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ABSTRACT
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evaluation. All components are important, although evaluation with its quiescence
analysis is the part which makes each program’s play unique. The speed of a chess
program is a function of its move generation cost, the complexity of the position
under study and the brevity of its evaluation. More important, however, is the quality
of the mechanisms used to discontinue (prune) search of unprofitable continuations.
The most reliable pruning method in popular use is the robust alpha-beta algorithm,
and its many supporting aids. These essential parts of game-tree searching and prun-
ing are reviewed here, and the performance of refinements, such as aspiration and
principal variation search, and aids like transposition and history tables are compared.
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1. INTRODUCTION

A typical chess program contains three distinct elements: board description and move genera-
tion, tree searching/pruning, and position evaluation. Several good descriptions of the necessary tables
and data structures to represent a chess board exist in readily available books [(ed83, WeB85] and arti-
cles [Bel70, Cra84]. Even so, there is no general agreement on the best or most efficient representa-
tion. From these tables the move list for each position is generated. Sometimes the Generate function
produces all the feasible moves at once, with the advantage that they may be sorted and tried in the
most probable order of success. In small memory computers, on the other hand, the moves are pro-
duced one at a time. This saves space and may be quicker if an early move refutes the current line of
play. Since only limited sorting is possible (captures might be generated first) the searching efficiency
is generally lower, howev er. Rather than re-address these issues, first-time builders of a chess program
are well advised to follow Larry Atkin’s excellent Pascal-based model [FrA79].

Perhaps the most important part of a chess program is the Evaluate function invoked at the max-
imum depth of search to assess the merits of the moves, many of which are capturing or forcing moves
that are not ‘‘dead.’’ Typically a limited search (called a quiescence search) must be carried out to
determine the unknown potential of such active moves. The evaluation process estimates the value of
chess positions that cannot be fully explored. In the simplest case Evaluate only counts the material
difference, but for superior play it is also necessary to measure many positional factors, such as pawn
structures. These aspects are still not formalized, but adequate descriptions by computer chess practi-
tioners are available in books [SlA77, WeB85].

In the area of searching and pruning, all chess programs fit the following general pattern. A full
width ‘‘exhaustive’’ search (all moves are considered) is done at the first few layers of the game tree.
At depths beyond this exhaustive region some form of selective search is used. Typically, unlikely or
unpromising moves are simply dropped from the move list. More sophisticated programs select those
discards based on an extensive analysis. Unfortunately, this type of forward pruning is known to be
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error prone and dangerous; it is attractive because of the big reduction in tree size that ensues. Finally,
at some maximum depth of search, the evaluation function is invoked; that in turn usually entails a fur-
ther search of designated moves like captures. Thus all programs employ a model with an implied
tapering of the search width, as variations are explored more and more deeply. What differentiates one
program from another is the quality of the evaluation, and the severity with which the tapering opera-
tion occurs. This paper concentrates on the tree searching and pruning aspects, especially those which
are well formulated and have provable characteristics.

2. COMPONENTS OF SEARCH

Since most chess programs examine large trees, a depth-first search is commonly used. That is,
the first branch to an immediate successor of the current node is recursively expanded until a leaf node
(a node without successors) is reached. The remaining branches are then considered as the search pro-
cess backs up to the root. Other expansion schemes are possible and the domain is fruitful for testing
new search algorithms. Since computer chess is well defined, and absolute measures of performance
exist, it is a useful test vehicle for measuring algorithm efficiency. In the simplest case, the best algo-
rithm is the one that visits fewest nodes when determining the true value of a tree. For a two-person
game-tree, this value, which is a least upper bound on the score (or merit) for the side to move, can be
found through a minimax search. In chess, this so called minimax value is a combination of both
‘‘MaterialBalance’’ (i.e., the difference in value of the pieces held by each side) and ‘‘StrategicBal-
ance’’ (e.g., a composite measure of such things as mobility, square control, pawn formation structure
and king safety) components. Normally, Evaluate computes these components in such a way that the
MaterialBalance dominates all positional factors.

2.1. Minimax Search

For chess, the nodes in a two-person game-tree represent positions and the branches correspond
to moves. The aim of the search is to find a path from the root to the highest valued leaf node that can
be reached, under the assumption of best play by both sides. To represent a level in the tree (that is, a
play or half move) the term ‘‘ply’’ was introduced by Arthur Samuel in his major paper on machine
learning [Sam59]. How that word was chosen is not clear, perhaps as a contraction of ‘‘play’’ or
maybe by association with forests as in layers of plywood. In either case it was certainly appropriate
and it has been universally accepted.

A true minimax search of a game tree may be expensive since every leaf node must be visited.
For a uniform tree with exactly W moves at each node, there are W D nodes at the layer of the tree that
is D ply from the root. Nodes at this deepest layer will be referred to as terminal nodes, and will serve
as leaf nodes in our discussion. Some games, like Fox and Geese [Bel72], produce narrow trees
(fewer than 10 branches per node) that can often be solved exhaustively. In contrast, chess produces
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bushy trees (average branching factor, W, of about 35 moves [Gro65]). Because of the size of the
game tree, it is not possible to search until a mate or stalemate position (a true leaf node) is reached, so
some maximum depth of search (i.e., a horizon) is specified. Even so, an exhaustive search of all
chess game trees involving more than a few moves for each side is impossible. Fortunately the work
can be reduced, since it can be shown that the search of some nodes is unnecessary.

2.2. The Alpha-Beta (α -β ) Algorithm

As the search of the game tree proceeds, the value of the best terminal node found so far
changes. It has been known since 1958 that pruning was possible in a minimax search [NSS58], but
according to Knuth and Moore the ideas go back further, to John McCarthy and his group at MIT. The
first thorough treatment of the topic appears to be Brudno’s 1963 paper [Bru63]. The α -β algorithm
employs lower (α ) and upper (β ) bounds on the expected value of the tree. These bounds may be used
to prove that certain moves cannot affect the outcome of the search, and hence that they can be pruned
or cut off. As part of the early descriptions about how subtrees were pruned, a distinction between
deep and shallow cut-offs was made. Some versions of the α -β algorithm used only a single bound
(α ), and repeatedly reset the β bound to infinity, so that deep cut-offs were not achieved. To correct
this flaw, Knuth and Moore introduced a recursive algorithm called F2 [KnM75], and used it to prove
properties about the α -β algorithm. A ‘‘negamax’’ framework was also employed whose primary
advantage is that by always passing back the negative of the subtree value, only maximizing operations
are needed. In Figure 1, Pascal-like pseudo code is used to present our α -β function, AB, in the same
negamax framework. A Return statement has been introduced as the convention for exiting the func-
tion and returning the best subtree value or score. Omitted are details of the game-specific functions
Make and Undo (to update the game board), Generate (to find moves) and Evaluate (to assess terminal
nodes). In the pseudo code of Figure 1, the max(α ,score) operation represents Fishburn’s ‘‘fail-soft’’
condition [Fis84], and ensures that the best available value is returned (rather than an α /β bound),
ev en if it lies outside the α -β window. This idea is usefully employed in some of the newer refine-
ments to the α -β algorithm.
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FUNCTION AB (p : position; α, β, depth : integer) : integer;
{ p is pointer to the current node }
{ α and β are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR score, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN

IF depth = 0 THEN { horizon node, maximum depth? }
Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ find score of best variation }

score := -∞;
FOR j := 1 TO sizeof(posn) DO BEGIN

Make(posn[j]); { make current move }
value := -AB (posn[j], -β, -max(α,score), depth-1);
IF (value > score) THEN { note new best score }

score := value;
Undo(posn[j]); { retract current move }
IF (score ≥ β) THEN { a cut-off? }

GOTO done;
END ;

done:
Return(score);

END ;

Figure 1: Depth-limited Alpha-Beta Function.
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Figure 2: The Effects of α − β Pruning.
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Although tree-searching topics involving pruning appear routinely in standard Artificial Intelli-
gence texts, chess programs remain the major application for the α -β algorithm. In the texts, a typical
discussion about game-tree search is based on alternate use of minimizing and maximizing operations.
In practice, the negamax approach is preferred, since the programming is simpler. Figure 2 contains a
small 3-ply tree in which a Dewey-decimal scheme is used to label the nodes, so that the node name
carries information about the path back to the root node. Thus p.2.1.2 is the root of a hidden subtree
whose value is shown as 7 in Figure 2. Also shown at each node of Figure 2 is the initial alpha-beta
window that is employed by the search. Note that successors to node p.1.2 are searched with an initial
window of (α ,5). Since the value of node p.1.2.1 is 6, which is greater than 5, a cut-off is said to occur,
and node p.1.2.2 is not visited by the α -β algorithm.

2.3. Minimal Game Tree

If the ‘‘best’’ move is examined first at every node, the minimax value is obtained from a traver-
sal of the minimal game tree. This minimal tree is of theoretical importance since its size is a lower
bound on the search. For uniform trees of width W branches per node and a search depth of D ply,
Knuth and Moore provide the most elegant proof that there are
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terminal nodes in the minimal game tree [KnM75], where ⎡x⎤ is the smallest integer ≥ x, and ⎣x⎦ is the
largest integer ≤ x. Since such a terminal node rarely has no successors (i.e., is not a leaf) it is also
called a horizon node, with D the distance from the root node to the horizon [Ber73].

2.4. Aspiration Search

An α -β search can be carried out with the initial bounds covering a narrow range, one that spans
the expected value of the tree. In chess these bounds might be (MaterialBalance-Pawn, MaterialBal-
ance+Pawn). If the minimax value falls within this range, no additional work is necessary and the
search usually completes in measurably less time. The method was analyzed by Brudno [Bru63],
referred to by Berliner [Ber74], and experimented with by Gillogly [Gil78], but was not consistently
successful. A disadvantage is that sometimes the initial bounds do not enclose the minimax value, in
which case the search must be repeated with corrected bounds, as the outline of Figure 3 shows. Typi-
cally these failures occur only when material is being won or lost, in which case the increased cost of a
more thorough search is acceptable. Because these re-searches use a semi-infinite window, from time
to time people experiment with a ‘‘sliding window’’ of (V, V+PieceValue), instead of (V, +∞). This
method is often effective, but can lead to excessive re-searching when mate or large material gain/loss
is in the offing.
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{ Assume V = estimated value of position p, and }
{ e = expected error limit }
{ depth = current distance to horizon }
{ p = position being searched }

α := V - e; { lower bound }
β := V + e; { upper bound }

V := AB (p, α, β, depth);
IF (V ≥ β) THEN { failing high }

V := AB (p, V, +∞, depth)
ELSE
IF (V ≤ α) THEN { failing low }

V := AB (p, -∞, V, depth);

{ A successful search has now been completed }
{ V now holds the current value of the tree }

Figure 3: Narrow Window Aspiration Search.

After 1974, ‘‘iterated aspiration search’’ came into general use, as follows: ‘‘Before each itera-
tion starts, α and β are not set to -∞ and +∞ as one might expect, but to a window only a few pawns
wide, centered roughly on the final score [value] from the previous iteration (or previous move in the
case of the first iteration). This setting of ‘high hopes’ increases the number of α -β cutoffs’’ [SlA77].
Even so, although aspiration searching is still popular and has much to commend it, minimal window
search seems to be more efficient and requires no assumptions about the choice of aspiration window
[Mar83].

2.5. Quiescence Search

Even the earliest papers on computer chess recognized the importance of evaluating only those
positions which are ‘‘relatively quiescent’’ [Sha50] or ‘‘dead’’ [TSB53]. These are positions which
can be assessed accurately without further search. Typically they hav e no moves, such as checks, pro-
motions or complex captures, whose outcome is unpredictable. Not all the moves at horizon nodes are
quiescent (i.e., lead immediately to dead positions), so some must be searched further. To limit the
size of this so called quiescence search, only dynamic moves are selected for consideration. These
might be as few as the moves that are part of a single complex capture, but can expand to include all
capturing moves and all responses to check [Gil72]. Ideally, passed pawn moves (especially those
close to promotion) and selected checks should be included [HGN85, Tho82], but these are often only
examined in computationally simple endgames. The goal is always to clarify the node so that a more
accurate position evaluation is made. Despite the obvious benefits of these ideas, the realm of quies-
cence search is unclear, because no theory for selecting and limiting the participation of moves exists.
Present quiescent search methods are attractive; they are simple, but from a chess standpoint leave
much to be desired, especially when it comes to handling forking moves and mate threats. Even
though the current approaches are reasonably effective, a more sophisticated method is needed for
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extending the search, or for identifying relevant moves to participate in the selective quiescence search
[Kai82]. On the other hand, some programs manage quite well without quiescence search, using direct
computation to evaluate the exchange of material [SpS78].

2.6. Horizon Effect

An unresolved defect of chess programs is the insertion of delaying moves that cause any
inevitable loss of material to occur beyond the program’s horizon (maximum search depth), so that the
loss is hidden [Ber73]. The ‘‘horizon effect’’ is said to occur when the delaying moves unnecessarily
weaken the position or give up additional material to postpone the eventual loss. The effect is less
apparent in programs with more knowledgeable quiescence searches [Kai82], but all programs exhibit
this phenomenon. There are many illustrations of the difficulty; the example in Figure 4, which is
based on a study by Kaindl [Kai82], is clear. Here a program with a simple quiescence search involv-
ing only captures would assume that any blocking move sav es the queen. Even an 8-ply search (...,
Pb2; Bxb2, Pc3; Bxc3, Pd4; Bxd4, Pe5; Bxe5) might not show the inevitable, ‘‘thinking’’ that the
queen has been saved at the expense of four pawns! Thus programs with a poor or inadequate quies-
cence search suffer more from the horizon effect. The best way to provide automatic extension of non-
quiescent positions is still an open question, despite proposals such as bandwidth heuristic search
[Har74].

:: :: Rb Kb

:: :: Qw Pb Qb

:: :: Pb :: ::

:: Pb :: Pb :: Pw

:: Pb :: Pw ::

:: Pb :: Pw ::

:: Pw :: ::

Bw Kw :: :: ::

Black’s Move

Figure 4: The Horizon Effect.

3. ALPHA-BETA ENHANCEMENTS
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3.1. Minimal Window Search

Theoretical advances, such as Scout [Pea80] and the comparable minimal window search tech-
niques [CaM83, Fis84, Mar83] came in the late 1970’s. The basic idea behind these methods is that it
is cheaper to prove a subtree inferior, than to determine its exact value. Even though it has been shown
that for bushy trees minimal window techniques provide a significant advantage [Mar83], for random
game trees it is known that even these refinements are asymptotically equivalent to the simpler α -β
algorithm. Bushy trees are typical for chess and so many contemporary chess programs use minimal
window techniques through the Principal Variation Search (PVS) algorithm [MaC82]. In Figure 5, a
Pascal-like pseudo code is used to describe PVS in a negamax framework. The chess-specific func-
tions Make and Undo have been omitted for clarity. Also, the original version of PVS has been
improved by using Reinefeld’s depth=2 idea [Rei83], which shows that re-searches need only be per-
formed when the remaining depth of search is greater than 2. This point, and the general advantages
of PVS, is illustrated by Figure 6, which shows the traversal of the same tree presented in Figure 2.
Note that using narrow windows to prove the inferiority of the subtrees leads to the pruning of an addi-
tional horizon node (the node p.2.1.2). This is typical of the savings that are possible, although there is
a risk that some subtrees will have to be re-searched.
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FUNCTION PVS (p : position; α, β, depth : integer) : integer;
{ p is pointer to the current node }
{ α and β are window bounds }
{ depth is the remaining search length }
{ the value of the subtree is returned }

VAR score, j, value : integer;
posn : ARRAY [1..MAXWIDTH] OF position;

{ Note: depth must be positive }
BEGIN

IF depth = 0 THEN { horizon node, maximum depth? }
Return(Evaluate(p));

posn := Generate(p); { point to successor positions }
IF empty(posn) THEN { leaf, no moves? }

Return(Evaluate(p));
{ principal variation? }

score := -PVS (posn[1], -β, -α, depth-1);
FOR j := 2 TO sizeof(posn) DO BEGIN

IF (score ≥ β) THEN { cutoff? }
GOTO done;

α := max(score, α); { fail-soft condition }
{ zero-width minimal-window search }

value := -PVS (posn[j], -α-1, -α, depth-1);
IF (value > score) THEN { re-search, if ‘fail-high‘ }

IF (α < value) AND (value < β) AND (depth > 2) THEN
score := -PVS (posn[j], -β, -value, depth-1)

ELSE score := value;
END ;

done:
Return(score);

END ;

Figure 5: Minimal Window Principal Variation Search.
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Figure 6: The Effects of PVS Pruning.
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3.2. Forward Pruning

To reduce the size of the tree that should be traversed and to provide a weak form of selective
search, techniques that discard some branches have been tried. For example, tapered N-best search
[GEC67, Kot62] considers only the N-best moves at each node, where N usually decreases with
increasing depth of the node from the root of the tree. As noted by Slate and Atkin ‘‘The major design
problem in selective search is the possibility that the lookahead process will exclude a key move at a
low lev el in the game tree.’’ Good examples supporting this point are found elsewhere [Fre77]. Other
methods, such as marginal forward pruning [Sla71] and the gamma algorithm [New75], omit moves
whose immediate value is worse than the current best of the values from nodes already searched, since
the expectation is that the opponent’s move is only going to make things worse. Generally speaking
these forward pruning methods are not reliable and should be avoided. They hav e no theoretical basis,
although it may be possible to develop statistically sound methods which use the probability that the
remaining moves are inferior to the best found so far.

One version of marginal forward pruning, referred to as razoring [BiK77], is applied near hori-
zon nodes. The expectation in all forward pruning is that the side to move can improve the current
value, so it may be futile to continue. Unfortunately there are cases when the assumption is untrue, for
instance in zugzwang positions. As Birmingham and Kent point out ‘‘the program defines zugzwang
precisely as a state in which every move available to one player creates a position having a lower value
to him (in its own evaluation terms) than the present bound for the position’’ [BiK77]. Marginal prun-
ing may also break down when the side to move has more than one piece en prise (e.g., is forked), and
so the decision to stop the search must be applied cautiously.

Despite these disadvantages, there are sound forward pruning methods and there is every incen-
tive to dev elop more, since this is one way to reduce the size of the tree traversed, perhaps to less than
the minimal game tree. A good prospect is through the development of programs that can deduce
which branches can be neglected, by reasoning about the tree they traverse.

3.3. Move Ordering Mechanisms

For efficiency (traversal of a smaller portion of the tree) the moves at each node should be
ordered so that the more plausible ones are searched soonest. Various ordering schemes may be used.
For example, ‘‘since the refutation of a bad move is often a capture, all captures are considered first in
the tree, starting with the highest valued piece captured’’ [Gil72]. Special techniques are used at inte-
rior nodes for dynamically re-ordering moves during a search. In the simplest case, at every level in
the tree a record is kept of the moves that have been assessed as being best, or good enough to refute a
line of play and so cause a cut-off. As Gillogly puts it: ‘‘If a move is a refutation for one line, it may
also refute another line, so it should be considered first if it appears in the legal move list’’ [Gil72].
Referred to as the killer heuristic, a typical implementation maintains only the two most frequently
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occurring ‘‘killers’’ at each level [SlA77].

Recently a more powerful and more general scheme for re-ordering moves at an interior node
has been introduced. Schaeffer’s history heuristic ‘‘maintains a history for every legal move seen in
the search tree. For each move, a record of the move’s ability to cause a refutation is kept, regardless
of the line of play’’ [Sch83]. At an interior node the best move is the one that either yields the highest
score or causes a cut-off. Many implementations are possible, but a pair of tables (each of 64x64
entries) is enough to keep a frequency count of how often a particular move (defined as a from-to
square combination) is best for each side. The available moves are re-ordered so that the most suc-
cessful ones are tried first. An important property of this so called history table is the sharing of infor-
mation about the effectiveness of moves throughout the tree, rather than only at nodes at the same
search level. The idea is that if a move is frequently good enough to cause a cut-off, it will probably
be effective whenever it can be played.

3.4. Progressive and Iterative Deepening

The term progressive deepening was used by de Groot [Gro65] to encompass the notion of
selectively extending the main continuation of interest. This type of selective expansion is not per-
formed by programs employing the α -β algorithm, except in the sense of increasing the search depth
by one for each checking move on the current continuation (path from root to horizon), or by perform-
ing a quiescence search from horizon nodes until dead positions are reached.

In the early 1970’s sev eral people tried a variety of ways to control the exponential growth of the
tree search. A simple fixed depth search is inflexible, especially if it must be completed within a spec-
ified time. Jim Gillogly, author of the Tech chess program [Gil72], coined the term iterative deepening
to distinguish a full-width search to increasing depths from the progressively more focused search
described by de Groot. About the same time David Slate and Larry Atkin sought a better time control
mechanism, and introduced the notion of an iterated search [SlA77] for carrying out a progressively
deeper and deeper analysis. For example, an iterated series of 1-ply, 2-ply, 3-ply ... searches is carried
out, with each new search first retracing the best path from the previous iteration and then extending
the search by one ply. Early experimenters with this scheme were surprised to find that the iterated
search often required less time than an equivalent direct search. It is not immediately obvious why
iterative deepening is effective; as indeed it is not, unless the search is guided by the entries in a mem-
ory table (such as a transposition or refutation table) which holds the best moves from subtrees tra-
versed during the previous iteration. All the early experimental evidence indicated that the overhead
cost of the preliminary D-1 iterations was often recovered through a reduced cost for the D-ply search.
Later the efficiency of iterative deepening was quantified to assess various refinements, especially
memory table assists [Mar83]. Today the terms progressive and iterative deepening are often used
synonymously.
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One important aspect of these searches is the role played by re-sorting root node moves between
iterations. Because there is only one root node, an extensive positional analysis of the moves can be
done. Even ranking them according to consistency with continuing themes or a long range plan is pos-
sible. However, in chess programs which rate terminal positions primarily on material balance many
of the moves (subtrees) will return with equal scores. Thus at least a stable sort should be used to pre-
serve an initial order of preferences. Even so, that may not be enough. In the early iterations moves are
not assessed accurately. Some initially good moves may return with a poor expected score for one or
two iterations. Later the score may improve, but the move could remain at the bottom of a list of all
moves of equal score -- not near the top as the initial ranking recommended. Should this move ulti-
mately prove to be best, then far too many moves may precede it at the discovery iteration, and dispos-
ing of those moves may be inordinately expensive. Experience with our test data has shown that
among moves of equal score the partial ordering should be based on an extensive pre-analysis at the
root node, and not on the vagaries of a sorting algorithm.

3.5. Transposition and Refutation Tables

The results (score, best move, status) of the searches of nodes (subtrees) in the tree can be held
in a large direct access table [GEC67, MaC82, SlA77]. Re-visits of positions that have been seen
before are common, especially if a minimal window search is used. When a position is reached again,
the corresponding table entry serves three purposes. First, it may be possible to use the table score to
narrow the (α ,β ) window bounds. Secondly, the best move that was found before can be tried immedi-
ately. It had probably caused a cut-off and may do so again, thus eliminating the need to generate the
remaining moves. Here the table entry is being used as a move re-ordering mechanism. Finally, the
primary purpose of the table is to enable recognition of move transpositions that have lead to a position
(subtree) that has already been completely examined. In such a case there is no need to search again.
This use of a transposition table is an example of exact forward pruning. Many programs also store
their opening book in a way that is compatible with access to the transposition table. In this way they
are protected against the myriad of small variations in move order that are common in the opening.

By far the most popular table-access method is the one proposed by Zobrist [Zob70]. He
observed that a chess position constitutes placement of up to 12 different piece types {K,Q,R,B,N,P,-K
... -P} on to a 64-square board. Thus a set of 12x64 unique integers (plus a few more for en passant
and castling privileges), {Ri}, may be used to represent all the possible piece/square combinations.
For best results these integers should be at least 32 bits long, and be randomly independent of each
other. An index of the position may be produced by doing an exclusive-or on selected integers as fol-
lows:

P j = Ra xor Rb xor . . . xor Rx
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where the Ra etc. are integers associated with the piece placements. Movement of a ‘‘man’’ from the
piece-square associated with R f to the piece-square associated with Rt yields a new index

Pk = (P j xor R f ) xor Rt

By using this index as a hash key to the transposition table, direct and rapid access is possible. For
further speed and simplicity, and unlike a  normal hash table, only a single probe is made. More elabo-
rate schemes have been tried, but often the cost of the increased complexity of managing the table
undermines the benefits from improved table usage. Table 1 shows the usual fields for each entry in
the hash table. Flag specifies whether the entry corresponds to a position that has been fully searched,
or whether Score can only be used to adjust the α -β bounds. Height ensures that the value of a fully
evaluated position is not used if the subtree length is less than the current search depth, rather Move is
played instead. Figure 7 contains pseudo code showing usage of the entries Move, Score, Flag and
Height. Not shown there are functions Retrieve and Store, which access and update the transposition
table.

Lock To ensure the table entry corresponds to
the tree position.

Move Preferred move in the position, determined
from a previous search.

Score Value of subtree, computed previously.
Flag Is the score an upper bound, a lower bound

or a true score?
Height Length of subtree upon which score is based.

Table 1: Typical Transposition Table Entry.
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FUNCTION AB (p : position; α, β, depth : integer) : integer;
VAR value, height, score : integer;

j, move : 1..MAXWIDTH ;
flag : (VALID, LBOUND, UBOUND);
posn : ARRAY [1..MAXWIDTH] OF position;

BEGIN
{ Seek score and best move for the current position }

Retrieve(p, height, score, flag, move);

{ height is the effective subtree length. }
{ height < 0 - position not in table. }
{ height ≥ 0 - position in table. }

IF (height ≥ depth) THEN BEGIN
IF (flag = VALID) THEN

Return(score); { Forward prune, fully seen before }
IF (flag = LBOUND) THEN

α := max(α, score); { Narrow the window }
IF (flag = UBOUND) THEN

β := min(β, score); { Narrow the window }
IF (α ≥ β) THEN

Return(score); { Forward prune, no further interest }
END;

{ Note: update of the α or β bound }
{ is not valid in a selective search. }
{ If score in table insufficient to end }
{ search, try best move from table first }
{ before generating other moves. }

IF (depth = 0) THEN { horizon node? }
Return(Evaluate(p));

IF (height ≥ 0) THEN BEGIN
{ Re-order, try ’move’ from table }

score := -AB (posn[move], -β, -α, depth-1);
IF (score ≥ β) THEN

GOTO done; { Success, omit move generation }
END ELSE score := -∞;

{ No cut-off, produce move list }
posn := Generate(p);
IF empty(posn) THEN { leaf, mate or stalemate? }

Return(Evaluate(p));

FOR j := 1 TO sizeof(posn) DO
IF j ≠ move THEN BEGIN

{ using fail-soft condition }
value := -AB (posn[j], -β, -max(α,score), depth-1);
IF (value > score) THEN BEGIN

score := value;
move := j;
IF (score ≥ β) THEN

GOTO done; { Normal β cut-off }
END;

END;
done:

flag := VALID;
IF (score ≤ α) THEN

flag := UBOUND;
IF (score ≥ β) THEN

flag := LBOUND;
IF (height ≤ depth) THEN { update hash table }

Store(p, depth, score, flag, move);
Return(score);

END;

Figure 7: Alpha-Beta Search with Transposition Table.
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A transposition table also identifies the preferred move sequences used to guide the next itera-
tion of a progressive deepening search. Only the move is important in this phase, since the subtree
length is usually less than the remaining search depth. Transposition tables are particularly advanta-
geous to methods like PVS, since the initial minimal window search loads the table with useful lines
that are used in the event of a re-search. On the other hand, for deeper searches, entries are commonly
lost as the table is overwritten, even though the table may contain more than a million entries [Nel85].
Under these conditions a small fixed size transposition table may be overused (overloaded) until it is
ineffective as a means of storing the continuations. To overcome this fault, a special table for holding
these main continuations (the refutation lines) is also used. The table has W entries containing the D
elements of each continuation. For shallow searches (D < 6) a refutation table guides a progressive
deepening search just as well as a transposition table. Thus a refutation table is the preferred choice of
commercial systems or users of memory limited processors. A small triangular workspace (DxD/2
entries) is needed to hold the current continuation as it is generated, and these entries in the workspace
can also be used as a source of killer moves [AkN77].

3.6. Interpretation

The various terms and techniques described have evolved over the years, with the superiority of
one method over another often depending on which elements are combined. Iterative deepening ver-
sions of aspiration and Principal Variation Search (PVS), along with transposition, refutation and his-
tory memory tables are all useful refinements to the α -β algorithm. Their relative performance is ade-
quately characterized by Figure 8. That graph was made from data gathered by a chess program ana-
lyzing the standard Bratko-Kopec positions [KoB82] with a simple evaluation function. Other pro-
grams may achieve slightly different results, reflecting differences in the evaluation function, but the
relative performance of the methods should not be affected. Normally, the basis of such a comparison
is the number of horizon nodes (also called bottom positions or terminal nodes) visited. Evaluation of
these nodes is usually more expensive than the predecessors, since a quiescence search is carried out
there. However, these horizon nodes are of two types, ALL nodes, where every move is generated and
evaluated, and CUT nodes from which only as many moves as necessary to cause a cut-off are
assessed [MaP85]. For the minimal game tree these nodes can be counted, but there is no simple for-
mula for the general α -β search case. Thus the basis of comparison for Figure 8 is the amount of CPU
time required for each algorithm, rather than the leaf node count. Although a somewhat different
graph is produced as a consequence, the relative performance of the methods does not change. The
CPU comparison assesses the various enhancements more usefully, and also makes them look even
better than on a node count basis. Analysis of the Bratko-Kopec positions requires the search of trees
whose nodes have an average width (branching factor) of W = 34 branches. Thus it is possible to use
the formula for horizon node count in a uniform minimal game tree to provide a lower bound on the
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search size, as drawn in Figure 8. Since search was not possible for this case, the trace represents the
% performance relative to direct α -β , but on a node count basis. Even so, the trace is a good estimate
of the lower bound on the time required.

One feature of our simple chess program is that an extensive static analysis is done at the root
node. The order this analysis provides to the initial moves is retained from iteration to iteration among
moves which return the same ‘‘value.’’ At the other interior nodes, if the transposition and/or refuta-
tion table options are in effect and either provides a valid move, that move is tried first. Should a cut-
off occur the need for a move generation is eliminated. Otherwise the provisional ordering simply
places safe captures ahead of other moves. If the history table is enabled, then the move list is re-
ordered to ensure that the most frequently effective moves from elsewhere in the tree are tried soonest.
For the results presented in Figure 8, transposition, refutation and heuristic tables were in effect only
for the traces whose label is extended with +trans, +ref and/or +hist respectively. Also, the transposi-
tion table was fixed at eight thousand entries, so the effects of table overloading may be seen when the
search depth reaches 6-ply. Figure 8 shows that:

(a). Iterative deepening costs little over a direct search, and so can be effectively used as a time con-
trol mechanism. In the graph presented an average overhead of only 5% is shown, even though
memory assists like transposition, refutation or history tables were not used.

(b). When iterative deepening is used, PVS is superior to aspiration search.
(c). A refutation table is a space efficient alternative to a transposition table for guiding the early

iterations.
(d). Odd-ply α -β searches are more efficient than even-ply ones.
(e). Transposition table size must increase with depth of search, or else too many entries will be

overlaid before they can be used. The individual contributions of the transposition table,
through move re-ordering, bounds narrowing and forward pruning are not brought out in this
study.

(f). Transposition and/or refutation tables combine effectively with the history heuristic, achieving
search results close to the minimal game tree for odd-ply search depths.

4. OVERVIEW

A model chess program has three phases to its search. Typically, from the root node an exhaus-
tive examination of layers of moves occurs, and this is followed by a phase of selective searches up to
a limiting depth (the horizon). Programs which have no selective search component might be termed
‘‘brute force,’’ while those lacking an initial exhaustive phase are often selective only in the sense that
they employ some form of marginal forward pruning. An evaluation function is applied at the horizon
nodes to assess the material balance and the structural properties of the position (e.g., relative place-
ment of pawns). To aid in this assessment a third phase is used, a variable depth quiescence search of
those moves which are not dead (i.e., cannot be accurately assessed). It is the quality of this quies-
cence search which controls the severity of the horizon effect exhibited by all chess programs. Since
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% Performance Relative to a Direct α -β Search

Figure 8: Time Comparison of Alpha-Beta Enhancements
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the evaluation function is expensive, the best pruning must be used. All major programs use the ubiq-
uitous α -β algorithm and one of its refinements like aspiration search or principal variation search,
along with some form of iterative deepening.

These methods are significantly improved by dynamic move re-ordering mechanisms like the
killer heuristic, refutation tables, transposition tables and the history heuristic. Forward pruning meth-
ods are also sometimes effective. The transposition table is especially important because it improves
the handling of endgames where the potential for a draw by repetition is high. Like the history heuris-
tic, it is also a powerful predictor of cut-off moves, thus saving a move generation. The merits of these
methods has been encapsulated in a single figure showing their performance relative to a direct α -β
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search.
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