Review of Pointers and Addresses

¢ C has a simple memory model. Blocks of memory are
organized as a sequence of bytes that can be manipulated
individually or in contiguous groups.

* Each byte of memory has an address.

An address is stored in a pointer.

e Each datatype requires one or more bytes to store it.
Typically a character requires one byte, an integer requires
2 or 4 bytes, a double usually take 8 bytes, and so on. It
follows that not every byte address is a legitimate memory
address for the start of a data object.

Consider how we exchange two values in memory. For the
guantities a and b, we would simply write

doubl e a, b;

doubl e t;

oo
o
TERa

e However, if we want to do the same thing inside a
procedure we would have to pass the addresses of a and b as
actual parameters, as follows

swap(&, &b);

February 8, 2001 Page 1

Keep in mind what you want to do with the pointer.

Do you want to:

e assign it to another pointer

e pass it as a pointer argument?

« dereference it (follow it) and work with the object that
it points to?

Review the examples pointers-1.c and its associated output pointers-
1.log, and pointers-2.c and its associated output pointers-2.log. See
class handout and online notes.

Arrays and Pointers (continued)

e C really does not have arrays.

Array notation is simply a form of pointer shorthand.
Given the two declarations:

doubl e a[10];
doubl e* pa;

The following pairs of notation are equivalent

&a[O] a
ali] *(ati)
*(pat) pali]

February 8, 2001 Page 3

We know that a pointer to a double data object is declared as
follows:

doubl e* p;
Thus the formal definition of the swap function must be:

voi d swap (doubl e* p, double* q) {

doubl e tt;
tt = *p; I/l pis apointer, *pis the value
* — kM-
p - q’
*q = tt;
}
To access the data object referenced by a pointer, use the
as in
P =*p + 1, adds 1 to the contents of p, as does
pl0] =p[0] + 1
while
p[O] = p[1]; is the same as
p="(p + 1),

p is incremented by the size of the object.

But what about
*p = *(ptH); /I avoid such ambiguous constructs.
e It is important to remember that a pointer is an address
of an object of a _certain type. You must keep track of the
when you are manipulating addresses of objects,
and when manipulating the objects themselves.

February 8, 2001 Page 2

e The only difference between arrays and pointers is that
declaring a as an array means that the identifier a is read-
only. That is, it cannot appear as an Lvalue.

pa = &[3]
but not
a =pa+1

Here we are incrementing pa by one unit of size double.
This is an address, but if we store it in a, then we would be
saying that &a[O] isnow &a[1] . Even a computer would be
confused!! Therefore not allowed, because the original
array declaration was

doubl e a[10];

February 8, 2001 Page 4

See King Chapter 17 or K&R P. 167
Dynamic Memory Allocation.

By using the three routines below we can implement

dynamically allocated arrays by providing a mechanism for

obtaining a pointer to a block of new memory.
ncl ude <stdlib. h>

voi d* nmal l oc(size t size);

voi d* calloc(size t NunMenbers, size t size);

voi d* real l oc(void* ptr, size t size);

void free(void* ptr);

Notes:

Malloc allocates N-bytes of space (not initialized)

Calloc allocates N-units of space, each of the same specified

size. Each unit is set to "zero"

Realloc, is like malloc, creates a new space of M-bytes and

copies over the contents of the data pointed to by "ptr".

Look at the examples pointers-3.c and its associated output

pointers-3.log

February 8, 2001

Flow Diagram:

Recognition of polynomial terms

Done, evaluate

C[power] = coeff

Error, no exponent
polynomial = sum (C[i] x"i)
i=0toN

int i; double C[100];

February 8, 2001

Page 5

Page 7

Handling mixed character and numeric data.

Formal definition of polynomial for ease of programming.

<pol ynom al > ==> {<si gn><coef f ><exponent >} *

sign> => + | -

<coef f> => DABLE

<exponent > ==> x<degree> | x | []
<degree> ==> | NTEGER

Draw a state-transition diagram that describes the

"processing” of a polynomial.

Note: ax*2 + bx+ c=c+ bx+ax"2 =c + x(b + x(a + ...)))
So a polynomial can be evaluated without the use of pow().

Typically want to read in a data stream, remove blanks or
whitespace, store into memory (e.g. an array) and then use
fgetc(), fscanf() to re-read the data now in a more regular

form, but from an array instead of from a file.

Usefscanf (fid, "%f", coeff);

Usefscanf (fid, "%l", degree); orfgetc(fid)

Use fgetc (fid) and ungetc (char, fid) to examine characters.

February 8, 2001

Example:
char str [100]; /I char* str =
int ch, i =0;
while ((ch = getchar()) != NL)
if (ch '= BLANK)
str[i++] = ch;
strfi] = EOS;

we can now re-read str[] as if it were a file.
polynomial evaluation one might do:

int rcode, power;
char x = 'x’;
double coeff;

Page 6

malloc(100);

/I or perhaps EOF

/I or *(str+i++) = ch;
/I EOS is "\0'

In the case of

rcode = sscanf (str, "%If%c"%d", &coeff, &x, &power);

/I seeking a term

switch (rcode) {

case 1: power = 0; break;
case 2: power = 1; break;
case 3: break;

default:

}

exit (-printf("End of polynomial.\n"));

printf ("%c"%d has coefficient %f\n", x, power, coeff);

return O;

February 8, 2001

Page 8

