.386

If bi is big, it has exactly g = 2δ logn/ε group sizes which are denoted as

σi ≤ hβ,S,℘,max
i,1 ≤ hβ,S,℘,max

i,2 ≤ · · · ≤ hβ,S,℘,max
i,g < σi+1

Each cluster in bi has a size of one of the h-values above.387

Having this structure theorem one can design a (relatively complex) DP to compute a388

near-optimum solution as guaranteed by this structure theorem. This DP builds upon ideas389

of the DP in [?] but has more complexity as the clusters here do not necessarily have a390

common point (like the dépôt in the CVRP problem). This will show that we can compute391

a solution such as OPT′ in Theorem 17 in time nO(ωω·log3 n/(ε2 logω ω)).392

We can transform the approximate solution obtained for the UAR problem into a solution393

to the ÃR problem, without any increase in the cost. All we need to do is to pick a node in394

each cluster to open a facility at (since we are already paying f for each cluster, this cost is395

accounted for in the solution to UAR). This can be easily done since in a solution to UAR396

each vertex is “covered” by a unique cluster.397

4 Constant Approximation for Nonuniform-AR398

In this section, we prove Theorem 3. For ease of exposition, we present the proof for the399

case of trees (the extension to graphs with bounded treewidth appears in the full version).400

Recall that in the relaxation AR′, we are given a graph G = (V,E) where each vertex v ∈ V401

has a non-negative opening cost av and each edge e ∈ E has a non-negative weight ce. Every402

edge and vertex has capacity k ∈ N+. Find a subset of vertices Φ ⊆ V as facilities (also403

known as airports), and a multiset Ξ of edges from E to get a transportation network that404

ensures one unit of flow from each vertex in V can be sent to facilities in Φ, without violating405

the capacity constraint on any edge or facility. The goal is to find such a network while406

minimising the total cost
∑
v∈Φ

av +
∑
e∈Ξ

ce. First, we prove some properties in an optimum407

solution to AR′.408

▶ Lemma 18. In an optimum solution, we can assume there are not any flows of opposite409

directions on the same edge, as we can uncross them by redirecting each flow and attain a410

lower cost.411
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α1

vι

vj

α2

Figure 2 A simplest example of crossing flows in AR′. The red vertices are open facilities.

Note that it is allowed for multiple clients to use the same edge to send their demands in the412

same direction.413

v′ u w υ

α1

α2

path

pa
th

pa
th

path

Figure 3 The crossing flow is at the edge uw

Proof. Without loss of generality, assume the vertices v′ and υ caused crossing flow at edge414

uw. That is, the demand of v′ travels from v′ to u, crosses the edge uw from u to w, and415

from w to a facility α2; and the demand of υ travels from υ to w, crosses the edge uw from416

w to u, and from u to a facility α1. We can reroute so that the demand of v′ travels from v′
417

to u, and then from u to the facility α1; and similarly, the demand of υ travels from υ to w,418

and then from w to the facility α2. It is easy to see such a rerouting makes the total cost419

decrease, for the demands of both vertices v′ and υ now take a shorter path to be served. ◀420

Consider a tree T as the input graph. A subproblem here is defined on the subtree Tv for
each vertex v. Since we aim to obtain a flow network in T , each vertex v, as the root of the
subtree Tv, will be considered a portal in the corresponding subproblem. There is thus a DP
cell for each vertex v in T . Note that at each vertex v, the portal configuration ψv simplifies
to the direction and value of the flow at v

ψv = ±fv

where we use − (minus sign) to signify the flow is leaving Tv, and + (plus sign) to signify the421

flow is entering Tv. fv is the absolute value of the signed integer ψv and denotes the value422

of the unidirectional (integral) flow passing through the vertex v and satisfies 0 ≤ fv ≤ n,423

where n is the number of vertices in T . Note that in AR′, if an edge needs to carry a flow424

fv, then we need to install
⌈
fv

k

⌉
parallel edges in the solution. At each vertex v, we also425

consider both of the scenarios where v is an airport or it is not. We use a Boolean variable426

πυ = True (or πυ = 1) to indicate that the portal υ is opened as an airport.427

We define the DP table D as follows, for each v in T , let the entry D[v, πv, ψv] store428

the cost of the optimal solution to AR′ on Tv with the amount of flow going in/out of Tv429

conforming to ψv, with portal v opened as an airport if and only if πv.430
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At each node, we also consider its parent edge and see it as part of the subtree Tv. For the431

root node ϑ, we assume its parent edge has cost 0. The result will be minπϑ
{D[ϑ, πϑ, ψϑ = 0]}432

as there will be no flow entering or leaving T at the root.433

Base cases: At a leaf node v, denote the parent edge of v as e. Recall fv = |ψv|.434

D[v, πv, ψv] = av · πv +


ce if ψv = −1

ce ·
⌈
fv
k

⌉
if 0 ≤ ψv < +k and πv = 1

+∞ otherwise

435

Here ψv = −1 means there is one unit of flow going out of the leaf v (actually does not need436

to open a facility at v). If 0 ≤ ψv < +k, it means v does not emit any flow or it is absorbing437

flows, then we have to make sure πv = True. Note that in this case,
⌈
fv

k

⌉
= 1 when438

0 < ψv < +k, and
⌈
fv

k

⌉
= 0 when ψv = 0. If ψv ≥ +k then we know it is not achievable,439

since a facility has capacity k and cannot absorb more flows. If ψv < −1 then it is simply440

impossible, as a vertex only has one unit of demand and cannot emit more than that. For441

these cases, we set the entry to +∞.442

For a node v with z children w1, w2, . . . , wz, similar to the case of uniform facility cost443

on trees in the previous chapter, we define an inner DP table B. Assume we have computed444

D[wj , πwj
, ψwj

] for all possible πwj
and ψwj

, for all 1 ≤ j ≤ z. Let B[v, πjv, ψjv, j] store the445

cost of the optimal solution to AR′ on Tv as if the portal v only has children w1, w2, . . . , wj .446

Lastly, we define D[v, πv, ψv] = B[v, πv, ψv, z].447

Case 1: j = 1. Only consider the first child of v.

B[v, π1
v , ψ

1
v , 1] = min

ψw1

{
D[w1, πw1 , ψw1 ] + av · π1

v + ce ·
⌈
f1
v

k

⌉ ∣∣∣∣∣ η(π1
v , ψ

1
v , ψw1) = True

}

where η(π1
v , ψ

1
v , ψw1) is a Boolean indicator function that takes into account the flow on v’s448

parent edge and the edge vw1, as well as the decision about whether or not to open the449

portal v as an airport. It is true if and only if all these parameters are compatible. Recall450

that fv is the absolute value of ψv.451

η(π1
v , ψ

1
v , ψw1) =


True if 0 ≤ ψ1

v − ψw1 < k ∧ π1
v = True,

or if ψw1 − ψ1
v = 1

False otherwise
452

The case ψw1 − ψ1
v = 1 means that v does not act like an airport as it is not absorbing any453

flow, and is sending its own demand elsewhere (hence unnecessary to open an airport there).454

The case 0 ≤ ψ1
v − ψw1 < k means the portal v is absorbing flows and v must be opened455

as an airport. The other cases are impossible, either because v is absorbing too much flow456

which violates its capacity limit, or because v is sending out more than one unit of flow.457

Case 2: For 2 ≤ j ≤ z. Assume all entries of the form B[v, πj−1
v , ψj−1

v , j − 1] have been458

computed. We define459

B[v, πjv, ψjv, j] = min
πwj

,πj−1
v ,ψwj

,ψj−1
v :

πjv ≥ πj−1
v ,

η
(
πjv, ψ

j
v, ψ

j−1
v , ψwj

)
= True

(Ω)460
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v

w1

−µ

−(µ+ 1)

(a) Portal v is sending its demand outside Tv

v

w1

+(ζ + 1)

+ζ

(b) Portal v is sending its demand into Tw1

Figure 4 Here µ and ζ are non-negative integers. The label on edge vw1 represents ψw1 and the
label above v stands for ψ1

v.

The expression Ω should be{
D[wj , πwj

, ψwj
] + B[v, πj−1

v , ψj−1
v , j − 1] + av ·

(
πjv − πj−1

v

)
+ ce ·

⌈
f jv − f j−1

v

k

⌉}
where we define the indicator function η as follows:461

η(πjv, ψjv, ψj−1
v , ψwj

) =


True if 0 < ψjv − (ψj−1

v + ψwj
) ≤ k ∧ πjv = True,

or if ψj−1
v + ψwj = ψjv

False otherwise
462

Let e denote v’s parent edge. The case ψj−1
v +ψwj = ψjv means that after taking wj (the j-th463

child of v) into consideration, the flow on e whilst only considering the first j − 1 children464

(which is ψj−1
v ), and the flow on the edge vwj adds up to the flow on e while considering all465

the j children (which is ψjv). This means the portal v is not absorbing any of the flow from466

Twj
, and thus there is no need to open it as an airport if it has not been opened. The case467

0 < ψjv−(ψj−1
v +ψwj ) ≤ k means after taking wj into consideration, the portal v is absorbing468

flows and needs to be opened, if it has not been opened. Note that
⌈
fj

v −fj−1
v

k

⌉
can be negative469

if f jv < f j−1
v , which means the “load” on the parent edge of v has decreased and we pay less470

on the edge cost. This exact algorithm on trees suggests we have an O(logn)-approximation471

algorithm for the general metric (using metric approximation, also known as embeddings by472

tree metrics).473

4.1 Algorithm Efficiency474

We will use a bottom-up approach, assuming that the relevant entries for subproblems have475

already been pre-computed. At any step, checking the value for the indicator function η takes476

O(1) time. To compute B[v, πjv, ψjv, j], we need to consider all possible ψwj and ψj−1
v , which477

is in total O(n2) possibilities. Since there are n nodes in the tree, the time for computing478

the table D is in O(n4).479

4.2 Generalisation for AR with Steiner Vertices480

In this section, we describe how the algorithm above can be generalised for AR′ with Steiner481

vertices with a few modifications. More generally, this algorithm can apply to the case where482
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the set of facilities or the set of clients is not the same as the entire vertex set of the input483

graph. If a vertex v is not part of the set of facilities, it should not be opened as a facility484

(after all, no facility cost has been defined for it). So the Π-vector should not allow any copy485

of v to be opened. If a vertex v is not part of the set of clients, it carries no demand, and so486

does any of its copies in the tree decomposition.487

Note that this will be useful when we try to embed a graph into a graph with bounded488

treewidth where the host graph of the input graph (via graph embedding) may have Steiner489

vertices. If ∆ is the aspect ratio of G (ratio of largest to smallest edge cost) then by standard490

scaling (see for e.g. [?]) one can assume that ∆ is bounded by polynomial in n at a loss of491

(1 + ϵ) on optimum solution.492

We use the following lemma by [?] about embedding graphs of doubling dimension D493

into a graph with treewidth ω ≤ 2O(D)
⌈(

4D log ∆
ε

)D⌉
.494

▶ Lemma 19. (Theorem 9 in [?]) Let (X, d) be a metric with doubling dimension D and
aspect ratio ∆. Given any ε > 0, the metric (X, d) can be (1+ε) probabilistically approximated
by a family of treewidth ω-metrics for

ω ≤ 2O(D)

⌈(
4D log ∆

ε

)D
⌉
.

We adapt Theorem 8 and its proof from [?] to get the following result.495

▶ Theorem 20. For any ε > 0 and D > 0, given an input graph G of the AR′ problem496

where G has doubling dimension D, there is an algorithm that finds a (1 + ε)-approximate497

solution in time nO(DD logD n/εD).498

We introduce the following lemma proposed by [?] about embedding graphs of highway499

dimension W into a graph with treewidth ω ∈ (log ∆)O(log2( W
ελ )/λ).500

▶ Lemma 21. (Theorem 1.3 in [?]) Let G be a graph with highway dimension W of violation
λ > 0, and aspect ratio ∆. For any ϵ > 0, there is a polynomial-time computable probabilistic
embedding H of G with expected distortion 1 + ε and treewidth ω where

ω ∈ (log ∆)O(log2( W
ελ )/λ).

We adapt Theorem 9 and its proof from [?] to get the following result.501

▶ Theorem 22. For any ε > 0, λ > 0 and W > 0, given an input graph G of the AR′
502

problem where G has highway dimension W and violation λ, there is an algorithm that finds503

a (1 + ε)-approximate solution in time n
O

(
loglog2( W

ελ )· 1
λ n

)
.504

We introduce the following lemma proposed by [?] about embedding minor-free graphs505

(including planar graphs, which is a kind of K-minor-free graphs) into a graph with treewidth506

OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)

where ℓ is the logarithm of the aspect ratio507

of the input graph.508

▶ Lemma 23. (Theorem 1.1 in [?]) For every fixed graph K, there exists a randomised
polynomial-time algorithm that, given an edge-weighted K-minor-free graph G = (V,E) and
an accuracy parameter ε > 0, constructs a probabilistic metric embedding of G with expected
distortion (1 + ε) into a graph of treedepth (the treedepth of a graph is an upper bound on its
treewidth)

OK
(
(ℓ+ lnn)6/ε · ln2 n · (lnn+ ln ℓ+ ln(1/ε))5)
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where n = |V | and ℓ = log ∆ is the logarithm of the aspect ratio ∆ of the metric induced by509

G.510

▶ Theorem 24. For any ε > 0, given an input graph G of the AR′ problem where G is a511

minor-free graph, there exists an algorithm that finds a (1 + ε)-approximate solution in time512

nOK(log8 n·(logn+log(1/ε))5/ε).513

Theorems 20, 22, and 24 imply Corollary 4.514

5 Concluding Remarks515

The special case of 0/+∞ AR (at a factor 2 loss) is equivalent to the following variant of516

CCCP: given a collection R of dépôts in a metric, find a collection of cycles of size ≤ k each517

containing a unique dépôt that together covers all the non-dépôt nodes. Although there are518

constant-factor approximations for CVRP, we do not know of a good approximation for this519

version.520
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